

Nonisothermal Laminar Flow in a Circular Tube

This validation model of laminar airflow through a tube validates the heat transfer coefficient obtained from the simulation against Nusselt-number-based correlation functions. The simulation results are in good agreement with experimental measurements.

Model Definition

The tube is modeled as a 2D axisymmetric geometry. The tube has a diameter of 0.05 m and a length of 3 m. A coupled heat transfer and fluid flow problem is solved using the Nonisothermal Flow interface.

At the inlet, a laminar velocity profile U with an average velocity $U_{\rm av}$ of 0.1 m/s is applied using the normal inflow option:

$$U = 1.5 U_{\text{av}} \left(1 - 4 \left(\frac{r}{b} \right)^2 \right)$$

where r denotes the radial distance from the tube center and b the tube's diameter. The expression gives the typical parabolic velocity profile for fully developed laminar flow. The air enters with a temperature T_0 of 283 K.

At the cylinder wall, a constant heat flux q_w of 10 W/m² is applied.

NUSSELT NUMBER CORRELATIONS

Two different Nusselt number correlations are used to validate the numerical results.

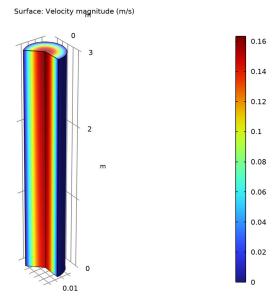
First, in regions with fully developed laminar flow with a radial temperature profile, a constant Nusselt number Nuc can be defined as follows:

$$Nu_c = \frac{hD_h}{k}$$

where k (SI unit: W/(m·K)) denotes the thermal conductivity, $D_{\rm h}$ (SI unit: m) the hydraulic diameter, and h (SI unit: $W/(m^2 \cdot K)$) the heat transfer coefficient. In the case of a tube with uniform surface heat flux, Nu = 4.36 (Ref. 1, p. 507).

Alternatively, a local Nusselt number Nu₁ can be defined, based on the z-position along the cylinder, to describe both the entrance and fully developed regions of the flow (Ref. 2, p. 304):

$$\begin{split} \frac{Nu_l}{4.364\bigg[1+\bigg(\frac{Gz}{29.6}\bigg)^2\bigg]^{1/6}} \\ &= \left[1+\left(\frac{Gz/19.04}{\bigg[1+\bigg(\frac{Pr}{0.0207}\bigg)^{2/3}\bigg]^{1/2}\bigg[1+\bigg(\frac{Gz}{29.6}\bigg)^2\bigg]^{1/3}}\right]^{3/2}\right]^{1/3} \end{split}$$


where Pr is the Prandt number, and the Graetz number Gz is defined by:

$$Gz = \frac{\pi}{4} \cdot \frac{Re_b \cdot Pr \cdot b}{z}$$

with Re_b the Reynolds number associated to the tube diameter b.

Results and Discussion

The velocity field is shown in Figure 1 and the temperature field in Figure 2. Both are plotted in a scaled view to get a clearer visualization of the results.

×

Figure 1: Velocity field.

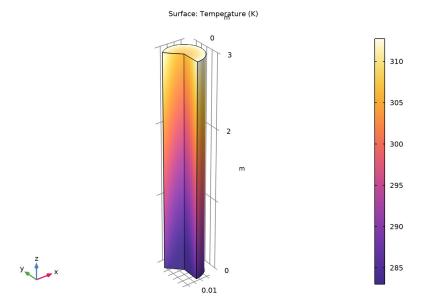


Figure 2: Temperature field.

The comparison of the computed heat transfer coefficient with the Nusselt number correlations shows that the Local Nusselt number provides a good approximation over the whole cylinder. On the other hand, constant Nusselt number represents the region where velocity and temperature profile are fully developed (Figure 3).

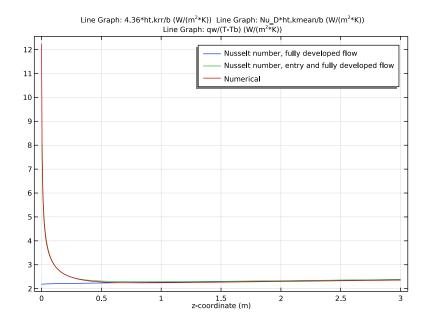


Figure 3: Comparison of the computed heat transfer coefficient with the heat transfer coefficient estimation based on Nusselt number correlations.

References

- 1. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2006.
- 2. A. Bejan et al., Heat Transfer Handbook, John Wiley & Sons, 2003.

Application Library path: Heat_Transfer_Module/Verification_Examples/ circular_tube_nitf_laminar

Modeling Instructions

From the **File** menu, choose **New**.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 2D Axisymmetric.
- 2 In the Select Physics tree, select Fluid Flow>Nonisothermal Flow>Laminar Flow.
- 3 Click Add.
- 4 Click 🔵 Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click **Done**.

GLOBAL DEFINITIONS

Parameters I

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description	
L	3[m]	3 m	Length	
b	0.05[m]	0.05 m	Height	
ТО	283[K]	283 K	Inlet temperature	
U_av	0.1[m/s]	0.1 m/s	Average inlet velocity	
qw	10[W/m^2]	10 W/m ²	Wall heat flux	
Tw	293[K]	293 K	Wall temperature	

DEFINITIONS

Variables 1

Define several variables: A variable for the inlet velocity profile, a variable for the bulk temperature which is a radial weighted temperature, and similarly a variable for the bulk velocity. Finally, add variables to compare the simulation results with the literature values.

- I In the Model Builder window, under Component I (compl) right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
U	1.5*U_av*(1-4*(r/b)^2)	m/s	Inlet velocity
Tb	<pre>integrate(comp1.at2(r,z,2*pi*r*w* T),r,0,b/2)/integrate(comp1.at2(r,z,2*pi*r*w),r,0,b/2)</pre>	K	Bulk temperature
Ub	<pre>integrate(comp1.at2(r,z,2*pi*r*w), r,0,b/2)/(pi*(b/2)^2)</pre>	m/s	Bulk velocity
Тс	comp1.at2(0,z,T)	K	Center line temperature
Pr	ht.Cp*spf.mu/ht.kmean		Prandtl number
Re_D	nitf1.rho*Ub*b/spf.mu		Reynolds number
Gz	b*Re_D*Pr/z*pi/4		Graetz number
Nu_D	(1+(Gz/19.04/((1+(Pr/0.0207)^2/ 3)^1/2*(1+(Gz/29.6)^2)^1/3))^(3/ 2))^(1/3)*4.364*(1+(Gz/29.6)^2)^(1/ 6)		Local Nusselt number

GEOMETRY I

Rectangle I (rI)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type b/2.
- 4 In the Height text field, type L.
- 5 Click **Build All Objects**.

ADD MATERIAL

- I In the Home toolbar, click **‡ Add Material** to open the **Add Material** window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Air.
- 4 Click Add to Component in the window toolbar.
- 5 In the Home toolbar, click **4** Add Material to close the Add Material window.

LAMINAR FLOW (SPF)

Inlet I

- I In the Model Builder window, under Component I (compl) right-click Laminar Flow (spf) and choose Inlet.
- 2 Select Boundary 2 only.
- 3 In the Settings window for Inlet, locate the Velocity section.
- **4** In the U_0 text field, type U.

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 Select Boundary 3 only.

HEAT TRANSFER IN FLUIDS (HT)

In the Model Builder window, under Component I (compl) click Heat Transfer in Fluids (ht).

Inflow I

- I In the Physics toolbar, click Boundaries and choose Inflow.
- 2 Select Boundary 2 only.
- 3 In the Settings window for Inflow, locate the Upstream Properties section.
- **4** In the $T_{\rm ustr}$ text field, type T0.

Outflow I

- I In the Physics toolbar, click Boundaries and choose Outflow.
- 2 Select Boundary 3 only.

Heat Flux 1

- I In the Physics toolbar, click Boundaries and choose Heat Flux.
- 2 Select Boundary 4 only.
- 3 In the Settings window for Heat Flux, locate the Heat Flux section.
- **4** In the q_0 text field, type qw.

MESH I

Mabbed I

In the Mesh toolbar, click Mapped.

Distribution I

I Right-click Mapped I and choose Distribution.

- 2 Select Boundary 4 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 In the Number of elements text field, type 600.

Distribution 2

- I In the Model Builder window, right-click Mapped I and choose Distribution.
- 2 Click the **Zoom Extents** button in the **Graphics** toolbar.
- **3** Select Boundaries 2 and 3 only.
- 4 In the Settings window for Distribution, locate the Distribution section.
- 5 From the Distribution type list, choose Predefined.
- 6 In the Number of elements text field, type 33.
- 7 In the Element ratio text field, type 5.
- 8 Click Build All.

STUDY I

In the **Home** toolbar, click **Compute**.

RESULTS

Velocity, 3D (spf)

For better visualization of the results, use a scaled the view.

View 3D 2

In the Model Builder window, expand the Results>Views node.

Camera

- I In the Model Builder window, expand the View 3D 2 node, then click Camera.
- 2 In the Settings window for Camera, locate the Camera section.
- 3 From the View scale list, choose Manual.
- 4 In the z scale text field, type 0.1.
- 5 Click 🚺 Update.
- **6** Click the **Zoom Extents** button in the **Graphics** toolbar.

Velocity, 3D (spf)

Click the Zoom Extents button in the Graphics toolbar.

Heat transfer coefficient

I In the Home toolbar, click In Add Plot Group and choose ID Plot Group.

2 In the Settings window for ID Plot Group, type Heat transfer coefficient in the Label text field.

Line Graph 1

- I Right-click Heat transfer coefficient and choose Line Graph.
- **2** Select Boundary 4 only.
- 3 In the Settings window for Line Graph, locate the y-Axis Data section.
- 4 In the Expression text field, type 4.36*ht.krr/b.
- 5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- **6** In the **Expression** text field, type z.
- 7 Click to expand the **Legends** section. Select the **Show legends** check box.
- 8 From the Legends list, choose Manual.
- **9** In the table, enter the following settings:

Legends

Nusselt number, fully developed flow

Line Graph 2

- I In the Model Builder window, right-click Heat transfer coefficient and choose Line Graph.
- **2** Select Boundary 4 only.
- 3 In the Settings window for Line Graph, locate the y-Axis Data section.
- 4 In the Expression text field, type Nu D*ht.kmean/b.
- 5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- **6** In the **Expression** text field, type **z**.
- 7 Locate the **Legends** section. Select the **Show legends** check box.
- 8 From the Legends list, choose Manual.
- **9** In the table, enter the following settings:

Legends

Nusselt number, entry and fully developed flow

Line Graph 3

- I Right-click Heat transfer coefficient and choose Line Graph.
- **2** Select Boundary 4 only.
- 3 In the Settings window for Line Graph, locate the y-Axis Data section.

- 4 In the Expression text field, type qw/(T-Tb).
- 5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- **6** In the **Expression** text field, type z.
- 7 Locate the **Legends** section. Select the **Show legends** check box.
- 8 From the Legends list, choose Manual.
- **9** In the table, enter the following settings:

Legends Numerical

Heat transfer coefficient

- I In the Model Builder window, click Heat transfer coefficient.
- 2 In the Heat transfer coefficient toolbar, click Plot.