PDF

Modeling Impedance in the Lithium-Ion Battery
Introduction
Electrochemical impedance spectroscopy (EIS) is a valuable method to investigate electrochemical systems such as batteries. For a battery, where potential perturbations of varying frequency are applied on an electrode, the impedance response gives insight into several battery properties and processes. At high frequencies, short time-scale processes such as capacitance, electrochemical reactions, and local resistances affect the impedance. On the other hand, at low frequencies, diffusion in the electrolyte and active material particles (that is, large time-scale processes) contribute to the impedance.
This example simulates the impedance of a full lithium-ion battery cell using the Lithium-Ion Battery interface with an AC Impedance Stationary study. The model also reproduces to the results by Abraham and others (Ref. 1) for sinusoidal potential perturbations between 10 mHz to 1 kHz after model fitting using the Parameter Estimation study step.
Note: This tutorial model requires the Optimization Module.
Model Definition
The model consists of the following components:
Negative porous electrode: LTO (Li4Ti5O12) active material, electronic conductor, and filler.
Positive porous electrode: NCA (LiNi0.08Co0.15Al0.05O2) active material, electronic conductor, and filler.
Electrolyte: 1.2 M LiPF6 in EC:EMC (3:7 by weight)
A 1D model with three domains of different thickness is used: a 115 μm negative electrode, a 50 μm separator, and a 35 μm positive electrode. The model is set up in a similar fashion as the 1D Isothermal Lithium-Ion Battery, but with double-layer capacitances on the active electrode materials and on the electronic conductor in the positive electrode. The model approach using an additional double-layer at the electronic conductor has, for example, been used by Brown and others (Ref. 2) to describe experimental EIS spectra measured between 1 mHz and 1 kHz on NCA electrodes.
An AC Stationary Impedance study is used to solve the problem, implying that all variables are shifted from being time dependent to frequency dependent, as illustrated with the following expression:
where n is the variable and subscript 0 denotes the initial value around which the perturbation takes place and tilde the complex perturbation. Furthermore, i is the imaginary unit, f the frequency, and t the time.
The boundary of the positive electrode current-collector is set to a sinusoidal perturbation with a 10 mV amplitude and the boundary of the negative electrode current-collector fixed to 0 V, that is, ground.
The cell impedance, Z (SI unit: Ω·m2), is calculated at the boundary of the positive electrode current-collector as follows:
where  (SI unit: V) is the potential, n the boundary normal and Is (SI unit: Am2) the current density in the solid. (Note that the lindev operator is used in the model file in order to use the perturbing values of the variables in the evaluation.)
Subtracting the reference electrode potential from the solid potential in the numerator enables the analysis of the impedance of the NCA positive electrode versus the reference electrode, thus separating the contribution of each electrode to the impedance. The LTO impedance versus the reference is consequently given by the difference between the cell impedance and NCA impedance versus the reference.
The model is computed for frequencies between 10 mHz and 1 kHz. This range is common in EIS to minimize any errors from experimental interference (for example, Ref. 2).
Optimization
The model is initially solved for the presented experimental set-up (Ref. 1) with the aid of parameters given in Ref. 2. However, since the simulated impedance deviates to a large extent from the experiments, an optimization is performed using the Global Least-Squares Objective feature in the Optimization interface. This feature is set to minimize the least-squares error between the simulated and measured NCA impedance versus the reference electrode through variation of some control parameters. These parameters are given in Table 1.
Lower: 1 Am-2
Upper: 6 Am-2
5·10-1 Fm-2
Lower: 1·10-1 Fm-2
Upper: 9·10-1 Fm-2
1·10-3 Ωm2
Lower: 1·10-6 Ωm2
Upper: 5·10-3 Ωm2
5·105 Fm-3
Lower: 1·105 Fm-3
Upper: 1·106 Fm-3
The first three parameters have bounds selected as anticipated by the information given by Abraham and others (Ref. 1). The last parameter depend on the size of the electronic conductor particles. It is also common to run parametric sweeps before selecting control parameters and to narrow down the bounds. Normally the optimization time is reduced and the optimization accuracy is improved when few control parameters and narrow bound intervals are selected.
Study settings
The problem is solved with an AC Impedance, Initial Values study. The optimization solver is set up by adding an Optimization node to the study and selecting the SNOPT method with the numeric gradient method.
Results and Discussion
Simulated and experimental Nyquist spectra from the LTO/NCA cell at 2.30 V are displayed in Figure 1. The simulation utilizes the parameters from Ref. 2. Characteristic semi-circles and low-frequency tails are seen. The largest contribution to the cell impedance is in the positive NCA electrode. The difference between the experimental and simulated impedance spectra of the NCA electrode versus reference is evident: The simulation shows one large semi-circle and an indication of another semi-circle at high frequencies. The experimental spectrum has a smaller depressed (elongated) semi-circle.
Figure 1: Simulated and experimental Nyquist spectra for 10 mHz to 1 kHz. Parameters taken from Ref. 2.
Since the difference is most prominent in the semi-circle frequency region (that is, mid-high frequencies) mainly the parameters describing short time-scale processes do not fit the experiments. Four of these parameters are investigated with a parametric sweep to determine their impact on the impedance. The sweep is shown in Figure 2.
Figure 2: Nyquist plots when testing the impact of five parameters for 10 mHz to 1 kHz.
As a comparison, the sweep also includes variation of the radius of the positive electrode material particles, mainly affecting the large time-scale process of diffusion in the particles. Its impact is therefore more evident at lower frequencies. This is seen in Figure 2, where both the angle and shape of the low-frequency tail change. The results also show that the parameters describing large time-scale processes seem to be quite accurate in the model.
These findings are consistent with the observations by Abraham and others (Ref. 1) indicating that the electrochemical reaction is less limited in their electrodes. With this input Table 1 is set up and the optimization is run. The resulting spectra are shown in Figure 3.
Figure 3: Nyquist spectra with optimized parameters for 10 mHz to 1 kHz. Squares denote the data points used in the optimization.
The simulated and experimental spectra for NCA versus reference are now seen to overlap well. The optimized control parameters are tabulated in Table 2.
4.1·10-1 Fm-2
1·10-6 Ωm2
5.6·105 Fm-3
References
1. D.P. Abraham, S. Kawauchi, and D.W. Dees, “Modeling the impedance versus voltage characteristics of LiNi0.08Co0.15Al0.05O2,” Electrochim. Acta, vol. 53, pp. 2121–2129, 2008.
2. S. Brown, N. Mellgren, M. Vynnycky, and G. Lindbergh, “Impedance as a Tool for Investigating Aging in Lithium-Ion Porous Electrodes. II. Positive Electrode Examination,” J. Electrochem. Soc, vol. 155, p. A320, 2008.
Application Library path: Battery_Design_Module/Batteries,_Lithium-Ion/li_battery_impedance
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  1D.
2
In the Select Physics tree, select Electrochemistry>Batteries>Lithium-Ion Battery (liion).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>AC Impedance, Initial Values.
6
Global Definitions
Load parameters from a text file
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Definitions
The impedance is calculated using variables defined in a text file. It is defined at the rightmost boundary versus ground (at the leftmost boundary) or a reference electrode. The lindev operator explicitly evaluates the deviation from the stationary solution in the perturbed solution.
Variables 1
1
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Click  Load from File.
4
Geometry 1
Interval 1 (i1)
1
In the Model Builder window, under Component 1 (comp1) right-click Geometry 1 and choose Interval.
2
In the Settings window for Interval, locate the Interval section.
3
Interval 2 (i2)
1
In the Model Builder window, right-click Geometry 1 and choose Interval.
2
In the Settings window for Interval, locate the Interval section.
3
From the Specify list, choose Interval lengths.
4
In the Left endpoint text field, type L_neg.
5
Interval 3 (i3)
1
Right-click Geometry 1 and choose Interval.
2
In the Settings window for Interval, locate the Interval section.
3
From the Specify list, choose Interval lengths.
4
In the Left endpoint text field, type L_neg+L_sep.
5
6
Click  Build Selected.
7
Click the  Zoom Extents button in the Graphics toolbar.
Add Material
The cell materials are available in the Battery Material Library.
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Battery>Electrolytes>LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery).
4
Click Add to Component in the window toolbar.
5
In the tree, select Battery>Electrodes>LTO, Li4Ti5O12 (Negative, Li-ion Battery).
6
Click Add to Component in the window toolbar.
7
In the tree, select Battery>Electrodes>NCA, LiNi0.8Co0.15Al0.05O2 (Positive, Li-ion Battery).
8
Click Add to Component in the window toolbar.
9
In the Home toolbar, click  Add Material to close the Add Material window.
Definitions
Use a domain point probe to retrieve the potential in the middle of the separator where the reference electrode is located.
Reference Electrode (RE) Probe
1
In the Definitions toolbar, click  Probes and choose Domain Point Probe.
2
In the Settings window for Domain Point Probe, type Reference Electrode (RE) Probe in the Label text field.
3
Locate the Point Selection section. In row Coordinate, set x to L_neg+L_sep/2.
Point Probe Expression 1 (ppb1)
1
In the Model Builder window, expand the Reference Electrode (RE) Probe node, then click Point Probe Expression 1 (ppb1).
2
In the Settings window for Point Probe Expression, type RE_phi in the Variable name text field.
Integration 1 (intop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Lithium-Ion Battery (liion)
Set up the model with a negative and a positive porous electrode with a separator in between. Double layers exist on both active materials.
Porous Electrode 1
1
In the Model Builder window, under Component 1 (comp1) right-click Lithium-Ion Battery (liion) and choose Porous Electrode.
2
3
In the Settings window for Porous Electrode, locate the Electrode Properties section.
4
From the Electrode material list, choose LTO, Li4Ti5O12 (Negative, Li-ion Battery) (mat2).
5
Click to expand the Film Resistance section. From the Film resistance list, choose Surface resistance.
6
In the Rfilm text field, type Rfilm_neg.
7
Locate the Porous Matrix Properties section. In the εs text field, type epss_neg.
8
In the εl text field, type epsl_neg.
9
Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the fl text field, type epsl_neg^brugl_neg.
10
From the Diffusion list, choose User defined. In the fDl text field, type epsl_neg^brugl_neg.
Particle Intercalation 1
1
In the Model Builder window, click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Material section.
3
From the Particle material list, choose LTO, Li4Ti5O12 (Negative, Li-ion Battery) (mat2).
4
Locate the Species Settings section. In the cs,init text field, type mat2.elpot.cEeqref*soc0_neg.
5
Locate the Particle Transport Properties section. In the rp text field, type rp_neg.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Material section.
3
From the Material list, choose LTO, Li4Ti5O12 (Negative, Li-ion Battery) (mat2).
4
Locate the Electrode Kinetics section. In the i0,ref(T) text field, type i0ref_neg.
Porous Electrode 1
In the Model Builder window, click Porous Electrode 1.
Porous Matrix Double Layer Capacitance 1
1
In the Physics toolbar, click  Attributes and choose Porous Matrix Double Layer Capacitance.
2
In the Settings window for Porous Matrix Double Layer Capacitance, locate the Porous Matrix Double Layer Capacitance section.
3
In the Cdl text field, type cdl_neg.
Porous Electrode 2
1
In the Physics toolbar, click  Domains and choose Porous Electrode.
2
3
In the Settings window for Porous Electrode, locate the Electrode Properties section.
4
From the Electrode material list, choose NCA, LiNi0.8Co0.15Al0.05O2 (Positive, Li-ion Battery) (mat3).
5
Locate the Film Resistance section. From the Film resistance list, choose Surface resistance.
6
In the Rfilm text field, type Rfilm_pos.
7
Locate the Porous Matrix Properties section. In the εs text field, type epss_pos.
8
In the εl text field, type epsl_pos.
9
Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the fl text field, type epsl_pos^brugl_pos.
10
From the Diffusion list, choose User defined. In the fDl text field, type epsl_pos^brugl_pos.
Particle Intercalation 1
1
In the Model Builder window, click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Material section.
3
From the Particle material list, choose NCA, LiNi0.8Co0.15Al0.05O2 (Positive, Li-ion Battery) (mat3).
4
Locate the Species Settings section. In the cs,init text field, type mat3.elpot.cEeqref*soc0_pos.
5
Locate the Particle Transport Properties section. In the rp text field, type rp_pos.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Material section.
3
From the Material list, choose NCA, LiNi0.8Co0.15Al0.05O2 (Positive, Li-ion Battery) (mat3).
4
Locate the Electrode Kinetics section. From the Kinetics expression type list, choose Butler-Volmer.
5
In the i0 text field, type i0_pos.
6
Locate the Active Specific Surface Area section. From the Active specific surface area list, choose User defined. In the av text field, type as_pos.
Porous Electrode 2
In the Model Builder window, click Porous Electrode 2.
Porous Matrix Double Layer Capacitance 1
1
In the Physics toolbar, click  Attributes and choose Porous Matrix Double Layer Capacitance.
2
In the Settings window for Porous Matrix Double Layer Capacitance, locate the Porous Matrix Double Layer Capacitance section.
3
In the Cdl text field, type cdl_pos.
4
From the Double layer area list, choose User defined. In the av,dl text field, type as_pos.
Separator 1
1
In the Physics toolbar, click  Domains and choose Separator.
2
3
In the Settings window for Separator, locate the Porous Matrix Properties section.
4
In the εl text field, type epsl_sep.
5
Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the fl text field, type epsl_sep^brugl_sep.
6
From the Diffusion list, choose User defined. In the fDl text field, type epsl_sep^brugl_sep.
Initial Values 1
1
In the Model Builder window, click Initial Values 1.
2
In the Settings window for Initial Values, locate the Domain Selection section.
3
4
Locate the Initial Values section. In the phil text field, type -mat2.elpot.Eeq_int1(soc0_neg).
5
In the cl text field, type cl_init.
Initial Values 2
1
In the Physics toolbar, click  Domains and choose Initial Values.
2
3
In the Settings window for Initial Values, locate the Initial Values section.
4
In the phil text field, type -mat2.elpot.Eeq_int1(soc0_neg).
5
In the cl text field, type cl_init.
6
In the phis text field, type mat3.elpot.Eeq_int1(soc0_pos)-mat2.elpot.Eeq_int1(soc0_neg).
Electric Ground 1
Select ground on the current collector of the negative LTO electrode. Set a 10 mV perturbation around the cell voltage of 2.30 V.
1
In the Physics toolbar, click  Boundaries and choose Electric Ground.
2
Electric Potential 1
1
In the Physics toolbar, click  Boundaries and choose Electric Potential.
2
3
In the Settings window for Electric Potential, locate the Electric Potential section.
4
In the φs,bnd text field, type E_cell_init.
Harmonic Perturbation 1
1
In the Physics toolbar, click  Attributes and choose Harmonic Perturbation.
2
In the Settings window for Harmonic Perturbation, locate the Harmonic Perturbation section.
3
In the Δφs text field, type E_pert.
Additional Porous Electrode Material 1
Add an Additional Porous Electrode Material feature to model the electronic conductor in NCA.
1
In the Physics toolbar, click  Domains and choose Additional Porous Electrode Material.
2
3
In the Settings window for Additional Porous Electrode Material, locate the Particle Properties section.
4
From the list, choose Nonintercalating particles.
Porous Electrode Reaction 1
No electrochemical reaction takes place on the electronic conductor, but a double layer capacitance exists.
In the Model Builder window, right-click Porous Electrode Reaction 1 and choose Disable.
Additional Porous Electrode Material 1
In the Model Builder window, click Additional Porous Electrode Material 1.
Porous Matrix Double Layer Capacitance 1
1
In the Physics toolbar, click  Attributes and choose Porous Matrix Double Layer Capacitance.
2
In the Settings window for Porous Matrix Double Layer Capacitance, locate the Porous Matrix Double Layer Capacitance section.
3
In the Cdl text field, type 1[F/m^2].
4
From the Double layer area list, choose User defined. In the av,dl text field, type cdlvol_cs_pos/1[F/m^2].
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Sequence Type section.
3
From the list, choose User-controlled mesh.
Size
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Size.
2
In the Settings window for Size, locate the Element Size section.
3
Click the Custom button.
4
Locate the Element Size Parameters section. In the Maximum element size text field, type 1e-5.
Size 1
1
In the Model Builder window, click Size 1.
2
3
In the Settings window for Size, locate the Element Size section.
4
Click the Custom button.
5
Locate the Element Size Parameters section. Select the Maximum element size check box.
6
Size 2
1
In the Model Builder window, click Size 2.
2
3
In the Settings window for Size, locate the Element Size section.
4
Click the Custom button.
5
Locate the Element Size Parameters section. Select the Maximum element size check box.
6
Study 1
Solve the model for frequencies between 10 mHz and 1 kHz.
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, locate the Study Settings section.
3
Clear the Generate default plots check box.
4
Clear the Generate convergence plots check box.
Step 1: Frequency Domain Perturbation
1
In the Model Builder window, under Study 1 click Step 1: Frequency Domain Perturbation.
2
In the Settings window for Frequency Domain Perturbation, locate the Study Settings section.
3
In the Frequencies text field, type 10^{range(-2,0.2,3)}.
4
In the Home toolbar, click  Compute.
Study 1
Solution 1 (sol1)
Save the solution of the nonoptimized impedance results.
1
In the Model Builder window, under Study 1>Solver Configurations right-click Solution 1 (sol1) and choose Solution>Copy.
2
Expand the Solution 1 (sol1) node.
Not optimized
1
In the Model Builder window, expand the Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 node, then click Study 1>Solver Configurations>Solution 1 - Copy 1 (sol2).
2
In the Settings window for Solution, type Not optimized in the Label text field.
Results
Follow these steps to generate Figure 1:
Start by loading experimental data of real and imaginary impedance into a table for plotting purposes. Organize the tables by naming them.
Experimental Impedance Table
1
In the Results toolbar, click  Table.
2
In the Settings window for Table, type Experimental Impedance Table in the Label text field.
3
Locate the Data section. Click Import.
4
Reference Electrode (RE) Probe Table
1
In the Model Builder window, under Results>Tables click Probe Table 1.
2
In the Settings window for Table, type Reference Electrode (RE) Probe Table in the Label text field.
Reference Electrode (RE) Potential Probe Plot
1
In the Model Builder window, under Results click Probe Plot Group 1.
2
In the Settings window for 1D Plot Group, type Reference Electrode (RE) Potential Probe Plot in the Label text field.
Nyquist plots
1
In the Results toolbar, click  1D Plot Group.
2
In the Settings window for 1D Plot Group, type Nyquist plots in the Label text field.
3
Click to expand the Title section. Locate the Data section. From the Dataset list, choose Study 1/Not optimized (sol2).
4
Locate the Title section. From the Title type list, choose None.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
In the associated text field, type Re(Z) ([Omega]m<sup>2</sup>).
7
Select the y-axis label check box.
8
In the associated text field, type -Im(Z) ([Omega]m<sup>2</sup>).
Cell impedance
1
Right-click Nyquist plots and choose Point Graph.
2
In the Settings window for Point Graph, type Cell impedance in the Label text field.
3
4
Locate the y-Axis Data section. In the Expression text field, type -imag(Z_ground).
5
Locate the x-Axis Data section. From the Parameter list, choose Expression.
6
In the Expression text field, type real(Z_ground).
7
Click to expand the Coloring and Style section. In the Width text field, type 2.
8
Click to expand the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
Impedance NCA vs. reference
1
Right-click Cell impedance and choose Duplicate.
2
In the Settings window for Point Graph, type Impedance NCA vs. reference in the Label text field.
3
Locate the y-Axis Data section. In the Expression text field, type -imag(Z_ref_NCA).
4
Click to expand the Title section. From the Title type list, choose None.
5
Locate the x-Axis Data section. In the Expression text field, type real(Z_ref_NCA).
6
Locate the Legends section. In the table, enter the following settings:
Impedance LTO vs. reference
1
Right-click Impedance NCA vs. reference and choose Duplicate.
2
In the Settings window for Point Graph, type Impedance LTO vs. reference in the Label text field.
3
Locate the y-Axis Data section. In the Expression text field, type -imag(Z_ref_LTO).
4
Locate the x-Axis Data section. In the Expression text field, type real(Z_ref_LTO).
5
Locate the Legends section. In the table, enter the following settings:
Experimental impedance NCA vs. reference
1
In the Model Builder window, right-click Nyquist plots and choose Table Graph.
The Table Graph plots the experimental data that was imported into the Experimental Impedance Table.
2
In the Settings window for Table Graph, type Experimental impedance NCA vs. reference in the Label text field.
3
Locate the Data section. From the Table list, choose Experimental Impedance Table.
4
From the x-axis data list, choose Column 2.
5
From the Plot columns list, choose Manual.
6
In the Columns list, select Column 3.
7
Click to expand the Legends section. Select the Show legends check box.
8
From the Legends list, choose Manual.
9
Nyquist plots
1
In the Model Builder window, click Nyquist plots.
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
From the Position list, choose Upper left.
4
Locate the Axis section. Select the Preserve aspect ratio check box.
5
In the Nyquist plots toolbar, click  Plot.
6
Click the  Zoom Extents button in the Graphics toolbar.
Study 1
Add a parametric sweep to investigate the impact four key parameters have on the impedance of NCA versus the reference and how it relates to the experimental measurements.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
Click  Load from File.
4
5
In the Study toolbar, click  Compute.
Parametric sweep
1
In the Model Builder window, under Study 1>Solver Configurations click Parametric Solutions 1 (sol3).
2
In the Settings window for Solution, type Parametric sweep in the Label text field.
Results
Nyquist plots parametric sweep
1
In the Model Builder window, right-click Nyquist plots and choose Duplicate.
Rename the solution for the parametric sweep.
2
In the Settings window for 1D Plot Group, type Nyquist plots parametric sweep in the Label text field.
Follow these steps to generate Figure 2:
Impedance NCA vs. reference
1
In the Model Builder window, expand the Nyquist plots parametric sweep node, then click Impedance NCA vs. reference.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric sweep (sol3).
4
Locate the Legends section. In the table, enter the following settings:
Cell impedance
In the Model Builder window, right-click Cell impedance and choose Disable.
Impedance LTO vs. reference
In the Model Builder window, right-click Impedance LTO vs. reference and choose Disable.
Nyquist plots parametric sweep
1
In the Model Builder window, click Nyquist plots parametric sweep.
2
In the Nyquist plots parametric sweep toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>AC Impedance, Initial Values.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, locate the Study Settings section.
3
Clear the Generate default plots check box.
4
Clear the Generate convergence plots check box.
Parameter Estimation
Select i0_pos, Rfilm_pos, cdl_pos, and cslvol_cs_pos as the four parameters to be optimized. The Optimization tolerance is set to 1e-4.
1
In the Study toolbar, click  Optimization and choose Parameter Estimation.
Import the experimental data in csv format for the impedance of the NCA electrode versus the reference.
2
In the Settings window for Parameter Estimation, locate the Experimental Data section.
3
In the Filename text field, type li_battery_impedance_Zexp.csv.
4
Click  Refresh.
5
Locate the Column Settings section. In the table, enter the following settings:
The second column of the experimental data contains the global value real impedance.
6
7
The third column of the experimental data contains the global value imaginary impedance.
8
9
In the Model expression text field, type comp1.intop1(real(Z_ref_NCA)).
10
In the Name text field, type Real_impedance.
11
In the Weight text field, type 1e6.
12
13
14
15
In the Model expression text field, type -comp1.intop1(imag(Z_ref_NCA)).
16
In the Name text field, type Imaginary_impedance.
17
In the Weight text field, type 1e6.
18
Locate the Parameters section. Click  Add four times.
19
The SNOPT method allows the use of lower and upper bounds.
20
Locate the Parameter Estimation Method section. From the Method list, choose SNOPT.
21
In the Optimality tolerance text field, type 1E-4.
22
Find the Solver settings subsection. From the Least-squares time/parameter method list, choose From least-squares objective.
23
Click to expand the Output While Solving section. Select the Plot check box.
24
From the Plot group list, choose Default.
Solution 10 (sol10)
Choose the numeric gradient method.
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 10 (sol10) node, then click Optimization Solver 1.
3
In the Settings window for Optimization Solver, locate the Optimization Solver section.
4
From the Gradient method list, choose Numeric.
5
In the Difference interval text field, type 5e-4.
6
In the Central difference interval text field, type 5e-3.
Results
It is common to monitor the optimization, especially if the optimization is time-consuming. This makes it possible to stop the optimization if the fit seems adequate or if the optimization settings need to be improved.
The optimized parameters can be monitored using Global Probes.
First, a table is generated that collects the parameters during the optimization.
Optimized Parameters Table
1
In the Results toolbar, click  Table.
2
In the Settings window for Table, type Optimized Parameters Table in the Label text field.
Definitions (comp1)
Thereafter, the global probes are made.
Exchange current density NCA
1
In the Definitions toolbar, click  Probes and choose Global Variable Probe.
2
In the Settings window for Global Variable Probe, type Exchange current density NCA in the Label text field.
3
Locate the Expression section. In the Expression text field, type linpoint(i0_pos).
4
Click to expand the Table and Window Settings section. From the Output table list, choose Optimized Parameters Table.
Double-layer capacitance NCA
1
Right-click Exchange current density NCA and choose Duplicate.
2
In the Settings window for Global Variable Probe, type Double-layer capacitance NCA in the Label text field.
3
Locate the Expression section. In the Expression text field, type linpoint(cdl_pos).
Film resistance NCA
1
Right-click Double-layer capacitance NCA and choose Duplicate.
2
In the Settings window for Global Variable Probe, type Film resistance NCA in the Label text field.
3
Locate the Expression section. In the Expression text field, type linpoint(Rfilm_pos).
Vol. double-layer cap. pos. electronic conductor
1
Right-click Film resistance NCA and choose Duplicate.
2
In the Settings window for Global Variable Probe, type Vol. double-layer cap. pos. electronic conductor in the Label text field.
3
Locate the Expression section. In the Expression text field, type linpoint(cdlvol_cs_pos).
Results
Follow these steps to set up a plot group that also enables graphical monitoring of optimization:
Nyquist plots optimization
1
In the Model Builder window, right-click Nyquist plots parametric sweep and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Nyquist plots optimization in the Label text field.
3
Locate the Data section. From the Dataset list, choose None.
Impedance NCA vs. reference
1
In the Model Builder window, expand the Nyquist plots optimization node, then click Impedance NCA vs. reference.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study 2/Solution 10 (sol10).
4
Locate the Coloring and Style section. In the Width text field, type 1.
5
Find the Line markers subsection. From the Marker list, choose Square.
6
From the Positioning list, choose In data points.
7
Locate the Legends section. In the table, enter the following settings:
8
Click the  Zoom Extents button in the Graphics toolbar.
9
In the Nyquist plots optimization toolbar, click  Plot.
Experimental impedance NCA vs. reference
1
In the Model Builder window, click Experimental impedance NCA vs. reference.
2
In the Settings window for Table Graph, locate the Coloring and Style section.
3
Find the Line markers subsection. From the Marker list, choose Square.
4
From the Positioning list, choose In data points.
5
Click the  Zoom Extents button in the Graphics toolbar.
6
In the Nyquist plots optimization toolbar, click  Plot.
Study 2
Thereafter, select the plot group and table you want to monitor in the Optimization study step and compute.
Parameter Estimation
1
In the Model Builder window, under Study 2 click Parameter Estimation.
2
In the Settings window for Parameter Estimation, locate the Output While Solving section.
3
From the Plot group list, choose Nyquist plots optimization.
4
In the Home toolbar, click  Compute.
Optimized
Rename the solution of the optimization.
1
In the Model Builder window, under Study 2>Solver Configurations click Solution 10 (sol10).
2
In the Settings window for Solution, type Optimized in the Label text field.
Results
Nyquist plots optimization
1
In the Model Builder window, under Results click Nyquist plots optimization.
2
In the Nyquist plots optimization toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
To control the parameters in the last iteration, consult the Optimized Parameters Table that gives you the optimized parameters.