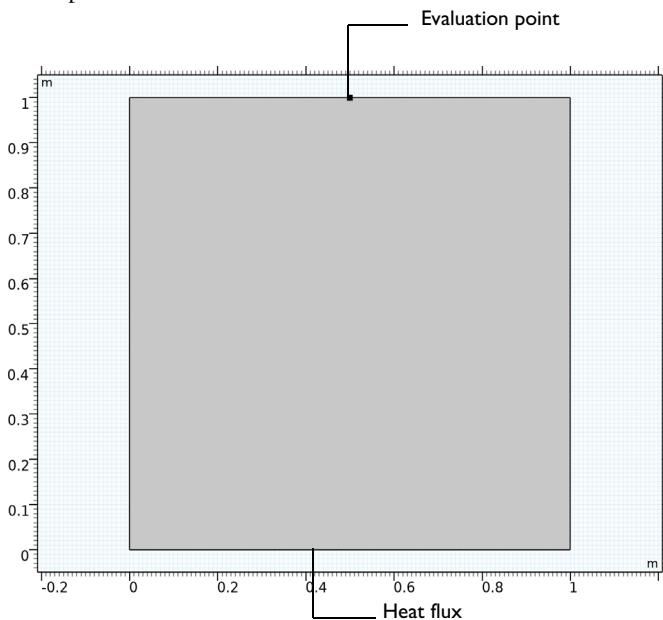


Action on Structures Exposed to Fire — Cooling Process

Introduction



This is the first verification example from [Ref. 1](#) which is part of the European Standard EN-1991-1-2:2010-12, Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. A transient cooling process is modeled. You verify that the numerical results obtained with COMSOL Multiphysics are within the validity ranges specified in the norm.

Model Definition

The modeled geometry is a square with a side length of 1 m. [Figure 1](#) shows the geometry and setup.

Figure 1: Model geometry and setup.

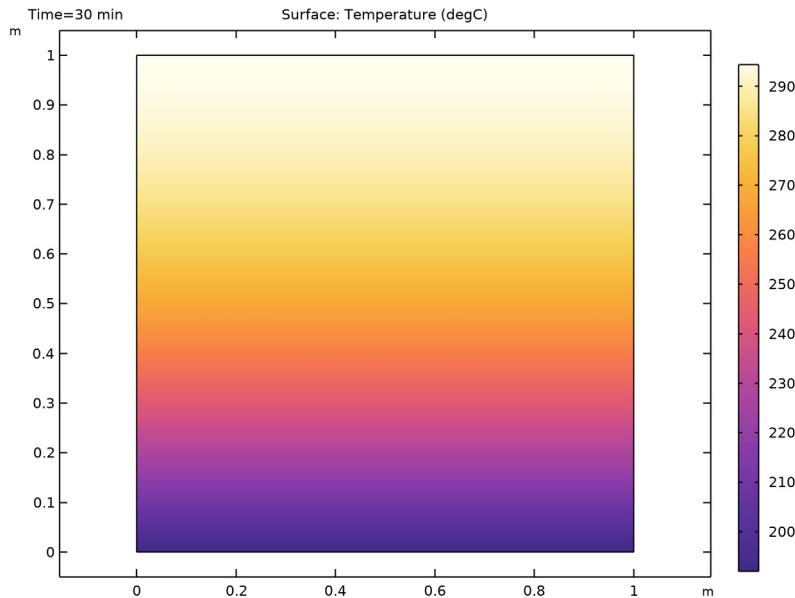
The material properties are listed in [Table 1](#).

TABLE 1: MATERIAL PROPERTIES.

PROPERTY	NAME	VALUE
Thermal conductivity	k	1 W/(m·K)

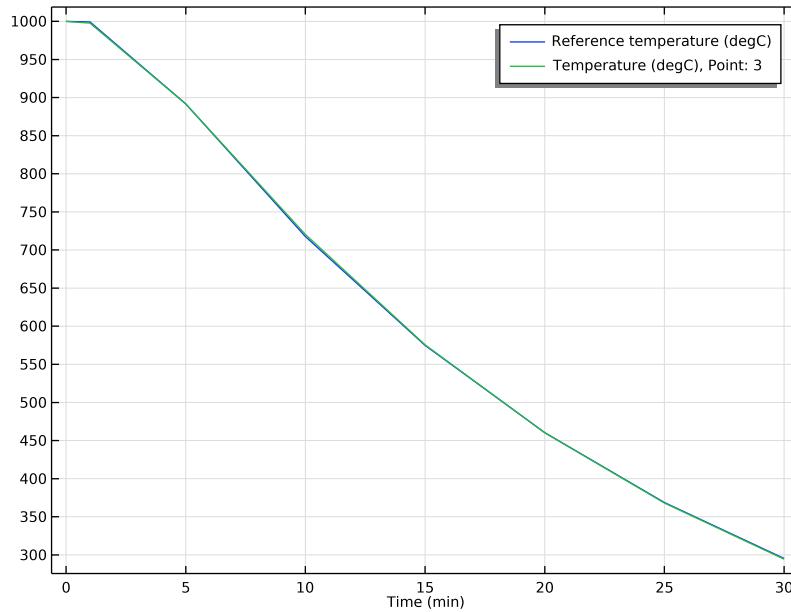
TABLE I: MATERIAL PROPERTIES.

PROPERTY	NAME	VALUE
Density	r	1000 kg/m ³
Heat Capacity	C_p	1 J/(kg·K)


The initial temperature is set to 1000°C and is cooled down using a heat flux condition on the bottom boundary according to

$$q_0 = h(T_{\text{ext}} - T)$$

with the heat transfer coefficient $h = 1 \text{ W}/(\text{m}^2 \cdot \text{K})$ and the external temperature $T_{\text{ext}} = 0^\circ\text{C}$. All other boundaries are adiabatic. The temperature evolution over 30 min is computed and the results are compared to the reference values given by [Ref. 1](#). To fulfill the norm, the maximum deviation from the reference values must not exceed a relative error of 1% and an absolute error of 5 K.


Results and Discussion

The temperature distribution after 30 min is shown in [Figure 2](#).

Figure 2: Temperature distribution after 30 min.

The reference and computed temperatures are compared in [Figure 3](#). The numerical values match the norm data very well.

Figure 3: Reference (blue) and calculated temperature (green) over time.

The reference and calculated temperatures together with the absolute and relative errors for each time are listed in [Table 2](#).

TABLE 2: RESULTS.

Time (min)	Reference temperature(°C)	Calculated temperature(°C)	Absolute error (K)	Relative Error (%)
0	1000	1000	0	0
1	999.3	997.7	1.6	0.2
5	891.8	891.7	0.1	0.01
10	717.7	720.4	2.7	0.4
15	574.9	575.6	0.7	0.1
20	460.4	460.2	0.2	0.04
25	368.7	368.0	0.7	0.2
30	295.3	294.4	0.9	0.3

Reference

1. DIN EN 1991-1-2/NA, *National Annex - Nationally determined parameters - Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire.*

Application Library path: Heat_Transfer_Module/Verification_Examples/fire_effects_cooling

Modeling Instructions

From the **File** menu, choose **New**.

NEW

In the **New** window, click **Model Wizard**.

MODEL WIZARD

- 1 In the **Model Wizard** window, click **2D**.
- 2 In the **Select Physics** tree, select **Heat Transfer>Heat Transfer in Solids (ht)**.
- 3 Click **Add**.
- 4 Click **Study**.
- 5 In the **Select Study** tree, select **General Studies>Time Dependent**.
- 6 Click **Done**.

GEOMETRY I

Square 1 (sq1)

In the **Geometry** toolbar, click **Square**.

Point 1 (pt1)

- 1 In the **Geometry** toolbar, click **Point**.
- 2 In the **Settings** window for **Point**, locate the **Point** section.
- 3 In the **x** text field, type 0.5.
- 4 In the **y** text field, type 1.
- 5 Click **Build All Objects**.

MATERIALS

Material 1 (mat1)

- 1 In the **Model Builder** window, under **Component 1 (comp1)** right-click **Materials** and choose **Blank Material**.
- 2 In the **Settings** window for **Material**, locate the **Material Contents** section.
- 3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Thermal conductivity	k_{iso} ; $k_{ii} = k_{iso}$, $k_{ij} = 0$	1	W/(m·K)	Basic
Density	ρ	1000	kg/m ³	Basic
Heat capacity at constant pressure	C_p	1	J/(kg·K)	Basic

HEAT TRANSFER IN SOLIDS (HT)

Initial Values 1

- 1 In the **Model Builder** window, under **Component 1 (comp1)**>**Heat Transfer in Solids (ht)** click **Initial Values 1**.
- 2 In the **Settings** window for **Initial Values**, locate the **Initial Values** section.
- 3 In the T text field, type 1000 [degC].

Heat Flux 1

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.
- 2 In the **Settings** window for **Heat Flux**, locate the **Heat Flux** section.
- 3 From the **Flux type** list, choose **Convective heat flux**.
- 4 In the h text field, type 1.
- 5 In the T_{ext} text field, type 0[degC].
- 6 Select Boundary 2 only.

To compare the simulation results with the reference values, create an interpolation function for the norm data which are given in a file.

GLOBAL DEFINITIONS

Reference temperature

- 1 In the **Home** toolbar, click **Functions** and choose **Global>Interpolation**.

- 2 In the **Settings** window for **Interpolation**, locate the **Definition** section.
- 3 From the **Data source** list, choose **File**.
- 4 Click **Browse**.
- 5 Browse to the model's Application Libraries folder and double-click the file `fire_effects_cooling_Tref.txt`.
- 6 Click **Import**.
- 7 In the **Label** text field, type `Reference temperature`.
- 8 Locate the **Definition** section. In the **Function name** text field, type `Tref`.
- 9 Locate the **Units** section. In the **Argument** table, enter the following settings:

Argument	Unit
<code>t</code>	<code>s</code>

- 10 In the **Function** table, enter the following settings:

Function	Unit
<code>Tref</code>	<code>degC</code>

STUDY 1

Step 1: Time Dependent

- 1 In the **Model Builder** window, under **Study 1** click **Step 1: Time Dependent**.
- 2 In the **Settings** window for **Time Dependent**, locate the **Study Settings** section.
- 3 From the **Time unit** list, choose **min**.
- 4 In the **Output times** text field, type `0 1 5 10 15 20 25 30`.
- 5 In the **Home** toolbar, click **Compute**.

RESULTS

Temperature (ht)

A temperature and isothermal contour plot are created automatically. After changing the unit of the temperature plot, compare it with [Figure 2](#).

Surface

- 1 In the **Model Builder** window, expand the **Temperature (ht)** node, then click **Surface**.
- 2 In the **Settings** window for **Surface**, locate the **Expression** section.
- 3 From the **Unit** list, choose **degC**.

4 In the **Temperature (ht)** toolbar, click **Plot**.

Global Evaluation: Reference temperature

- 1 In the **Results** toolbar, click **Global Evaluation**.
- 2 In the **Settings** window for **Global Evaluation**, locate the **Expressions** section.
- 3 In the table, enter the following settings:

Expression	Unit	Description
Tref(t)	degC	Reference temperature

- 4 In the **Label** text field, type **Global Evaluation: Reference temperature**.

- 5 Click **Evaluate**.

Point Evaluation: Temperature

- 1 In the **Results** toolbar, click **Point Evaluation**.
- 2 Select Point 3 only.
- 3 In the **Settings** window for **Point Evaluation**, locate the **Expressions** section.
- 4 In the table, enter the following settings:

Expression	Unit	Description
T	degC	Temperature

- 5 In the **Label** text field, type **Point Evaluation: Temperature**.

Instead of creating a new table, evaluate the results in the same table as before.

- 6 Right-click on the **Point Evaluation: Temperature** node.
- 7 Go to **Evaluate** and click **Table 1 - Global Evaluation: Reference temperature (Tref(t))**.

TABLE

- 1 Go to the **Table** window.
- 2 Click **Table Graph** in the window toolbar.

RESULTS

Temperature

- 1 In the **Model Builder** window, under **Results** click **ID Plot Group 3**.
- 2 In the **Settings** window for **ID Plot Group**, type **Temperature** in the **Label** text field.

Table Graph 1

- 1 In the **Model Builder** window, click **Table Graph 1**.

2 In the **Settings** window for **Table Graph**, click to expand the **Legends** section.

3 Select the **Show legends** check box.

The reference and computed values match very well (compare with [Figure 3](#)).

Finally, evaluate the absolute and relative errors.

Absolute and Relative Error

1 In the **Results** toolbar, click [8.85](#) [e-12](#) **Point Evaluation**.

2 In the **Settings** window for **Point Evaluation**, type **Absolute** and **Relative Error** in the **Label** text field.

3 Select Point 3 only.

4 Locate the **Expressions** section. In the table, enter the following settings:

Expression	Unit	Description
$abs(T-Tref(t))$	K	Absolute error
$abs(T-Tref(t))/(Tref(t)-273.15[K])$	%	Relative error

5 Click **Evaluate**.

TABLE

1 Go to the **Table** window.

The absolute and relative errors are within the allowed range of 5 K or 1% respectively.

Compare with [Table 2](#).

