

Shell Conduction

The following example illustrates how to build and solve a model using the Heat Transfer in Shells interface. This example is a 2D NAFEMS benchmark (Ref. 1), which was transformed to 3D.

Model Definition

Figure 1 describes the 2D benchmark example.

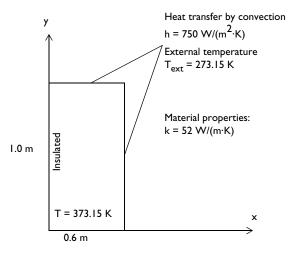


Figure 1: A 2D benchmark example for a thin conductive shell.

The 3D model bends this plate so that it becomes a quarter of a cylinder (Figure 2).

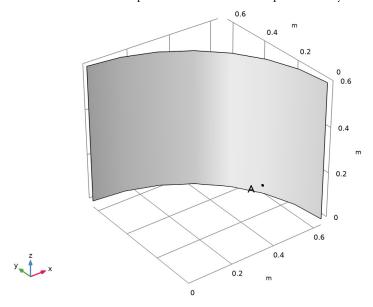


Figure 2: The 3D geometry based on the 2D model.

The temperature at point A in Figure 2 (291.40 K) is in agreement with that from the NAFEMS benchmark (Ref. 1). Figure 3 shows the temperature distribution.

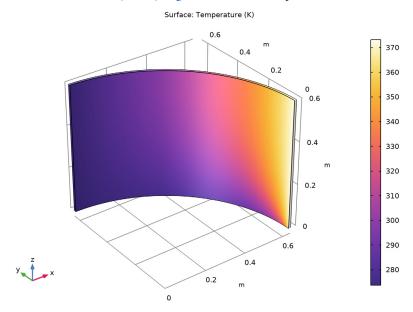


Figure 3: The resulting temperature field of the 3D model.

Reference

1. J.A. Casey and G.B Simpson, "Two-dimensional Steady State," Benchmark Tests for Thermal Analysis, NAFEMS, Test 10, p. 2.9, 1986.

Application Library path: Heat_Transfer_Module/Tutorials,_Thin_Structure/ shell_conduction

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 1 3D.
- 2 In the Select Physics tree, select Heat Transfer>Thin Structures> Heat Transfer in Shells (htlsh).
- 3 Click Add.
- 4 Click Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click **Done**.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description	
T_edge	373.15[K]	373.15 K	Edge temperature	
T_ext	273.15[K]	273.15 K	External temperature	
ht	750[W/(m^2*K)]	750 W/(m ² ·K)	Heat transfer coefficient	

GEOMETRY I

Cylinder I (cyl1)

- I In the Geometry toolbar, click (Cylinder.
- 2 In the Settings window for Cylinder, locate the Object Type section.
- 3 From the Type list, choose Surface.
- 4 Locate the Size and Shape section. In the Radius text field, type 2/pi.
- 5 In the Height text field, type 0.6.
- 6 Click Pauld Selected.

Delete Entities I (del I)

I In the Model Builder window, right-click Geometry I and choose Delete Entities.

- 2 On the object cyll, select Boundaries 1–3 only.
- 3 In the Settings window for Delete Entities, click 📳 Build Selected.
- **4** Click the **Zoom Extents** button in the **Graphics** toolbar.

Point I (ptl)

- I In the Geometry toolbar, click More Primitives and choose Point.
- 2 In the Settings window for Point, locate the Point section.
- 3 In the x text field, type (2/pi)*cos(pi*18/180).
- 4 In the **y** text field, type (2/pi)*sin(pi*18/180).

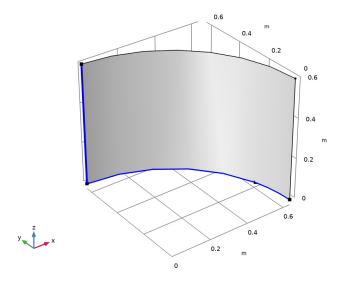
 This step embeds the point where you compare the calculated solution with the benchmark.
- 5 Click Pauld Selected.

MATERIALS

Material I (mat I)

- I In the Materials toolbar, click **Blank Material**.
- 2 In the Settings window for Material, locate the Material Contents section.
- **3** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	52	W/(m·K)	Basic
Density	rho	8800	kg/m³	Basic
Heat capacity at constant pressure	Ср	420	J/(kg·K)	Basic
Thickness	lth	0.01[m]	m	Shell


HEAT TRANSFER IN SHELLS (HTLSH)

Temperature I

- I In the Model Builder window, under Component I (compl) right-click Heat Transfer in Shells (htlsh) and choose Temperature.
- **2** Select Edge 5 only.
- 3 In the Settings window for Temperature, locate the Temperature section.
- **4** In the T_0 text field, type T_edge.

Heat Flux I

- I In the Physics toolbar, click Edges and choose Heat Flux.
- 2 Select Edges 1, 2, and 4 only.

- 3 In the Settings window for Heat Flux, locate the Heat Flux section.
- 4 From the Flux type list, choose Convective heat flux.
- **5** In the *h* text field, type ht.
- **6** In the $T_{\rm ext}$ text field, type T_ext.

MESH I

Mapped I

- I In the Mesh toolbar, click A Boundary and choose Mapped.
- 2 Select Boundary 1 only.
- 3 In the Settings window for Mapped, click Build All.

STUDY I

In the **Home** toolbar, click **Compute**.

RESULTS

Temperature (htlsh)

The default plot is the surface plot of the temperature. Compare with Figure 3.

Follow the steps below to obtain the temperature at the benchmark verification point.

Point Evaluation 1

- I In the Results toolbar, click $\frac{8.85}{e-12}$ Point Evaluation.
- **2** Select Point 3 only.
- 3 In the Settings window for Point Evaluation, click **= Evaluate**. The result shown in the **Table** window below the **Graphics** window should be approximately 291.4 K.