
LiveLink™ for MATLAB®

User’s Guide



C o n t a c t  I n f o r m a t i o n

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries 
or search for an address and phone number. You can also visit the Worldwide Sales Offices 
page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access 
page at www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/forum

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/videos

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020008

L i v e L i n k™  f o r  M A T L A B ® U s e r ’ s  G u i d e
© 2009–2021 COMSOL

Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 
7,623,991; 8,457,932;; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625, 10,019,544, 
10,650,177; 10,776,541, and 11,030,365. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License 
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms 
of the license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, 
COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. MATLAB 
and Simulink are registered trademarks of The MathWorks, Inc.. All other trademarks are the property of 
their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed 
by, sponsored by, or supported by those or the above non-COMSOL trademark owners. For a list of such 
trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 6.0

www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/trademarks/
http://www.comsol.com/blogs/
http://www.comsol.com/forum/
http://www.comsol.com/events/
http://www.comsol.com/videos/
http://www.comsol.com/support/knowledgebase/


C o n t e n t s  

C h a p t e r  1 :  I n t r o d u c t i o n

About This Product  12

Help and Documentation  14

Getting Help   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  14

Where Do I Access the Documentation and the Application 

Libraries?   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  18

C h a p t e r  2 :  G e t t i n g  S t a r t e d

The Client/Server Architecture  24

Running COMSOL Models at the Command Line  26

Starting COMSOL® with MATLAB® on Windows ®/ Mac OSX / 

Linux®.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  26

Connecting a COMSOL Server and MATLAB® Manually    .   .   .   .   .   .   .  28

Connecting to COMSOL Server™  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  30

Changing the MATLAB® Version    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  32

The COMSOL Apps  34

Installing Apps in the MATLAB Apps Ribbon   .   .   .   .   .   .   .   .   .   .   .   .  34

Removing Apps in the MATLAB Apps Ribbon..   .   .   .   .   .   .   .   .   .   .   .  34

The COMSOL Apps    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  35

Calling External Functions From Within the Model  36

C h a p t e r  3 :  B u i l d i n g  M o d e l s

The Model Object  38

Important Notes About the Model Object  .   .   .   .   .   .   .   .   .   .   .   .   .  38
C O N T E N T S  | 3



4 | C O N T E N T S
The Model Object Methods.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  39

The General Utility Functionality .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  39

The Model History  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  40

Loading and Saving a Model .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  41

Sharing the Model Between the COMSOL Desktop® and the 

MATLAB® Prompt    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  47

Working with Geometries  50

The Geometry Sequence Syntax .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  50

Displaying the Geometry .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  51

Working with Geometry Sequences    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  52

Retrieving Geometry Information   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  62

Modeling with a Parameterized Geometry   .   .   .   .   .   .   .   .   .   .   .   .   .  67

Images and Interpolation Data .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  70

Measuring Entities in Geometry  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  78

Working with Meshes  79

The Meshing Sequence Syntax .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  79

Displaying the Mesh .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  80

Mesh Creation Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  81

Importing External Meshes and Mesh Objects .   .   .   .   .   .   .   .   .   .   .    106

Visualizing Mesh Quality  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    108

Getting Mesh Statistics Information .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    109

Getting and Setting Mesh Data.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    112

Modeling Physics  117

The Physics Interface Syntax   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    117

Getting the Geometric Model Defined for the Physics.   .   .   .   .   .   .   .    120

The Material Syntax .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    121

Modifying the Equations  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    122

Adding Global Equations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    124

Defining Model Settings Using External Data File .   .   .   .   .   .   .   .   .   .    125

Access the User-Defined Physics Interface  .   .   .   .   .   .   .   .   .   .   .   .    127

Creating Selections  128

The Selection Node.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    128

Coordinate-Based Selections   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    129

Selection Using Adjacent Geometry.   .   .   .   .   .   .   .   .   .   .   .   .   .   .    133



Displaying Selections   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    134

Computing the Solution  137

The Study Node  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    137

The Solver Sequence Syntax    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    138

Run the Solver Sequence .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    139

Adding a Parametric Sweep .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    140

Adding a Job Sequence.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    140

Plot While Solving   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    141

Analyzing the Results  143

The Plot Group Syntax    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    143

Displaying The Results .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    144

The Dataset Syntax .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    151

The Numerical Node Syntax   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    152

Exporting Data    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    153

Generating Report  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    155

C h a p t e r  4 :  W o r k i n g  W i t h  M o d e l s

Using Workspace Variables in Model Settings  158

The Set and SetIndex Methods    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    158

Using a MATLAB® Function to Define Model Properties    .   .   .   .   .   .    159

Extracting Results  161

Extracting Data at Arbitrary Points  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    161

Evaluating a Minimum of Expression.   .   .   .   .   .   .   .   .   .   .   .   .   .   .    165

Evaluating a Maximum of Expression   .   .   .   .   .   .   .   .   .   .   .   .   .   .    168

Evaluating an Integral   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    170

Evaluating an Expression Average    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    173

Extracting Data at Node Points   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    175

Evaluating an Expression at Geometry Vertices   .   .   .   .   .   .   .   .   .   .    179

Evaluating Expressions on Particle/Ray Trajectories .   .   .   .   .   .   .   .   .    181

Evaluating a Global Expression.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    183

Evaluating a Matrix Expression at Points  .   .   .   .   .   .   .   .   .   .   .   .   .    184

Evaluating a Global Matrix   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    186
C O N T E N T S  | 5



6 | C O N T E N T S
Extracting Data From Tables   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    188

Running Models in a Loop  189

The Parametric Sweep Node  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    189

Running Model in a Loop Using the MATLAB® Tools .   .   .   .   .   .   .   .    189

Running Models in Batch Mode  192

The Batch Node  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    192

Running an M-File in Batch Mode .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    192

Running an M-File in Batch Mode Without Display  .   .   .   .   .   .   .   .   .    193

Working with Matrices  194

Extracting System Matrices  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    194

Set System Matrices in the Model    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    200

Extracting State-Space Matrices   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    206

Extracting Reduced Order State-Space Matrices  .   .   .   .   .   .   .   .   .   .    214

Extracting Solution Information and Solution Vectors  222

Obtaining Solution Information   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    222

Retrieving Solution Information and Solution Datasets Based on 

Parameter Values   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    224

Extracting Solution Vector  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    227

Retrieving Xmesh Information  230

The Extended Mesh (Xmesh)  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    230

Extracting Xmesh Information .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    230

Navigating the Model  233

Navigating the Model Object Using a GUI   .   .   .   .   .   .   .   .   .   .   .   .    233

Navigating The Model Object At The Command Line .   .   .   .   .   .   .   .    238

Retrieving Component Information .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    239

Finding Model Expressions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    240

Evaluating the Model Parameters .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    241

Getting Feature Model Properties   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    242

Getting Parameter and Variable Definitions .   .   .   .   .   .   .   .   .   .   .   .    243

Getting Selection Information  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    243



Handling Errors and Warnings  244

Errors and Warnings   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    244

Using MATLAB® Tools to Handle COMSOL® Exceptions .   .   .   .   .   .    244

Displaying Warnings and Errors in the Model  .   .   .   .   .   .   .   .   .   .   .    244

Improving Performance for Large Models  246

Allocating Memory  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    246

Disabling Model Feature Update  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    247

Disabling The Model History   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    248

Creating a Custom User Interface  249

C h a p t e r  5 :  C a l l i n g  E x t e r n a l  F u n c t i o n s

Running External Function  252

Allowing External MATLAB Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .    252

Disabling MATLAB® Splash Screen at Startup .   .   .   .   .   .   .   .   .   .   .    253

Running a MATLAB® Function in Applications    .   .   .   .   .   .   .   .   .   .    253

The MATLAB® Function Feature Node  254

Defining a MATLAB® Function in the COMSOL® Model   .   .   .   .   .   .    254

Setting the Function Directory Path in MATLAB®    .   .   .   .   .   .   .   .    259

Adding a MATLAB® Function with the COMSOL® API Syntax  .   .   .   .    259

Function Input/Output Considerations    .   .   .   .   .   .   .   .   .   .   .   .   .    260

Updating Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    261

Defining Function Derivatives  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    261

C h a p t e r  6 :  C o m m a n d  R e f e r e n c e

Summary of Commands  264

Commands Grouped by Function  265

colortable    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    268

mphaddplotdata  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    273

mphapplicationlibraries    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    274
C O N T E N T S  | 7



8 | C O N T E N T S
mphcd .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    274

mphcomponentinfo .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    275

mphdoc   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    276

mpheval   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    276

mphevalglobalmatrix    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    280

mphevalpoint   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    282

mphevalpointmatrix .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    284

mphevaluate    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    285

mphgeom.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    286

mphgeominfo  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    289

mphgetadj   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    292

mphgetcoords .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    293

mphgetexpressions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    294

mphgetproperties    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    295

mphgetselection  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    296

mphgetu  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    296

mphglobal    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    298

mphimage2geom .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    301

mphinputmatrix   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    302

mphint2   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    304

mphinterp   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    307

mphinterpolationfile.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    312

mphlaunch   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    313

mphload  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    314

mphmatrix  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    315

mphmax  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    319

mphmean.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    322

mphmeasure   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    324

mphmesh.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    325

mphmeshstats .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    327

mphmin   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    330

mphmodel   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    332

mphnavigator  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    333

mphopen .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    334

mphparticle .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    336

mphplot  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    338

mphquad2tri    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    340

mphray    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    341



mphreadstl  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    342

mphreduction  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    343

mphreport  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    345

mphsave  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    346

mphsearch  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    347

mphselectbox  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    348

mphselectcoords .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    350

mphshowerrors  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    352

mphsolinfo  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    352

mphsolutioninfo  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    354

mphstart .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    356

mphstate .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    358

mphsurf   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    361

mphtable .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    362

mphtags   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    363

mphthumbnail  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    364

mphversion .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    365

mphviewselection    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    366

mphwritestl .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    368

mphxmeshinfo .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    369
C O N T E N T S  | 9



10 | C O N T E N T S



 1
I n t r o d u c t i o n
This guide introduces you to LiveLink™ for MATLAB®, which extends your 
COMSOL modeling environment with an interface between COMSOL 
Multiphysics® and MATLAB®. The COMSOL Multiphysics Programming 
Reference Manual provides additional documentation of the COMSOL API.

In this chapter:

• About This Product

• Help and Documentation
 11



12 |  C H A P T E R
Abou t  Th i s  P r odu c t

LiveLink™ for MATLAB® connects COMSOL Multiphysics to the MATLAB scripting 
environment. Using this functionality you can do the following:

Set Up Models from a Script
LiveLink™ for MATLAB® includes the COMSOL API, which has all the necessary 
functions and methods to implement models from scratch. For each operation done in 
the COMSOL Desktop there is a corresponding command that is entered at the 
MATLAB prompt. It is a simplified syntax based on Java® and does not require any 
Java knowledge. The easiest way to learn this syntax is to save the model as an M-file 
directly from the COMSOL Desktop. Read more about building a model using the 
command line in the section Building Models.

Use MATLAB Functions in Model Settings
Use LiveLink™ for MATLAB® to set model properties with a MATLAB function. For 
example, define material properties or boundary conditions as a MATLAB routine that 
is evaluated while the model is solved. Read more in Calling External Functions.

Leverage MATLAB Functionality for Program Flow
Use the API syntax together with MATLAB functionality to control the flow of your 
programs. For example, implement nested loops using for or while commands, 
implement conditional model settings with if or switch statements, or handle 
exceptions using try and catch. Some of these operations are described in Running 
Models in a Loop and Handling Errors and Warnings. 

Analyze Results in MATLAB
The API wrapper functions included make it easy to extract data at the command line. 
Functions are available to access results at node points or arbitrary locations. You can 
also get low level information about the extended mesh, such as finite element mesh 
coordinates, and connection information between the elements and nodes. Extracted 
data are available as MATLAB variables ready to be used with any MATLAB function. 
See Extracting Results and Retrieving Xmesh Information.

Create Custom Interfaces for Models
Use the MATLAB Guide functionality to create a user-defined graphical interface that 
is combined with a COMSOL Multiphysics model. Make your models available for 
others by creating graphical user interfaces tailored to expose settings and parameters 
of your choice.
 1 :  I N T R O D U C T I O N



Connect to COMSOL Server™
LiveLink™ for MATLAB® has the ability to connect to COMSOL Server™ as well as 
COMSOL Multiphysics Server. This means that MATLAB scripts and GUIs that 
utilize COMSOL functionality can be distributed to and used by any user that have 
access to COMSOL Server™.
A B O U T  T H I S  P R O D U C T  |  13



14 |  C H A P T E R
He l p  and Do cumen t a t i o n

In this section:

• Getting Help

• Where Do I Access the Documentation and the Application Libraries?

Getting Help

COMSOL Multiphysics and LiveLink™ for MATLAB® have several sources of help and 
information.

T H E  I N T R O D U C T I O N  T O  L I V E L I N K ™ F O R  M A T L A B ®

To get started with LiveLink™, it is recommended that you read the Introduction to 
LiveLink™ for MATLAB®. It contains detailed examples about how to get you started 
with the product.

O N L I N E  D O C U M E N T A T I O N  A N D  O T H E R  R E S O U R C E S

• Read this user’s guide to get detailed information about the different parts of the 
model object and how these are accessed from MATLAB. In the section Command 
Reference the function available for use with LiveLink™ for MATLAB® are 
described.

• The COMSOL Multiphysics Programming Reference Manual contains reference 
documentation that describes the methods in the model object.

You can access the online documentation directly at the MATLAB prompt using the 
function mphdoc.

To open the COMSOL Documentation Help Desk enter:

mphdoc 

To open the help window for a specific entry node enter:

mphdoc(node)

where node is the model object node (for instance, model.geom).

To view the help of a specific feature of a node enter:

mphdoc(node,<fname>)
 1 :  I N T R O D U C T I O N



where <fname> is a string defining the feature name in the COMSOL API, for 
example, mphdoc(model,'Rectangle').

It is of course also possible to use MATLAB’s own help function such as

help mphinterp

and

doc mphinterp

M - F I L E S

You can save COMSOL Multiphysics models as M-files. Use the COMSOL Desktop 
to get your first model implemented using the COMSOL API.

Set up the model using the graphical user interface, then save the model as an M-file. 
Next go to the File menu and select Save, in the save window locate Save as type list 
and select Model File for MATLAB (*.m). This generates an M-function that can be run 
using COMSOL with MATLAB. 

Since version 5.3 a new syntax closer to the structure in the Model Builder is available. 
This new syntax includes the component node as in the example below:

model.component(<cTag>).geom(<geomTag>)

In the previous syntax to access the geometry node you need to enter:

model.geom(<geomTag>)

Both versions are fully supported, and the new syntax is used by default when saving a 
model in the M-file format. To save a model M-file using the old syntax, you need to 
change the preferences settings as described in the steps below:

1 In the COMSOL Desktop, go to the File menu and click Preferences.

2 In the Preferences window, click Methods. In the Code generation settings clear the 
option Use component syntax.

3 Click OK.

At the MATLAB prompt use mphsave to save the model object model in the *.m 
format as in the command below:

mphsave(model,<filename.m>)
H E L P  A N D  D O C U M E N T A T I O N  |  15



16 |  C H A P T E R
where <filename.m> is the name of the file with the *.m extension.

To save the model object in the *.m format using the component syntax enter:

mphsave(model,<filename.m>,'component','on');

A U T O C O M P L E T I O N  F O R  W R A P P E R  F U N C T I O N

Autocomplemention using the Tab key is available for the wrapper functions provided 
by Livelink for MATLAB wherever you can enter a command: the Command Window, 
the regular Editor, and Live Editor for Live Scripts. The autocompletion helps you to 
find the wrapper function and the available property names and values where 
applicable. In the Command Window or a Live Editor, autocompletion provides a list 
of the available arguments as well as their values where applicable. For example, 'on' 
or 'off' for properties that only take these two values.

The component syntax is not used by default.

Models created with older versions than COMSOL 5.3 cannot be saved 
using the component syntax unless File>Compact History is used.
 1 :  I N T R O D U C T I O N



Note: Autocompletion will suggest property names and property values surrounded 
by double quotation marks, for example "on", whereas this documentation uses 
single quotation marks such as in 'on'. The wrapper functions will accept both types 
of strings. Wrapper functions always return strings as character arrays (that is, strings 
that use single quotation marks).

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Study the LiveLink™ for MATLAB® Application Library
LiveLink™ for MATLAB® includes an Application Library with detailed example 
models. Use the function mphapplicationlibraries at the command line to start a 
GUI for viewing the Application Libraries. 

User defined library can also be listed in this window. Such a library has to be added 
using the COMSOL Desktop.

The following are some models that can help you get started.

If you have installed the COMSOL apps in the MATLAB Apps ribbon, 
click the COMSOL Application Libraries icon ( ).
H E L P  A N D  D O C U M E N T A T I O N  |  17



18 |  C H A P T E R
Model Examples
• Learn how to activate and deactivate domains alternatively during a transient 

analysis. See the model Domain Activation and Deactivation (model name 
domain_activation_llmatlab).

• Homogenization in a Chemical Reactor (model name 
homogenization_llmatlab) shows how to simulate a periodic homogenization 
process in a space-dependent chemical reactor model. This homogenization 
removes concentration gradients in the reactor at a set time interval.

• Convective Heat Transfer with Pseudo-Periodicity (model name 
pseudoperiodicity_llmatlab) simulates convective heat transfer in a channel 
filled with water. To reduce memory requirements, the model is solved repeatedly 
on a pseudo-periodic section of the channel. Each solution corresponds to a 
different section, and before each solution step the temperature at the outlet 
boundary from the previous solution is mapped to the inlet boundary.

• Temperature Distribution in a Vacuum Flask (model name 
vacuum_flask_llmatlab) shows how to use the MATLAB function callback. This 
example solves for the temperature distribution inside a vacuum flask with hot 
coffee.

• Electrical Heating of a Busbar Solved with LiveLink™ for SOLIDWORKS® and 
LiveLink™ for MATLAB® (model name busbar_llsw_llmatlab) performs 
geometry optimization using COMSOL Multiphysics, MATLAB, and 
SOLIDWORKS®.

Where Do I Access the Documentation and the Application Libraries?

A number of internet resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the application libraries are all accessed through the 
COMSOL Desktop.

If you are reading the documentation as a PDF file on your computer, the 
blue links do not work to open an application or content referenced in a 
different guide. However, if you are using the Help system in COMSOL 
Multiphysics, these links work to other modules (as long as you have a 
license), application examples, and documentation sets.
 1 :  I N T R O D U C T I O N



T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes all core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions about how to use COMSOL Multiphysics and how to access the 
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to many of the features on the GUI. To 
learn more about a node in the Model Builder, or a window on the Desktop, click to 
highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

Opening the Documentation Window

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder click a node or 
window and then press F1. 

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help( ) 
button.

To open the Help window:

• In the Model Builder or Physics Builder click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu select Help>Documentation ( ).
H E L P  A N D  D O C U M E N T A T I O N  |  19



20 |  C H A P T E R
T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each application includes documentation with the theoretical background and 
step-by-step instructions to create a model application. The applications are available 
in COMSOL as MPH-files that you can open for further investigation. You can use the 
step-by-step instructions and the actual applications as a template for your own 
modeling and applications. In most models, SI units are used to describe the relevant 
properties, parameters, and dimensions in most examples, but other unit systems are 
available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the application and its 
properties, including options to open it or a PDF document. 

Opening the Application Libraries Window
To open the Application Libraries window ( ):

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.

• From the Home toolbar, Windows menu, click ( ) Applications 

Libraries.

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File> or Windows> menus.

To include the latest versions of model examples, from the Help menu 
select ( ) Update COMSOL Application Library.
 1 :  I N T R O D U C T I O N



C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and case number is sent to you by 
email.

C O M S O L  W E B S I T E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
H E L P  A N D  D O C U M E N T A T I O N  |  21

https://www.comsol.com
https://www.comsol.com/contact/
https://www.comsol.com/access
https://www.comsol.com/support/
https://www.comsol.com/product-download/
https://www.comsol.com/support/updates
https://www.comsol.com/blogs/
https://www.comsol.com/community
https://www.comsol.com/events/
https://www.comsol.com/video/
https://www.comsol.com/support/knowledgebase/


22 |  C H A P T E R
  1 :  I N T R O D U C T I O N



 2
G e t t i n g  S t a r t e d
In this chapter:

• The Client/Server Architecture

• Running COMSOL Models at the Command Line

• The COMSOL Apps

• Calling External Functions From Within the Model
 23



24 |  C H A P T E R
Th e  C l i e n t / S e r v e r  A r c h i t e c t u r e

LiveLink™ for MATLAB® uses the client/server mode to connect a COMSOL server 
and MATLAB.

When starting COMSOL with MATLAB, two processes are started — a COMSOL 
Multiphysics Server and the MATLAB desktop. The COMSOL Desktop does not have 
to be started, but it possible to have both MATLAB and COMSOL Desktop 
connected to the same COMSOL Multiphysics Server at the same time.

.

The communication between the two processes is based on a TCP /IP communication 
protocol. You provide login information the first time COMSOL is started with 
MATLAB. The login information is not related to the system’s username and 
password. This information is stored in the user preferences file and is not required 
again when using COMSOL with MATLAB. The same login information can be used 
when exchanging the model object between the COMSOL server and the COMSOL 
Desktop.

The communication between the COMSOL server and MATLAB is established by 
default using port number 2036. If this port is in use, port number 2037 is used 
instead, and so on.

The term COMSOL server designates either the COMSOL Multiphysics 
Server or the COMSOL Server™.

COMSOL Desktop cannot connect to COMSOL Server™.

You can manually specify the port number. See the COMSOL 
Multiphysics Installation Guide for more information on the COMSOL 
server startup properties.
 2 :  G E T T I N G  S T A R T E D



A connection can be local (on the same computer), which is the common case, or 
remote to a COMSOL server located on a different computer, in the later case you to 
connect manually MATLAB to the COMSOL server as described in the section 
Connecting a COMSOL Server and MATLAB® Manually.

You can manually specify the port number. See the COMSOL 
Multiphysics Installation Guide for more information on the COMSOL 
server startup properties.
T H E  C L I E N T / S E R V E R  A R C H I T E C T U R E  |  25



26 |  C H A P T E R
Runn i n g  COMSOL Mode l s  a t  t h e  
Command L i n e

The command to run COMSOL with MATLAB® automatically connects a COMSOL 
process with MATLAB. You can also connect the process manually. This section 
describes this process as well as how to change the MATLAB path in the COMSOL 
settings.

In this section:

• Starting COMSOL® with MATLAB® on Windows ®/ Mac OSX / Linux®

• Connecting a COMSOL Server and MATLAB® Manually

• Changing the MATLAB® Version

Starting COMSOL® with MATLAB® on Windows ®/ Mac OSX / 
Linux®

To run a COMSOL Multiphysics model at the MATLAB® prompt, start COMSOL 
with MATLAB:

• On Windows® use the COMSOL Multiphysics with MATLAB shortcut icon that is 
created on the desktop after the automatic installation. A link is also available in the 
Windows start menu under COMSOL Multiphysics 6.0>COMSOL Multiphysics 6.0 with 

MATLAB.

• On Mac OS X, use the COMSOL Multiphysics 6.0 with MATLAB application available in 
the Application folder.

• On Linux®, enter the command comsol mphserver matlab at a terminal window.

The System Requirements section in the COMSOL Multiphysics 
Installation Guide lists the versions of MATLAB supported by 
LiveLink™ for MATLAB®.

See the COMSOL Multiphysics Installation Guide for a complete 
description about how to start COMSOL with MATLAB on these 
supported platforms. 
 2 :  G E T T I N G  S T A R T E D



R U N N I N G  A  M O D E L  M - F I L E  F R O M  T E R M I N A L  P R O M P T

If you want to run an M-file directly at a terminal prompt immediately after having 
started COMSOL Multiphysics with MATLAB enter the startup command as described 
below:

The first time COMSOL Multiphysics with MATLAB is started, login and 
password information is requested to establish the client/server 
connection. The information is saved in the user preference file and is not 
required again. 

Launching COMSOL Multiphysics with MATLAB enables LiveLink™ for 
Simulink® as long as it is installed on the machine. 

To reset the login information, add the flag -login force to the icon 
target path. 

To reset the login information, enter the command comsol mphserver 
matlab -login force at a system command prompt.

comsolmphserver.exe matlab filename

comsol mphserver matlab filename
R U N N I N G  C O M S O L  M O D E L S  A T  T H E  C O M M A N D  L I N E  |  27



28 |  C H A P T E R
where filename.m is the file containing both MATLAB and COMSOL API 
command to be executed using COMSOL with MATLAB.

R U N N I N G  W I T H O U T  D I S P L A Y

If you need to run COMSOL with MATLAB on a machine without support for 
graphics display, add the flags nodesktop and mlnosplash to the startup command as 
described below:

The above command starts MATLAB without splash screen and without the MATLAB 
desktop.

To avoid the splash screen on the COMSOL server you need to create the 
environment variable COMSOL_MATLAB_INIT and set it to matlab -nosplash.

Connecting a COMSOL Server and MATLAB® Manually

Manually connecting MATLAB® to a COMSOL server can be useful if you want to 
start a MATLAB standalone and then connect to a COMSOL server, or if you need to 
connect MATLAB and a COMSOL server running on different computers. 
LiveLink™ for MATLAB® provides the function mphstart to operate the client/server 
connection. This section contains the instruction to follow to connect MATLAB to 
either a COMSOL Multiphysics Server or the COMSOL Server™.

comsolmphserver.exe matlab -nodesktop -mlnosplash

comsol mphserver matlab -nodesktop -mlnosplash

COMSOL_MATLAB_INIT=’matlab -nosplash’
 2 :  G E T T I N G  S T A R T E D



C O N N E C T I N G  M A T L A B  T O  A  C O M S O L  M U L T I P H Y S I C S  S E R V E R

Starting a COMSOL Multiphysics Server
• On Windows, click COMSOL Multiphysics Server in the COMSOL Launchers folder 

underneath your COMSOL Multiphysics folder on the Windows Start menu.

• On Mac OS X or Linux enter comsol mphserver at a terminal window.

Connecting MATLAB to the COMSOL Multiphysics Server
1 In MATLAB, add the path of the COMSOL6.0/mli directory. 

2 Enter this command at the MATLAB prompt:

mphstart

If the COMSOL Multiphysics Server started listening to a different port than the 
default one (which is 2036) use the mphstart function as in the command below:

mphstart(<portnumber>)

where <portnumber> is an integer corresponding to the port used by the COMSOL 
server.

C O N N E C T I N G  M A T L A B  A N D  A  S E R V E R  O N  D I F F E R E N T  C O M P U T E R S

To connect MATLAB and a COMSOL server that are running on different 
computers, specify the IP address of the computer where the COMSOL server is 
running in the function mphstart:

mphstart(<ipaddress>, <portnumber>)

<ipaddress> can also be defined with the COMSOL server domain name.

The command above assume that the same user login information are set on the server 
and client machine. In case the login information are not accessible from the client 
machine, specify manually the user name and password to the COMSOL server with 
the command:

mphstart(<ipaddress>, <portnumber>, <username>, <password>)

If the COMSOL Multiphysics installation folder cannot be found automatically, you 
can specify its location manually as in the command below:

mphstart(<ipaddress>, <portnumber>, <comsolpath>)

Connecting MATLAB and a COMSOL Multiphysics Server requires a 
Floating Network License (FNL).
R U N N I N G  C O M S O L  M O D E L S  A T  T H E  C O M M A N D  L I N E  |  29



30 |  C H A P T E R
where <comsolpath> is the path of the COMSOL installation folder.

You can also specify all the information to connect a COMSOL server within the same 
command, use the following command:

mphstart(<ipaddress>, <portnumber>, <comsolpath>, ...
<username>, <password>)

M E M O R Y  S E T T I N G S

To be able to manipulate the model object and extract data at the MATLAB prompt, 
you may need to modify the Java® heap size in MATLAB. See Improving Performance 
for Large Models.

I M P O R T I N G  T H E  C O M S O L  C L A S S

Once MATLAB and the COMSOL server are manually connected, import the 
COMSOL class by entering the following command at the MATLAB prompt:

import com.comsol.model.util.*

Disconnecting MATLAB and the COMSOL server
To disconnect MATLAB and the COMSOL server, run this command at the 
MATLAB prompt:

ModelUtil.disconnect;

Connecting to COMSOL Server™

When using a COMSOL Multiphysics installation with LiveLink for MATLAB the 
connected is made between MATLAB and a COMSOL Multiphysics Server. It is also 
possible to connect MATLAB to a COMSOL Server™ if a COMSOL Server™ is 
available with a LiveLink for MATLAB License.

When using LiveLink for MATLAB with COMSOL Server™ this way MATLAB is 
installed on the local computer where the user is executing commands and COMSOL 
Server™ will most often be on another computer that is handled by an IT-department.

In order to be able to connect from MATLAB to a COMSOL Server™ without having 
COMSOL Multiphysics installed some files must be installed on the computer where 
MATLAB is installed. This is handled by using the COMSOL Server™ Client installer.
 2 :  G E T T I N G  S T A R T E D



When installing the COMSOL Server™ Client it is important to select LiveLink™ for 
MATLAB© in the installation window.

It is recommended to install Desktop and Start menu shortcuts. If these are not 
installed, the only way to create a link between MATLAB and COMSOL Server™ is 
to use the mphstart command as previously described for use with COMSOL 
Multiphysics Server.

After the installation a shortcut is available.

When clicking on this shortcut MATLAB will start and a dialog box appears that makes 
it possible to connect to the COMSOL Server™ that is already assumed running.

Fill in the missing information and click OK to connect.
R U N N I N G  C O M S O L  M O D E L S  A T  T H E  C O M M A N D  L I N E  |  31



32 |  C H A P T E R
After a connection has been made the LiveLink work in the same way as it does when 
connected to a COMSOL Multiphysics Server with these exceptions:

• Some graphical user interfaces that are included in a regular COMSOL Multiphysics 
license do not work

• A few utility functions that are mainly used when developing new models are not 
supported (e.g. mphlaunch, mphmodel, etc.)

• Plot on the server is not supported, use mphplot to plot using a local MATLAB 
figure.

Changing the MATLAB® Version

The path of the MATLAB® version connected to COMSOL Multiphysics is defined 
during the initial COMSOL installation. The MATLAB root path can be changed 
using the Preferences dialog box:

1 From the File (Windows users) or Options menu (Mac and Linux users), select 
Preferences ( ).

2 In the Preferences dialog box, click LiveLink Connections.

3 Set the MATLAB root directory path in the MATLAB® installation folder field.

4 Windows OS users also need to click the Register MATLAB® as COM Server button; 
otherwise, the specified MATLAB version does not start when calling external 
MATLAB functions from the COMSOL model.
 2 :  G E T T I N G  S T A R T E D



5 Click OK.

6 To update the preferences file, close and reopen the COMSOL Desktop.

On Mac OS X, select the COMSOL with MATLAB application available in the 
Application folder. The correct path includes the .app extension.
R U N N I N G  C O M S O L  M O D E L S  A T  T H E  C O M M A N D  L I N E  |  33



34 |  C H A P T E R
T h e  COMSOL App s

Install apps in the MATLAB desktop for an easy access to COMSOL information and 
navigation functions that use Graphical User Interfaces.

Installing Apps in the MATLAB Apps Ribbon

The automatic COMSOL installation does not include installation of the COMSOL 
apps in the MATLAB Apps Ribbon. To install the apps follow the steps below:

1 In the MATLAB Desktop, go to the Apps Tab and select Install App.

2 Browse to the COMSOL Installation directory and go to the folder: 
COMSOL60/Multiphysics/mli/toolbox

3 Change File name extension to All Files (*.*) and select the file 
LiveLink for MATLAB.mltbx

4 Click Open. This opens the Install LiveLink for MATLAB window.

5 The installed apps are now listed in the Add-On Manager window.

Removing Apps in the MATLAB Apps Ribbon.

To remove Apps from the MATLAB Apps Ribbon, right-click on the apps icon and 
select Uninstall. The operation is individual for each apps and need to be repeated for 
every apps to be removed.

In the section the term COMSOL apps designates COMSOL wrapper 
function using a Graphical User Interface. It does not refer to application 
created using the COMSOL Application Builder.
 2 :  G E T T I N G  S T A R T E D



The COMSOL Apps

The available COMSOL apps that can be installed in the MATLAB Apps ribbon are 
listed below:

• COMSOL Model Library, opens a GUI for viewing the Model Library, see also The 
Application Libraries Window.

• COMSOL Model Navigator, opens a GUI for viewing the COMSOL model object 
defined as model in MATLAB. You can get more information in the section 
Navigating the Model Object Using a GUI.

• COMSOL Open, opens a GUI for opening recent files, see also Loading a Model 
from a List of Existing files.

• COMSOL Search, opens a GUI for searching for expressions in the COMSOL 
model object defined as model in MATLAB. See also Finding Model Expressions.

To run these apps you need a connection between MATLAB and a 
COMSOL server, either using COMSOL with MATLAB or using 
manual connection.
T H E  C O M S O L  A P P S  |  35



36 |  C H A P T E R
Ca l l i n g  E x t e r n a l  F un c t i o n s  F r om 
Wi t h i n  t h e  Mode l

Use LiveLink™ for MATLAB® to call MATLAB functions from within the model — for 
instance, when working in the COMSOL Desktop. The procedure is different than 
implementing a model using a script as you do not need to run COMSOL with 
MATLAB.

Start COMSOL Multiphysics as a standalone application. The external MATLAB 
function needs to be defined in the COMSOL model so that a MATLAB process can 
automatically start when the function needs to be evaluated. The result of the function 
evaluation in MATLAB is then sent back to the COMSOL environment.

Calling External Functions

To run a MATLAB function, enable Allow external MATLAB® functions in 
the Preferences window; see Allowing External MATLAB Functions for 
more information.
 2 :  G E T T I N G  S T A R T E D



 3
B u i l d i n g  M o d e l s
This chapter gives an overview of the model object and provides an introduction 
to building models using the LiveLink™ interface. 

In this chapter:

• The Model Object

• Working with Geometries

• Working with Meshes

• Modeling Physics

• Creating Selections

• Computing the Solution

• Analyzing the Results
 37



38 |  C H A P T E R
Th e  Mode l  Ob j e c t

While working with the LiveLink™ interface in MATLAB® you work with models 
through the model object. Use methods to create, modify, and access models. 

In this section:

• Important Notes About the Model Object

• The Model Object Methods

• The General Utility Functionality

• The Model History

• Loading and Saving a Model

• Sharing the Model Between the COMSOL Desktop® and the MATLAB® Prompt

Important Notes About the Model Object

Consider the following information regarding the model object:

• All algorithms and data structures for the model are integrated in the model object.

• The model object is used by the COMSOL Desktop to represent your model. This 
means that the model object and the COMSOL Desktop behavior are virtually 
identical.

• The model object includes methods to set up and run sequences of operations to 
create geometry, meshes, and to solve your model.

LiveLink™ for MATLAB® includes the COMSOL API, which is a programming 
interface based on Java®. In addition, the product includes a number of M-file utility 
functions that wrap API functionality for greater ease of use.

Detailed documentation about model object methods is in About 
General Commands in the COMSOL Multiphysics Programming 
Reference Manual.

The Model Object in the COMSOL Multiphysics Programming 
Reference Manual.
 3 :  B U I L D I N G  M O D E L S



The Model Object Methods

The model object has a large number of methods. The methods are structured in a 
tree-like way, very similar to the nodes in the model tree in the Model Builder window 
on the COMSOL Desktop. The top-level methods just return references that support 
further methods. At a certain level the methods perform actions, such as adding data 
to the model object, performing computations, or returning data.

The General Utility Functionality

The model object utility methods are available with the ModelUtil object. These 
methods can be used, for example, to create or remove a new model object, but also 
to enable the progress bar or list the model object available in the COMSOL server.

M A N A G I N G  T H E  C O M S O L  M O D E L  O B J E C T

Use the method ModelUtil.create to create a new model object in the COMSOL 
server:

model = ModelUtil.create(<ModelTag>);

This command creates a model object Model on the COMSOL server and a MATLAB 
object model that is linked to the model object <ModelTag> in the COMSOL server.

It is possible to have several model objects on the COMSOL server, each with a 
different name. To access each model object requires different MATLAB variables 
linked to them and each MATLAB variable must have a different name.

Create a MATLAB variable linked to an existing model object with the function 
ModelUtil.model. For example, to create a MATLAB variable model that is linked to 
the existing model object <ModelTag> on the COMSOL server, enter the command:

model = ModelUtil.model(<ModelTag>);

Alternatively you can use the function mphload as in the command below:

model = mphload(<ModelTag>);

Detailed documentation about model object methods is in About 
General Commands in the COMSOL Multiphysics Programming 
Reference Manual.
T H E  M O D E L  O B J E C T  |  39



40 |  C H A P T E R
To remove a specific model object use the method ModelUtil.remove. For example, 
to remove the model object <ModelTag> from the COMSOL server enter the 
command:

ModelUtil.remove(<ModelTag>);

Alternatively remove all the COMSOL objects stored in the COMSOL server with the 
command:

ModelUtil.clear

List the names of the model objects available on the COMSOL server with the 
command:

mphtags -show

A C T I V A T I N G  T H E  P R O G R E S S  B A R

By default no progress information is displayed while running COMSOL with 
MATLAB. To manually enable a progress bar and visualize the progress of operations 
(such as loading a model, creating a mesh, assembling matrices, or computing the 
solution), enter the command:

ModelUtil.showProgress(true)

To deactivate the progress bar enter:

ModelUtil.showProgress(false)

The Model History

The model contains its entire modeling history corresponding to every settings added 
once to the model. When you save a model as an M-file, you get all the operations 
performed to the model, including settings that are no longer part of the model. 

Mac OS X does not support the progress bar.

Using the model history is a convenient way to learn the COMSOL API. 
The latest settings enter in the command Desktop being listed at the end 
of the M-file.
 3 :  B U I L D I N G  M O D E L S



The model history is automatically enabled when the model is created in the 
COMSOL Desktop. It is however possible to manually disable the model history 
recording from the MATLAB prompt with the command:

model.hist.disable

To enable the model history, enter the command:

model.hist.enable

C O M P A C T I N G  T H E  M O D E L  H I S T O R Y

To clean the M-file for the model so that it contains only the settings that are part of 
the current model you need to compact the model history before saving the model as 
an M-file.

To compact the model history in the COMSOL Desktop, from File menu (Windows 
users) or from the toolbar (Mac and Linux users), select Compact History ( ).

To compact the model history at the MATLAB prompt enter the command:

model.resetHist

Loading and Saving a Model

L O A D I N G  A  M O D E L  A T  T H E  M A T L A B  P R O M P T

To load an existing model saved as an MPH-file use the function mphopen. To load the 
model with the name <filename> enter:

model = mphopen(<filename>)

where <filename> is a string. This creates a model object Model on the COMSOL 
server that is accessible using the MATLAB variable model.

A shorter form is to simply use

mphopen <filename>

The functions mphload and mphopen automatically disable model history 
when loading a model.
T H E  M O D E L  O B J E C T  |  41



42 |  C H A P T E R
that will load the model with the given filename and use the variable name model for 
accessing the model later. Any existing variable model will be overwritten without 
warning.

Once the model is loaded, the file name and its associated model object tag are 
displayed in the COMSOL server window.

If there is already a model object Model in the COMSOL server, mphopen overrides 
the existing model object unless the model is also open in a COMSOL Multiphysics 
Client. In the later case, an index number is appended to the new model object name, 
for instance Model1.

If you want to manually specify the model object in the COMSOL server. use the 
command:

model = mphopen(<filename>, <ModelTag>);

where <ModelTag> is a string defining the tag that defines the loaded model in the 
COMSOL server.

When using the function mphopen, the model history is automatically disabled to 
prevent large history information when running a model in a loop. To turn model 
history on, use the function mphopen:

model = mphopen(<filename>,'-history');

The function mphload can also be used with the same property. In the 
following documentation the commands also work with mphload.

mphload does not store the filename in the recent file list as mphopen does 
by default.

mphopen and mphload do not look for lock file when opening a model in 
the COMSOL server.

The history recording can be useful when using the COMSOL Desktop. 
All the operations are then stored in the saved M-file.
 3 :  B U I L D I N G  M O D E L S



If you do not want to update the recent opened file list with the model you are about 
to open, use the -nostore flag with the function mphopen as in the command below:

model = mphopen(<filename>, <ModelTag>, '-nostore')

If the model mph-file is protected using a password, use mphload as in the command 
below:

model = mphopen(<filename>, <ModelTag>, <password>)

where <password> is a string defining the password protecting the file.

If you want to get the full filename of the loaded file, add a second output as in the 
command below:

[model, filenameloaded]= mphopen(<filename>, ...)

L O A D I N G  A  M O D E L  F R O M  A  L I S T  O F  E X I S T I N G  F I L E S

You can use a GUI where to load the model from a list files corresponding to the recent 
opened file or the files in a specified directory.

At the MATLAB prompt enter the command:

mphopen

If you have installed the COMSOL apps in the MATLAB Apps ribbon, 
click the COMSOL Open icon ( ).
T H E  M O D E L  O B J E C T  |  43



44 |  C H A P T E R
This starts a GUI with a list of the recent opened files.

For each selected files, the model information is available in the File Info section.

Click the Recent button to get the list of the recent opened file. Click the Search button 
to search for a file using file pattern. Click the Browse button to browse the directory 
where to get filename list.

To clear the recent opened file list enter the command:

mphopen -clear

To open the GUI with the list of files in a specific directory (<dirpath>), enter the 
command:

mphopen -dir <dirpath>

L O A D I N G  A  M O D E L  F R O M  A  D A T A B A S E

To open a model from a database at the command line use mphopen as in the 
command below:

mphopen '<location>'

where <location> is the location in the database of the model you want to load. 

The location of a model can only be obtained from the COMSOL Desktop. Follow 
the step below to proceed:
 3 :  B U I L D I N G  M O D E L S



1 In the Model Manager right-click on the model and select Versions. 

2 In the Versions section right-click the desired versions and select Copy Location.

3 Now the location is in your clipboard, make sure you paste it in the mphopen 
command within quotes (single ' or double ") so that the location is interpreted as 
a string.

S A V I N G  A  M O D E L

Use the function mphsave to save the model object linked to the MATLAB object 
model:

mphsave(model,<filename>)

where <filename> is a string. If the filename specified <filename> does not provide 
a path, the file is saved relative to the current MATLAB path. The file extension 
determines the format to use (*.mph, *.m, *.java, or *.vba). 

To save the model as a copy set the property copy to on as in the line below:

mphsave(model,<filename>), 'copy', 'on');

After saving a copy, the model does not remember where the copy was saved. Instead 
it remembers its previous save location.

When saving the model as an M-file mphsave does not automatically use 
the component syntax to save model using the COMSOL API, to enable 
this syntax run the command below: 

mphsave(model,<filename>,'component','on')
T H E  M O D E L  O B J E C T  |  45



46 |  C H A P T E R
When saving a COMSOL files (MPH-files) you can choose the file to be optimized for 
speed (using uncompressed files that are faster to save), or to be optimized for file size 
(using compressed files). To do so set the property optimize to speed, or size 
respectively as in the command below:

mphsave(model,<filename>), 'optimize', 'size');

To save a clean model, i.e. without built, computed, and plotted data set the property 
excludedata to on:

mphsave(model,<filename>), 'excludedata', 'on');

S E T  A  M O D E L  T H U M B N A I L

Before saving your model, you may want to include a model thumbnail to quickly 
identify your model in your own Application Library or when using mphopen. To set 
the model thumbnail enter the command:

mphthumbnail(model,<filename>)

where <filename> is the image file name.

You can also use a MATLAB figure to set the thumbnail. The following command will 
set the thumbnail to the image of the current figure:

mphthumbnail(model,gcf)

Note that the thumbnail is stored in memory. In order to save the thumbnail in the 
model file the model must be saved.

You can extract the image and image filename for the thumbnail stored in model, enter 
the command:

[image, imagefilename] = mphthumbnail(model)

Example
The code below shows how to get the model thumbnail as MATLAB image data, show 
the image in a MATLAB figure and store the new image as thumbnail in the model.

mphopen model_tutorial_llmatlab
im = mphthumbnail(model);
imshow(im)
mphthumbnail(model, gcf)

The models are not automatically saved between MATLAB sessions.
 3 :  B U I L D I N G  M O D E L S



Sharing the Model Between the COMSOL Desktop® and the 
MATLAB® Prompt

It is possible to connect a COMSOL Desktop to the COMSOL Multiphysics Server 
that is already connected with MATLAB and then access the model from both client 
(the COMSOL Desktop and MATLAB). The change performed from either client are 
directly accessible from the other one; for instance, type a command at the MATLAB 
prompt and see the resulting modification in the Model Builder window, or extract 
data at the MATLAB prompt from a model set up in the COMSOL Desktop.

C O N N E C T  T H E  C O M S O L  D E S K T O P  T O  T H E  C O M S O L  M U L T I P H Y S I C S  

S E R V E R  F R O M  T H E  P R O M P T

At the prompt call mphlaunch to start a COMSOL Desktop, connect it to the same 
COMSOL Multiphysics Server to which MATLAB is connected to, and import a 
model.

Run the command below:

mphlaunch

This starts a new COMSOL Desktop, connect it to the COMSOL Multiphysics Server 
that is already connected with MATLAB, and import the model available in the server. 
In case several model are available in the server you can specify which one to import 
by running the command below:

mphlaunch ModelTag

where ModelTag is the tag of the model to import. 

You can also specify the MATLAB object name that is link to the application to be 
imported in the COMSOL Desktop, enter the command:

mphlaunch(model)

If a COMSOL Multiphysics client is already connected to the COMSOL Multiphysics 
Server you will be asked to disconnect the connected client and connect the new one 
or cancel the operation.

List the tags of the application loaded in the server with the command 
mphtags.
T H E  M O D E L  O B J E C T  |  47



48 |  C H A P T E R
mphlaunch sets automatically a timeout to make MATLAB wait 0.5 second until the 
COMSOL server is free again. If you need to increase the timeout run the command 
below:

mphlaunch(model,<timeout>)

where <timeout> is the time in milliseconds to wait for the server to be free again.

C O N N E C T  T H E  C O M S O L  D E S K T O P  T O  T H E  C O M S O L  M U L T I P H Y S I C S  

S E R V E R

Connect the COMSOL Desktop to a COMSOL Multiphysics Server manually using 
the Connect to Server dialog box:

1 From the File (Windows users) or Options menu (Mac and Linux users), select 
COMSOL Multiphysics Server>Connect to Server ( ).

2 In the Connect to Server window, you specify the Server configuration and the user 
settings. In the Server section enter the COMSOL Multiphysics Server name (the 
default name is localhost) and the Port number (the default is 2036). This number 
corresponds to the port that the COMSOL Multiphysics Server is listening to, the 
number is displayed at the COMSOL Multiphysics Server window. 

3 In the User section enter a Username and a Password (if they are empty); these are 
defined the first time you are connected to the COMSOL Multiphysics Server.

4 Click OK.

The first time you connect the COMSOL Desktop to the COMSOL 
Multiphysics Server no model is loaded to the GUI. See Import An 
application from the COMSOL Multiphysics Server to the COMSOL 
Desktop to know how connect the GUI to a model loaded in the 
COMSOL Multiphysics Server.
 3 :  B U I L D I N G  M O D E L S



I M P O R T  A N  A P P L I C A T I O N  F R O M  T H E  C O M S O L  M U L T I P H Y S I C S  S E R V E R  

T O  T H E  C O M S O L  D E S K T O P

Once you have the COMSOL Desktop connected to the COMSOL Multiphysics 
Server you can import the model in the GUI:

1 From the File (Windows users) or Options menu (Mac and Linux users), select 
COMSOL Multiphysics Server>Import Application from Server ( ).

2 In the Import Application from Server window, specify the application you want to 
import.

I M P O R T  A  M O D E L  F R O M  T H E  C O M S O L  M U L T I P H Y S I C S  S E R V E R  T O  

M A T L A B

To access a model stored in the COMSOL Multiphysics Server from the MATLAB 
prompt enter the command:

model = mphload(<ModelTag>)

where model is the variable in MATLAB used to access the model stored on the 
COMSOL server and <ModelTag> is the tag of the COMSOL Model.

You can get the list of the models stored in the COMSOL Multiphysics Server with 
the command:

mphtags -show

Set up a time-out in MATLAB
To prevent MATLAB sending command to the COMSOL Multiphysics Server while 
it is busy to update the COMSOL Desktop, you need to set up a time-out in MATLAB 
and specify how long to wait the COMSOL Multiphysics Server to be free again. Enter 
the command:

ModelUtil.setServerBusyHandler(ServerBusyHandler(<timeout>))

Where <timeout> is the time in millisecond to wait the server to be free again.
T H E  M O D E L  O B J E C T  |  49



50 |  C H A P T E R
Work i n g  w i t h  Geome t r i e s

This section describes how to set up and run a geometry sequence. In this section:

• The Geometry Sequence Syntax

• Displaying the Geometry

• Working with Geometry Sequences

• Retrieving Geometry Information

• Modeling with a Parameterized Geometry

• Images and Interpolation Data

• Measuring Entities in Geometry

The Geometry Sequence Syntax

Create a geometry node using the syntax:

model.component(<ctag>).geom.create(<geomtag>, sdim)

where <geomtag> is a string used to refer to the geometry and <ctag> is the string 
defined when the component is created. The integer sdim specifies the space 
dimension of the geometry and it can be either 0, 1, 2, or 3.

To add an operation to a geometry sequence, use the syntax:

geometry.feature.create(<ftag>, operation)

where geometry is a link to the geometry node. The string <ftag> is used to refer to 
the operation. 

• Geometry Modeling and CAD Tools in the COMSOL Multiphysics 
Reference Manual

• Geometry in the COMSOL Multiphysics Programming Reference 
Manual

In the COMSOL Multiphysics Programming Reference Manual:

• For a list of geometry operations, see About Geometry Commands.

• For a property list available for the geometry features see Geometry.
 3 :  B U I L D I N G  M O D E L S



To set the feature property with different values than the default, use the set method:

geometry.feature(<ftag>).set(property, <value>)

where <ftag> is the string defined when creating the operation. 

To build the geometry sequence, enter:

geometry.run

Alternatively, to build the geometry sequence up to and including a given feature ftag 
enter:

geometry.run(<ftag>)

Displaying the Geometry

Use the function mphgeom to display the geometry in a MATLAB figure:

mphgeom(model)

To specify the geometry to display, enter:

mphgeom(model, <geomtag>)

where <geomtag> is the tag of the geometry node to display. If the model only 
contains a single geometry the tag <geomtag> can be left empty. When specifying a 
property the geometry tag is required.

Adding a view property will add some view settings from the COMSOL model such 
as axes labels (units) and grid and supports hiding of geometric entities. Usually it is 
sufficient to use the auto value for the view property:

mphgeom(model, <geomtag>, 'view', 'auto')

When running mphgeom the geometry node is automatically built. Set the build 
property to specify how the geometry node is supposed to be built before displaying 
it. Enter:

mphgeom(model, <geomtag>, 'build', build)

where build is a string with the value: 'off', 'current', or the geometry feature tag 
<ftag>, which, respectively, does not build the geometry (off), builds the geometry 
up to the current feature (current), or builds the geometry up to the specified 
geometry feature node (ftag).

If the geometry contains workplane, you can plot the geometry entities inside a 
specified workplane as a 2D geometry. Enter:
W O R K I N G  W I T H  G E O M E T R I E S  |  51



52 |  C H A P T E R
mphgeom(model, <geomtag>, 'workplane', <wptag>)

where <wptag> is the tag of the workplane to use. It is also possible to combine the 
workplane geometry display with the build property to display the geometry built up 
to a certain feature.

Use the parent property to specify the axes handle where to display the plot:

mphgeom(model, <geomtag>, 'parent', <axes>)

The following properties are also available to specify the vertex, edge, or face 
rendering:

Use mphgeom to display a specified geometric entity. To set the geometric entity, enter 
the entity property and set the geometric entity index in the selection property to:

mphgeom(model, <geomtag>, 'entity', entity, 'selection', <idx>)

where entity can be either 'point', 'edge', 'boundary', or 'domain', and <idx> 
is a positive integer array that contains the list of the geometric entity indices.

You can get the handle of the plotted geometry entities with the command:

h = mphgeom(model, <geomtag>, ...)

where h is a Patch array of the plotted entities.

Working with Geometry Sequences

This section shows how to create geometry sequences using the syntax outlined in The 
Geometry Sequence Syntax. This section has these examples:

• Creating a 1D Geometry

• Creating a 2D Geometry Using Primitive Geometry Objects

• vertexmode

• edgemode

• facemode

• vertexlabels

• edgelabels

• facelabels

• domainlabels

• edgecolor

• facecolor

• vertexlabelscolor

• edgelabelscolor

• facelabelscolor

• domainlabelscolor

• facealpha
 3 :  B U I L D I N G  M O D E L S



• Creating a 2D Geometry Using Boundary Modeling

• Creating a 3D Geometry Using Solid Modeling

C R E A T I N G  A  1 D  G E O M E T R Y

From the MATLAB command prompt, create a 1D geometry model by adding a 
geometry sequence and then adding geometry features. The last step is to run the 
sequence using the run method.

First create a model object:

model = ModelUtil.create('Model');

Then continue with the commands:

model.component.create('comp1',true);

geom1 = model.component('comp1').geom.create('geom1',1);

i1 = geom1.feature.create('i1','Interval');
i1.set('intervals','many');
i1.set('p','0,1,2');

geom1.run;

This creates a geometry sequence with a 1D solid object consisting of vertices at x = 0, 
1, and 2, and edges joining the vertices adjacent in the coordinate list.

Then enter:

p1 = geom1.feature.create('p1','Point');
p1.set('p',0.5);

geom1.run;

to add a point object located at x = 0.5 to the geometry.

To plot the result, enter:

For more information about geometry modeling, see the Geometry 
chapter in the COMSOL Multiphysics Reference Manual. 
W O R K I N G  W I T H  G E O M E T R I E S  |  53



54 |  C H A P T E R
mphgeom(model,'geom1','vertexmode','on');

Code for Use with MATLAB®

model = ModelUtil.create('Model');
model.component.create('comp1',true);
geom1 = model.component('comp1').geom.create('geom1',1);
i1 = geom1.feature.create('i1','Interval');
i1.set('intervals','many');
i1.set('p','0,1,2');
geom1.run;
p1 = geom1.feature.create('p1','Point');
p1.set('p',0.5);
geom1.run;
mphgeom(model,'geom1','vertexmode','on')

C R E A T I N G  A  2 D  G E O M E T R Y  U S I N G  P R I M I T I V E  G E O M E T R Y  O B J E C T S

Creating Composite Objects
Use a model object with a 2D geometry. Enter:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);
geom2 = comp1.geom.create('geom2',2);

Continue by creating a rectangle with side length of 2 and centered at the origin:

sq1 = geom2.feature.create('sq1','Square');
sq1.set('size',2);
sq1.set('base','center');

The property size describes the side lengths of the rectangle and the property pos 
describes the positioning. The default is to position the rectangle about its lower-left 
corner. Use the property base to control the positioning.
 3 :  B U I L D I N G  M O D E L S



Create a circular hole with a radius of 0.5 centered at (0, 0):

c1 = geom2.feature.create('c1','Circle');
c1.set('r',0.5);
c1.set('pos',[0 0]);

The property r describes the radius of the circle, and the property pos describes the 
positioning. 

Drill a hole in the rectangle by subtracting the circle from it: 

co1 = geom2.feature.create('co1','Compose');
co1.selection('input').set({'c1' 'sq1'});
co1.set('formula','sq1-c1');

A selection object is used to refer to the input object. The operators +, *, and - 
correspond to the set operations union, intersection, and difference, respectively.

The Compose operation allows you to work with a formula. Alternatively use the 
Difference operation instead of Compose. The following sequence of commands 
starts with disabling the Compose operation:

co1.active(false);

dif1 = geom2.feature.create('dif1','Difference');
dif1.selection('input').set({'sq1'});
dif1.selection('input2').set({'c1'});

Run the geometry sequence to create the geometry and plot the result:

geom2.run;

The property pos could have been excluded because the default position 
is the origin. The default is to position the circle about its center.
W O R K I N G  W I T H  G E O M E T R I E S  |  55



56 |  C H A P T E R
mphgeom(model,'geom2');

Trimming Solids
Continue with rounding the corners of the rectangle with the Fillet operation:

fil1 = geom2.feature.create('fil1','Fillet');
fil1.selection('point').set('dif1', [1 2 7 8]);
fil1.set('radius','0.5');

Run the sequence again:

geom2.run;

The geometry sequence is updated with rounded corners. To view the result, enter:

mphgeom(model,'geom2');

Code for use with MATLAB®

model = ModelUtil.create('Model');
 3 :  B U I L D I N G  M O D E L S



comp1 = model.component.create('comp1',true);
geom2 = comp1.geom.create('geom2',2);
sq1 = geom2.feature.create('sq1','Square');
sq1.set('size',2);
sq1.set('base','center');
c1 = geom2.feature.create('c1','Circle');
c1.set('r',0.5);
c1.set('pos',[0 0]);
co1 = geom2.feature.create('co1','Compose');
co1.selection('input').set({'c1' 'sq1'});
co1.set('formula','sq1-c1');
co1.active(false)
dif1 = geom2.feature.create('dif1','Difference');
dif1.selection('input').set({'sq1'});
dif1.selection('input2').set({'c1'});
geom2.run;
mphgeom(model,'geom2');
fil1 = geom2.feature.create('fil1','Fillet');
fil1.selection('point').set('dif1', [1 2 7 8]);
fil1.set('radius','0.5');
geom2.run;
mphgeom(model,'geom2');

C R E A T I N G  A  2 D  G E O M E T R Y  U S I N G  B O U N D A R Y  M O D E L I N G

Use the following commands to create six open curve segments that together form a 
closed curve:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);
g1 = comp1.geom.create('g1',2);
w=1/sqrt(2);
c1 = g1.feature.create('c1','BezierPolygon');
c1.set('type','open');
c1.set('degree',2);
c1.set('p',[-0.5 -1 -1;-0.5 -0.5 0]);
c1.set('w',[1 w 1]);
c2 = g1.feature.create('c2','BezierPolygon');
c2.set('type','open');
c2.set('degree',2);
c2.set('p',[-1 -1 -0.5;0 0.5 0.5]);
c2.set('w',[1 w 1]);
c3 = g1.feature.create('c3','BezierPolygon');
c3.set('type','open');
c3.set('degree',1);
c3.set('p',[-0.5 0.5; 0.5 0.5]);
c4 = g1.feature.create('c4','BezierPolygon');
c4.set('type','open');
c4.set('degree',2);
c4.set('p',[0.5 1 1; 0.5 0.5 0]);
W O R K I N G  W I T H  G E O M E T R I E S  |  57



58 |  C H A P T E R
c4.set('w',[1 w 1]);
c5 = g1.feature.create('c5','BezierPolygon');
c5.set('type','open');
c5.set('degree',2);
c5.set('p',[1 1 0.5; 0 -0.5 -0.5]);
c5.set('w',[1 w 1]);
c6 = g1.feature.create('c6','BezierPolygon');
c6.set('type','open');
c6.set('degree',1);
c6.set('p',[0.5 -0.5; -0.5 -0.5]);

The objects c1, c2, c3, c4, c5, and c6 are all curve2 objects. The vector [1 w 1] 
specifies the weights for a rational Bézier curve that is equivalent to a quarter-circle arc. 
The weights can be adjusted to create elliptical or circular arcs.

Convert the curve segments to a solid with the following conversion command:

csol1 = g1.feature.create('csol1','ConvertToSolid');
csol1.selection('input').set({'c1' 'c2' 'c3' 'c4' 'c5' 'c6'});

Then issue a final run command:

g1.run;
mphgeom(model,'g1');

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);
g1 = comp1.geom.create('g1',2);
w=1/sqrt(2);
c1 = g1.feature.create('c1','BezierPolygon');
c1.set('type','open');
c1.set('degree',2);
c1.set('p',[-0.5 -1 -1;-0.5 -0.5 0]);
 3 :  B U I L D I N G  M O D E L S



c1.set('w',[1 w 1]);
c2 = g1.feature.create('c2','BezierPolygon');
c2.set('type','open');
c2.set('degree',2);
c2.set('p',[-1 -1 -0.5;0 0.5 0.5]);
c2.set('w',[1 w 1]);
c3 = g1.feature.create('c3','BezierPolygon');
c3.set('type','open');
c3.set('degree',1);
c3.set('p',[-0.5 0.5; 0.5 0.5]);
c4 = g1.feature.create('c4','BezierPolygon');
c4.set('type','open');
c4.set('degree',2);
c4.set('p',[0.5 1 1; 0.5 0.5 0]);
c4.set('w',[1 w 1]);
c5 = g1.feature.create('c5','BezierPolygon');
c5.set('type','open');
c5.set('degree',2);
c5.set('p',[1 1 0.5; 0 -0.5 -0.5]);
c5.set('w',[1 w 1]);
c6 = g1.feature.create('c6','BezierPolygon');
c6.set('type','open');
c6.set('degree',1);
c6.set('p',[0.5 -0.5; -0.5 -0.5]);
csol1 = g1.feature.create('csol1','ConvertToSolid');
csol1.selection('input').set({'c1' 'c2' 'c3' 'c4' 'c5' 'c6'});
g1.run;
mphgeom(model,'g1');

C R E A T I N G  A  3 D  G E O M E T R Y  U S I N G  S O L I D  M O D E L I N G

This section shows how to create 3D solids using work planes and Boolean operations.

Create a 3D geometry with an xy work plane at z = 0:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);

geom1 = comp1.geom.create('geom1', 3);

wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');

Add a rectangle to the work plane, then add fillet to its corners:

r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size',[1 2]);

geom1.run;
W O R K I N G  W I T H  G E O M E T R I E S  |  59



60 |  C H A P T E R
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
fil1.selection('point').set('r1', [1 2 3 4]);
fil1.set('radius', '0.125');

geom1.runCurrent;

ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.set('distance', '0.1');

Add another yz work plane, at x = 0.5:

wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'quick');
wp2.set('quickplane', 'yz');
wp2.set('quickx', '0.5');

b1 = wp2.geom.feature.create('b1', 'BezierPolygon');
b1.set('type', 'open');
b1.set('degree', [1 1 1 1]);
b1.set('p', 
{'0.75','1','1','0.8','0.75';'0.1','0.1','0.05','0.05','0.1'});
b1.set('w', {'1','1','1','1','1','1','1','1'});

wp2.geom.feature.create('csol1', 'ConvertToSolid');
wp2.geom.feature('csol1').selection('input').set({'b1'});

Revolve the triangle from the yz work plane:

rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.selection('input').set({'wp2'});
rev1.setIndex('pos', '1', 0);

Add the difference operation that computes the final 3D geometry:

dif1 = geom1.feature.create('dif1', 'Difference');
dif1.selection('input').set({'ext1'});
dif1.selection('input2').set({'rev1'});

To run the sequence, enter:

geom1.run;

To view the geometry enter:
 3 :  B U I L D I N G  M O D E L S



mphgeom(model);

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size',[1 2]);
geom1.run
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
fil1.selection('point').set('r1', [1 2 3 4]);
fil1.set('radius', '0.125');
geom1.runCurrent;
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.set('distance', '0.1');
wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'quick');
wp2.set('quickplane', 'yz');
wp2.set('quickx', '0.5');
b1 = wp2.geom.feature.create('b1', 'BezierPolygon');
b1.set('type', 'open');
b1.set('degree', [1 1 1 1]);
b1.set('p', 
{'0.75','1','1','0.8','0.75';'0.1','0.1','0.05','0.05','0.1'});
b1.set('w', {'1','1','1','1','1','1','1','1'});
wp2.geom.feature.create('csol1', 'ConvertToSolid');
wp2.geom.feature('csol1').selection('input').set({'b1'});
rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.selection('input').set({'wp2'});
rev1.setIndex('pos', '1', 0);
dif1 = geom1.feature.create('dif1', 'Difference');
W O R K I N G  W I T H  G E O M E T R I E S  |  61



62 |  C H A P T E R
dif1.selection('input').set({'ext1'});
dif1.selection('input2').set({'rev1'});
geom1.run;
mphgeom(model);

Retrieving Geometry Information

With the function mphgeominfo you can access detailed information of a geometry 
object as well its data.

To get the information of a geometry object enter the command:

info = mphgeominfo(model, <geomtag>);

where <geomtag> is the tag of either a geometry node or a part geometry node you 
want the information from. In case of the model has only geometry node, the tag 
<geomtag> is optional.

The output info is a MATLAB® structure. The default fields available in the structure 
are listed in the table:

FIELDS DESCRIPTION

sdim Space dimension

label Label of the selected geometry object

component Tag of the component

geometricmodel Node defining the geometry for the physics

autobuildnew Build geometric operation automatically when added

autorebuild Geometry sequence automatically rebuilt

lengthunit Current length unit

angularunit Current angular unit

objectnames Names of all objects that exist in the current state

current Tag of the current feature

geomrep Geometry representation

scaleunitvalue Scale numeric values in the geometry and meshing sequences

repairtol Relative repair tolerance

repairtoltype Repair tolerance type

absrepairtol Absolute repair tolerance

useconstrdim Constraints and dimensions functionality enabled

constrdimbuild Constraints and dimensions used when building the geometry 
object
 3 :  B U I L D I N G  M O D E L S



In addition to geometry information, you can retrieve geometric entity data, such as 
local parameters, coordinates, curvature, up and down domain indices, etc... To get 
the geometry data enter:

[info, data] = mphgeominfo(model, <geomtag>, 'entity', <entitytype>);

where <entitytype> is the type of the entity to get the data from. It can be either 
'face', 'edge', or 'vertex'.

data is a MATLAB structure which fields depend on the entity type. These are listed 
in the table below:

constrdimstatus Overall status of the constraints and dimensions

ispart Object is a geometry part

view Current view

exists Geometry object exists

isaxisymmetric Geometry is axisymmetric

boundingbox Bounding box of the geometry objects

type Object type

Ndomains Number of domains

Nboundaries Number of boundaries

Nedges Number of edges

Nvertices Number of vertices

Nfinitevoids Number of finite voids

Nfaces Number of faces

problems List of error/warning messages

FIELDS ENTITY DESCRIPTION

domainnumber vertex Domain index for isolated vertices

edgex edge Edge coordinates

edgedx edge Edge first order derivatives

edgeddx edge Edge second order derivatives

edgecurvature edge Edge curvature values

edgenormal edge Edge normal values (in 2D only)

edgetorsion edge Edge torsion values (in 3D only)

facex face Face coordinates

facedx face Face first order derivatives

FIELDS DESCRIPTION
W O R K I N G  W I T H  G E O M E T R I E S  |  63



64 |  C H A P T E R
In addition you can specify a selection of the entity type to get the data from as in the 
command below:

[info, data] = mphgeominfo(model, <geomtag>, ...
'entity', <entitytype>, 'selection', <sel>);

where <sel> is an array of entity numbers.

The geometric data are evaluated within the local parameter range on a structured grid 
for faces, or interval for edge, with default size of 10x10, 10 respectively. To change 
the size of geometric data evaluation point use the steps property as in the command 
below:

[info, data] = mphgeominfo(model, <geomtag>, ...
'entity', <entitytype>, 'selection', <sel>, 'steps', <steps>);

where <steps> is an integer or a NxM integer array for a face type in case you need to 
evaluate the data on an uneven grid. 

R E T R I E V I N G  G E O M E T R Y  I N F O R M A T I O N

This example shows how to use mphgeominfo to retrieve geometry information.

First create a simple 3D geometry:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);

faceddx face Face second order derivatives

facenormal face Face normal

faceff1 face Face first fundamental form

faceff2 face Face second fundamental form

facegausscurvature face Face Gauss curvature

meancurvature face Face mean curvature

updown face|edge Up and down domain indices

p vertex Vertex coordinates

paramrange face|edge Parameter ranges

FIELDS ENTITY DESCRIPTION

To retrieve the detailed information about the geometry in a model using 
the COMSOL API, see Geometry Object Information Methods 
(GeomInfo) in the COMSOL Multiphysics Programming Reference 
Manual.
 3 :  B U I L D I N G  M O D E L S



geom1 = comp1.geom.create('geom1', 3);
geom1.feature.create('blk1','Block');
geom1.feature.create('con1','Cone');
geom1.run;

To visualize the geometry in a MATLAB figure window enter:

mphgeom(model)

As only one geometry node is available in the model, to access the geometry 
information enter:

info = mphgeominfo(model)

To determine the space dimension of the geometry, enter:

info.sdim

To inquire about the number of domains and the number of boundaries:

info.Ndomains
info.Nboundaries

The bounding box coordinates of the geometry are accessible using:

info.boundingbox

To get the geometry data for the face number 1 enter the command:

[info, data] = mphgeominfo(model, 'geom1', 'entity', 'face',...
'selection', 1);

To get the range of the surface parameters enter:

data.paramrange
W O R K I N G  W I T H  G E O M E T R I E S  |  65



66 |  C H A P T E R
this returns a 4x1 array following the given format: [s1min; s1max; s2min; s2max] 
where s1min and s1max are the minimum, and maximum respectively, of the first 
surface parameter. s2min and s2max are the minimum, and maximum respectively, of 
the second surface parameter.

To evaluate the face coordinates, in the global coordinate system, enter:

data.facex 

The face coordinates are evaluated with the local parameter range on a 10 x 10 points 
grid. If you want to reduce or increase the size of evaluation grid, use the property 
'steps'. For instance to evaluate the face coordinates on a 5 x 10 grid enter:

[info, data] = mphgeominfo(model, 'geom1', 'entity', 'face',...
'selection', 1,'steps', [5 10]);

To get the parameter range of an edge and, for example, to get the length of edge 
number 3, enter:

[info, data] = mphgeominfo(model, 'geom1', 'entity', 'edge',...
'selection', 3);

paramrange = data.paramrange;
edgelength = paramrange(end)

To get the coordinates and the curvature data at the middle of edge number 3 enter: 

[info, data] = mphgeominfo(model, 'geom1', 'entity', 'edge',...
'selection', 3,'steps', 1);

pt = data.edgex
curvature = data.edgecurvature

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1',true);
geom1 = comp1.geom.create('geom1', 3);
geom1.feature.create('blk1','Block');
geom1.feature.create('con1','Cone');
geom1.run;
mphgeom(model)
info = mphgeominfo(model);
info.sdim
info.Ndomains
info.Nboundaries
info.boundingbox
[info, data] = mphgeominfo(model, 'geom1', 'entity', 'face',...
'selection', 1);
data.paramrange
data.facex
[info, data] = mphgeominfo(model, 'geom1', 'entity', 'face',...
'selection', 1,'steps', [5 10]);
 3 :  B U I L D I N G  M O D E L S



[info, data] = mphgeominfo(model, 'geom1', 'entity', 'edge',...
'selection', 3);
paramrange = data.paramrange;
edgelength = paramrange(end)
[info, data] = mphgeominfo(model, 'geom1', 'entity', 'edge',...
'selection', 3,'steps', 1);
pt = data.edgex
curvature = data.edgecurvature

Modeling with a Parameterized Geometry

COMSOL Multiphysics has built-in support for parameterized geometries. Parameters 
can be used in most geometry operations. To exemplify parameterizing a geometry, 
the following script studies the movement of a circular source through two adjacent 
rectangular domains:

model = ModelUtil.create('Model');
model.param.set('a',0.2);
comp1 = model.component.create('comp1',true);

geom1 = comp1.geom.create('geom1',2);

r1 = geom1.feature.create('r1','Rectangle');
r1.set('size',[0.5 1]);
r1.set('pos',[0 0]);

r2 = geom1.feature.create('r2','Rectangle');
r2.set('size',[0.6 1]);
r2.set('pos',[0.5 0]);

c1 = geom1.feature.create('c1','Circle');
c1.set('r',0.1);
c1.set('pos',{'a','0.5'});
W O R K I N G  W I T H  G E O M E T R I E S  |  67



68 |  C H A P T E R
mphgeom(model);

Change the position of the circle by changing the value of parameter a:

model.param.set('a',0.5);

mphgeom(model);

Create a loop that changes the position of the circle in increments:

for a=0.2:0.1:0.5
model.param.set('a',a);
geom1.run;

end

Create a mesh:

comp1.mesh.create('mesh1');
 3 :  B U I L D I N G  M O D E L S



Add a Weak Form PDE interface:

w = comp1.physics.create('w', 'WeakFormPDE', 'geom1');
w.feature('wfeq1').set('weak', 1, '-test(ux)*ux-test(uy)*uy');

dir1 = w.feature.create('dir1', 'DirichletBoundary', 1);
dir1.selection.set([1 2 3 6 7]);

src1 = w.feature.create('src1', 'SourceTerm', 2);
src1.set('f', 1, '1');
src1.selection.set([3]);

Then, create a stationary study step:

std1 = model.study.create('std1');

stat1 = std1.feature.create('stat1', 'Stationary');

Create a parametric sweep feature:

p1 = model.batch.create('p1','Parametric');
p1.set('pname', 'a');
p1.set('plist','range(0.2,0.1,0.8)');
p1.run;

Alternatively, you can run the parametric sweep using a MATLAB for loop:

for a=0.2:0.1:0.8
model.param.set('a',a);
std1.run;

end

Code for use with MATLAB®

model = ModelUtil.create('Model');
model.param.set('a',0.2);
comp1 = model.component.create('comp1',true);
geom1 = comp1.geom.create('geom1',2);
r1 = geom1.feature.create('r1','Rectangle');
r1.set('size',[0.5 1]);
r1.set('pos',[0 0]);
r2 = geom1.feature.create('r2','Rectangle');
r2.set('size',[0.6 1]);
r2.set('pos',[0.5 0]);
c1 = geom1.feature.create('c1','Circle');

After updating a parameter that affects the geometry, COMSOL detects 
this change and automatically updates the geometry and mesh before 
starting the solver. The geometry is associative, which means that physics 
settings are preserved as the geometry changes.
W O R K I N G  W I T H  G E O M E T R I E S  |  69



70 |  C H A P T E R
c1.set('r',0.1);
c1.set('pos',{'a','0.5'});
mphgeom(model);
model.param.set('a',0.5);
mphgeom(model);
for a=0.2:0.1:0.5
model.param.set('a',a);
geom1.run;
end
comp1.mesh.create('mesh1');
w = comp1.physics.create('w', 'WeakFormPDE', 'geom1');
w.feature('wfeq1').set('weak', 1, '-test(ux)*ux-test(uy)*uy');
dir1 = w.feature.create('dir1', 'DirichletBoundary', 1);
dir1.selection.set([1 2 3 6 7]);
src1 = w.feature.create('src1', 'SourceTerm', 2);
src1.set('f', 1, '1');
src1.selection.set([3]);
std1 = model.study.create('std1');
stat1 = std1.feature.create('stat1', 'Stationary');
p1 = model.batch.create('p1','Parametric');
p1.set('pname', 'a');
p1.set('plist','range(0.2,0.1,0.8)');
p1.run;
for a=0.2:0.1:0.8
model.param.set('a',a);
std1.run;
end

Images and Interpolation Data

This section describes how to generate geometry from a set of data points by using 
interpolation curves and how to create geometry from image data.

• Creating a Geometry Using Curve Interpolation

• Creating Geometry from Image Data

C R E A T I N G  A  G E O M E T R Y  U S I N G  C U R V E  I N T E R P O L A T I O N

Use the interpolation spline feature to import a set of data points that describe a 2D 
geometry. To create an interpolation spline feature, enter:

model.geom(<geomtag>).feature.create(<ftag>,'InterpolationCurve')

Then specify data points in a table:

ftag.set('table', <data>)

where ftag is the curve interpolation node and <data> can either be a 2-by-N cell 
array or a 2-by-N array.
 3 :  B U I L D I N G  M O D E L S



Control the type of geometry generated by the operation with the command:

ftag.set('type', type)

where type can either be 'solid' to generate a solid object, 'closed' to generate a 
closed curve or 'open' to generate an open curve.

Example: Curve Interpolation
Create a set of data points in MATLAB, then use these to construct a 2D geometry. 

1 Create data points that describe a circle, sorted by the angle, and remove some of 
the points:

phi = 0:0.2:2*pi;
phi([1 3 6 7 10 20 21 25 28 32]) = [];
p = [cos(phi);sin(phi)];

2 Add some noise to the data points:

randn('state',17)
p = p+0.02*randn(size(p));

3 Create a 2D geometry with a square:

model = ModelUtil.create('Model');

4 Add a square geometry:

comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);

sq1 = geom1.feature.create('sq1', 'Square');
sq1.set('base', 'center');
sq1.set('size', '3');

5 Add an interpolation curve feature:

ic1 = geom1.feature.create('ic1', 'InterpolationCurve');

6 Use the variable p for the data points:

ic1.set('table', p');

7 Specify a closed curve:

ic1.set('type', 'closed');

8 Plot the geometry with the mphgeom command:
W O R K I N G  W I T H  G E O M E T R I E S  |  71



72 |  C H A P T E R
mphgeom(model)

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
sq1 = geom1.feature.create('sq1', 'Square');
sq1.set('base', 'center');
sq1.set('size', '3');
phi = 0:0.2:2*pi;
phi([1 3 6 7 10 20 21 25 28 32]) = [];
p = [cos(phi);sin(phi)];
randn('state',17)
p = p+0.02*randn(size(p));
ic1 = geom1.feature.create('ic1', 'InterpolationCurve');
ic1.set('table', p');
ic1.set('type', 'closed');
mphgeom(model);

C R E A T I N G  G E O M E T R Y  F R O M  I M A G E  D A T A

Use the function mphimage2geom to create geometry from image data. The image data 
format can be M-by-N array for a grayscale image or M-by-N-by-3 array for a true 
color image. This section also includes an example (see Example: Convert Image Data 
to Geometry). 

See the MATLAB function imread to convert an image file to image data.
 3 :  B U I L D I N G  M O D E L S



If you specify the image data and the level value that represents the geometry contour 
you want to extract, the function mphimage2geom returns a model object with the 
desired geometry:

model = mphimage2geom(<imagedata>, <level>)

where imagedata is a C array containing the image data, and level is the contour 
level value used to generate the geometry contour.

Specify the type of geometry object generated:

model = mphimage2geom(<imagedata>, <level>, 'type', type)

where type is 'solid' and generates a solid object, 'closed' generates a closed 
curve object, or 'open' generates an open curve geometry object.

Use the property curvetype to specify the type of curve used to generate the 
geometry object:

model = mphimage2geom(<imagedata>, <level>, 'curvetype', curvetype)

where curvetype can be set to 'polygon' to use a polygon curve. The default curve 
type creates a geometry with the best suited geometrical primitives. For interior curves 
it uses interpolation curves, while for curves that are touching the perimeter of the 
image a polygon curve is used.

To scale the geometry use the scale property where scale is a double value:

model = mphimage2geom(<imagedata>, <level>, 'scale', scale)

Set the minimum distance (in pixels) between coordinates in curve with the mindist 
property where mindist is a double value:

model = mphimage2geom(<imagedata>, <level>, 'mindist', mindist)

Set the minimum area (in square pixels) for interior curves where minarea is a double 
value:

model = mphimage2geom(<imagedata>, <level>, 'minarea', minarea)

In case of overlapping solids, the function mphimage2geom automatically creates a 
Compose node in the model object. If you do not want this geometry feature, set the 
property compose to off:

model = mphimage2geom(<imagedata>, <level>, 'compose', 'off')

To create a rectangle domain surrounding the object generated use the property 
rectangle:

model = mphimage2geom(<imagedata>, <level>, 'rectangle', 'on')
W O R K I N G  W I T H  G E O M E T R I E S  |  73



74 |  C H A P T E R
mphimage2geom returns a model object with the created geometry stored in a 
geometry node. The default geometry node has the tag geom1, to specify manually 
the geometry tag use the function as below:

model = mphimage2geom(<imagedata>, <level>, 'geom', <geomtag>)

where <geomtag> is a string corresponding to the tag of the geometry node.

It is also possible to create a geometry object and include it in an existing model object, 
to proceed use the command below:

mphimage2geom(<imagedata>, <level>, 'geom', <geomnode>)

where <geomnode> is the geometry node object where to include the newly generated 
geometry.

To manually specify the tag of the model object created in the COMSOL server use 
the command below:

model = mphimage2geom(<imagedata>, <level>, 'modeltag', <Modeltag>)

where <Modeltag> is a string defining the tag of the model object in the COMSOL 
server.

Example: Convert Image Data to Geometry
This example shows how to create geometry based on gray scale image data. First 
generate the image data in MATLAB and display the contour in a figure. Then, create 
a model object including the geometry represented by the contour value 40.

At the MATLAB prompt enter these commands:

p = (peaks+7)*5;
[c,h] = contourf(p);
clabel(c, h);
model = mphimage2geom(p, 40);
figure(2)
mphgeom(model)
 3 :  B U I L D I N G  M O D E L S



Use the property type to create closed or open curves. For example, to create a 
geometry following contour 40 with closed curves, enter:

model = mphimage2geom(p, 40, 'type', 'closed');
mphgeom(model)

To scale the geometry, use the scale property. Using the current model scale the 
geometry with a factor of 0.001 (1e-3):

model = mphimage2geom(p, 40, 'scale', 1e-3);
W O R K I N G  W I T H  G E O M E T R I E S  |  75



76 |  C H A P T E R
mphgeom(model)

To insert a rectangle in the geometry that has an outer domain surrounding the 
created contour, set the property rectangle to on:

model = mphimage2geom(p, 40, 'rectangle', 'on');
mphgeom(model)

Only include the interior curves with an area larger than 100 square pixels:

model = mphimage2geom(p, 40, 'minarea', 100);
 3 :  B U I L D I N G  M O D E L S



mphgeom(model)

Insert the geometry in an existing geometry object:

model = mphopen('model_tutorial_llmatlab');
geom1 = model.component('comp1').geom('geom1');
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickz',1e-2);
mphimage2geom(p, 50, 'scale', 1e-3, 'geom', wp1.geom);
mphgeom(model)

Code for use with MATLAB®

p = (peaks+7)*5;
[c,h] = contourf(p);
clabel(c, h);
model = mphimage2geom(p, 40);
figure(2)
mphgeom(model)
W O R K I N G  W I T H  G E O M E T R I E S  |  77



78 |  C H A P T E R
model = mphimage2geom(p, 40, 'type', 'closed');
mphgeom(model)
model = mphimage2geom(p, 40, 'scale', 1e-3);
mphgeom(model)
model = mphimage2geom(p, 40, 'rectangle', 'on');
mphgeom(model)
model = mphimage2geom(p, 40, 'minarea', 100);
mphgeom(model)
model = mphopen('model_tutorial_llmatlab');
geom1 = model.component('comp1').geom('geom1');
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickz',1e-2);
mphimage2geom(p, 50, 'scale', 1e-3, 'geom', wp1.geom);
mphgeom(model)

Measuring Entities in Geometry

Use the function mphmeasure to measure the geometry entities in the model.

Enter the command:

measure = mphmeasure(model, <geomtag>, entity, …)

to get the measurement of the entity type entity in the geometry <geomtag>. entity 
can be one of 'point', 'edge', 'boundary', or 'domain'. 

The output measure return the value of a coordinates, a length, an area or volume, 
respectively. For point entities, if you select two or more points, the output correspond 
to the midpoint coordinates.

To specify the entity selection to measure enter:

measure = mphmeasure(model, <geomtag>, entity, 'selection', sel, …)

where sel is an integer array that contains the selection number of the entities to 
measure.

When you select several entities you can get another measurement value with the 
command:

[msr1, msr2]= mphmeasure(model, <geomtag>, entity, …)

where msr2 corresponds to a surface area when the entities are volumes and a distance 
when the input entities are two points.
 3 :  B U I L D I N G  M O D E L S



Work i n g  w i t h  Me s h e s

This section describes how to set up and run meshing sequences in a model.

• The Meshing Sequence Syntax

• Displaying the Mesh

• Mesh Creation Functions

• Importing External Meshes and Mesh Objects

• Visualizing Mesh Quality

• Getting Mesh Statistics Information

• Getting and Setting Mesh Data 

The Meshing Sequence Syntax

Create a meshing sequence by using the syntax:

model.component(<ctag>).mesh.create(<meshtag>, <geomtag>)

where <meshtag> is a string that you use to refer to the meshing sequence. The tag 
geomtag specifies the geometry to use for this mesh node.

To add an operation to a sequence, use the syntax:

mesh.feature.create(<ftag>, operation)

where mesh is a link to a mesh node and the string <ftag> is a string that you use to 
refer to the operation. 

To set a property to a value in a operation, enter:

mesh.feature(<ftag>).set(property, <value>)

• Meshing in the COMSOL Multiphysics Reference Manual

• Mesh in the COMSOL Multiphysics Programming Reference 
Manual

About Mesh Commands in the COMSOL Multiphysics Programming 
Reference Manual
W O R K I N G  W I T H  M E S H E S  |  79



80 |  C H A P T E R
To build the mesh sequence, enter:

mesh.run

To run the mesh node up to a specified feature node <ftag>, enter:

mesh.run(ftag)

Displaying the Mesh

To display the mesh in a MATLAB figure, use the function mphmesh. Make sure that 
the mesh is built before calling this command:

mphmesh(model)

If there are several meshes in a model, specify the mesh to display using the command:

mphmesh(model, <meshtag>)

Adding a view property will add some view settings from the COMSOL model such 
as axes labels (units) and grid and supports hiding of mesh entities. Usually it is 
sufficient to use the auto value for the view property:

mphmesh(model, <meshtag>, ‘view’, ‘auto’)

If the model only contains one mesh then the <meshtag> may be left empty.

Use the parent property to specify the axes handle where to display the plot:

mphmesh(model, <meshtag>, 'parent', <axes>)

For more details on available operations and properties in the sequence, 
see Mesh in the COMSOL Multiphysics Programming Reference 
Manual.
 3 :  B U I L D I N G  M O D E L S



The following properties are also available to specify the vertex, edge, or face 
rendering: 

Mesh Creation Functions

Several mesh features are discussed, with examples in this section:

• Mesh Sizing Properties

• Creating a 2D Mesh with Triangular Elements

• Changing The Tessellation Method

• Creating a 2D Mesh with Quadrilateral Elements

• Creating Structured Meshes

• Creating a Structured Quadrilateral Mesh

• Building a Mesh Incrementally

• Revolving a Mesh by Sweeping

• Extruding a Mesh by Sweeping

• Combining Unstructured and Structured Meshes

• Creating Boundary Layer Meshes

• Refining Meshes

• Copying Boundary Meshes

• Converting Mesh Elements

M E S H  S I Z I N G  P R O P E R T I E S

The Size attribute provides a number of input properties that can control the mesh 
element size, such as the following properties:

• Maximum and minimum element size

• vertexmode

• edgemode

• facemode

• vertexlabels

• edgelabels

• facelabels

• meshcolor

• edgecolor

• vertexcolor

• edgelabelscolor

• vertexlabelscolor

• facelabelscolor

• facealpha
W O R K I N G  W I T H  M E S H E S  |  81



82 |  C H A P T E R
• Element growth rate

• Curvature factor

• Resolution of narrow regions

These properties are available both globally and locally. The following examples are 
included: Creating a 2D Mesh with Triangular Elements and Creating a 2D Mesh with 
Quadrilateral Elements. Also discussed is Changing The Tessellation Method.

There are several predefined settings that can be used to set a suitable combination of 
values for many properties. To select one of these settings, use the property hauto and 
pass an integer from 1 to 9 as its value to describe the mesh resolution:

C R E A T I N G  A  2 D  M E S H  W I T H  T R I A N G U L A R  E L E M E N T S

Generate a triangular mesh of a unit square:

model = ModelUtil.create('Model');

comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');

mesh1 = comp1.mesh.create('mesh1');
ftri1 = mesh1.feature.create('ftri1','FreeTri');
mesh1.run;

• Extremely fine (1)

• Extra fine (2)

• Finer (3)

• Fine (4)

• Normal (5) (the default)

• Coarse (6)

• Coarser (7)

• Extra coarse (8)

• Extremely coarse (9)

For details about predefined mesh size settings and mesh element size 
parameters, see Size in the COMSOL Multiphysics Programming 
Reference Manual.
 3 :  B U I L D I N G  M O D E L S



mphmesh(model)

Figure 3-1: Default mesh on a unit square.

The default size feature is generated with the property hauto set to 5, that is: 

mesh1.feature('size').set('hauto',5);

To override this behavior, set hauto to another integer. Override this by setting 
specific size properties, for example, making the mesh finer than the default by 
specifying a maximum element size of 0.02:

mesh1.feature('size').set('hmax',0.02);
mesh1.run;

mphmesh(model)
W O R K I N G  W I T H  M E S H E S  |  83



84 |  C H A P T E R
This value corresponds to 1/50 of the largest axis-parallel distance, whereas the default 
value is 1/15.

Figure 3-2: Fine mesh (maximum element size = 0.02).

Sometimes a nonuniform mesh is desirable. Make a mesh that is denser on the left side 
by specifying a smaller maximum element size only on the edge segment to the left 
(edge number 1):

mesh1.feature('size').set('hauto',5);

size1 = ftri1.feature.create('size1','Size');
size1.set('hmax',0.02);
size1.selection.geom('geom1',1);
size1.selection.set(1);

mesh1.run

mphmesh(model)
 3 :  B U I L D I N G  M O D E L S



.

Figure 3-3: Refined mesh on boundary 1(maximum element size = 0.02).

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
mesh1 = comp1.mesh.create('mesh1');
ftri1 = mesh1.feature.create('ftri1','FreeTri');
mesh1.run;
mphmesh(model)
mesh1.feature('size').set('hauto',5);
mesh1.feature('size').set('hmax',0.02);
mesh1.run;
mphmesh(model)
mesh1.feature('size').set('hauto',5);
size1 = ftri1.feature.create('size1','Size');
size1.set('hmax',0.02);
size1.selection.geom('geom1',1);
size1.selection.set(1);
mesh1.run
mphmesh(model)

C H A N G I N G  T H E  T E S S E L L A T I O N  M E T H O D

You can set the tessellation method for generating triangular meshes using the method 
property. The default value auto lets the software use the method that is best suited 
for the geometry. The values af and del allow you to switch to an advancing front 
algorithm and a Delaunay algorithm, respectively. Enter the following to create a 2D 
geometry, then generate a triangular mesh with the Delaunay algorithm:
W O R K I N G  W I T H  M E S H E S  |  85



86 |  C H A P T E R
model = ModelUtil.create('Model');

comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');

c1 = geom1.feature.create('c1','Circle');
c1.set('r','0.5');

co1 = geom1.feature.create('co1','Compose');
co1.selection('input').set({'c1' 'r1'});
co1.set('formula','r1-c1');

geom1.runAll;

mesh1 = comp1.mesh.create('mesh1');

ftri1 = mesh1.feature.create('ftri1','FreeTri');
ftri1.set('method','del');

mesh1.run;

mphmesh(model,'mesh1')

Figure 3-4: Mesh created with the Delaunay method.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
c1 = geom1.feature.create('c1','Circle');
c1.set('r','0.5');
 3 :  B U I L D I N G  M O D E L S



co1 = geom1.feature.create('co1','Compose');
co1.selection('input').set({'c1' 'r1'});
co1.set('formula','r1-c1');
geom1.runAll;
mesh1 = comp1.mesh.create('mesh1');
ftri1 = mesh1.feature.create('ftri1','FreeTri');
ftri1.set('method','del');
mesh1.run;
mphmesh(model,'mesh1')

C R E A T I N G  A  2 D  M E S H  W I T H  Q U A D R I L A T E R A L  E L E M E N T S

To create an unstructured quadrilateral mesh on a unit circle, enter:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1',2);

geom1.feature.create('c1','Circle');

mesh1 = comp1.mesh.create('mesh1');

mesh1.feature.create('ftri1','FreeQuad');

mesh1.run;

mphmesh(model)

Figure 3-5: An unstructured quad mesh.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
W O R K I N G  W I T H  M E S H E S  |  87



88 |  C H A P T E R
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('c1','Circle');
mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1','FreeQuad');
mesh1.run;
mphmesh(model)

C R E A T I N G  S T R U C T U R E D  M E S H E S

To create a structured quadrilateral mesh in 2D, use the Map operation. This operation 
uses a mapping technique to create the quadrilateral mesh.

Use the EdgeGroup attribute to group the edges (boundaries) into four edge groups, 
one for each edge of the logical mesh. To control the edge element distribution use 
the Distribution attribute, which determines the overall mesh density.

C R E A T I N G  A  S T R U C T U R E D  Q U A D R I L A T E R A L  M E S H

Create a structured quadrilateral mesh on a geometry where the domains are bounded 
by more than four edges:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
r2 = geom1.feature.create('r2','Rectangle');
r2.set('pos',[1 0]);
c1 = geom1.feature.create('c1','Circle');
c1.set('r','0.5');
c1.set('pos',[1.1 -0.1]);
dif1 = geom1.feature.create('dif1', 'Difference');
dif1.selection('input').set({'r1' 'r2'});
dif1.selection('input2').set({'c1'});
geom1.run('dif1');

mesh1 = comp1.mesh.create('mesh1');

map1 = mesh1.feature.create('map1','Map');

eg1 = map1.feature.create('eg1', 'EdgeGroup');
eg1.selection.set(1);
eg1.selection('edge1').set([1 3]);
eg1.selection('edge2').set(2);
eg1.selection('edge3').set(8);

Map in the COMSOL Multiphysics Programming Reference Manual
 3 :  B U I L D I N G  M O D E L S



eg1.selection('edge4').set(4);

eg2 = map1.feature.create('eg2', 'EdgeGroup');
eg2.selection.set(2);
eg2.selection('edge1').set(4);
eg2.selection('edge2').set([6 9 10]);
eg2.selection('edge3').set(7);
eg2.selection('edge4').set(5);

mesh1.run;
mphmesh(model);

Figure 3-6: Structured quadrilateral mesh (right) and its underlying geometry.

The left-hand side plot in Figure 3-6 is obtained with this command:

mphgeom(model, 'geom1', 'edgelabels','on')

The EdgeGroup attributes specify that the four edges enclosing domain 1 are 
boundaries 1 and 3; boundary 2; boundary 8; and boundary 4. For domain 2 the four 
edges are boundary 4; boundary 5; boundary 7; and boundaries 9, 10, and 6.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
r2 = geom1.feature.create('r2','Rectangle');
r2.set('pos',[1 0]);
c1 = geom1.feature.create('c1','Circle');
c1.set('r','0.5');
c1.set('pos',[1.1 -0.1]);
dif1 = geom1.feature.create('dif1', 'Difference');
dif1.selection('input').set({'r1' 'r2'});
dif1.selection('input2').set({'c1'});
geom1.run('dif1');
W O R K I N G  W I T H  M E S H E S  |  89



90 |  C H A P T E R
mesh1 = comp1.mesh.create('mesh1');
map1 = mesh1.feature.create('map1','Map');
eg1 = map1.feature.create('eg1', 'EdgeGroup');
eg1.selection.set(1);
eg1.selection('edge1').set([1 3]);
eg1.selection('edge2').set(2);
eg1.selection('edge3').set(8);
eg1.selection('edge4').set(4);
eg2 = map1.feature.create('eg2', 'EdgeGroup');
eg2.selection.set(2);
eg2.selection('edge1').set(4);
eg2.selection('edge2').set([6 9 10]);
eg2.selection('edge3').set(7);
eg2.selection('edge4').set(5);
mesh1.run;
mphmesh(model);
mphgeom(model, 'geom1', 'edgelabels','on')

B U I L D I N G  A  M E S H  I N C R E M E N T A L L Y

To build meshes in a step-by-step fashion, create selections for the parts of the 
geometry that you want to mesh in each step, as in this example:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
geom1.feature.create('c1','Circle');
uni1 = geom1.feature.create('uni1', 'Union');
uni1.selection('input').set({'c1' 'r1'});
geom1.runCurrent; 
del1 = geom1.feature.create('del1', 'Delete');
del1.selection('input').init(1);
del1.selection('input').set('uni1', 8);
geom1.run('del1');

mesh1 = comp1.mesh.create('mesh1');

dis1 = mesh1.feature.create('dis1', 'Distribution');
dis1.selection.set([2 4]);
dis1.set('type', 'predefined');
dis1.set('method', 'geometric');
dis1.set('elemcount', 20);
dis1.set('reverse', 'on');
dis1.set('elemratio', 20);

dis2 = mesh1.feature.create('dis2', 'Distribution');
dis2.selection.set([1 3]);
dis2.set('type', 'predefined');
 3 :  B U I L D I N G  M O D E L S



dis2.set('method', 'geometric');
dis2.set('elemcount', 20);
dis2.set('elemratio', 20);

map1 = mesh1.feature.create('map1','Map');
map1.selection.geom('geom1', 2);
map1.selection.set(2);
mesh1.feature.create('frt1','FreeTri');

mesh1.run;

mphmesh(model)

The final mesh is in Figure 3-7. Note the effect of the Distribution feature, with 
which the distribution of vertex elements along geometry edges can be controlled.

Figure 3-7: Incrementally generated mesh (right).

The left-hand side plot in Figure 3-7 is obtained with this command:

mphgeom(model, 'geom1', 'edgelabels','on')

To replace the structured quad mesh by an unstructured quad mesh, delete the Map 
feature and replace it by a FreeQuad feature:

mesh1.feature.remove('map1');
mesh1.run('dis1');
fq1 = mesh1.feature.create('fq1', 'FreeQuad');
fq1.selection.geom('geom1', 2).set(2);
mesh1.run;

Analogous to working with the meshing sequence in the Model Builder 
in the COMSOL Desktop, new features are always inserted after the 
current feature. 
W O R K I N G  W I T H  M E S H E S  |  91



92 |  C H A P T E R
Thus, to get the FreeQuad feature before the FreeTri feature, the dis1 feature needs 
to be made the current feature by building it with the run method. Alternatively, parts 
of a mesh can be selectively removed by using the Delete feature. For example, to 
remove the structured mesh from domain 2 (along with the adjacent edge mesh on 
edges 3 and 4), and replace it with an unstructured quad mesh, enter these commands:

del1 = mesh1.feature.create('del1','Delete');
del1.selection.geom('geom1', 2).set(2);
del1.set('deladj','on');
frq1 = mesh1.feature.create('frq1','FreeQuad');
frq1.selection.geom('geom1', 2).set(2);
mesh1.run;

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1',2);
geom1.feature.create('r1','Rectangle');
geom1.feature.create('c1','Circle');
uni1 = geom1.feature.create('uni1', 'Union');
uni1.selection('input').set({'c1' 'r1'});
geom1.runCurrent; 
del1 = geom1.feature.create('del1', 'Delete');
del1.selection('input').init(1);
del1.selection('input').set('uni1', 8);

For further details on the various commands and their properties see the 
COMSOL Multiphysics Programming Reference Manual.
 3 :  B U I L D I N G  M O D E L S



geom1.run('del1');
mesh1 = comp1.mesh.create('mesh1');
dis1 = mesh1.feature.create('dis1', 'Distribution');
dis1.selection.set([2 4]);
dis1.set('type', 'predefined');
dis1.set('method', 'geometric');
dis1.set('elemcount', 20);
dis1.set('reverse', 'on');
dis1.set('elemratio', 20);
dis2 = mesh1.feature.create('dis2', 'Distribution');
dis2.selection.set([1 3]);
dis2.set('type', 'predefined');
dis2.set('method', 'geometric');
dis2.set('elemcount', 20);
dis2.set('elemratio', 20);
map1 = mesh1.feature.create('map1','Map');
map1.selection.geom('geom1', 2);
map1.selection.set(2);
mesh1.feature.create('frt1','FreeTri');
mesh1.run;
mphmesh(model);
mphgeom(model, 'geom1', 'edgelabels','on')
mesh1.feature.remove('map1');
mesh1.run('dis1');
fq1 = mesh1.feature.create('fq1', 'FreeQuad');
fq1.selection.geom('geom1', 2).set(2);
mesh1.run;
del1 = mesh1.feature.create('del1','Delete');
del1.selection.geom('geom1', 2).set(2);
del1.set('deladj','on');
frq1 = mesh1.feature.create('frq1','FreeQuad');
frq1.selection.geom('geom1', 2).set(2);
mesh1.run;
mphmesh(model);

R E V O L V I N G  A  M E S H  B Y  S W E E P I N G

Create 3D volume meshes by extruding and revolving face meshes with the Sweep 
feature. Depending on the 2D mesh type, the 3D meshes can be hexahedral (brick) 
meshes or prism meshes.

Create and visualize a revolved prism mesh as follows:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
W O R K I N G  W I T H  M E S H E S  |  93



94 |  C H A P T E R
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('pos', [2, 0]);
rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.set('angle2', '60').set('angle1', -60);
rev1.selection('input').set({'wp1'});
geom1.run('rev1');

mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.feature('ftri1').selection.geom(2);
mesh1.feature('ftri1').selection.set(2);
mesh1.runCurrent;

swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection.geom(3);
swe1.selection.add(1);

mesh1.run;
mphmesh(model)

To obtain a torus, leave the angles property unspecified; the default value gives a 
complete revolution.

Figure 3-8: 3D prism mesh created with the Sweep feature.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('pos', [2, 0]);
 3 :  B U I L D I N G  M O D E L S



rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.set('angle2', '60').set('angle1', -60);
rev1.selection('input').set({'wp1'});
geom1.run('rev1');
mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.feature('ftri1').selection.geom(2);
mesh1.feature('ftri1').selection.set(2);
mesh1.runCurrent;
swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection.geom(3);
swe1.selection.add(1);
mesh1.run;
mphmesh(model)

E X T R U D I N G  A  M E S H  B Y  S W E E P I N G

To generate a 3D prism mesh from the same 2D mesh by extrusion and then to plot 
it, enter these commands:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('pos', [2, 0]);
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
geom1.runAll;

mesh1 = comp1.mesh.create('mesh1');

ftri1 = mesh1.feature.create('ftri1', 'FreeTri');
ftri1.selection.geom('geom1', 2);
ftri1.selection.set(3);

dis1 = mesh1.feature.create('dis1', 'Distribution');
dis1.selection.set(1);
dis1.set('type', 'predefined');
dis1.set('elemcount', 20);
dis1.set('elemratio', 100);

swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection('sourceface').geom('geom1', 2);
swe1.selection('targetface').geom('geom1', 2);

mesh1.run;
mphmesh(model);
W O R K I N G  W I T H  M E S H E S  |  95



96 |  C H A P T E R
The result is shown in Figure 3-9. With the properties elemcount and elemratio the 
number and distribution of mesh element layers is controlled in the extruded direction.

Figure 3-9: Extruded 3D prism mesh.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('pos', [2, 0]);
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
geom1.runAll;
mesh1 = comp1.mesh.create('mesh1');
ftri1 = mesh1.feature.create('ftri1', 'FreeTri');
ftri1.selection.geom('geom1', 2);
ftri1.selection.set(3);
dis1 = mesh1.feature.create('dis1', 'Distribution');
dis1.selection.set(1);
dis1.set('type', 'predefined');
dis1.set('elemcount', 20);

Distribution in the COMSOL Multiphysics Programming Reference 
Manual or at the MATLAB prompt: 
mphdoc(model.mesh,'Distribution')
 3 :  B U I L D I N G  M O D E L S



dis1.set('elemratio', 100);
swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection('sourceface').geom('geom1', 2);
swe1.selection('targetface').geom('geom1', 2);
mesh1.run;
mphmesh(model);

C O M B I N I N G  U N S T R U C T U R E D  A N D  S T R U C T U R E D  M E S H E S

By specifying selections for the meshing operations, swept meshing can also be 
combined with unstructured meshing. In this case, start by creating a triangular mesh 
for domain 2, then sweep the resulting surface mesh through domain 1, as in this 
example:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
cone1 = geom1.feature.create('cone1', 'Cone');
cone1.set('r', 0.3).set('h', 1).set('ang', 9);
cone1.set('pos', [ 0 0.5 0.5]).set('axis', [-1 0 0]);
geom1.feature.create('blk1', 'Block');

mesh1 = comp1.mesh.create('mesh1');

ftet1 = mesh1.feature.create('ftet1', 'FreeTet');
ftet1.selection.geom('geom1', 3);
ftet1.selection.set(2);

swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection('sourceface').geom('geom1', 2);
swe1.selection('targetface').geom('geom1', 2);

mesh1.run;
mphmesh(model);
W O R K I N G  W I T H  M E S H E S  |  97



98 |  C H A P T E R
Figure 3-10: Combined structured/unstructured mesh.

The left-hand side plot in Figure 3-10 is obtained with this command:

mphgeom(model,'geom1','facemode','off','facelabels','on')

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
cone1 = geom1.feature.create('cone1', 'Cone');
cone1.set('r', 0.3).set('h', 1).set('ang', 9);
cone1.set('pos', [ 0 0.5 0.5]).set('axis', [-1 0 0]);
geom1.feature.create('blk1', 'Block');
mesh1 = comp1.mesh.create('mesh1');
ftet1 = mesh1.feature.create('ftet1', 'FreeTet');
ftet1.selection.geom('geom1', 3);
ftet1.selection.set(2);
swe1 = mesh1.feature.create('swe1', 'Sweep');
swe1.selection('sourceface').geom('geom1', 2);
swe1.selection('targetface').geom('geom1', 2);
mesh1.run;
mphmesh(model);
mphgeom(model,'geom1','facemode','off','facelabels','on')

C R E A T I N G  B O U N D A R Y  L A Y E R  M E S H E S

For 2D and 3D geometries it is also possible to create boundary layer meshes using the 
BndLayer feature. A boundary layer mesh is a mesh with dense element distribution 
in the normal direction along specific boundaries. This type of mesh is typically used 
for fluid flow problems to resolve the thin boundary layers along the no-slip 
boundaries. In 2D, a layered quadrilateral mesh is used along the specified no-slip 
boundaries. In 3D, a layered prism mesh or hexahedral mesh is used depending on 
 3 :  B U I L D I N G  M O D E L S



whether the corresponding boundary layer boundaries contain a triangular or a 
quadrilateral mesh.

If starting with an empty mesh, an initial mesh is automatically created before inserting 
the boundary layers into the mesh. This generates a mesh with triangular and 
quadrilateral elements in 2D and tetrahedral and prism elements in 3D. The following 
example illustrates this in 2D:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1', 2);
r1 = geom1.feature.create('r1', 'Rectangle');
r1.set('size', [10, 5]);
c1 = geom1.feature.create('c1', 'Circle');
c1.set('pos', [3.5 2.5]);
dif1 = geom1.feature.create('dif1', 'Difference');
dif1.selection('input').set({'r1'});
dif1.selection('input2').set({'c1'});
geom1.runAll;

mesh1 = comp1.mesh.create('mesh1');

bl1 = mesh1.feature.create('bl1', 'BndLayer');
bl1.feature.create('blp1', 'BndLayerProp');
bl1.feature('blp1').selection.set([2 3 5 6 7 8]);

mesh1.run;
mphmesh(model);

Figure 3-11: Boundary layer mesh based on an unstructured triangular mesh.
W O R K I N G  W I T H  M E S H E S  |  99



100 |  C H A P T E
It is also possible to insert boundary layers in an existing mesh. Use the following 
meshing sequence with the geometry sequence from the previous example:

bl1.active(false);

fq1 = mesh1.feature.create('fq1', 'FreeQuad');
fq1.selection.set(1);
mesh1.run;
mphmesh(model)

bl1 = mesh1.feature.create('bl2', 'BndLayer');
bl1.feature.create('blp2', 'BndLayerProp');
bl1.feature('blp2').selection.set([2 3 5 6 7 8]);
mesh1.run;
mphmesh(model);

Figure 3-12: Initial unstructured quad mesh (left) and resulting boundary layer mesh 
(right).

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
r1 = geom1.feature.create('r1', 'Rectangle');
r1.set('size', [10, 5]);
c1 = geom1.feature.create('c1', 'Circle');
c1.set('pos', [3.5 2.5]);
dif1 = geom1.feature.create('dif1', 'Difference');
dif1.selection('input').set({'r1'});
dif1.selection('input2').set({'c1'});
geom1.runAll;
mesh1 = comp1.mesh.create('mesh1');
bl1 = mesh1.feature.create('bl1', 'BndLayer');
bl1.feature.create('blp1', 'BndLayerProp');
bl1.feature('blp1').selection.set([2 3 5 6 7 8]);
mesh1.run;
mphmesh(model);
R  3 :  B U I L D I N G  M O D E L S



bl1.active(false);
fq1 = mesh1.feature.create('fq1', 'FreeQuad');
fq1.selection.set(1);
mesh1.run;
mphmesh(model)
bl1 = mesh1.feature.create('bl2', 'BndLayer');
bl1.feature.create('blp2', 'BndLayerProp');
bl1.feature('blp2').selection.set([2 3 5 6 7 8]);
mesh1.run;
mphmesh(model);

R E F I N I N G  M E S H E S

Given a mesh consisting only of simplex elements (lines, triangles, and tetrahedra) you 
can create a finer mesh using the feature Refine. Enter this command to refine the 
mesh:

mesh1.feature.create('ref1', 'Refine');

By specifying the property tri, either as a row vector of element numbers or a 2-row 
matrix, the elements to be refined can be controlled. In the latter case, the second row 
of the matrix specifies the number of refinements for the corresponding element.

The refinement method is controlled by the property rmethod. In 2D, its default value 
is regular, corresponding to regular refinement, in which each specified triangular 
element is divided into four triangles of the same shape. Setting rmethod to longest 
gives longest edge refinement, where the longest edge of a triangle is bisected. Some 
triangles outside the specified set might also be refined in order to preserve the 
triangulation and its quality.

In 3D, the default refinement method is longest, while regular refinement is only 
implemented for uniform refinements. In 1D, the function always uses regular 
refinement, where each element is divided into two elements of the same shape.

For stationary or eigenvalue PDE problems you can use adaptive mesh 
refinement at the solver stage with the adaption solver step. See 
Adaption in the COMSOL Multiphysics Programming Reference 
Manual.
W O R K I N G  W I T H  M E S H E S  |  101



102 |  C H A P T E
C O P Y I N G  B O U N D A R Y  M E S H E S

Use the CopyEdge feature in 2D and the CopyFace feature in 3D to copy a mesh 
between boundaries. 

The following example demonstrates how to copy a mesh between two boundaries in 
3D and then create a swept mesh on the domain:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('r', 0.5).set('pos', [1, 0]);
rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.set('angle1', 0).set('angle2', 180);
rev1.selection('input').set({'wp1'});
geom1.run('wp1');

mesh1 = comp1.mesh.create('mesh1');

size1 = mesh1.feature.create('size1', 'Size');
size1.selection.geom('geom1', 1);
size1.selection.set(18);
size1.set('hmax', '0.06');

ftri1 = mesh1.feature.create('ftri1', 'FreeTri');
ftri1.selection.geom('geom1', 2);
ftri1.selection.set(10);

cpf1 = mesh1.feature.create('cpf1', 'CopyFace');
cpf1.selection('source').geom('geom1', 2);
cpf1.selection('destination').geom('geom1', 2);
cpf1.selection('source').set(10);
cpf1.selection('destination').set(1);

sw1 = mesh1.feature.create('sw1', 'Sweep');
sw1.selection('sourceface').geom('geom1', 2);
sw1.selection('targetface').geom('geom1', 2);

mesh1.run;
mphmesh(model);

It is only possible to copy meshes between boundaries that have the same 
shape. However, a scaling factor between the boundaries is allowed. 
R  3 :  B U I L D I N G  M O D E L S



The algorithm automatically determines how to orient the source mesh on the target 
boundary. The result is shown in Figure 3-13.

Figure 3-13: Prism element obtained with the CopyFace and Sweep features.

To explicitly control the orientation of the copied mesh, use the EdgeMap attribute. 
The command sequence:

em1 = cpf1.feature.create('em1', 'EdgeMap');
em1.selection('srcedge').set(18);
em1.selection('dstedge').set(2);
mesh1.feature.remove('sw1');
mesh1.feature.create('ftet1', 'FreeTet');

mesh1.run;
mphmesh(model);

copies the mesh between the same boundaries as in the previous example, but now the 
orientation of the source mesh on the target boundary is different. The domain is then 
meshed by the tetrahedral mesher, resulting in the mesh in Figure 3-14. In this case it 
is not possible to create a swept mesh on the domain because the boundary meshes do 
not match in the sweeping direction.
W O R K I N G  W I T H  M E S H E S  |  103



104 |  C H A P T E
Figure 3-14: Tetrahedral mesh after the use of the CopyFace feature.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('planetype', 'quick');
wp1.set('quickplane', 'xy');
c1 = wp1.geom.feature.create('c1', 'Circle');
c1.set('r', 0.5).set('pos', [1, 0]);
rev1 = geom1.feature.create('rev1', 'Revolve');
rev1.set('angle1', 0).set('angle2', 180);
rev1.selection('input').set({'wp1'});
geom1.run('wp1');
mesh1 = comp1.mesh.create('mesh1');
size1 = mesh1.feature.create('size1', 'Size');
size1.selection.geom('geom1', 1);
size1.selection.set(18);
size1.set('hmax', '0.06');
ftri1 = mesh1.feature.create('ftri1', 'FreeTri');
ftri1.selection.geom('geom1', 2);
ftri1.selection.set(10);
cpf1 = mesh1.feature.create('cpf1', 'CopyFace');
cpf1.selection('source').geom('geom1', 2);
cpf1.selection('destination').geom('geom1', 2);
cpf1.selection('source').set(10);
cpf1.selection('destination').set(1);
sw1 = mesh1.feature.create('sw1', 'Sweep');
sw1.selection('sourceface').geom('geom1', 2);
sw1.selection('targetface').geom('geom1', 2);
R  3 :  B U I L D I N G  M O D E L S



mesh1.run;
mphmesh(model);
em1 = cpf1.feature.create('em1', 'EdgeMap');
em1.selection('srcedge').set(18);
em1.selection('dstedge').set(2);
mesh1.feature.remove('sw1');
mesh1.feature.create('ftet1', 'FreeTet');
mesh1.run;
mphmesh(model);

C O N V E R T I N G  M E S H  E L E M E N T S

Use the Convert feature to convert meshes containing quadrilateral, hexahedral, or 
prism elements into triangular meshes and tetrahedral meshes. In 2D, the function 
splits each quadrilateral element into either two or four triangles. In 3D, it converts 
each prism into three tetrahedral elements and each hexahedral element into five, six, 
or 28 tetrahedral elements. To control the method used to convert the elements, use 
the property splitmethod.

This example demonstrates how to convert a quad mesh into a triangle mesh:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('c1', 'Circle');
geom1.feature.create('r1', 'Rectangle');
int1 = geom1.feature.create('int1', 'Intersection');
int1.selection('input').set({'c1' 'r1'});
mesh1 = comp1.mesh.create('mesh1', 'geom1');
mesh1.feature.create('fq1', 'FreeQuad');
mesh1.runCurrent;
mphmesh(model);
mesh1.feature.create('conv1', 'Convert');
mesh1.run;
mphmesh(model);

For additional properties supported, see Convert in the COMSOL 
Multiphysics Programming Reference Manual or at the MATLAB 
prompt: mphdoc(model.mesh,'Convert')
W O R K I N G  W I T H  M E S H E S  |  105



106 |  C H A P T E
The result is illustrated in the Figure 3-15:

Figure 3-15: Mesh generated by the quad mesher (left) and the mesh after conversion from 
quad to triangle elements (right).

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('c1', 'Circle');
geom1.feature.create('r1', 'Rectangle');
int1 = geom1.feature.create('int1', 'Intersection');
int1.selection('input').set({'c1' 'r1'});
mesh1 = comp1.mesh.create('mesh1', 'geom1');
mesh1.feature.create('fq1', 'FreeQuad');
mesh1.runCurrent;
mphmesh(model);
mesh1.feature.create('conv1', 'Convert');
mesh1.run;
mphmesh(model);

Importing External Meshes and Mesh Objects

It is possible to import meshes to COMSOL Multiphysics using the following formats:

• COMSOL Multiphysics text files (extension .mphtxt),

• COMSOL Multiphysics binary files (extension .mphbin), and

• NASTRAN® files (extension .nas or .bdf).

I M P O R T I N G  M E S H E S

To import a mesh stored in a supported format use the Import feature. The following 
commands import and plot a mesh defined in a COMSOL Multiphysics text file:
R  3 :  B U I L D I N G  M O D E L S



model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
comp1.geom.create('geom1', 3);

mesh1 = comp1.mesh.create('mesh1', 'geom1');
imp1 = mesh1.feature.create('imp1', 'Import');
filenamepath = fullfile(COMSOL, 'applications', ...
'COMSOL_Multiphysics','Meshing_Tutorials');
model.modelPath(filenamepath);
imp1.set('filename','mesh_example_1.mphtxt');
mesh1.feature('imp1').importData;

mesh1.run;
mphmesh(model);

Where COMSOL is the path of root directory where COMSOL Multiphysics is installed. 
The above command sequence results in Figure 3-16.

Figure 3-16: Imported mesh. 

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
comp1.geom.create('geom1', 3);
mesh1 = comp1.mesh.create('mesh1');
imp1 = mesh1.feature.create('imp1', 'Import');

For additional properties supported, see Import in the COMSOL 
Multiphysics Programming Reference Manual.

For a description of the text file format see the COMSOL Multiphysics 
Reference Manual.
W O R K I N G  W I T H  M E S H E S  |  107



108 |  C H A P T E
filenamepath = fullfile(COMSOL,'applications',...
'COMSOL_Multiphysics','Meshing_Tutorials');
model.modelPath(filenamepath);
imp1.set('filename','mesh_example_1.mphtxt');
mesh1.feature('imp1').importData;
mesh1.run;
mphmesh(model);

Visualizing Mesh Quality

The following commands show how to visualize the mesh quality for a mesh on the 
unit circle:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('c1', 'Circle');
geom1.runAll;

mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.run;

meshdset1 = model.result.dataset.create('mesh1', 'Mesh');
meshdset1.set('mesh', 'mesh1');

pg1 = model.result.create('pg1', 2);

meshplot1 = pg1.feature.create('mesh1', 'Mesh');
meshplot1.set('data', 'mesh1');
meshplot1.set('filteractive', 'on');
meshplot1.set('elemfilter', 'quality');
meshplot1.set('tetkeep', 0.25);
mphplot(model,'pg1','rangenum',1);
meshplot1.set('elemfilter','qualityrev');
mphplot(model,'pg1','rangenum',1);

These commands display the worst 25% and the best 25% elements in terms of mesh 
element quality. In Figure 3-17, the triangular mesh elements in the right-hand side 
plot are more regular than those in the left-hand side plot; this reflects the fact that a 
R  3 :  B U I L D I N G  M O D E L S



quality measure of 1 corresponds to a uniform triangle, while 0 means that the triangle 
has degenerated into a line.

Figure 3-17: Visualizations of the mesh quality: worst 25% (left) and best 25% (right).

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('c1', 'Circle');
geom1.runAll;
mesh1 = comp1.mesh.create('mesh1', 'geom1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.run;
meshdset1 = model.result.dataset.create('mesh1', 'Mesh');
meshdset1.set('mesh', 'mesh1');
pg1 = model.result.create('pg1', 2);
meshplot1 = pg1.feature.create('mesh1', 'Mesh');
meshplot1.set('data', 'mesh1');
meshplot1.set('filteractive', 'on');
meshplot1.set('elemfilter', 'quality');
meshplot1.set('tetkeep', 0.25);
mphplot(model,'pg1','rangenum',1);
meshplot1.set('elemfilter','qualityrev');
mphplot(model,'pg1','rangenum',1);

Getting Mesh Statistics Information

Use the function mphmeshstats to get mesh statistics and mesh information where 
stats is a structure containing the mesh statistics information. Enter:

stats = mphmeshstats(model)
W O R K I N G  W I T H  M E S H E S  |  109



110 |  C H A P T E
The statistics structure has the following fields:

• meshtag, the tag of the mesh sequence;

• geomtag, the tag of the associated geometry;

• geometricmodel, the geometric model used by the mesh sequence;

• component, the tag of the component the mesh belongs to;

• componentgeometricmodel, the geometric model used by the physics;

• current, the current mesh feature tag;

• isempty, boolean variable that indicates if the mesh is empty (1) or not(0);

• hasproblems, boolean variable that indicates if the mesh contains error or warning 
nodes (1) or not (0);

• iscomplete, boolean variable that indicates if the mesh is built to completion(1) or 
not(0);

• secondorderelements, boolean variable that indicates if the mesh has second 
order elements(1) or not (0);

• sdim, the space dimension;

• contributing, the contributing physics and multiphysics feature for 
physics-controlled mesh;

• types, the element types present in the mesh. The element type can be vertex (vtx), 
edge (edg), triangle (tri), quadrilateral (quad), tetrahedra (tet), pyramid (pyr), 
prism (prism), hexahedra (hex). The type can also be of all elements of maximal 
dimension in the selection (all);

• numelem, the number of elements for each element type;

• qualitymeasure, the quality measure used to evaluate the quality of the mesh. 

• minquality, the minimum element quality;

• meanquality, the mean element quality;

• qualitydistr, the distribution of the element quality;

• minvolume, the minimum element volume/area;

• maxvolume, the maximum element volume/area; 

• volume, the total volume/area of the mesh;

• maxgrowthrate, the maximal growth rate value for the entire selection, regardless 
of the element type property;

• meangrowthrate, the average growth rate value for the entire selection, regardless 
of the element type property.
R  3 :  B U I L D I N G  M O D E L S



The fields maxgrowthrate and meangrowthrate provide statistics for the entire 
selection regardless of the element type property.

If several mesh cases are available in the model object, specify the mesh tag:

stats = mphmeshstats(model, <meshtag>)

Set the number of bins in the quality distribution histogram (qualitydistr) with the 
property qualityhistogram:

stats = mphmeshstats(model,<meshtag>,'qualityhistogram',<num>)

where <num> is an integer corresponding to the desired number of bins.

Set the mesh quality measure from for the mesh statistics with the property 
qualitymeasure:

stats = mphmeshstats(model,<meshtag>,'qualitymeasure',<quality>)

where <quality> is one of 'condition' (condition number), 'growth' (growth 
rate), 'maxangle' (maximum number), 'skewness' (skewness), 'volcircum' 
(volume versus circumradius) or 'vollength' (volume versus length).

G E T  M E S H  S T A T I S T I C S  O N  S P E C I F I E D  E N T I T Y  O R  S E L E C T I O N

Specify the entity where to evaluate mesh quality with the property entity as in the 
command below:

stats = mphmeshstats(model,<meshtag>,'entity',entity)

where entity is one of 'domain', 'boundary', 'edge', or 'point'.

Use the selection property to specify the entity number where to get the mesh 
statistics:

stats = mphmeshstats(model,<meshtag>,'entity',entity,...
'selecti on',<selnum>)

where <selnum> is an integer array defining the selection number.

It is also possible to use the selection property to define a selection node defined in the 
model:

stats = mphmeshstats(model,<meshtag>,'selection',<seltag>)

Mesh Element Quality in the COMSOL Multiphysics Programming 
Reference Manual.
W O R K I N G  W I T H  M E S H E S  |  111



112 |  C H A P T E
where <seltag> is the tag of the desired selection node.

R E T R I E V E  M E S H  S T A T I S T I C S  O F  A  S P E C I F I C  E L E M E N T  T Y P E

Restrict the mesh statistics information structure a specific element type with the 
property type:

stats = mphmeshstats(model,<meshtag>,'type',type)

where type is one of the mesh element type available: vertex ('vtx'), edge ('edg'), 
triangle ('tri'), quad ('quad'), tetrahedron ('tet'), pyramid ('pyr'), prism 
('prism') or hexahedron ('hex'). type can also be a cell array to return the mesh 
statistics of several mesh element type.

Getting and Setting Mesh Data

The function mphmeshstats also returns the mesh data such as element coordinates. 
Use the function with two output variables to get the mesh data. Enter:

[meshstats,meshdata] = mphmeshstats(model)

where meshdata is a MATLAB structure with the following fields:

• types, which contains the element type;

• vertex, which contains the mesh vertex coordinates;

• elem, which contains the element data information;

• elementity, which contains the element entity information for each element type. 

E X T R A C T  A N D  C R E A T E  M E S H  I N F O R M A T I O N

A mesh can be manually created based on a grid generated in MATLAB. However, 
before inserting this mesh into the model, a default coarse mesh is generated to get the 
mesh information, which enables you to understand the requested mesh structure to 
use with the createMesh method. Then a complete mesh can be constructed and 
stored in the meshing sequence. If the geometry is not empty, the new mesh is checked 

The properties entity and selection cannot be set if the mesh data 
information is returned.

Selection and/or Entity properties cannot be set if the mesh data 
structure is returned.
R  3 :  B U I L D I N G  M O D E L S



to ensure that it matches the geometry. In other words, to create an arbitrary mesh, an 
empty geometry sequence and a corresponding empty meshing sequence need to be 
created and the mesh is then constructed on the empty meshing sequence.

Start by creating a 2D model containing a square, and mesh it with triangles:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('sq1', 'Square');
geom1.run;
mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.feature('size').set('hmax', 0.5);
mesh1.run('ftri1');
mphmesh(model);

To get the mesh data information, enter:

[meshstats,meshdata] = mphmeshstats(model);

meshdata = 
types: {'edg'  'tri'  'vtx'}

        vertex: [2×12 double]
          elem: {[2×8 int32]  [3×14 int32]  [0 5 7 11]}
    elementity: {[8×1 int32]  [14×1 int32]  [4×1 int32]}

The mesh node coordinates are stored in the vertex field:

vtx = meshdata.vertex

vtx =
W O R K I N G  W I T H  M E S H E S  |  113



114 |  C H A P T E
0  0  0.302  0.5  0.351 0  0.631  1 0.673  0.5  1  1
0 0.5  0.302  0  0.639  1 0.363  0 0.672  1  0.5 1

In the elem field the element information is retrieved, such as the node indices (using 
a 0 based) connected to the elements:

tri = meshdata.elem{2}
tri =
2    2    2    1    2    2    3    8    9    8   10    8    8    8
    1    0    4    4    3    6    7    4    5    9    6    6   10   11
    0    3    1    5    6    4    6    6    4    4    7   10   11    9

In the above command, notice that element number 1 is connected to nodes 0, 1, and 
2, and element number 2 is connected to nodes 2, 0, and 3.

Then create manually a mesh using a data distribution generated in MATLAB. Enter 
the command:

[x,y] = meshgrid([0 0.5 1], [0 0.5 1]);
coord = [x(:) y(:)]';

The node distribution obtained with this command corresponds to the mesh in 
Figure 3-18.

Figure 3-18: Mesh with elements (bold) and nodes (italic) indices.

Table 3-1 lists the nodes and element connectivity in the mesh.

TABLE 3-1:  ELEMENT AND NODES CONNECTIVITY

ELEMENT NODES

1 0, 3, 4

2 0, 1, 4
R  3 :  B U I L D I N G  M O D E L S



To create the elements and nodes connectivity information use the command:

new_tri(:,1)=[0;3;4];
new_tri(:,2)=[0;1;4];
new_tri(:,3)=[1;4;5];
new_tri(:,4)=[1;2;5];
new_tri(:,5)=[3;6;7];
new_tri(:,6)=[3;4;7];
new_tri(:,7)=[4;7;8];
new_tri(:,8)=[4;5;8];

Assign the element information, node coordinates, and elements connectivity 
information, into a new mesh. Use the method createMesh to create the new mesh:

comp2 = model.component.create('comp2', true);
comp2.geom.create('geom2',2);
mesh2 = comp2.mesh.create('mesh2');
mesh2.data.setElem('tri',new_tri)
mesh2.data.setVertex(coord)
mesh2.data.createMesh
mphmesh(model,'mesh2');

3 1, 4, 5

4 1, 2, 5

5 3, 6, 7

6 3, 4, 7

7 4, 7, 8

8 4, 5, 8

TABLE 3-1:  ELEMENT AND NODES CONNECTIVITY

ELEMENT NODES
W O R K I N G  W I T H  M E S H E S  |  115



116 |  C H A P T E
Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('sq1', 'Square');
geom1.run;
mesh1 = comp1.mesh.create('mesh1');
mesh1.feature.create('ftri1', 'FreeTri');
mesh1.feature('size').set('hmax', 0.5);
mesh1.run('ftri1');
mphmesh(model);
[meshstats,meshdata] = mphmeshstats(model);
vtx = meshdata.vertex
tri = meshdata.elem{2}
[x,y] = meshgrid([0 0.5 1], [0 0.5 1]);
coord = [x(:) y(:)]';
new_tri(:,1)=[0;3;4];
new_tri(:,2)=[0;1;4];
new_tri(:,3)=[1;4;5];
new_tri(:,4)=[1;2;5];
new_tri(:,5)=[3;6;7];
new_tri(:,6)=[3;4;7];
new_tri(:,7)=[4;7;8];
new_tri(:,8)=[4;5;8];
comp2 = model.component.create('comp2', true);
comp2.geom.create('geom2',2);
mesh2 = comp2.mesh.create('mesh2');
mesh2.data.setElem('tri',new_tri);
mesh2.data.setVertex(coord);
mesh2.data.createMesh;
mphmesh(model,'mesh2');
R  3 :  B U I L D I N G  M O D E L S



Mode l i n g  Ph y s i c s

This section describes how to set up physics interfaces in a model. The physics interface 
defines the equations that COMSOL solves.

• The Physics Interface Syntax

• The Material Syntax

• Modifying the Equations

• Adding Global Equations

• Defining Model Settings Using External Data File

• Access the User-Defined Physics Interface

The Physics Interface Syntax

Create a physics interface instance using the syntax:

comp = model.component(<ctag>);
phys = comp.physics.create(<phystag>, physint, <geomtag>)

where <phystag> is a string that identifies the physics interface node. Once defined, 
you can always refer to a physics interface, or any other feature, by its tag. The string 
physint is the constructor name of the physics interface. To get the constructor 
name, the best way is to create a model using the desired physics interface in the GUI 
and save the model as an M-file. The string <geomtag> refers to the geometry where 
you want to specify the interface.

To add a feature to a physics interface, use the syntax:

phys.feature.create(<ftag>, operation)

where <ftag> is a string that you use to refer to the operation. To set a property to a 
value in a operation, enter:

phys.feature(<ftag>).set(property, <value>)

where <ftag> is the string that identifies the feature. 

There are alternative syntaxes available. See model.physics() in the 
COMSOL Multiphysics Programming Reference Manual or type at the 
MATLAB prompt: mphdoc(model.physics).
M O D E L I N G  P H Y S I C S  |  117



118 |  C H A P T E
To disable or remove a feature node, use the methods active or remove, respectively. 

The command:

phys.feature(<ftag>).active(false)

disables the feature <ftag>.

To activate the feature node you can set the active method to true:

phys.feature(<ftag>).active(true)

To remove a feature from the model, use the method remove:

phys.feature.remove(<ftag>)

E X A M P L E :  I M P L E M E N T  A N D  S O L V E  A  H E A T  T R A N S F E R  P R O B L E M

This example shows how to add a physics interface and set the boundary conditions in 
the model object.

Start to create a model object including a 3D geometry. The geometry consists in a 
block with default settings. Enter the following commands at the MATLAB prompt:

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);

geom1 = comp1.geom.create('geom1', 3);
geom1.feature.create('blk1', 'Block');
geom1.run;

Add a Heat Transfer in Solids interface to the model:

phys = comp1.physics.create('ht', 'HeatTransfer', 'geom1');

The tag of the interface is ht. The interface constructor is HeatTransfer. The physics 
is defined on geometry geom1.

The physics interface automatically creates a number of default features. To examine 
these, enter:

comp1.physics('ht')
ans =
Type: Heat Transfer in Solids
Tag: ht
Identifier: ht
Operation: HeatTransfer
Child nodes: solid1, init1, ins1, idi1, os1, cib1

The physics method has the following child nodes: solid1, init1, ins1, idi1, os1, 
and cib1. These are the default features that come with the Heat Transfer in Solids 
R  3 :  B U I L D I N G  M O D E L S



interface. The first feature, solid1, consists of the heat balance equation. Confirm this 
by entering:

solid = phys.feature('solid1')
ans =
Type: Solid
Tag: solid1
Operation: SolidHeatTransferModel

The settings of the solid1 feature node can be modified, for example, to manually set 
the material property. To change the thermal conductivity to 400 W/(m*K) enter:

solid.set('k_mat', 1, 'userdef');
solid.set('k', 400);

The Heat Transfer in Solids interface has features you can use to specify domain or 
boundary settings. For example, to add a heat source of 105 W/m3 in the study 
domain, enter the commands:

hs = phys.feature.create('hs1', 'HeatSource', 3);
hs.selection.set(1);
hs.set('Q', 1, 1e5);

To create a temperature boundary condition on boundaries 3, 5, and 6, enter:

temp = phys.feature.create('temp1', 'TemperatureBoundary', 2);
temp.selection.set([3 5 6]);
temp.set('T0', 1, '300[K]');

Then add a mesh and a study feature and compute the solution:

comp1.mesh.create('mesh1');
std = model.study.create('std1');
std.feature.create('stat', 'Stationary');
std.run

To visualize the solution, create a 3D surface plot group, which is displayed in a 
MATLAB figure with the function mphplot:

pg = model.result.create('pg1', 'PlotGroup3D');
pg.feature.create('surf1', 'Surface');
mphplot(model,'pg1','rangenum',1)
M O D E L I N G  P H Y S I C S  |  119



120 |  C H A P T E
Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
geom1.feature.create('blk1', 'Block');
geom1.run;
phys = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
comp1.physics('ht')
solid = phys.feature('solid1')
solid.set('k_mat', 1, 'userdef');
solid.set('k', 400);
hs = phys.feature.create('hs1', 'HeatSource', 3);
hs.selection.set(1);
hs.set('Q', 1, 1e5);
temp = phys.feature.create('temp1', 'TemperatureBoundary', 2);
temp.selection.set([3 5 6]);
temp.set('T0', 1, '300[K]');
comp1.mesh.create('mesh1');
std = model.study.create('std1');
std.feature.create('stat', 'Stationary');
std.run
pg = model.result.create('pg1', 'PlotGroup3D');
pg.feature.create('surf1', 'Surface');
mphplot(model,'pg1','rangenum',1)

Getting the Geometric Model Defined for the Physics

In case of at least one meshing sequence defines its own geometric model, you have 
the possibility to change the geometric model defining the physics. As geometric 
R  3 :  B U I L D I N G  M O D E L S



models can have different topology, you may want to retrieve the component 
geometric model in order to set up the physics. 

The functions mphgeominfo, mphmeshstats or mphcomponentinfo return a structure 
with a field describing the geometric model used by the physics. 

The Material Syntax

In addition to changing material properties directly inside the physics interfaces, 
materials available in the entire model can also be created. Such a material can be used 
by all physics interfaces in the model. 

Create a material using the syntax:

model.component(<ctag>).material.create(<mattag>)

where <mattag> is a string that you use to refer to a material definition.

A Material is a collection of material models, where each material model defines a set 
of material properties, material functions, and model inputs. To add a material model, 
use the syntax:

mat.materialmodel.create(<mtag>)

where mat is a link to a material node. The string <mtag> refers to the material model. 

To define material properties for the model, set the property value pairs by entering:

mat.materialmodel(<mtag>).set(property, <value>)

C O P Y I N G  M A T E R I A L  D A T A  F R O M  A N O T H E R  M O D E L

Instead of creating the material model from scratch you can copy the material node 
from another model object, to proceed use the command:

comp.material.insert(modelMat, <mattag>, '')

where comp is the link to the component, modelMat the model MPH-file name that 
contains the source material node and <mattag> the tag of the material node to 
import.

E X A M P L E :  C R E A T E  A  M A T E R I A L  N O D E

The section Example: Implement and Solve a Heat Transfer Problem shows how to 
change a material property inside a physics interface. This example shows how to 
define a material available globally in the model. These steps assume that the previous 
example has been followed. Enter:
M O D E L I N G  P H Y S I C S  |  121



122 |  C H A P T E
mat = model.component('comp1').material.create('mat1');

The material automatically creates a material model, def, which can be used to set up 
basic properties. For example, use it to define the density and the heat capacity:

mat.materialmodel('def').set('density', 400);
mat.materialmodel('def').set('heatcapacity', 2e3);

To use the defined material in a model, set the solid1 feature to use the material node. 
Enter:

solid.set('k_mat',1,'from_mat');

Modifying the Equations

The equation defining the physics node can be edited with the method 
featureInfo('info') applied to a feature of the physics node 
physics(<phystag>).feature(<ftag>), where <phystag> and <ftag> identify 
the physics interface and the feature, respectively:

info = phystag.feature(<ftag>).featureInfo('info');

Use the method getInfoTable(type) to return the tables available in the Equation 
View node:

infoTable = info.getInfoTable(type);

where type defines the type of table to return. It can have the value 'Weak' to return 
the weak form equations, 'Constraint' to return the constraint types table, or 
'Expression' to return the variable expressions table.

E X A M P L E :  A C C E S S  A N D  M O D I F Y  T H E  E Q U A T I O N  W E A K  F O R M

This example continues from the Example: Implement and Solve a Heat Transfer 
Problem and modifies the model equation.

To retrieve information about the physics interface create an info object:

ht = model.component('comp1').physics('ht');
info = ht.feature('solid1').featureInfo('info');

From the info object access the weak form equation by entering:

model.material() in the COMSOL Multiphysics Programming 
Reference Manual or type at the MATLAB prompt: 
mphdoc(model.material).
R  3 :  B U I L D I N G  M O D E L S



infoTable = info.getInfoTable('Weak')

This returns a string variable that contains both the name of the weak equation variable 
and the equation of the physics implemented in the weak form as in below:

infoTable =

[] 'ht.streamline' 'root.comp1.ht…' '4' 'Spatial' 'Domain 1' '3'
[] '(ht.dfluxx*t…' 'root.comp1.ht…' '4' 'Spatial' 'Domain 1' '3'
[] '-ht.C_eff*(h…' 'root.comp1.ht…' '4' 'Spatial' 'Domain 1' '3'

The output shows that the heat equation is defined at the second row and the weak 
expression at the second column. Enter:

infoTable(2,2)

to get the weak equation as a string variable. The result of this command is:

ans =
(ht.dfluxx*test(Tx)+ht.dfluxy*test(Ty)+ht.dfluxz*test(Tz))*ht.d

To access the equation in the node root.comp1.ht.solid1.weak$2; for example, to 
modify the equation and lock the expression, run the commands:

equExpr = '200[W/(m*K)]*(-Tx*test(Tx)-Ty*test(Ty)-Tz*test(Tz))';
info.set(infoTable(2,3), {equExpr});

These commands set the heat conductivity to a constant value directly within the heat 
balance equation.

You can now compute the solution and display the results in a figure:

model.study('std1').run;;
mphplot(model,'pg1','rangenum',1);
M O D E L I N G  P H Y S I C S  |  123



124 |  C H A P T E
Adding Global Equations

To add a global equation in the model use the command:

model.component(<ctag>).physics.create(<odestag>, 
'GlobalEquations')

To define the name of the variable to be solved by the global equation, enter:

ode.set('name', <idx>, <name>)

where ode is a link to a Global Equations node and <idx> is the index of the global 
equation, and <name> a string with the name of the variable.

Set the expression <expr> of the global equation with:

ode.set('equation', <idx>, <expr>)

where <expr> is defined as a string variable.

Initial value and initial velocity can be set with the commands:

ode.set('initialValueU', <idx>, <init>)
ode.set('initialValueUt', <idx>, <init_t>)

where <init> and <init_t> are the initial value expression for the variable and its 
time derivative respectively.

E X A M P L E :  S O L V E  A N  O D E  P R O B L E M

This example illustrates how to solve the following ODE in a COMSOL model:

u·· u·

2
--- 1+ + 0=

u0 0=

u·0 20=
R  3 :  B U I L D I N G  M O D E L S



Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
ge = comp1.physics.create('ge', 'GlobalEquations');
ge1 = ge.feature('ge1');
ge1.set('name', 1, 1, 'u');
ge1.set('equation', 1, 1, 'utt+0.5*ut+1');
ge1.set('initialValueU', 1, 1, 'u0');
ge1.set('initialValueUt', 1, 1, 'u0t');
model.param.set('u0', 0);
model.param.set('u0t', 20);
std1 = model.study.create('std1');
std1.feature.create('time', 'Transient');
std1.feature('time').set('tlist', 'range(0,0.1,20)');
std1.run;
model.result.create('pg1', 1);
model.result('pg1').set('data', 'dset1');
model.result('pg1').feature.create('glob1', 'Global');
model.result('pg1').feature('glob1').set('expr', {'comp1.u'});
mphplot(model,'pg1')

Defining Model Settings Using External Data File

To use tabulated data from files in a model, use the interpolation function available 
under the Global Definitions node or the Definitions node of the model. 

To add an interpolation function under the Global Definitions node, enter:
M O D E L I N G  P H Y S I C S  |  125



126 |  C H A P T E
model.func.create(<functag>, 'Interpolation')

If you have several model nodes in your model and you want to attach it to the 
specified component node <ctag>, enter:

model.component(<ctag>).func.create(<functag>, 'Interpolation')

where <ctag> is the tag of the model node to attach the interpolation function.

Then you can interpolate data specified by a table inside the function (default), or 
specified in an external file.

When using an interpolation table, set the interpolation data for each row of the table 
with the commands:

func.setIndex('table', <t_value>, <i>, 1)
func.setIndex('table', <ft_value>, <i>, 2)

where func is a link to a function node and <t_value> is the interpolation parameter 
value and <ft_value> is the function value. <i> is the index (0-based) in the 
interpolation table. If the number of rows is large then it takes a long time to create 
the table element by element. Instead store all the data as a cell array of strings and 
set the values all at once:

func.set('table', data)

To use an external file change the source for the interpolation and specify the file, 
where filename is the name (including the path) of the data file:

func.set('source', 'file')
func.set('filename', <filename>)

Several interpolation methods are available. Choose the one to use with the command:

func.set('interp', method)

The string method can be set as one of the following alternatives:

• 'neighbor', for interpolation according to the nearest neighbor method,

• 'linear', for linear interpolation method,

• 'cubicspline', for cubic spline interpolation method, or

• 'piecewisecubic', piecewise cubic interpolation method.

You can also decide how to handle parameter values outside the range of the input data 
by selecting an extrapolation method:

func.set('extrap', method)
R  3 :  B U I L D I N G  M O D E L S



The string method can be one of these values:

• 'const', to use a constant value outside the interpolation data,

• 'linear', for linear extrapolation method,

• 'nearestfunction', to use the nearest function as extrapolation method, or

• 'value', to use a specific value outside the interpolation data.

Access the User-Defined Physics Interface

Using COMSOL with MATLAB, to run a model made with a user-defined physics 
interface created with the COMSOL Physics Builder you need to save the compiled 
archive (.jar) in your user home folder .comsol/<version>/archives, where you 
replace <version> with the current version of COMSOL. Any compressed archive 
(with extension .jar) is loaded next time COMSOL with MATLAB starts.

model.func() in the COMSOL Multiphysics Programming Reference 
Manual or type at the MATLAB prompt: mphdoc(model.func).
M O D E L I N G  P H Y S I C S  |  127



128 |  C H A P T E
C r e a t i n g  S e l e c t i o n s

In this section:

• The Selection Node

• Coordinate-Based Selections

• Selection Using Adjacent Geometry

• Displaying Selections

The Selection Node

Use a Selection node to define a collection of geometry entities in a central location in 
the model. The selection can easily be accessed in physics or mesh features or during 
results analysis. For example, you can refer collectively to a set of boundaries that have 
the same boundary conditions, which also have the same mesh size settings.

A selection feature can be one of these types:

• explicit, to include entities explicitly defined by their definitions indices,

• ball, to include entities that fall with a set sphere, 

• cylinder, to include entities that fall with a set cylinder, and

• box, to include entities that fall within a set box.

Selection can also be combined by Boolean operations, such as Union, Intersection, 
and Difference. 

S E T T I N G  A N  E X P L I C I T  S E L E C T I O N

Create an explicit selection with the command:

model.component(<ctag>).selection.create(<seltag>, 'Explicit')

To specify the domain entity dimension to use in the selection node, enter:

sel.geom(sdim)

Creating Named Selections 
R  3 :  B U I L D I N G  M O D E L S



where sel is a link to an Explicit Selection node and sdim is the space dimension that 
represents the different geometric entities:

• 3 for domains,

• 2 for boundaries/domains,

• 1 for edges/boundaries, and

• 0 for points.

Set the domain entity indices in the selection node with the command:

sel.set(<idx>)

where <idx> is an array of integers that list the geometric entity indices to add in the 
selection.

Coordinate-Based Selections

D E F I N I N G  A  B A L L  S E L E C T I O N  N O D E

The Ball selection node is defined by a centerpoint and a radius. The selection can 
include geometric entities that are completely or partially inside the ball. The selection 
can be set up by using either the COMSOL API directly or the mphselectcoords 
function. There are different ways to define the ball selections: Ball Selection Using the 
COMSOL API or Ball Selection Using mphselectcoords.

Ball Selection Using the COMSOL API
To add a ball selection to a model object enter:

model.component(<ctag>).selection.create(<seltag>, 'Ball')

To set the coordinates (<x0>, <y0>, <z0>) of the selection centerpoint, enter:

sel.set('posx', <x0>)
sel.set('posy', <y0>)
sel.set('posz', <z0>)

where sel is a link to a Ball Selection node and <x0>, <y0>, <z0> are double values.

Specify the ball radius <r0> with the command:

sel.set('r', <r0>)

where <r0> is a double floating-point value.

To specify the geometric entity level, enter:

sel.set('entitydim', edim)
C R E A T I N G  S E L E C T I O N S  |  129



130 |  C H A P T E
where edim is an integer defining the space dimension value (3 for domains, 2 for 
boundaries/domains, 1 for edges/boundaries, and 0 for points).

The selection also specifies the condition for geometric entities to be selected:

sel.set('condition', condition)

where condition can be:

• 'inside', to select all geometric entities completely inside the ball,

• 'intersects', to select all geometric entities that intersect the ball (default),

• 'somevertex', to select all geometric entities where at least some vertex is inside 
the ball, or 

• 'allvertices', to select all geometric entities where all vertices are inside the ball.

Ball Selection Using mphselectcoords
The function mphselectcoords retrieves geometric entities enclosed by a ball. 

To get the geometric entities enclosed by a ball of radius r0, with its center positioned 
at (x0,y0,z0) enter the command:

idx = mphselectcoords(model, <geomtag>, [<x0>,<y0>,<z0>], ...
entitytype,'radius',<r0>)

where <geomtag> is the tag of geometry where the selection, and entitytype, can be 
one of 'point', 'edge', 'boundary', or 'domain'.

The above function returns the entity indices list. Use it to specify a feature selection 
or to create an explicit selection as described in Setting an Explicit Selection.

You can also refine the search using several search ball. To do so set the coordinates as 
a NxM array where N corresponds of the number of point to use and M the space 
dimension of the geometry as in the command below:

idx = mphselectcoords(model, <geomtag>, ...
[<x0>,<y0>,<z0>; <x1>,<y1>,<z1>;...], entitytype)

This returns the geometric entity indices that have vertices near both the given 
coordinates using the tolerance radius. 

To include any geometric entities in the selection that have at least one vertex inside 
the search ball, set the property include to 'any':

idx = mphselectcoords(model, <geomtag>, ...
[<x0>,<y0>,<z0>; <x1>,<y1>,<z1>], entitytype, 'include', 'any');
R  3 :  B U I L D I N G  M O D E L S



In case the model geometry is finalized as an assembly, you have distinct geometric 
entities for each part of the assembly (pair). Specify the adjacent domain index to avoid 
selection of any overlapping geometric entities. Set the adjnumber property with the 
domain index:

idx = mphselectcoords(model, <geomtag>, [<x0>,<y0>,<z0>], ...
entitytype,'radius',<r0>,'adjnumber',<idx>)

where <idx> is the domain index adjacent to the desired geometric entities.

D E F I N I N G  A  B O X  S E L E C T I O N  N O D E

The Box selection node is defined by two diagonally opposite points of a box (in 3D) 
or rectangle (in 2D). There are different ways to define the box selections: Box 
Selection Using the COMSOL API or Box Selection Using mphselectbox

Box Selection Using the COMSOL API
This command adds a box selection to the model object:

model.component(<ctag>).selection.create(<seltag>, 'Box')

To specify the points (<x0>, <y0>, <z0>) and (<x1>, <y1>, <z1>), enter:

sel.set('xmin', <x0>)
sel.set('ymin', <y0>)
sel.set('zmin', <z0>)
sel.set('xmax', <x1>)
sel.set('ymax', <y1>)
sel.set('zmax', <z1>)

where sel is a link to a Box Selection node and <x0>, <y0>, <z0>, <x1>, <y1>, <z1> 
are double values.

To specify the geometric entities levels use the command:

sel.set('entitydim', edim)

where edim is an integer defining the space dimension value (3 for domains, 2 for 
boundaries/domains, 1 for edges/boundaries, and 0 for points).

The selection also specifies the condition for geometric entities to be selected:

sel.set('condition', condition)

where condition can be:

• 'inside', to select all geometric entities completely inside the ball,

• 'intersects', to select all geometric entities that intersect the ball (default),
C R E A T I N G  S E L E C T I O N S  |  131



132 |  C H A P T E
• 'somevertex', to select all geometric entities where at least some vertex is inside 
the ball, or 

• 'allvertices', to select all geometric entities where all vertices are inside the ball.

Box Selection Using mphselectbox
The function mphselectbox retrieves geometric entities enclosed by a box (in 3D) or 
rectangle (in 2D).

To get the geometric entities of type entitytype enclosed by the box defined by the 
points (x0,y0,z0) and (x1,y1,z1), enter the command:

idx = mphselectbox(model,<geomtag>,...
[<x0> <x1>;<y0> <y1>;<z0> <z1>], entitytype)

where <geomtag> is the geometry tag where the selection is applied, and entitytype 
can be one of 'point', 'edge', 'boundary', or 'domain'.

The above function returns the entity indices list. Use it to specify a feature selection 
or to create an explicit selection as described in Setting an Explicit Selection.

By default the function searches for the geometric entity vertices near these 
coordinates using the tolerance radius. It returns only the geometric entities that have 
all vertices inside the box or rectangle. To include any geometric entities in the 
selection that have at least one vertex inside the search ball, set the property include 
to 'any':

idx = mphselectbox(model,<geomtag>,...
[<x0> <x1>;<y0> <y1>;<z0> <z1>], entitytype,'include','any')

In case the model geometry is finalized as an assembly (pair), you have distinct 
geometric entities for each part of the assembly. Specify the adjacent domain index to 
avoid selection of overlapping geometric entities. Set the adjnumber property with the 
domain index:

idx = mphselectbox(model,<geomtag>,...
[<x0> <x1>;<y0> <y1>;<z0> <z1>], entitytype, 'adjnumber', <idx>)

where <idx> is the domain index adjacent to the desired geometric entities.

R E T R I E V I N G  P O I N T  C O O R D I N A T E S  U S I N G  A  S E L E C T I O N

Use mphgetcoords to retrieve coordinates of the points that belong to a given 
geometry. Run the command below to get the coordinates of the points that belong 
to the desired geometric entity:

c = mphgetcoords(model,<geomtag>,entitytype,<idx>)
R  3 :  B U I L D I N G  M O D E L S



where <geomtag> is the geometry tag where the selection is applied, entitytype can 
be one of 'point', 'edge', 'boundary', or 'domain' and <idx> is a integer array 
containing the geometric entity indices. c is a Nx2 double array containing the point 
coordinates where N is the number of points.

Selection Using Adjacent Geometry

Another approach is to select geometric entities and define the adjacent object. For 
example, select edges adjacent to a specific domain or boundaries adjacent to a specific 
point. There are different ways to create an adjacent selection: Adjacent Selection 
Using the COMSOL API or Adjacent Selection Using mphgetadj

Adjacent Selection Using the COMSOL API
This command creates a selection node using adjacent geometric entities:

model.component(<ctag>).selection.create(<seltag>, 'Adjacent')

The geometric entity level needs to be specified with the command:

sel.set(edim)

where sel is a link to an Adjacent Selection node and edim is an integer defining the 
space dimension value (3 for domains, 2 for boundaries/domains, 1 for 
edges/boundaries, and 0 for points).

The Adjacent selection node only supports the Selection node as an input:

sel.set( 'Adjacent')

and specify the ball radius <r0> with the command:

sel.set('input', <seltag>)

where <seltag> is the tag of an existing Selection node.

Select the level of geometric entities to add in the selection with the command:

sel.set('outputdim', edim)

where edim is an integer defining the space dimension value (3 for domains, 2 for 
boundaries/domains, 1 for edges/boundaries, and 0 for points).

If there are multiple domains in the geometry to include in the interior and exterior 
selected geometric entities, then enter:

sel.set('interior', 'on')
sel.set('exterior', 'on')
C R E A T I N G  S E L E C T I O N S  |  133



134 |  C H A P T E
To exclude the interior/exterior, select geometric entities and set the respective 
property to 'off'.

Adjacent Selection Using mphgetadj
An alternative to the COMSOL API is to use the function mphgetadj to select 
geometric entities using an adjacent domain.

To get a list of entities of type entitytype adjacent to the entity with the index 
<adjnumber> of type adjtype, enter:

idx = mphgetadj(model, <geomtag>, returntype, adjtype, <adjnumber>)

where <geomtag> is the tag of geometry where the selection applies, returntype is 
the type of geometry entities whose index are returned and adjtype is the type of 
input geometric entity. The string variables returntype and adjtype can be one of 
'point', 'edge', 'boundary', or 'domain'.

If <adjnumber> is an array, you can get the list of adjacent entities that connect the 
input entities the best, to do so enter:

[idx,idx_cnct] = mphgetadj(model, <geomtag>, ...
returntype, adjtype, <adjnumber>)

The list returned by the function can be used to specify the selection for a model 
feature or to create an explicit selection as described in Setting an Explicit Selection.

Displaying Selections

Use the function mphviewselection to display the selected geometric entities in a 
MATLAB figure. This section also includes sections to Specify What to Display with 
the Selection and Change Display Color and Transparency.

You can either specify the geometric entity index and its entity type or specify the tag 
of a selection node available in the model.

To display the entity of type entitytype with the index <idx> enter:

mphviewselection(model, <geomtag>, <idx>, entitytype)

where <geomtag> is the geometry node tag, and <idx> is a positive integer array that 
contains the entity indices. The string entitytype can be one of 'point', 'edge', 
'boundary', or 'domain'.

If the model contains a selection node with the tag <seltag>, this selection can be 
displayed with the command:
R  3 :  B U I L D I N G  M O D E L S



mphviewselection(model, <seltag>)

To plot the selection in an existing axes, set the property 'parent' with the axes 
handle. For instance, the command below displays the selection in the current axis:

mphviewselection(model, <seltag>, 'parent', gca)

S P E C I F Y  W H A T  T O  D I S P L A Y  W I T H  T H E  S E L E C T I O N

• If the selected selection node is a Ball or Box selection, the ball or box selector is 
display by default, to not show the selector, set the property 'showselector' to 
'off'.

mphviewselection(model, <seltag>, 'showselector', 'off')

• To deactivate the geometry representation, set the property 'geommode' to 'off' 
as in this command:

mphviewselection(model, <seltag>, 'geommode', 'off')

• The property 'vertexmode', 'edgemode' and 'facemode' support the value 
'on' or 'off' in order to render the vertex, the edge and the face respectively in 
the figure, as in this example line:

mphviewselection(model, <seltag>, 'facemode', 'off')

• To include vertex, edge and face number, set the property 'vertexlabels', 
'facelabels' and 'edgelabels' respectively to 'on'. 

• Change the marker used to represent the vertex with the property 'facemode'. In 
the example command below the vertex are represented in the figure with a '+' 
marker instead of the default '.':

mphviewselection(model, <seltag>, 'marker', '+')

• Specify the size of the marker with the property 'edgelabels', you can specify an 
integer value corresponding to the number of pixels.

C H A N G E  D I S P L A Y  C O L O R  A N D  T R A N S P A R E N C Y

• To change the color of the edge and the face use the property 'edgecolor' and 
'facecolor' respectively. Specify the color of the vertex with the property 
'markercolor'. Set the property with a character or using a RGB array. In this 
example the edges are displayed in blue while the faces are displayed in the color 
defined by the RGB array (0.5,0.5,0.5):

mphviewselection(model, <seltag>, 'edgecolor', 'b',...
'facecolor', [0.5 0.5 0.5])

• Specify the color for the selected edge and face with the properties 
'edgecolorselected' and 'facecolorselected' respectively. Specify the color 
C R E A T I N G  S E L E C T I O N S  |  135



136 |  C H A P T E
of the selected vertex with the property 'markercolorselected'. Use a character 
or specify the color by its RGB array. These commands show how to set the edge to 
a blue color and the face with the color defined by the RGB array (0.5, 0.5,0.5):

mphviewselection(model, <seltag>, 'edgecolorselected', 'b',...
'facecolorselected', [0.5 0.5 0.5])

• Specify the color for the vertex, edge, and face labels with the properties 
'vertexlabelscolor', 'edgelabelscolor' and 'facelabelscolor' respectively. 
You can use a character or the RGB array to specify the color.

• Control the transparency of the geometry representation with the property 
'facealpha'. Set the property with a double included between 0 and 1. Using this 
command the geometry is displayed with a transparency of 50%:

mphviewselection(model, <seltag>, 'facealpha', 0.5)

• Control the transparency of the selector representation with the property 
'selectoralpha'. Set the property with a double included between 0 and 1. 
Using this command, the selector is displayed with plain color:

mphviewselection(model, <seltag>, 'selectoralpha', 1)
R  3 :  B U I L D I N G  M O D E L S



Compu t i n g  t h e  S o l u t i o n

This section describes the commands to use to compute the solution at the MATLAB 
prompt. How to set up and run a study node but also how to set manual solver 
sequence. This includes the following paragraphs:

• The Study Node

• The Solver Sequence Syntax

• Run the Solver Sequence

• Adding a Parametric Sweep

• Adding a Job Sequence

• Plot While Solving

The Study Node

A study node holds the nodes that define how to solve a model. These nodes are 
divided into these broad categories:

• Study steps, which determines overall settings suitable for a certain study type, 

• Solver sequence, and 

• Job configurations for distributed parametric jobs, batch jobs, and cluster 
computing.

Create a study node by using the syntax:

model.study.create(<studytag>)

where studytag is a string that is used to define the study node.

• Introduction to Solvers and Studies in the COMSOL Multiphysics 
Reference Manual

• Solvers and Study Steps in the COMSOL Multiphysics Programming 
Reference Manual

Introduction to Solvers and Studies in the COMSOL Reference Manual
C O M P U T I N G  T H E  S O L U T I O N  |  137



138 |  C H A P T E
The minimal definition for the study node consists in a study step that define the type 
of study to use to compute the solution. To add a study step to the study node, use the 
syntax:

study.feature.create(<ftag>, operation)

where study is a link to the study node. The string <ftag> is a string that is defined 
to refer to the study step. The string operation is one of the basic study types, such 
as Stationary, Transient, or Eigenfrequency, and more.

To specify a property value pair for a study step, enter:

study.feature(<ftag>).set(property, <value>)

where <ftag> is the string identifying the study step.

To generate the default solver sequence associated with the physics solved in the model 
and compute the solution, run the study node with the command:

study.run

The Solver Sequence Syntax

If you do not want to use the default solver sequence created by the study node, you 
can manually create one. To create a solver sequence, enter:

model.sol.create(<soltag>)

where <soltag> is a string used to refer to the solver sequence associated to a solution 
object.

A solver sequence has to be connected to a study node, which is done with the 
command:

sol.study(<studytag>)

where <studytag> is the tag of the study you want to associate the solver sequence 
sol.

A solver sequence also requires the definition of these nodes:

• Study Step, where the study and study step is specified for compiling the equations 
and computing the current solver sequence;

model.study() in the COMSOL Multiphysics Programming Reference 
Manual
R  3 :  B U I L D I N G  M O D E L S



• Dependent Variables, this node handles settings for the computation of dependent 
variables, such as initial value and scaling settings but also the dependent variables 
not solved for; and

• Solver node, where the type of solver to use is specified to compute the solution.

Add the nodes to the solver sequence with the command:

sol.feature.create(<ftag>, operation)

where sol is a link to a solver sequence node. The string <ftag> is a string that is 
defined to refer to the node, for example, a study step. operation can be 
'StudyStep', 'Variables', or 'Stationary'.

To specify a property value pair for a solver feature, enter:

feat.set(property, <value>)

where feat is a link to the solver sequence feature node.

Run the Solver Sequence

There are different ways to run the solver sequence:

• run the entire sequence,

• run up to a specified feature, or 

• run from a specified feature.

Use the methods run or runAll to run the entire solver configuration node:

model.sol(<soltag>).run
model.sol(<soltag>).runAll

You can also use the method run(<ftag>) to run the solver sequence up to the solver 
feature with the tag <ftag>:

model.sol(<soltag>).run(<ftag>)

When you want to continue solving a sequence, use the method runFrom(<ftag>) to 
run the solver configuration from the solver feature with the tag <ftag>:

model.sol(<soltag>).runFrom(<ftag>)

For a list of the operations available for the solver node, see Features 
Producing and Manipulating Solutions and Solvers and Study Steps, in 
the COMSOL Multiphysics Programming Reference Manual.
C O M P U T I N G  T H E  S O L U T I O N  |  139



140 |  C H A P T E
Adding a Parametric Sweep

In addition to the study step that defines a study type, you can add a parametric sweep 
to the study node. This is a study step that does not generate equations and can only 
be used in combination with other study steps. You can formulate the sequence of 
problems that arise when some parameters are varied in the model.

To add a parametric sweep to the study node, enter:

study.feature.create(<ftag>, 'Parametric')

where study is a link to a valid study node where to include the parametric sweep 
defined with the tag <ftag>.

To add one or several parameters to the sweep, enter the command:

study.feature(<ftag>).setIndex('pname', <pname>, <idx>)

where <pname> is the name of the parameter to use in the parametric sweep and <idx> 
the index number of the parameter. Set the <idx> to 0 to define the first parameter, 1 
to define the second parameter, and so on.

Set the list of the parameter values with the command:

study.feature(<ftag>).setIndex('plistarr', <pvalue>, <idx>)

where <pvalue> contains the list of parameter values defined with either a string or 
with a double array, and <idx> is the index number of the parameter and uses the same 
value as for the parameter name.

If there are several parameters listed in the parametric sweep node, select the type of 
sweep by entering:

study.feature(<ftag>).set('sweeptype', type)

where type is a string defining the sweep type, it can take either the value 'filled' 
or 'sparse', referring to all combinations or specified combinations of the parameter 
values, respectively.

Adding a Job Sequence

In the study node you can define a job sequence such as distributed parametric jobs, 
batch jobs, and cluster computing. To create a batch node enter:

model.batch.create(<batchtag>, type)
R  3 :  B U I L D I N G  M O D E L S



where <batchtag> is the tag of the job sequence and type is the type of job to define. 
It can be either Parametric, Batch, or Cluster.

For a solver sequence you need to attach the job sequence to an existing study node. 
Enter the command:

model.batch(<batchtag>).atach(<studytag>)

where <studytag> is the tag of the study node.

Each job type, such as parametric, batch, or cluster job, can be defined with specific 
properties. Use the set method to add a property to the batch job:

model.batch(<batchtag>).set(property, <value>)

To run the batch sequence use the run method:

model.batch(<batchtag>).run

Plot While Solving

With the Plot While Solving functionality you can monitor the development of the 
computation by updating predefined plots during the computation. Since the plots are 
displayed on a COMSOL Multiphysics graphics window, start COMSOL with 
MATLAB using a graphics COMSOL Multiphysics Server.

To activate Plot While Solving, enter the command:

study.feature(<studysteptag>).set('plot', 'on')

where study is a link to a valid study node and <studysteptag> is a string that refers 
to the study step.

Specify the plot group to plot by setting the plot group tag:

study.feature(<studysteptag>).set('plotgroup', <ptag>)

You can get the list of the properties in model.batch() in the COMSOL 
Multiphysics Programming Reference Manual or type at the MATLAB 
prompt: mphdoc(model.batch).

See the section Starting COMSOL Multiphysics with MATLAB using 
the Graphics Server in the COMSOL Multiphysics Installation Guide.
C O M P U T I N G  T H E  S O L U T I O N  |  141



142 |  C H A P T E
Only one plot group can be plotted during a computation. Use the probe feature 
instead if you need to monitor several variables.

To activate Plot While Solving for a probe plot, enter the command:

study.feature(<studysteptag>).set('probesel', seltype)

where seltype is the type of probe selection, that can be 'none', 'all', or 
'manual'.

In case the probe selection is set to manual you have to specify the list of the probe 
variable to display. Enter the command:

study.feature(<studysteptag>).set('probes', <list>)

where <list> is the a cell array containing the list of the probe to use.
R  3 :  B U I L D I N G  M O D E L S



Ana l y z i n g  t h e  R e s u l t s

In this section:

• The Plot Group Syntax

• Displaying The Results

• The Dataset Syntax

• The Numerical Node Syntax

• Exporting Data

The Plot Group Syntax

Result plots always appear in plot groups, which are added to the model by the create 
method:

model.result.create(<pgtag>, sdim)

Select the string <pgtag> to identify the plot group and the integer sdim to set the 
space dimension (1, 2, or 3) of the group.

To add a plot to a plot group, use the syntax:

pg.feature.create(<ftag>, plottype)

where pg is a link to a plot group node and plottype is a string that defines the plot 
type. 

Plots can have different attributes that modify the display. For example, the 
Deformation attribute deforms the plot according to a vector quantity, the Height 
Expression attribute introduces 3D height on a 2D table surface plot, and the Filter 
attribute filters the plot using a logical expression. The type of plot determines which 
attributes are available. Add an attribute to a plot with the command:

pg.feature(<ftag>).feature.create(<attrtag>, attrtype)

• Results Analysis and Plots in the COMSOL Multiphysics Reference 
Manual

• Results in the COMSOL Multiphysics Programming Reference 
Manual
A N A L Y Z I N G  T H E  R E S U L T S  |  143



144 |  C H A P T E
where attrtype is a string that defines the attribute type.

Displaying The Results

There are different commands available to Display Plot Groups, Extract Plot Data, 
Plot External Data, and to Add Data Plot to Model. A practical example of this is 
included in Example: Plot mpheval Data.

D I S P L A Y  P L O T  G R O U P S

Use the command mphplot to display a plot group available from the model 

mphplot(model)

For a list of available plot types and corresponding attribute types, see 
Results and model.result() in the COMSOL Multiphysics 
Programming Reference Manual or type at the MATLAB prompt: 
mphdoc(model.result).
R  3 :  B U I L D I N G  M O D E L S



The figure contains a toolbar that allows the user to control the use of views, lights, 
and camera settings set in the model. The COMSOL menu list the plot group 
available, as well as geometry and mesh plot.

You can specify the plotgroup to display at the command line. For example, to display 
the plot group <pgtag> enter:

mphplot(model, <pgtag>)

This renders the graphics in a MATLAB figure window. In addition you can plot 
results in a COMSOL Multiphysics Graphics window if you start COMSOL with 
MATLAB using a graphics COMSOL Multiphysics Server. To do this for a plot group 
<pgtag> enter:

mphplot(model, <pgtag>, 'server', 'on') 

Another way to plot in a COMSOL Graphics window is to use the run method:

model.result(<pgtag>).run 

The default settings for plotting in a MATLAB figure do not display the color legend. 
To include the color legend in a figure, use the property rangenum:

mphplot(model, <pgtag>, 'rangenum', <idx>)

where the integer <idx> identifies the plot for which the color legend should be 
displayed.

mphplot does not support image features, Material Appearance 
subfeatures, and clipping views.

See the section Starting COMSOL Multiphysics with MATLAB using 
the Graphics Server in the COMSOL Multiphysics Installation Guide.

Mac OS does not support plotting in a COMSOL Graphics window.
A N A L Y Z I N G  T H E  R E S U L T S  |  145



146 |  C H A P T E
E X T R A C T  P L O T  D A T A

In some situation it can be useful to extract data from a plot, for example, if you need 
to manually edit the plot as it is allowed in MATLAB. To get a cell array, pd, which 
contains the data for each plot feature available in the plot group <pgtag> enter:

pd = mphplot(model, <pgtag>)

The data fields contained in pd returned by mphplot are subject to change. The most 
important fields are:

• p, the coordinates for each point that are used for creating lines or triangles.

• n, the normals in each point for the surfaces. These are not always available.

• t, contains the indices to columns in p of a simplex mesh, each column in t 
representing a simplex. 

• d, the data values for each point.

• rgb, the color values (red, green and blue) entities at each point.

If you don’t want to generate a figure when extracting the plot data structure, set the 
property createplot to off as in the command below:

pd = mphplot(model, <pgtag>, 'createplot','off')

This is useful for instance on machine without graphics display support.

E X A M P L E :  E X A M I N I N G  T H E  P L O T  D A T A

Reuse the first on-line example available for mphplot:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;
model.result.dataset.create('mir', 'Mirror3D');
pg = model.result.create('pg', 'PlotGroup3D');
pg.set('data', 'mir');
surf1 = pg.feature.create('surf1', 'Surface');
surf1.set('colortable', 'Thermal');
mphplot(model,'pg')
surf2 = pg.feature.create('surf2', 'Surface');
surf2.set('data', 'dset1').set('expr', 'ht.tfluxMag');

Now plot the result and extract the associated plot data structure:
R  3 :  B U I L D I N G  M O D E L S



pd = mphplot(model,'pg');

pd is a cell array containing three plot data structure, the first one corresponds the 
outline of the geometry, the title, the legend and the color bar information (if any) in 
the figure. The second and the third plot data structures correspond to the plot 
defined by the features added to the plot group pg: surf1 and surf2 respectively.

To inspect the outline data of the geometry enter:

pd1 = pd{1}{1}

pd1 = 
p: [3×1310 single]
t: [2×1048 int32]

rgb: [3×1 double]
type: 'line'

plottype: 'PlotGroup3D'
tag: 'pg'

preserveaspect: 'on'
title: 'Surface: Temperature (K) Surface: Total heat ...'

titlecolor: [3×1 double]
legendcolor: [3×1 double]

To investigate the plot data information of the second surface plot feature (surf2) 
enter:

pd3 = pd{3}{1}
pd3 = 
             p: [3x4917 single]
A N A L Y Z I N G  T H E  R E S U L T S  |  147



148 |  C H A P T E
             n: [3x4917 single]
             t: [3x8964 int32]
             d: [4917x1 single]
    colortable: 'Rainbow'

cminmax: [0.3193 6.7120e+05]
           rgb: [4917x3 single]
          type: 'surface'
      plottype: 'Surface'
           tag: 'surf2'

Code for use with MATLAB®

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;
model.result.dataset.create('mir', 'Mirror3D');
pg = model.result.create('pg', 'PlotGroup3D');
pg.set('data', 'mir');
surf1 = pg.feature.create('surf1', 'Surface');
surf1.set('colortable', 'Thermal');
mphplot(model,'pg')
surf2 = pg.feature.create('surf2', 'Surface');
surf2.set('data', 'dset1').set('expr', 'ht.tfluxMag');
pd = mphplot(model,'pg');

P L O T  E X T E R N A L  D A T A

Using the function mphplot you can also plot data that is specified directly as an input 
argument. The supported data format is according to the structure provided by the 
functions mphplot, mpheval and mphmesh.This allows you to plot data that has first 
been extracted from the model. To plot the structure <data>, run the command:

mphplot(<data>)

If the data structure contains the value of several expressions, set the one to display in 
the plot with the index property:

mphplot(<data>, 'index', <idx>)

where <idx> is a positive integer that corresponds to the expression to plot.

Using the colortable option to select from several available color tables when 
visualizing data:

mphplot supports only plotting of data structures that are of the type 
point, line or surface evaluations from mpheval.
R  3 :  B U I L D I N G  M O D E L S



mphplot(<data>, 'colortable', colorname)

Obtain a list of alternatives for colorname from the on-line help by entering: 

help colortable

To disable the mesh displayed together with the data results, set the property mesh to 
off as in this command:

mphplot(<data>, 'mesh', 'off')

A D D  D A T A  P L O T  T O  M O D E L

Use the command mphaddplotdata to create a plot group and incorporate the data 
to a COMSOL Model. To create a plot group in the model using the plotdata data 
and using the plottype type, enter the command:

mphaddplotdata(model, 'type', type, 'data', data)

where type is the type of plot, that can be 'arrow', 'line', 'surface', 
'annotation', 'tube' or 'point'.

You can create a plottype using the plotdata in an existing plotgroup using the property 
plotgroup as in the command below:

mphaddplotdata(model, 'type', type, 'data', data,...
'plotgroup', <pgtag> )

If you want to remove all existing plottype in the plotgroup enter:

mphaddplotdata(model, 'type', type, 'data', data,...
'plotgroup', <pgtag> , 'clearplot', 'on')

E X A M P L E :  P L O T  M P H E V A L  D A T A

This example extracts COMSOL data at the MATLAB prompt, modifies it and plots 
the data in a MATLAB figure. 

First load the Busbar model from the COMSOL Multiphysics Applications Libraries. 
Enter:

model = mphopen('busbar');

To extract the temperature and the electric potential field, use the command mpheval:

dat = mpheval(model,{'T','V'},'selection',1);

To display the temperature field, using the thermal color table:

mphplot(dat,'index',1,'colortable','thermal');
A N A L Y Z I N G  T H E  R E S U L T S  |  149



150 |  C H A P T E
Do a simple scaling of the electric potential then plot it using the default color table:

dat.d2 = dat.d2*1e-3;

Plot the newly evaluated data without the mesh:

mphplot(dat, 'index', 2, 'rangenum', 2, 'mesh', 'off');

To emphasize the geometry use the function mphgeom to display line plot on the same 
figure:

hold on;
mphgeom(model, 'geom1', 'facemode', 'off')
R  3 :  B U I L D I N G  M O D E L S



Code for use with MATLAB®

model = mphopen('busbar');
dat = mpheval(model,{'T','V'},'selection',1);
mphplot(dat,'index',1,'colortable','thermal');
dat.d2 = dat.d2*1e-3;
mphplot(dat, 'index', 2, 'rangenum', 2, 'mesh', 'off');
hold on;
mphgeom(model, 'geom1', 'facemode', 'off')

The Dataset Syntax

Use datasets to make solutions and meshes available for visualization and data analysis. 
You can create Solution datasets, Mesh datasets, or visualization datasets (such as, for 
instance, Cut Plane or Edge datasets). While Solution and Mesh datasets are self 
defined, visualization datasets always refer to an existing Solution dataset.

To create a dataset at the MATLAB prompt, use the command:

model.result.dataset.create(<dsettag>, dsettype);

See Datasets in the section Commands Grouped by Function of the 
COMSOL Multiphysics Programming Reference Manual to get a list of 
the available datasets.

All plots refer to datasets; the solutions are always available as the default 
dataset. 
A N A L Y Z I N G  T H E  R E S U L T S  |  151



152 |  C H A P T E
where dsettype is one of the available dataset types. 

The Numerical Node Syntax

Use the numerical node to perform numerical evaluation from within the COMSOL 
Multiphysics model. Numerical operations such as computing averages, integrations, 
maxima, or minima of a given expression are available. You can also perform point and 
global evaluations. 

To create a numerical node, enter:

model.result.numerical.create(<numtag>, numtype)

where numtype is the type of operation to be performed by the node.

To store the data needed to create a table and associate the table to the numerical node:

model.result.table.create(<tabletag>,'Table')
model.result.numerical(<numtag>).set('table',<tabletag>)

where <tabletag> is the tag of the table where you want to store the data evaluated 
with the numerical operations defined with the tag <numtag>.

To extract the data stored in MATLAB into a table, use the methods getRealRow and 
getImagRow, such as:

realRow = model.result.table(<tabletag>).getRealRow(<idx>)
imagRow = model.result.table(<tabletag>).getImagRow(<idx>)

where <idx> is the column index of the table <tabletag>. 

• Datasets in the COMSOL Multiphysics Reference Manual

• Use of Datasets in the COMSOL Multiphysics Programming 
Reference Manual

For a list of the syntax of the numerical results type available, see About 
Results Commands in the COMSOL Multiphysics Programming 
Reference Manual.
R  3 :  B U I L D I N G  M O D E L S



For data evaluation in MATLAB you can also use the functions mpheval, 
mphevalpoint, mphglobal, mphint2, mphinterp, mphmax, mphmean and mphmin.

Exporting Data

Use the export node to generate an animation or to export data to an external file 
(ASCII format). This section includes information about Animation Export, Data 
Export, and the Animation Player.

A N I M A T I O N  E X P O R T

Animations can be defined as two different types: a movie or an image sequence. The 
movie generates file formats such as GIF (.gif), AVI (.avi), or flash (.swf); the 
image sequence generates a sequence of images. Make sure COMSOL with MATLAB 
using a graphics COMSOL Multiphysics Server to enable plot on server. 

To generate an animation, add an Animation node to the export method:

anim = model.result.export.create(<animtag>, 'Animation')

To change the animation type use the 'type' property according to:

anim.set('type', type)

where anim is a link to an animation node and type is either 'imageseq' or 'movie'.

To set the filename and finally create the animation, enter:

anim.set(typefilename, <filenname>)
anim.run

In the above, typefilename depends on the type of animation export: 
'imagefilename' for an image sequence, 'giffilename' for a gif animation, 
'flashfilename' for a flash animation, and 'avifilename' for an avi animation.

For a movie type animation, it is possible to change the number of frames per second 
with the command:

Extracting Results

To learn how to start COMSOL with MATLAB using a graphics 
COMSOL Multiphysics Server, see the COMSOL Multiphysics 
Installation Guide.
A N A L Y Z I N G  T H E  R E S U L T S  |  153



154 |  C H A P T E
anim.set('fps', <fps_number>)

where <fps_number> is a positive integer that corresponds to the number of frames 
per second to use.

For all animation types you can modify the width and the height of the plot with the 
set method:

anim.set('width', <width_px>)
anim.set('height', <height_px>)

where, the positive integers <width_px> and <height_px> are the width and height 
size (in pixels), respectively, to use for the animation.

D A T A  E X P O R T

In order to save data to an ASCII file, create a Data node to the export method:

model.result.export.create(<datatag>, 'Data')

Set the expression expr and the file name filenname, and run the export:

model.result.export(<datatag>).setIndex('expr', <expr>, 0)
model.result.export(<datatag>).set('filename', <filenname>)

Set the export data format with the struct property:

model.result.export(<datatag>).set('struct', datastruct)

where datastruct can be set to 'spreadsheet' or 'sectionwise'.

To export the data in the specified file, run the export node:

model.result.export.(<datatag>).run

A N I M A T I O N  P L A Y E R

For transient and parametric studies, an animation player can be generated to create 
interactive animations. 

See Data Formats in the COMSOL Multiphysics Programming 
Reference Manual for details about the data formats used in the exported 
data files.
R  3 :  B U I L D I N G  M O D E L S



The player displays the figure on a COMSOL Graphics window. Make sure COMSOL 
with MATLAB is started using a graphics COMSOL Multiphysics Server. 

To create a player feature node to the model enter the command:

model.result.export.create(<playtag>, 'Player')

Then associate the player with an existing plot group by setting the plotgroup 
property:

model.result.export(<playtag>).set('plotgroup', <pgtag>)

where <pgtag> refers to the plot group, which is animated in the player.

The default frame number used to generate the animation is 25, you can also specify 
the number of frame with the command:

model.result.export(<playtag>).set('maxframe', <maxnum>)

where <maxnum> is a positive integer value that corresponds to the maximum number 
of frames to generate with the player.

Use the run method to generate the player:

model.result.export(<playtag>).run

Generating Report

You can use the Report Generator tool to report and documentate the model created 
in COMSOL Multiphysics. At the command prompt, the function mphreport helps 
to automatically add a default report template to the current model and generate it in 
the HRTML or Micorsoft Word® format.

To add a default intermediate report templatein the model, enter the command:

mphreport(model, 'action', 'add')

This create a new report node with a unique tag, which 'rpt1' if the model did not 
contain any report. You can specify the tag to identify the report node using the 
property 'tag' as in the command below:

mphreport(model, 'action', 'add', 'tag', <rpttag>)

To learn how to start COMSOL with MATLAB using a graphics 
COMSOL Multiphysics Server, see the COMSOL Multiphysics 
Installation Guide.
A N A L Y Z I N G  T H E  R E S U L T S  |  155



156 |  C H A P T E
where <rpttag> is a string.

When creating a default report template you can choose between different template 
format, enter the command:

mphreport(model, 'action', 'add', 'type', <type>)

where <type> is either 'brief', 'intermediate', or 'complete'.

To generate and visualize the report with the tag <rpttag>, enter:

mphreport(model, 'action', 'run', 'tag', <rpttag>,...
'filename', <fname>)

where <fname> is a string defining the name of the report file. 

By default the output format is HTML, you can also generate report in the Micorsoft 
Word or Micorsoft PowerPoint format. To generate a report in the Micorsoft Word 
format enter:

mphreport(model, 'action', 'run', 'tag', <rpttag>,...
'filename', <fname>, 'format', 'docx')

To generate a report in the Micorsoft PowerPoint format enter:

mphreport(model, 'action', 'run', 'tag', <rpttag>,...
'filename', <fname>, 'format', 'pptx')
R  3 :  B U I L D I N G  M O D E L S



 4
W o r k i n g  W i t h  M o d e l s
This section introduces you to the functionality available for LiveLink™ for 
MATLAB® including the wrapper functions and the MATLAB tools that can be 
used and combined with a COMSOL Multiphysics® model object. 

In this chapter:

• Using Workspace Variables in Model Settings

• Extracting Results

• Running Models in a Loop

• Running Models in Batch Mode

• Working with Matrices

• Extracting Solution Information and Solution Vectors

• Retrieving Xmesh Information

• Navigating the Model

• Handling Errors and Warnings

• Improving Performance for Large Models

• Creating a Custom User Interface
 157



158 |  C H A P T E
U s i n g  Wo rk s p a c e  V a r i a b l e s  i n  Mode l  
S e t t i n g s

LiveLink™ for MATLAB® allows you to define the model properties with MATLAB 
variables or a MATLAB M-function.

In this section:

• The Set and SetIndex Methods

• Using a MATLAB® Function to Define Model Properties

The Set and SetIndex Methods

You can use MATLAB® variables to set properties of a COMSOL Multiphysics model. 
Use the set or setIndex methods to pass the variable value from MATLAB to the 
COMSOL model.

T H E  S E T  M E T H O D S

Use the set method to assign parameter and/or property values. All assignments 
return the parameter object, which means that assignment methods can be appended 
to each other. 

The basic method for assignment is:

something.set(name, <value>)

The name argument is a string with the name of the parameter/property. The <value> 
argument can for example be a MATLAB integer or double array variable. <value> 
can also be a string, in this case the value or expression is defined within the model 
object.

When using a MATLAB variable, make sure that the value corresponds to the model 
unit system. COMSOL can also take care of the unit conversation automatically; in this 
case convert the MATLAB integer/double variable to a string variable and use the set 
method as:

something.set(property, [num2str(<value>)'[unit]'])

where is the unit you want to set the value property.
R  4 :  W O R K I N G  W I T H  M O D E L S



T H E  S E T I N D E X  M E T H O D S

Use the setIndex method to assign values to specific indices (0-based) in an array or 
matrix property. All assignment methods return the parameter object, which means 
that assignment methods can be appended to each other:

something.setIndex(name, <value>, <index>)

The name argument is a string with the name of the property, <value> is the value to 
set the property, which can be a MATLAB variable value or a string, and <index> is 
the index in the property table.

When using a MATLAB variable make sure that the value corresponds to the model 
unit system. COMSOL can automatically take care of the unit conversation; in this case 
converting the MATLAB integer/double variable to a string variable and using the 
set method as:

something.setIndex(name, [num2str(<value>)'[unit]'], <index>)

where [unit] is the unit you want to set the value property.

Using a MATLAB® Function to Define Model Properties

Use MATLAB® Function to define the model property. The function can either be 
declared within the model object or called at the MATLAB prompt.

C A L L I N G  M A T L A B  F U N C T I O N S  W I T H I N  T H E  C O M S O L  M O D E L  O B J E C T

LiveLink™ for MATLAB® enables you to declare a MATLAB M-function directly from 
within the COMSOL Multiphysics model object. This is typically the case if you want 
to call a MATLAB M-function from the COMSOL Desktop. The function being 
declared within the model object accepts any parameter, variable, or expression 
arguments defined in the COMSOL model object. However, to use a variable defined 
at the MATLAB prompt, the variable has to be transferred first in the COMSOL 
model as a parameter, for example (see how to set a MATLAB variable in the 
COMSOL model in The Set and SetIndex Methods).

The function is evaluated any time the model needs to be updated. The model object 
cannot be called as an input argument of the M-function.

Calling External Functions
U S I N G  W O R K S P A C E  V A R I A B L E S  I N  M O D E L  S E T T I N G S  |  159



160 |  C H A P T E
C A L L I N G  M A T L A B  F U N C T I O N S  A T  T H E  M A T L A B  P R O M P T

Use a MATLAB function to define a model property with the set method:

feature.set(property, myfun(<arg>))

where myfun() is an M-function defined in MATLAB.

The function is called only when the command is run at the MATLAB prompt. The 
argument of the function <arg> called can be MATLAB variables. To include an 
expression value from the model object, first extract it at the MATLAB prompt, as 
described in Extracting Results.

The function myfun() accepts the model object model as an input argument as any 
MATLAB variable.
R  4 :  W O R K I N G  W I T H  M O D E L S



Ex t r a c t i n g  R e s u l t s

Use LiveLink™ for MATLAB® to extract at the MATLAB prompt the data computed 
in the COMSOL Multiphysics® model. A suite of wrapper functions is available to 
perform evaluation operations at the MATLAB prompt.

In this section:

• Extracting Data at Arbitrary Points

• Evaluating a Minimum of Expression

• Evaluating a Maximum of Expression

• Evaluating an Integral

• Evaluating an Expression Average

• Extracting Data at Node Points

• Evaluating an Expression at Geometry Vertices

• Evaluating Expressions on Particle/Ray Trajectories

• Evaluating a Global Expression

• Evaluating a Matrix Expression at Points

• Evaluating a Global Matrix

• Extracting Data From Tables

Extracting Data at Arbitrary Points

At the MATLAB® prompt, the function mphinterp evaluates the result at arbitrary 
points. To evaluate an expression at specific point coordinates, call the function 
mphinterp as in the command:

[d1,...] = mphinterp(model,{'e1',...},'coord',<coord>)

where e1,... are the COMSOL Multiphysics expressions to evaluate, <coord> the 
evaluation point coordinates defined with a NxM double array, N the space dimension 
of the evaluation domain, and M is the number of evaluation points. The output 
d1,... is a PxM double array, where P is the length of the inner solution. If an 
evaluation point is outside the expressions definition domain the output value is NaN.

Alternatively, specify the evaluation coordinates using a selection dataset:

data = mphinterp(model, <expr>, 'dataset', <dsettag>)
E X T R A C T I N G  R E S U L T S  |  161



162 |  C H A P T E
where <dsettag> is a selection dataset tag defined in the model, for example, Cut 
point, Cut Plane, Revolve, and so forth. <dsettag> can also be a mesh dataset tag, in 
this case the evaluation is performed on the geometric mesh vertices.

The rest of this section has additional information for the function mphinterp:

• Specify the Evaluation Data

• Output Format

• Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Settings

• Specify the Evaluation Quality

• Other Evaluation Properties

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphinterp supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphinterp(model,<expr>,'coord',<coord>,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset or a mesh dataset. The default value is the 
current solution dataset of the model. When a mesh dataset is specified the 
expression <expr> can only be geometry or mesh expression.

• selection, specify the domain selection for evaluation:

data = 
mphinterp(model,<expr>,'coord',<coord>,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is All domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection the output value 
is NaN. 

• edim, specify the element dimension for evaluation:

data = mphinterp(model,<expr>,'coord',<coord>,'edim',edim)

where edim is one of the strings 'point', 'edge', 'boundary' or 'domain'. One 
can also use numerical values instead, which in 3D are the values from 0 to 3. The 
default settings correspond to the model geometry space dimension. When using a 
lower space dimension value, make sure that the evaluation point coordinates 
dimension has the same size.
R  4 :  W O R K I N G  W I T H  M O D E L S



• ext, specify extrapolation control value to define how much outside the mesh the 
interpolation searches. This ensures you return data for points that are outside the 
geometry:

data = mphinterp(model,<expr>,'coord',<coord>,'ext',<ext>)

where <ext> is a double value corresponding to the search distance as a scale in 
terms of the local element size. The default value is 0.1.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

data = mphinterp(model,<expr>,'coord',<coord>,solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution, or all inner solution respectively. By default the evaluation is 
performed on all inner solution.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphinterp(model,<expr>,'coord',<coord>,... 
'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end', to evaluate the 
expression for all or the last outer solution respectively. The default settings use the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphinterp(model,<expr>,'coord',<coord>,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• phase, specify the phase in degrees:

data = mphinterp(model,<expr>,'coord',<coord>,'phase',<phase>)

where <phase> is a double value.

O U T P U T  F O R M A T

The function mphinterp returns in the MATLAB workspace a double array. It also 
supports other output formats.

To evaluate several expressions at once, make sure that the same number of output 
variables are defined as there are expressions specified:
E X T R A C T I N G  R E S U L T S  |  163



164 |  C H A P T E
[d1,...] = mphinterp(model,{'e1',...},'coord',<coord>)

To extract the unit of the evaluated expression, define an extra output variable:

[data, unit] = mphinterp(model,<expr>,'coord',<coord>)

with unit is a 1xN cell array where N is the number of expressions to evaluate.

Returns only the real part in the data evaluation with the property complexout:

data = mphinterp(model,<expr>,'coord',<coord>,'complexout','off')

To disable the error message when all evaluation points are outside the geometry, set 
the property coorderr to off:

data = mphinterp(model,<expr>,'coord',<coord>,'coorderr','off')

the output data for evaluation points will only contains NaN.

S M A L L - S I G N A L  A N A L Y S I S ,  P R E S T R E S S E D  A N A L Y S I S ,  A N D  H A R M O N I C  

P E R T U R B A T I O N  S E T T I N G S

For solutions with a stored linearization point, such as harmonic perturbation, 
small-signal analysis, or prestressed analysis you can specify the evaluation method. Use 
the mphinterp function with the property evalmethod:

data = mphinterp(model,<expr>,'coord',<coord>,'evalmethod',method)

where method can be one of the following value:

• 'harmonic', for harmonic perturbation analysis.

• 'linpoint', the expression is evaluated by taking the values of any dependent 
variables from the linearization point of the solution.

• 'lintotal', the expression is evaluated by adding the linearization point and the 
harmonic perturbation and taking the real part of this sum.

• 'lintotalavg', this is the same as evaluating using the lintotal property and 
then averaging over all phases of the harmonic perturbation.

• 'lintotalrms', this is the same as evaluating using the lintotal property and 
then taking the RMS over all phases of the harmonic perturbation.

• 'lintotalpeak', this is the same as evaluating using the lintotal property 
solution and then taking the maximum over all phases of the harmonic perturbation.

If the property evalmethod is set to harmonic, you specify whether the expression 
should be linearized or not with the property differential as shown below:

data = mphinterp(model,<expr>,'coord',<coord>,...
'evalmethod','harmonic','differential',diffvalue)
R  4 :  W O R K I N G  W I T H  M O D E L S



The default property value settings ('on') evaluates the differential of the expression 
with respect to the perturbation at the linearization point. If diffvalue is off, it 
evaluates the expression by taking the values of any dependent variables from the 
harmonic perturbation part of the solution. 

S P E C I F Y  T H E  E V A L U A T I O N  Q U A L I T Y

With the property recover, you can specify the accurate derivative recovery:

data = mphinterp(model,<expr>,'coord',<coord>,'recover',recover)

where recover is either 'ppr', 'pprint', or 'off' (the default). Set the property to 
ppr to perform recovery inside domains or set to pprint to apply recovery to all 
domain boundaries. Because the accurate derivative processing takes time, the 
property is disabled by default.

O T H E R  E V A L U A T I O N  P R O P E R T I E S

Set the unit property to specify the unit of the evaluation:

data = mphinterp(model,<expr>,'coord',<coord>,'unit',<unit>)

where unit is a cell array with the same size as expr.

To not use complex-value functions with real inputs, use the property complexfun:

data = mphinterp(model,<expr>,'coord',<coord>,'complexfun','off')

The default value uses complex-value functions with real inputs.

Use the property matherr to return an error for undefined operations or expressions:

data = mphinterp(model,<expr>,'coord',<coord>,'matherr','on')

Evaluating a Minimum of Expression

Use the function mphmin to evaluate the minimum of a given expression over an inner 
solution list. 

To evaluate the minimum of the COMSOL expressions e1,... use the command 
mphmin:

[d1,...] = mphmin(model,{'e1',...},edim)

where edim is a string to define the element entity dimension: 'volume', 'surface', 
or 'line'. edim can also be a positive integer (3, 2, or 1 respectively). The output 
variables d1,... are an NxP array where N is the number of inner solutions and P the 
number of outer solutions.
E X T R A C T I N G  R E S U L T S  |  165



166 |  C H A P T E
The rest of this section has additional information for the function mphmin:

• Specify the Evaluation Data

• Output Format

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphmin supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphmin(model,<expr>,edim,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the domain selection for evaluation:

data = mphmin(model,<expr>,edim,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection the output value 
is NaN. 

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

data = mphmin(model,<expr>,edim,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphmin(model,<expr>,edim,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer array corresponding to the outer 
solution index. <outersolnum> can also be a string, 'all' or 'end', to evaluate 
the expression for all or the last outer solution, respectively. The default setting uses 
the first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:
R  4 :  W O R K I N G  W I T H  M O D E L S



data = mphmin(model,<expr>,edim,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• In case of data series, such as from a parametric or a transient study, an operation 
can be applied. To perform data series operation use the function mphmin as in the 
command below:

data = mphmin(model,<expr>,edim,'dataseries',<dataoperation>)

where <dataoperation> can be one of the following value: 'none' (no operation 
performed), 'average' (to compute average of the selected series), 'integral' 
(to integrate over series), 'maximum' (to evaluate the maximum over series), 
'minimum' (to evaluate the minimum), 'rms' (to compute the root mean square), 
'stddev' (to compute the standard deviation), or 'variance' (to compute the 
variance).

• To get the position of the minimum, you can set the property position to on as in 
the command below:

data = mphmin(model,<expr>,edim,'position', on)

where data(:,1) contains the minimum value of the expression for each solution 
step, and data(:,2:Sdim+1) returns the position of the minimum, with Sdim the 
space dimension number.

O U T P U T  F O R M A T

The function mphmin also supports other output formats.

To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphmin(model,<expr>,edim)

where unit is a 1xN cell array, and N is the number of expressions to evaluate.

By default mphmin returns the results as a squeezed singleton. To get the full singleton 
set the squeeze property to off:

data = mphmin(model,<expr>,edim,'squeeze','off')

Set the property matrix to off to return the data as a cell array instead of a double 
array:

data = mphmin(model,<expr>,edim,'matrix','off')
E X T R A C T I N G  R E S U L T S  |  167



168 |  C H A P T E
Evaluating a Maximum of Expression

Use the function mphmax to evaluate the maximum of a given expression over an inner 
solution list. 

To evaluate the maximum of the COMSOL Multiphysics expressions e1,... use the 
command:

[d1,...] = mphmax(model,{'e1',...},edim)

where edim is a string to define the element entity dimension: 'volume', 'surface', 
or 'line'. edim can also be a positive integer (3, 2, or 1 respectively). The output 
variables d1,... are an NxP array where N is the number of inner solutions and P the 
number of outer solutions.

The rest of this section has additional information for the function mphmax:

• Specify the Evaluation Data

• Output Format

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphmax supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphmax(model,<expr>,edim,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the domain selection for evaluation:

data = mphmax(model,<expr>,edim,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection the output value 
is NaN.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:
R  4 :  W O R K I N G  W I T H  M O D E L S



data = mphmax(model,<expr>,edim,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphmax(model,<expr>,edim,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer array corresponding to the outer 
solution index. <outersolnum> can also be a string, 'all' or 'end', to evaluate 
the expression for all or the last outer solution, respectively. The default setting uses 
the first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphmax(model,<expr>,edim,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• In case of data series, such as from a parametric or a transient study, an operation 
can be applied. To perform data series operation use the function mphmax as in the 
command below:

data = mphmax(model,<expr>,edim,'dataseries', <dataoperation>)

where <dataoperation> can be one of the following value: 'none' (no operation 
performed), 'average' (to compute average of the selected series), 'integral' 
(to integrate over series), 'maximum' (to evaluate the maximum over series), 
'minimum' (to evaluate the minimum), 'rms' (to compute the root mean square), 
'stddev' (to compute the standard deviation), or 'variance' (to compute the 
variance).

• To get the position of the maximum, you can set the property position to on as in 
the command below:

data = mphmax(model,<expr>,edim,'position', on)

where data(:,1) contains the maximum value of the expression for each solution 
step, and data(:,2:Sdim+1) returns the position of the maximum, with Sdim the 
space dimension number.

O U T P U T  F O R M A T

The function mphmax also supports other output formats.
E X T R A C T I N G  R E S U L T S  |  169



170 |  C H A P T E
To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphmax(model,<expr>,edim)

where unit is a 1xN cell array and N is the number of expressions to evaluate.

By default mphmax returns the results as a squeezed singleton. To get the full singleton 
set the squeeze property to off:

data = mphmax(model,<expr>,edim,'squeeze','off')

Set the property matrix to off to return the data as a cell array instead of a double 
array:

data = mphmax(model,<expr>,edim,'matrix','off')

Evaluating an Integral

Evaluate an integral of expression with the function mphint2.

To evaluate the integral of the expression over the domain with the highest space 
domain dimension call the function mphint2 as in this command:

[d1,...] = mphint2(model,{'e1',...},edim)

where e1,... are the expressions to integrate. The values d1,... are returned as a 
1xP double array, with P the length of inner parameters. edim is the integration 
dimension, which can be 'line', 'surface', 'volume', or an integer value that 
specifies the space dimension (1, 2, or 3). 

The rest of this section has additional information for the function mphint2:

• Specify the Integration Data

• Output Format

• Specify the Integration Settings

S P E C I F Y  T H E  I N T E G R A T I O N  D A T A

The function mphint2 supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the integration:

data = mphint2(model,<expr>,edim,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the integration domain:
R  4 :  W O R K I N G  W I T H  M O D E L S



data = mphint2(model,<expr>,edim,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection the output value 
is NaN. 

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

data = mphint2(model,<expr>,edim,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution, or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphint2(model,<expr>,edim,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end', to evaluate the 
expression for all or the last outer solution respectively. The default settings use the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphint2(model,<expr>,edim,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• In case of data series, such as from a parametric or a transient study, an operation 
can be applied. To perform data series operation use the function mphint2 as in the 
command below:

data = mphint2(model,<expr>,edim,'dataseries',<dataoperation>)

where <dataoperation> can be one of the following value: 'none' (no operation 
performed), 'average' (to compute average of the selected series), 'integral' 
(to integrate over series), 'maximum' (to evaluate the maximum over series), 
'minimum' (to evaluate the minimum), 'rms' (to compute the root mean square), 
'stddev' (to compute the standard deviation), or 'variance' (to compute the 
variance).
E X T R A C T I N G  R E S U L T S  |  171



172 |  C H A P T E
O U T P U T  F O R M A T

The function mphint2 also supports other output formats.

To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphint2(model,<expr>,edim)

with unit is a 1xN cell array where N is the number of expressions to evaluate.

By default mphint2 returns the results as a squeezed singleton. To get the full 
singleton, set the squeeze property to off:

data = mphint2(model,<expr>,edim,'squeeze','off')

Set the property matrix to off to return the data as a cell array instead of a double 
array:

data = mphint2(model,<expr>,edim,'matrix','off')

S P E C I F Y  T H E  I N T E G R A T I O N  S E T T I N G S

To specify integration settings such as the integration method, integration order, or 
axisymmetry assumption using these properties:

• method, specify the integration method, which can be either integration or 
summation:

data = mphint2(model,<expr>,edim,'method',method)

where method can be 'integration' or 'summation'. The default uses the 
appropriate method for the given expression. 

• intorder, specify the integration order:

data = mphint2(model,<expr>,edim,'intorder',<order>)

where order is a positive integer. The default value is 4.

• intsurface or intvolume, compute surface or volume integral for axisymmetric 
models:

data = mphint2(model,<expr>,edim,'intsurface','on')
data = mphint2(model,<expr>,edim,'intvolume','on')

For datasets other than Solution, Particle, Cut*, Time Integral, Time 
Average, Surface, and Line, the integration order does correspond to an 
element refinement.
R  4 :  W O R K I N G  W I T H  M O D E L S



Evaluating an Expression Average

Use the function mphmean to evaluate the average of a given expression over inner 
solution lists. To evaluate the mean of the expressions e1,... use the command 
mphmean:

[d1,...] = mphmean(model,{'e1',...},edim)

where edim is a string to define the element entity dimension: 'volume', 'surface', 
or 'line'. edim can also be a positive integer (3, 2, or 1 respectively). The output 
variables d1,... are an NxP array where N is the number of inner solutions and P the 
number of outer solutions.

The rest of this section has additional information for the function mphmean:

• Specify the Evaluation Data

• Output Format

• Specify the Integration Settings

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphmean supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphmean(model,<expr>,edim,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the domain selection for evaluation:

data = mphmean(model,<expr>,edim,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection the output value 
is NaN. 

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:
E X T R A C T I N G  R E S U L T S  |  173



174 |  C H A P T E
data = mphmean(model,<expr>,edim,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphmean(model,<expr>,edim,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer array corresponding to the outer 
solution index. <outersolnum> can also be a string, 'all' or 'end', to evaluate 
the expression for all or the last outer solution, respectively. The default setting uses 
the first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphmean(model,<expr>,edim,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• In case of data series, such as from a parametric or a transient study, an operation 
can be applied. To perform data series operation use the function mphmean as in the 
command below:

data = mphmean(model,<expr>,edim,'dataseries',<dataoperation>)

where <dataoperation> can be one of the following value: 'none' (no operation 
performed), 'average' (to compute average of the selected series), 'integral' 
(to integrate over series), 'maximum' (to evaluate the maximum over series), 
'minimum' (to evaluate the minimum), 'rms' (to compute the root mean square), 
'stddev' (to compute the standard deviation), or 'variance' (to compute the 
variance).

O U T P U T  F O R M A T

The function mphmean also supports other output formats.

To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphmean(model,<expr>,edim)

where unit is a 1xN cell array and N is the number of expressions to evaluate.

By default mphmean returns the results as a squeezed singleton. To get the full 
singleton set the squeeze property to off:
R  4 :  W O R K I N G  W I T H  M O D E L S



data = mphmean(model,<expr>,edim,'squeeze','off')

Set the property matrix to off to return the data as a cell array instead of a double 
array:

data = mphmean(model,<expr>,edim,'matrix','off')

S P E C I F Y  T H E  I N T E G R A T I O N  S E T T I N G S

You can specify integration settings such as an integration method or integration order 
to perform the mean operation. The available integration properties are:

• method, specify the integration method, which can be either integration or 
summation:

data = mphmean(model,<expr>,edim,'method',method)

where method can be 'integration' or 'summation'. The default uses the 
appropriate method for the given expression. 

• intorder, specify the integration order:

data = mphmean(model,<expr>,edim,'intorder',<order>)

where <order> is a positive integer. The default value is 4.

Extracting Data at Node Points

The function mpheval lets you evaluate expressions on node points.

Call the function mpheval as in this command:

pd = mpheval(model, <expr>)

where <expr> is a string cell array that lists the expression to evaluate. The expression 
has to be defined in the COMSOL model object in order to be evaluated.

pd is a structure with the following fields:

• expr contains the list of names of the expressions evaluated with mpheval;

• d1 contains the value of the expression evaluated. The columns in the data value 
fields correspond to node point coordinates in columns in the field p. In case of 
several expressions are evaluated in mpheval, additional field d2, d3,... are available;

• p contains the node point coordinates information. The number of rows in p is the 
number of space dimensions;

• t contains the indices to columns in pd.p of a simplex mesh; each column in pd.t 
represents a simplex;
E X T R A C T I N G  R E S U L T S  |  175



176 |  C H A P T E
• ve contains the indices to mesh elements for each node points; and

• unit contains the list of the unit for each evaluated expressions.

The rest of this section has additional information for the function mpheval:

• Specify the Evaluation Data

• Output Format

• Specify the Evaluation Quality

• Display the Expression in Figures

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mpheval supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

pd = mpheval(model, <expr>, 'dataset', <dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model. Selection datasets such as Cut Point, Cut Line, Edge, Surface, 
and so forth are not supported.

• selection, specify the domain selection for evaluation:

pd = mpheval(model, <expr>, 'selection', <seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection, the output value 
is NaN. 

• edim, specify the element dimension for evaluation:

pd = mpheval(model, <expr>, 'edim', edim)

where edim is one of the strings 'point', 'edge', 'boundary', or 'domain'. It is 
also possible to use the corresponding integer which in 3D is in the range from 0 to 
3. The default settings correspond to the model geometry space dimension. When 
using a lower space dimension value, make sure that the evaluation point 
coordinates dimension has the same size.

Use the function mphevalpoint to evaluate expressions at geometric 
points (see Evaluating an Expression at Geometry Vertices).
R  4 :  W O R K I N G  W I T H  M O D E L S



• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

pd = mpheval(model, <expr>, 'solnum', <solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution, or all inner solution respectively. By default the evaluation is 
performed on all inner solution.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

pd = mpheval(model, <expr>, 'outersolnum', <outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end', to evaluate the 
expression for all or the last outer solution respectively. The default setting uses the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

pd = mpheval(model, <expr>, 't', <time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• phase, specify the phase in degrees:

pd = mpheval(model, <expr>, 'phase', <phase>)

where <phase> is a double value.

• pattern, use Gauss point evaluation:

pd = mpheval(model, <expr>, 'pattern','gauss')

The default evaluation is performed on the Lagrange points. 

O U T P U T  F O R M A T

The function mpheval returns a structure in the MATLAB workspace. You can specify 
other output data formats.

To only obtain the data evaluation as a double array, set the property dataonly to on. 
This is speeds up the call to COMSOL since the coordinate and element information 
is not retrieved.

pd = mpheval(model, <expr>, 'dataonly', 'on')

Returns only the real part in the data evaluation with the property complexout:
E X T R A C T I N G  R E S U L T S  |  177



178 |  C H A P T E
pd = mpheval(model, <expr>, 'complexout', 'off')

S P E C I F Y  T H E  E V A L U A T I O N  Q U A L I T Y

Define mpheval function settings to specify the evaluation quality using these 
properties:

• refine, specify the element refinement for evaluation:

pd = mpheval(model, <expr>, 'refine', <refine>)

where <refine> is a positive integer. The default value is 1 which set the simplex 
mesh identical to the geometric mesh. Many model use second order elements for 
which a refine value of 2 must be used to use all the data in the model.

• smooth, specify the smoothing method to enforce continuity on discontinuous data 
evaluation:

pd = mpheval(model, <expr>, 'smooth', smooth)

where smooth is either 'none', 'everywhere', or 'internal' (default). Set the 
property to none to evaluate the data on elements independently, set to 
everywhere to apply the smoothing to the entire geometry, and set to internal 
to smooth the quantity inside the geometry (but no smoothing takes place across 
borders between domains with different settings). The output with the same data 
and same coordinates are automatically merged, which means that the output size 
can differ depending on the smoothing method.

• recover, specify the accurate derivative recovery:

pd = mpheval(model, <expr>, 'recover', recover)

where recover is either 'ppr', 'pprint', or 'off' (default). Set the property to 
ppr to perform recovery inside domains or set to pprint to perform recovery inside 
domains. Because the accurate derivative processing takes time, the property is 
disabled by default.

O T H E R  E V A L U A T I O N  P R O P E R T I E S

To not use complex-value functions with real inputs, use the property complexfun:

pd = mpheval(model, <expr>, 'complexfun', 'off')

The default value uses complex-valued functions with real inputs.

Use the property matherr to return an error for undefined operations or expressions:

pd = mpheval(model, <expr>, 'matherr', 'on')
R  4 :  W O R K I N G  W I T H  M O D E L S



D I S P L A Y  T H E  E X P R E S S I O N  I N  F I G U R E S

You can display an expression evaluated with mpheval in an external figure with the 
function mphplot (see Displaying The Results).

Evaluating an Expression at Geometry Vertices

The function mphevalpoint returns the result of a given expression evaluated at the 
geometry points:

[d1,...] = mphevalpoint(model,{'e1',...})

where e1, … are the COMSOL expressions to evaluate. The output d1, … is an 
N-by-P double array, where N is the number of evaluation points and P the length of 
the inner solution. 

The rest of this section has additional information for the function mphevalpoint:

• Specify the Evaluation Data

• Output Format

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphevalpoint supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphevalpoint(model,<expr>,'dataset',<dsettag>)
<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the domain selection for evaluation:

data = mphevalpoint(model,<expr>,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection, the output value 
is NaN.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:
E X T R A C T I N G  R E S U L T S  |  179



180 |  C H A P T E
data = mphevalpoint(model,<expr>,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution, or all inner solution respectively. By default the evaluation is 
performed on all inner solution.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphevalpoint(model,<expr>,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end', to evaluate the 
expression for all or the last outer solution respectively. The default settings use the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphevalpoint(model,<expr>,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

Perform a data series operation with the dataseries property:

data = mphevalpoint(model,<expr>,'dataseries',dataseries)

where dataseries is either 'mean', 'int', 'max', 'min', 'rms', 'std', or 'var'. 
Depending on the property value, mphevalpoint performs the following operations 
— mean, integral, maximum, minimum, root mean square, standard deviation, or 
variance, respectively.

When performing a minimum or maximum operation on the data series, you can 
specify to perform the operation using the real or the absolute value. Set the property 
minmaxobj to 'real' or 'abs', respectively:

data = mphevalpoint(model,<expr>,'dataseries',dataseries,... 
'minmaxobj', valuetype)

By default valuetype is 'real'.

O U T P U T  F O R M A T

The function mphevalpoint supports other output formats.

To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphevalpoint(model,<expr>)

with unit is a 1xN cell array where N is the number of expressions to evaluate.
R  4 :  W O R K I N G  W I T H  M O D E L S



By default, mphevalpoint returns the results as a squeezed singleton. To get the full 
singleton set the squeeze property to off:

data = mphevalpoint(model,<expr>,'squeeze','off')

Set the property matrix to off to return the data as a cell array instead of a double 
array:

data = mphevalpoint(model,<expr>,'matrix','off')

Evaluating Expressions on Particle/Ray Trajectories

Evaluate expressions on particle trajectories with the function mphparticle and on 
and ray trajectories with the function mphray.

Evaluate expressions on particle and ray trajectories with either the function 
mphparticle or mphray. 

To evaluate the particle position and the particle velocity run mphparticle as in this 
command:

pd = mphparticle(model)

pd is a structure containing the information about particle position and particle 
velocity at every time step. The information is stored in the following fields:

• p contains the coordinates of the particle position along the trajectories. The data 
are stored in a NxMxL array where N is the number of time steps, M the number of 
evaluation point along the particle trajectories, and L the evaluation space 
dimension.

• v contains the value of the particle velocity along the trajectories. The data are 
stored in a NxMxL array where N is the number of time steps, M the number of 
evaluation points along the particle trajectories, and L the evaluation space 
dimension.

• t contains the list of evaluation time.

mphray supports only Ray Trajectories datasets. mphparticle supports 
both Ray Trajectories and Particle Trajectories datasets.

In this section you can replace the command mphparticle and mphray 
as they support the same properties.
E X T R A C T I N G  R E S U L T S  |  181



182 |  C H A P T E
You can also specify expressions to evaluate along the particle trajectories. Run the 
function mphparticle as in this command:

pd = mphparticle(model,'expr','e1')

where 'e1' is the expression to evaluate along the particle trajectories. The output 
structure pd contains the fields p, v, and t (described above) with the following ones:

• unit contains the unit of the evaluated expression;

• d1 contains the value of the expression. The data are stored in a NxM array where 
N is the number of time steps and M the number of evaluation points along the 
particle trajectories; and

• expr contains the list of the evaluated expression.

Use a string cell array to evaluate several expressions at once. The result of the 
evaluation is then stored in the field d1,... corresponding to each evaluated 
expression.

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphparticle supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

pd = mphparticle(model,'expr',<expr>,'dataset',<dsettag>)

<dsettag> is the tag of a particle solution dataset. The default value is the current 
particle solution dataset of the model.

• To evaluate the expression data at a specific time use the property t:

pd = mphparticle(model,'expr',<expr>,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

O U T P U T  F O R M A T

The function mphparticle also supports other output formats.

Set the property dataonly to on to return only the data related to the specified 
expression:

pd = mphparticle(model,'expr',<expr>,'dataonly','on')

The output structure pd only contains the field unit, d#, expr, and t (described 
above).
R  4 :  W O R K I N G  W I T H  M O D E L S



Evaluating a Global Expression

Evaluate a global expression with the function mphglobal. 

To evaluate a global expression at the MATLAB® prompt, call the function 
mphglobal as in this command:

[d1,...] = mphglobal(model,{'e1',...})

where e1,... are the COMSOL Multiphysics global expressions to evaluate. The 
output values d1,... are returned as a Px1 double array, with P the length of inner 
parameters.

The rest of this section has additional information for the function mphglobal:

• Specify the Evaluation Data

• Output Format

• Other Evaluation Properties

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphglobal supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

data = mphglobal(model,<expr>,'dataset',<dsettag>)

<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

data = mphglobal(model,<expr>,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

data = mphglobal(model,<expr>,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end' to evaluate the 
E X T R A C T I N G  R E S U L T S  |  183



184 |  C H A P T E
expression for all or the last outer solution, respectively. The default settings uses the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

data = mphglobal(model,<expr>,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• phase, specify the phase in degrees:

data = mphglobal(model,<expr>,'phase',<phase>)

where <phase> is a double value.

O U T P U T  F O R M A T

The function mphglobal also supports other output formats.

To extract the unit of the evaluated expression, define an extra output variable:

[data,unit] = mphglobal(model,<expr>)

with unit is a 1xN cell array where N is the number of expressions to evaluate.

Returns only the real part in the data evaluation with the property complexout:

data = mphglobal(model,<expr>,'complexout','off')

O T H E R  E V A L U A T I O N  P R O P E R T I E S

Set the unit property to specify the unit of the evaluation:

data = mphglobal(model,<expr>,'unit',<unit>)

where <unit> is a cell array with the same length as <expr>.

Use the property matherr to return an error for undefined operations or expressions:

data = mphglobal(model,<expr>,'matherr','on')

Evaluating a Matrix Expression at Points

The function mphevalpointmatrix returns the result of a given matrix expression 
evaluated at the points:

M = mphevalpointmatrix(model,<expr>,...)

where <expr> is the COMSOL expressions to evaluate. The output M is a matrix.
R  4 :  W O R K I N G  W I T H  M O D E L S



The rest of this section has additional information for the function 
mphevalpointmatrix:

• Specify the Evaluation Data

• Output Format

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphevalpoint supports the following properties to set the data of the 
evaluation to perform:

• dataset, specify the solution dataset to use in the evaluation:

M = mphevalpointmatrix(model,<expr>,'dataset',<dsettag>)
<dsettag> is the tag of a solution dataset. The default value is the current solution 
dataset of the model.

• selection, specify the domain selection for evaluation:

M = mphevalpointmatrix(model,<expr>,'selection',<seltag>)

where <seltag> is the tag of a selection node to use for the data evaluation. 
<seltag> can also be a positive integer array that corresponds to the domain index 
list. The default selection is all domains where the expression is defined. If the 
evaluation point does not belong to the specified domain selection, the output value 
is NaN.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:

M = mphevalpointmatrix(model,<expr>,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution, or all inner solution respectively. By default the evaluation is 
performed on all inner solution.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

M = mphevalpoint(model,<expr>,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end', to evaluate the 
expression for all or the last outer solution respectively. The default settings use the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:
E X T R A C T I N G  R E S U L T S  |  185



186 |  C H A P T E
M = mphevalpointmatrix(model,<expr>,'t', <time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• Perform a data series operation with the dataseries property:

M = mphevalpointmatrix(model,<expr>,'dataseries', dataseries)

where dataseries is either 'none', 'average' or 'sum'. 

Evaluating a Global Matrix

mphevalglobalmatrix evaluates the matrix variable such as S-parameters in a model 
with several ports activated as a parametric sweep and a frequency-domain study.

Note: S-parameters evaluation requires the AC/DC Module or the RF Module.

To evaluate the global matrix associated to the expression <expr>, enter the 
command:

M = mphevalglobalmatrix(model,<expr>)

The output data M is an NxN double array, where N is the number of port boundary 
condition set in the model.

The rest of this section has additional information for the function 
mphevalglobalmatrix:

• Specify the Evaluation Data

• Specify Matrix transformation

S P E C I F Y  T H E  E V A L U A T I O N  D A T A

The function mphevalglobalmatrix supports the following properties to set the data 
of the evaluation to perform:

• Set the solution dataset for evaluation with the property dataset:

M = mphevalglobalmatrix(model,<expr>,'dataset',<dsettag>)

where <dsettag> is the tag of a solution data.

• solnum, specify the inner solution number for data evaluation. Inner solutions are 
generated for the following analysis types: time domain, frequency domain, 
eigenvalue, or stationary with continuation parameters:
R  4 :  W O R K I N G  W I T H  M O D E L S



M = mphevalglobalmatrix(model,<expr>,'solnum',<solnum>)

where <solnum> is an integer array corresponding to the inner solution index. 
<solnum> can also be a string:'end' or 'all' to evaluate the expression for the last 
inner solution or all inner solutions, respectively. By default the evaluation is 
performed on all inner solutions.

• outersolnum, specify the outer solution number for data evaluation. Outer 
solutions are generated with parametric sweeps:

M = mphevalglobalmatrix(model,<expr>,'outersolnum',<outersolnum>)

where <outersolnum> is a positive integer corresponding to the outer solution 
index. <outersolnum> can also be a string, 'all' or 'end' to evaluate the 
expression for all or the last outer solution, respectively. The default settings uses the 
first outer solution for the data evaluation.

• To evaluate the expression data at a specific time use the property t:

dM = mphevalglobalmatrix(model,<expr>,'t',<time>)

where <time> is a double array. The default value corresponds to all the stored time 
steps.

• Perform a data series operation with the dataseries property:

M = mphevalglobalmatrix(model,<expr>,'dataseries', dataseries)

where dataseries is either 'none', 'average', or 'sum'.

• Perform a data series operation on outer data with the outerdataseries property:

M = mphevalglobalmatrix(model,<expr>,'outerdataseries', 
outerdataseries)

where outerdataseries is either 'none', 'average', or 'sum'.

S P E C I F Y  M A T R I X  T R A N S F O R M A T I O N

To apply a transformation operation to compute the inverse of the matrix variable or 
to convert between the impedance matrix, Z, the admittance matrix, Y, and the 
S-parameter matrix S, use the trans property:

M = mphevalglobalmatrix(model,<expr>,'trans',<trans>)

where <trans> can be either: 'maxwellmutual' (from Maxwell to mutual 
capacitance), 'mutualmaxwell' (from mutual to Maxwell capacitance), 'none' (no 
transformation), 'inverse' (compute the inverse of the matrix), 'sy' (from S to Y 
transformation), 'sz' (from S to Z transformation), 'ys' (from Y to S 
transformation), 'yz' (from Y to Z transformation), 'zs' (from Z to S 
transformation), or 'zy' (from Z to Y transformation).
E X T R A C T I N G  R E S U L T S  |  187



188 |  C H A P T E
For S to Y and Y to S transformation you need to specify the characteristic admittance, 
to proceed use the command:

M = mphevalglobalmatrix(model,<expr>,'trans','sy','y0',<value>)

M = mphevalglobalmatrix(model,<expr>,'trans','ys','y0',<value>)

where <value> is the characteristic admittance in siemens (S). The default value is 1 S.

For S to Z and Z to S transformation you need to specify the characteristic impedance, 
to proceed use the command:

M = mphevalglobalmatrix(model,<expr>,'trans','sz','z0',<value>)

M = mphevalglobalmatrix(model,<expr>,'trans','zs','z0',<value>)

where <value> is the characteristic admittance in ohm (Ω).The default value is 1 Ω. 

Extracting Data From Tables

In the Table node you can store the data evaluated with the COMSOL Multiphysics 

built-in evaluation method (see The Numerical Node Syntax).

Use mphtable to extract the data stored in the table with the tag <tbltag>. Enter:

tabl = mphtable(model,<tbltag>)

This creates a structure tabl made with the following fields:

• headers for the table,

• tag of the table,

• data of the extracted table, and

filename when the table is exported to file.

Global Matrix Evaluation section in the COMSOL Reference Manual.
R  4 :  W O R K I N G  W I T H  M O D E L S



Runn i n g  Mode l s  i n  a  L oop

A common use of LiveLink™ for MATLAB® is to run models in a loop. MATLAB 
provides several functionalities to run loops, including conditional statements and 
error handling, and this section shows how to use that functionality together with the 
COMSOL API syntax to run COMSOL Multiphysics® models in loops.

In this section:

• The Parametric Sweep Node

• Running Model in a Loop Using the MATLAB® Tools

The Parametric Sweep Node

Using the COMSOL API you can run models in loops. See Adding a Parametric 
Sweep in the section Building Models.

Running Model in a Loop Using the MATLAB® Tools

Use MATLAB® tools such as for or while statements to run your model in a loop. 
The COMSOL API commands can be included in scripts using MATLAB commands. 
To evaluate such a script you need to have MATLAB connected to a COMSOL server.

To run a model in a loop you do not need to run the entire M-file’s commands from 
scratch. It is recommended to load a COMSOL model in MATLAB and run the loop 
only over the desired operations. The COMSOL model is automatically updated when 
running the study node.

By using the COMSOL built-in function to run models in loops, you can 
ensure the model is saved automatically at each iteration. COMSOL also 
offers tools to take advantage of clusters and distributed computer 
architectures.
R U N N I N G  M O D E L S  I N  A  L O O P  |  189



190 |  C H A P T E
You can run an M-file for a model from scratch if required, for example, to generate 
the geometry in loop.

When running loops in MATLAB, the iteration progress is taken care of by MATLAB; 
only the COMSOL commands are run in the COMSOL server. 

You can generate as many nested loops as needed and combine the loop with other 
MATLAB conditional statements such as if and switch or error handling statements 
such as try/catch. Or break the loop with break, or jump to the next loop iteration 
with continue.

G E O M E T R Y  P A R A M E T E R I Z A T I O N

This example shows how to proceed to geometry parameterization using a MATLAB 
for loop. The model consists of the busbar example available in the COMSOL 
Multiphysics Applications Libraries; see the Introduction to COMSOL Multiphysics.

In this example the loop iterates over the busbar’s width, wbb. The solution for each 
parameter value is displayed using the second plot group defined in the COMSOL 
model. All the results are plotted in the same figure. 

The model run inside a MATLAB loop is not automatically saved. Make 
sure to save the model at each iteration using the command mphsave to 
save the model object. 

If you are not interested in saving the entire model object at each 
iteration, you can extract data and store it in the MATLAB workspace. 
See Extracting Results to find the most suitable function to your model.

See the MATLAB help for more information about the MATLAB 
commands for, while, if, switch, try/catch, break, and continue.
R  4 :  W O R K I N G  W I T H  M O D E L S



The results from the computation display in these plots:

Code for use with MATLAB®

model = mphopen('busbar');
w = [5e-2 10e-2 15e-2 20e-2];
for i = 1:4
    model.param.set('wbb',w(i));
    model.study('std1').run;
    subplot(2,2,i);
    mphplot(model,'pg5','rangenum',1);
end
R U N N I N G  M O D E L S  I N  A  L O O P  |  191



192 |  C H A P T E
Runn i n g  Mode l s  i n  Ba t c h  Mode

Use LiveLink™ for MATLAB® to model in batch mode. At the MATLAB prompt you 
can run commands to set up the batch job using the COMSOL Multiphysics® built-in 
method or run custom scripts directly from a command line. In this section:

• The Batch Node

• Running an M-File in Batch Mode

• Running an M-File in Batch Mode Without Display

The Batch Node

Using the COMSOL API you can run models in a loop. See Adding a Job Sequence.

Running an M-File in Batch Mode

To run in batch an M-script that runs COMSOL Model is required. Start COMSOL 
with MATLAB at a terminal window with this command:

comsol mphserver matlab myscript

where myscript is the M-script, saved as myscript.m, that contains the operation to 
run at the MATLAB prompt. 

You can also run the script in batch without the MATLAB desktop and the MATLAB 
splash screen. Enter this command:

comsol mphserver matlab myscript -nodesktop -mlnosplash

Running COMSOL with MATLAB® in batch mode requires that you 
have xterm installed on your machine. If this is not the case see Running 
an M-File in Batch Mode Without Display.

COMSOL Multiphysics does not automatically save the model. You need 
to make sure that the model is saved before the end of the execution of 
the script. See Loading and Saving a Model.
R  4 :  W O R K I N G  W I T H  M O D E L S



Running an M-File in Batch Mode Without Display

To connect COMSOL with a MATLAB® terminal requires that xterm is installed on 
the machine. If this is not the case as it might be for a computation COMSOL server, 
a workaround is to connect manually MATLAB to a COMSOL server with the 
function mphstart.

These steps describe how to run an M-script that runs a COMSOL model:

1 In a system terminal prompt start a COMSOL Multiphysics Server with the 
command:

comsol mphserver -silent &

2 In the same terminal window change the path to the COMSOL installation 
directory:

cd COMSOL_path/mli

3 From that location, start MATLAB without display and run the mphstart function 
in order to connect MATLAB to COMSOL:

matlab -nodesktop -nosplash -r "mphstart; myscript"

For more information about how to connect MATLAB to a COMSOL server see 
Starting COMSOL® with MATLAB® on Windows ®/ Mac OSX / Linux®.
R U N N I N G  M O D E L S  I N  B A T C H  M O D E  |  193



194 |  C H A P T E
Work i n g  w i t h  Ma t r i c e s

In this section:

• Extracting System Matrices

• Set System Matrices in the Model

• Extracting State-Space Matrices

• Extracting Reduced Order State-Space Matrices

Extracting System Matrices

Extract the matrices of the COMSOL Multiphysics linearized system with the function 
mphmatrix. To call the function mphmatrix, specify a solver node and the list of the 
system matrices to extract:

str = mphmatrix(model, <soltag>, 'out', out)

where <soltag> is the solver node tag used to assemble the system matrices and out 
is a cell array containing the list of the matrices to evaluate. The output data str 
returned by mphmatrix is a MATLAB® structure, and the fields correspond to the 
assembled system matrices.

The system matrices that can be extracted with mphmatrix are listed in the table:

See the Advanced section and the Assemble section in the COMSOL 
Multiphysics Reference Manual, for more information about matrix 
evaluation.

EXPRESSION DESCRIPTION

K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

D Damping matrix

E Mass matrix

NF Constraint force Jacobian
R  4 :  W O R K I N G  W I T H  M O D E L S



S E L E C T I N G  L I N E A R I Z A T I O N  P O I N T S

The default selection of linearization points for the system matrix assembly is the 
current solution of the solver node associated to the assembly.

Save time during the evaluation by manually setting the linearization point. Use the 
initmethod property as in this command:

str = mphmatrix(model,<soltag>,'out',out,'initmethod',method)

where method corresponds to the type of linearization point — the initial value 
expression ('init') or a solution ('sol').

To set the solution to use for the linearization point, use the property initsol:

str = mphmatrix(model,<soltag>,'out',out,'initsol',<initsoltag>)

where <initsoltag> is the solver tag to use for linearization points. You can also set 
the initsol property to 'zero', which corresponds to using a null solution vector as 
a linearization point. The default is the current solver node where the assemble node 
is associated.

NP Optimization constraint Jacobian (*)

MP Optimization constraint vector (*)

MLB Lower bound constraint vector (*)

MUB Upper bound constraint vector (*)

Kc Eliminated stiffness matrix

Lc Eliminated load vector

Dc Eliminated damping matrix

Ec Eliminated mass matrix

Null Constraint null-space basis

Nullf Constraint force null-space matrix

ud Particular solution ud

uscale Scale vector

(*) Requires the Optimization Module.

EXPRESSION DESCRIPTION

If the linearization point is not specified when calling mphmatrix, the 
COMSOL Multiphysics software automatically runs the entire solver 
configuration before assembling and extracting the matrices.
W O R K I N G  W I T H  M A T R I C E S  |  195



196 |  C H A P T E
For continuation, time-dependent, or eigenvalue analyses you can set the solution 
number to use as a linearization point. Use the solnum property:

str = mphmatrix(model,<soltag>,'out',out,'solnum',<solnum>)

where <solnum> is an integer value corresponding to the solution number. The default 
value is the last solution number available with the current solver configuration.

S P E C I F Y I N G  W H E N  T O  A S S E M B L E  T H E  M A T R I C E S  I N  T H E  S O L U T I O N  

S E Q U E N C E

You can specify when in the solution sequence to assemble the system matrices, for 
instance after computing the solution or if you have a solution sequence combining 
different solver. By default the system matrices are assembled before running the first 
solver, just after the first dependent variable node in the solution sequence. To specify 
the node that precede the matrix extraction use the extractafter property:

str = mphmatrix(model,<soltag>,'out',out,'extractafter',<nodetag>)

where <nodetag> is the tag of a solution sequence node such as dependent variable or 
solver nodes.

E I G E N V A L U E  P R O B L E M S

For eigenvalue problems, it is necessary to specify the eigenvalue name and the 
eigenvalue linearization point. Used the property eigname to specify the name of the 
eigenvalue and eigref to specify the value of eigenvalue linearization point:

str = mphmatrix(model,<soltag>,'out',out,'eigname',<eigname>)

str = mphmatrix(model,<soltag>,'out',out,'eigname',<eigname>,... 
'eigref', <eigref>)

where <eigname> is a string and <eigref> a double.

R O W  E Q U I L I B R A T I O N ,  M A T R I X  S Y M M E T R Y  A N D  N U L L - S P A C E  F U N C T I O N

The default assembly of the system matrices assumes row equilibration of the system 
matrices. It is however possible to extract the unscaled matrices, to proceed set the 
rowscale property to off:

str = mphmatrix(model,<soltag>,'out',out,'rowscale','off')

See Retrieving Xmesh Information to learn how to get relation between 
the degrees of freedom information in the matrix system and coordinates 
or element information.
R  4 :  W O R K I N G  W I T H  M O D E L S



Set symmetry property to specify manually the symmetry type for the matrix 
evaluation. The symmetry property support the following values:

str = mphmatrix(model,<soltag>,'out',out,'symmetry',sym)

where sym can be either of one of the following value:

• 'on', to assemble and extract the system matrices as symmetric.

• 'off', to assemble and extract the system matrices as non-symmetric.

• 'hermitian', to assemble and extract the system matrices as hermitian.

• 'auto', to let the solver assembly determine the type of the system matrices.

Use the nullfun property to specify the method for computation of matrices needed 
for constraint handling:

• 'flnullorth', a method based on singular value decomposition;

• 'flspnull', to handle constraint matrices with nonlocal couplings using singular 
sparse algorithm;

• 'explicitsp', to handle constraints by explicitly eliminating the DOFs on the 
destination side of the explicit constraints. The remaining constraints are handled 
using the Sparse method.

• 'explicitorth', to handle constraints by explicitly eliminating the DOFs on the 
destination side of the explicit constraints. The remaining constraints are handled 
using the Orthonormal method.

• 'auto', to let the software automatically determine the most appropriate method, 
which uses an explicit handling of nodal constraints and one of the Orthonormal or 
Sparse methods for the remaining constraints.

C O M P L E X  F U N C T I O N

If the system contains complex function, use the property complexfun to specify how 
to handle such a function. Set this property to on to use complex-valued function with 
real input:

str = mphmatrix(model,<soltag>,'out',out,'complexfun','on');

H A N D L I N G  U N D E F I N E D  O P E R A T I O N S

It is possible to disable the error for undefined operations during the assembly and 
matrix evaluation, to proceed set the property matherr to off as in the command 
below:

str = mphmatrix(model,<soltag>,'out',out,'matherr','off')
W O R K I N G  W I T H  M A T R I C E S  |  197



198 |  C H A P T E
E X T R A C T I N G  T H E  S Y S T E M  M A T R I C E S

The following illustrates how to use the mphmatrix command to extract eliminated 
system matrices of a stationary analysis and linear matrix system at the MATLAB 
prompt.

The model consists of a linear heat transfer problem solved on a unit square with a 1e5 
W/m^2 surface heat source and temperature constraint. Only one quarter of the 
geometry is represented in the model. For simplification reasons, the mesh is made of 
four quad elements and the discretization is set with linear element.

These commands set the COMSOL model object:

model = ModelUtil.create('Model2');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('sq1', 'Square');
geom1.run;

mat1 = comp1.material.create('mat1');
def = mat1.materialModel('def');
def.set('thermalconductivity',4e2);

ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
ht.prop('ShapeProperty').set('boundaryFlux_temperature',false);
ht.prop('ShapeProperty').set('order_temperature',1);
hs1 = ht.feature.create('hs1','HeatSource',2);
hs1.selection.set(1);
hs1.set('Q',1,1e5);

temp1 = ht.feature.create('temp1','TemperatureBoundary',1);
temp1.selection.set([1 2]);

mesh1 = comp1.mesh.create('mesh1');
dis1 = mesh1.feature.create('dis1','Distribution');
dis1.selection.set([1 2]);
dis1.set('numelem',2);
mesh1.feature.create('map1','Map');

std1 = model.study.create('std1');
std1.feature.create('stat','Stationary');
std1.run;

To extract the solution vector of the computed solution, run the function mphgetu as 
in this command:

U = mphgetu(model);
R  4 :  W O R K I N G  W I T H  M O D E L S



To assemble and extract the eliminated stiffness matrix and the eliminated load vector, 
set the linearization point to the initial value expression by entering:

MA = mphmatrix(model ,'sol1', ...
    'Out', {'Kc','Lc','Null','ud','uscale'},...
    'initmethod','sol','initsol','zero');

Solve for the eliminated solution vector using the extracted eliminated system:

Uc = MA.Null*(MA.Kc\MA.Lc);

Combine the eliminated solution vector and the particular vector:

U0 = Uc+MA.ud;

Scale back the solution vector:

U1 = U0.*MA.uscale;

Now compare both solution vector U and U1 computed by COMSOL Multiphysics 
and by the matrix operation, respectively.

Code for use with MATLAB®

model = ModelUtil.create('Model');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 2);
geom1.feature.create('sq1', 'Square');
geom1.run;
mat1 = comp1.material.create('mat1');
def = mat1.materialModel('def');
def.set('thermalconductivity',4e2);
ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
ht.prop('ShapeProperty').set('boundaryFlux_temperature',false);
ht.prop('ShapeProperty').set('order_temperature',1);
hs1 = ht.feature.create('hs1','HeatSource',2);
hs1.selection.set(1);
hs1.set('Q',1,1e5);
temp1 = ht.feature.create('temp1','TemperatureBoundary',1);
temp1.selection.set([1 2]);
mesh1 = comp1.mesh.create('mesh1');
dis1 = mesh1.feature.create('dis1','Distribution');
dis1.selection.set([1 2]);
dis1.set('numelem',2);
mesh1.feature.create('map1','Map');
std1 = model.study.create('std1');
std1.feature.create('stat','Stationary');
std1.run;
U = mphgetu(model);
MA = mphmatrix(model ,'sol1', ...
    'Out', {'Kc','Lc','Null','ud','uscale'},...
    'initmethod','sol','initsol','zero');
W O R K I N G  W I T H  M A T R I C E S  |  199



200 |  C H A P T E
Uc = MA.Null*(MA.Kc\MA.Lc);
U0 = Uc+MA.ud;
U1 = U0.*MA.uscale;

Set System Matrices in the Model

Use the function mphinputmatrix to set a linear matrix system to a model:

mphinputmatrix(model,<str>,<soltag>,<soltypetag>)

This command set the matrices of a linear system stored in the MATLAB® structure 
<str> into the model. The linear system is associated to the solver sequence <soltag> 
and is to be solved by the solver <soltypetag>.

mphinputmatrix only supports the solver types Stationary, Eigenvalue, and Time.

A valid structure <str> for a stationary solver includes the following fields:

A valid structure <str> for a time-dependent or an eigenvalue solver includes the 
following fields:

You can also include the Constraint force Jacobian vector, defined in the field NF.

Once the linear system is loaded in the model, you can directly run the solver.

FIELD DESCRIPTION

K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

EXPRESSION DESCRIPTION

K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

D Damping matrix

E Mass matrix

The system matrices are not stored in the model when it is saved in the 
MPH-format or loaded to the COMSOL Desktop.
R  4 :  W O R K I N G  W I T H  M O D E L S



S E T T I N G  A  M O D E L  W I T H  A  M O D I F I E D  M A T R I X  S Y S T E M

This example deals with heat transfer in solids physics. The geometry and physics 
settings are already set in the model and saved in the MPH-format. The Model 
MPH-file comes with the COMSOL installation.

At the MATLAB prompt you load the model and add an additional line heat source to 
the model directly in the system matrix by manually changing the load vector. Then 
compute the solution of the modified system in COMSOL.

Load the base Model MPH-file and display the geometry:

model = mphopen('model_tutorial_llmatlab.mph');
mphgeom(model)

This results in the following MATLAB figure:

Draw the line to be used as a line heat source in the model and plot the modified 
geometry:

comp1 = model.component('comp1');
b1 = comp1.geom('geom1').feature.create('b1', 'BezierPolygon');
b1.set('p', {'1e-2' '5e-2'; '1e-2' '5e-2'; '1e-2' '1e-2'});
mphgeom(model,'geom1','edgelabels','on','facealpha',0.5);
W O R K I N G  W I T H  M A T R I C E S  |  201



202 |  C H A P T E
In the figure below you can see that the added line as the index 21:

Generate a mesh with finer mesh settings:

mesh1 = comp1.mesh('mesh1');
mesh1.feature.create('ftet1', 'FreeTet');
mesh1.feature('size').set('hauto', 3);
mesh1.run;
mphmesh(model)

Set the solver sequence associated to a stationary study node:

std1 = model.study.create('std1');
std1.feature.create('stat', 'Stationary');
sol1 = model.sol.create('sol1');
sol1.study('std1');
st1 = sol1.feature.create('st1', 'StudyStep');
st1.set('studystep', 'stat');
R  4 :  W O R K I N G  W I T H  M O D E L S



v1 = sol1.feature.create('v1', 'Variables');
v1.set('control', 'stat');
sol1.feature.create('s1', 'Stationary');

Set the dependent variable discretization with linear shape function:

Shape = comp1.physics('ht').prop('ShapeProperty');
Shape.set('order_temperature', 1, 1);

The heat transfer interface automatically compute for internal DOFs in order to 
evaluate fluxes accurately at the boundaries. Deactivate the internal DOFs with this 
command:

Shape.set('boundaryFlux_temperature', false);

Now extract the matrices of the linear system associated to the solver sequence sol1:

ME = mphmatrix(model,'sol1','Out',{'K' 'L' 'M' 'N'},...
    'initmethod','sol','initsol','zero');

To retrieve the degrees of freedom that belong to edge 21, you need to get the 
geometric mesh data:

[stats,data] = mphmeshstats(model);

With the mesh data structure data, you can get the element indices that belong to 
edge 2. Use the MATLAB find function to list all the indices:

elem_idx = find(data.elementity{1}==21)'

With the function mphxmeshinfo, retrieve the finite element mesh information 
associated to solver sequence sol1:

info = mphxmeshinfo(model,'soltag','sol1','studysteptag','v1');

In the info structure you can get the DOFs indices that belong to the edge element 
defined with the indices elem_idx:

dofs = info.elements.edg.dofs;
edgdofs_idx = [];
for i = 1:length(elem_idx)

edgdofs_idx = [edgdofs_idx; dofs(:,elem_idx(i))];
end

edgdofs_idx might contain duplicate DOFs indices. This is because the information 
is from the element level; the duplicate indices correspond to the connecting node 
between two adjacent elements.

First remove the duplicate entities:

unique_idx  = unique(edgdofs_idx);
W O R K I N G  W I T H  M A T R I C E S  |  203



204 |  C H A P T E
Edit the load vector for the DOF that belong to edge 21, the total applied power is 
50 W:

ME.L(unique_idx+1) = 50/length(unique_idx);

Now that the linear system has been modified, set it back in the model:

mphinputmatrix(model,ME,'sol1','s1')

Note: mphmatrix only assembles the matrix system for the dofs solved in the specified 
solver configuration. mphinputmatrix insert the matrix system as defined by the user. 
When inserting matrices in an existing model, the solution format may not be 
compatible with the inserted system matrices. 

In order to have a compatible xmesh solution format compatible with the size of the 
inserted matrices, add a new equation form physics interface, solving only for one 
variable.

gForm = comp1.physics.create('g', 'GeneralFormPDE', {'u'});
gForm.prop('ShapeProperty').set('order', 1);
gForm.prop('ShapeProperty').set('boundaryFlux', false);

Disable the Heat Transfer physics interface.

comp1.physics('ht').active(false);

Compute the solution of the added system:

model.sol('sol1').runAll;

Display the solution:

pg1 = model.result.create('pg1', 'PlotGroup3D');
pg1.feature.create('surf1', 'Surface');
R  4 :  W O R K I N G  W I T H  M O D E L S



mphplot(model,'pg1','rangenum',1)

Code for use with MATLAB®

model = mphopen('model_tutorial_llmatlab.mph');
mphgeom(model)
comp1 = model.component('comp1');
b1 = comp1.geom('geom1').feature.create('b1', 'BezierPolygon');
b1.set('p', {'1e-2' '5e-2'; '1e-2' '5e-2'; '1e-2' '1e-2'});
mphgeom(model,'geom1','edgelabels','on','facealpha',0.5);
mesh1 = comp1.mesh('mesh1');
mesh1.feature.create('ftet1', 'FreeTet');
mesh1.feature('size').set('hauto', 3);
mesh1.run;
mphmesh(model)
std1 = model.study.create('std1');
std1.feature.create('stat', 'Stationary');
sol1 = model.sol.create('sol1');
sol1.study('std1');
st1 = sol1.feature.create('st1', 'StudyStep');
st1.set('studystep', 'stat');
v1 = sol1.feature.create('v1', 'Variables');
v1.set('control', 'stat');
sol1.feature.create('s1', 'Stationary');
Shape = comp1.physics('ht').prop('ShapeProperty');
Shape.set('order_temperature', 1, 1);
Shape.set('boundaryFlux_temperature', false);
ME = mphmatrix(model,'sol1','Out',{'K' 'L' 'M' 'N'},...
    'initmethod','sol','initsol','zero');
[stats,data] = mphmeshstats(model);
elem_idx = find(data.elementity{1}==21)'
info = mphxmeshinfo(model,'soltag','sol1','studysteptag','v1');
dofs = info.elements.edg.dofs;
edgdofs_idx = [];
for i = 1:length(elem_idx)
W O R K I N G  W I T H  M A T R I C E S  |  205



206 |  C H A P T E
    edgdofs_idx = [edgdofs_idx; dofs(:,elem_idx(i))];
end
unique_idx  = unique(edgdofs_idx);
ME.L(unique_idx+1) = 50/length(unique_idx);
mphinputmatrix(model,ME,'sol1','s1')
gForm = comp1.physics.create('g', 'GeneralFormPDE', {'u'});
gForm.prop('ShapeProperty').set('order', 1);
gForm.prop('ShapeProperty').set('boundaryFlux', false);
comp1.physics('ht').active(false);
model.sol('sol1').runAll;
pg1 = model.result.create('pg1', 'PlotGroup3D');
pg1.feature.create('surf1', 'Surface');
mphplot(model,'pg1','rangenum',1)

Extracting State-Space Matrices

Use state-space export to create a linearized state-space model corresponding to a 
COMSOL Multiphysics model. You can export the matrices of the state-space form 
directly to the MATLAB® workspace with the command mphstate.

This section includes information about The State-Space System, how to Extract 
State-Space Matrices and Set Linearization Points and has an Extracting State-Space 
Matrices.

T H E  S T A T E - S P A C E  S Y S T E M

A state-space system is the mathematical representation of a physical model. The 
system consistent in an ODE linking input, output, and state-space variable. A dynamic 
system can be represented with the following system:

An alternative representation of the dynamic system is:

where x is the state variable vector.

If the components of the mass matrix MC are small, it is possible to approximate the 
dynamic state-space model with a static model, where :

dx
dt
------- Ax Bu+=

y Cx Du+=





MCx· MCAx= MCBu+

y Cx Du+=

MCx· 0=
R  4 :  W O R K I N G  W I T H  M O D E L S



Let Null be the PDE constraint null-space matrix and ud a particular solution fulfilling 
the constraints. The solution vector U for the PDE problem can then be written

where u0 is the linearization point, which is the solution stored in the sequence once 
the state-space export feature is run.

C H O O S I N G  T H E  I N P U T

The input parameters should contain all parameters that are of interest as input to the 
model. Moreover if you have any settings in model that are connected to the degrees 
of freedom, like a constraint condition or a spring condition. These have to be declared 
as input in your state-space system. When solving the state-space system in MATLAB, 
subtract to these inputs the initial value of the corresponding DOF, as it is done in the 
example Extracting State-Space Matrices.

E X T R A C T  S T A T E - S P A C E  M A T R I C E S

The function mphstate requires that the input variables, output variables, and the list 
of the matrices to extract in the MATLAB workspace are all defined:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out);

where <soltag> is the solver node tag used to assemble the system matrices listed in 
the cell array out, and <input> and <output> are cell arrays containing the list of the 
input and output variables, respectively.

The output data str returned by mphstate is a MATLAB structure and the fields 
correspond to the assembled system matrices. 

The input variables need to be defined as parameters in the COMSOL model. The 
output variables are defined as domain point probes or global probes in the COMSOL 
model.

The system matrices that can be extracted with mphstate are listed in the table:

EXPRESSION DESCRIPTION

MA McA matrix

MB McB matrix

A A matrix

y D C MCA( ) 1– MCB–( )u=

U Nullx ud u0+ +=
W O R K I N G  W I T H  M A T R I C E S  |  207



208 |  C H A P T E
To extract sparse matrices set the property sparse to on:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'sparse', 'on')

To keep the state-space feature node, set the property keepfeature to on:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'keepfeature', 'on')

S E T  L I N E A R I Z A T I O N  P O I N T S

mphstate uses linearization points to assemble the state-space matrices. The default 
linearization point is the current solution provided by the solver node, to which the 
state-space feature node is associated. If there is no solver associated to the solver 
configuration, a null solution vector is used as a linearization point unless you manually 
set the linearization point to an existing solution.

You can manually select the linearization point to use. Use the initmethod property 
to select a linearization point:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'initmethod', method)

where method corresponds to the type of linearization point — the initial value 
expression ('init') or a solution ('sol').

To set the solution to use for the linearization point, use the property initsol:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'initsol', <initsoltag>)

B B matrix

C C matrix

D D matrix

Mc Mc matrix

Null Null matrix

ud ud vector

x0 x0 vector

EXPRESSION DESCRIPTION

The linearization point needs to be a steady-state solution.
R  4 :  W O R K I N G  W I T H  M O D E L S



where <initsoltag> is the solver tag to use for a linearization point. You can also set 
the initsol property to 'zero', which corresponds to using a null solution vector as a 
linearization point. The default is the current solver node where the assemble node is 
associated.

For continuation, time-dependent, or eigenvalue analyses you can set which solution 
number to use as a linearization point. Use the solnum property:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'solnum', <solnum>)

where <solnum> is an integer value corresponding to the solution number. The default 
value is the last solution number available with the current solver configuration.

If there is a solver associated to the solver configuration <soltag>, you need to extract 
the matrices after the Dependent Variables node in the solver configuration, to proceed 
use the property extractafter as in the command below:

str = mphstate(model, <soltag>, 'input', <input>, ...
    'output', <output>, 'out', out, 'solnum', <solnum>, ...
    'extractafter', <vtag>)

where <vtag> is the tag of the Dependent Variable node. 

S I M U L A T I O N  U S I N G  T H E  C O N T R O L  S Y S T E M  T O O L B O X

The Control System Toolbox makes it possible to analyze state space models in 
MATLAB for control design and to simulate such systems.

State space models can be defined using the ss or sparss function. The sparss 
function can be used if the state space matrices are sparse. The system can be simulated 
using the lsim function. In order to create a reduced order system using MATLAB we 
will use the balred function. This function only accepts the use of full matrices. 
Hence, the function ss is used for defining the state space system in MATLAB. Note 
that calling the function ss with argument matrices that are sparse result in a set of 
warnings. These warnings can be ignored.

The code below show how to use the Control System Toolbox to solve a dynamic 
system from the A, B, C, and D matrices obtained using mphstate:

sys = ss(M.A, M.B, M.C, M.D);
u = repmat(<input>, length(<tspan>), 1);
[y,t] = lsim(sys, u, t);

where <input> is the input vector of the state space system, <tspan> the time step list.

One may obtain a reduced order model using the balred function. 
W O R K I N G  W I T H  M A T R I C E S  |  209



210 |  C H A P T E
redsys = balred(sys, <order>);
[y,t] = step(redsys, <tfinal>);

where <order> is the desired order reduction, and <tfinal> the simulation end time.

E X T R A C T I N G  S T A T E - S P A C E  M A T R I C E S

In this section you will find an example that illustrate how to use the mphstate 
function to extract the state-space matrices. 

The problem studied here is a heat transfer model set with a heat source. In the 
expected state space system the heat source is set as input. The temperature at specified 
location is used as output. The tutorial shows how to extract the state space matrices 
and solve the system using the MATLAB functionalities.

This is the same problem solved as in Extracting Reduced Order State-Space Matrices 
so you can compare the solution, and computational performance when solving the 
problem with reduced order model state space system matrices.

First, load the model model_tutorial_llmatlab from the Application Library:

model = mphopen('model_tutorial_llmatlab');

This is model is used as base model for documentation tutorial. The geometry, mesh, 
physics is set but for this specific problem you need to edit the model to use parameter 
for the initial and external temperature as they will be used later in the state space 
matrices export:

power = 30; Temp = 300; Text = 300; T0 = 293.15;
model.param.set('power', power);
model.param.set('Temp', Temp);
model.param.set('T0', T0);
model.param.set('Text', Text);
comp1 = model.component('comp1');
ht = comp1.physics('ht');
ht.feature('init1').set('Tinit', 'T0');
ht.feature('hf1').set('Text', 'Text');

You need now to add a time dependent study:

std = model.study.create('std');
time = std.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');
time.set('usertol',true);
time.set('rtol','1e-4');

Add a domain point probe plot, which will defines the output of the state space system:

pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
R  4 :  W O R K I N G  W I T H  M O D E L S



pdom.set('coords3',[1e-2 1e-2 1e-2]);

Run the study and create a plot group to display the probe:

std.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
glob1.set('expr', 'comp1.ppb1');

Extract the state-space system matrices Mc, MA, MB, C, and D, of the model with power, 
Temp, and Text as input and the probe evaluation comp1.ppb1 as output:

M = mphstate(model,'sol1','out',{'Mc','MA','MB','C','D'},...
   'input',{'power','Temp','Text'},...

'output','comp1.ppb1');

Set the input power parameter and the reference temperature:

input = [power Temp-T0 Text-T0];

You can noticed that some of the input value are subtracted with the initial condition. 
This is because these inputs are directly linked to the temperature degree of freedom 
using a constraint condition.

func = @(t,x) M.MA*x + M.MB*input';

Set the solver option such as the mass and the Jacobian:

opt = odeset('mass',M.Mc,'jacobian',M.MA);

It is not required to define the Jacobian, but doing so speeds up the simulation. 

The state space formulation that uses the mass matrix are prepared to use sparse and 
hence can often be simulated much faster. In order to simulate systems that involve a 
mass matrix on the left hand side one must switch to one of the simulation functions 
that support a mass matrix. Such functions are ode15s, ode23s and ode23t. ode15s 
and ode23t can solve problems with a singular mass matrix. Compute the state-space 
system with the extracted matrices,

[t,x] = ode23s(func,0:1:50,zeros(size(M.MA,1),1),opt);
y = M.C*x';
y = y+T0;

Compare the solution computed with the system and the one computed with 
COMSOL Multiphysics (see Figure 4-1):

plot(t,y,'r+');
hold on;
mphplot(model,'pg1');
W O R K I N G  W I T H  M A T R I C E S  |  211



212 |  C H A P T E
Figure 4-1: Temperature distribution computed with the state-space system (red marker) 
and COMSOL Multiphysics (blue line).

Evaluate the steady-state temperature value:

G = M.D-M.C*(inv(M.MA))*M.MB;
y_inf = full(G*input');
y_inf = y_inf + T0

For some types of control system design the use of the matrices A, B, C, and D are 
commonly used. Note that you need to keep the size of the matrices lower as you are 
not using a mass matrix. Hence, you need to change the size of mesh in order to reduce 
the number of degrees of freedom of the assembled system:

comp1.mesh('mesh1').autoMeshSize(7);

Extract the state-space system matrices A, B, C, and D, of the model with power, Temp, 
and Text as input and the probe evaluation comp1.ppb1 as output:

M2 = mphstate(model,'sol1','out',{'A','B','C','D'},...
   'input',{'power','Temp','Text'},...

'output','comp1.ppb1');

Compute the state-space system with the extracted matrices,

func = @(t,x) M2.A*x + M2.B*input';
[t,x] = ode45(func,0:1:50,zeros(size(M2.A,1),1));
y2 = M2.C*x';
y2 = y2+T0;

Compare the solution computed with the previous system (see Figure 4-2):

plot(t,y2,'k.')
R  4 :  W O R K I N G  W I T H  M O D E L S



Figure 4-2: Temperature distribution computed with the state-space system 1 (red '+' 
marker), state-space system without mass matrix (black '.' marker) and COMSOL 
Multiphysics (blue line).

Code for use with MATLAB®

model = mphopen('model_tutorial_llmatlab');
power = 30; Temp = 300; Text = 300; T0 = 293.15;
model.param.set('power', power);
model.param.set('Temp', Temp);
model.param.set('T0', T0);
model.param.set('Text', Text);
comp1 = model.component('comp1');
ht = comp1.physics('ht');
ht.feature('init1').set('Tinit', 'T0');
ht.feature('hf1').set('Text', 'Text');
std = model.study.create('std');
time = std.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');
time.set('usertol',true);
time.set('rtol','1e-4');
pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
pdom.set('coords3',[1e-2 1e-2 1e-2]);
std.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
glob1.set('expr', 'comp1.ppb1');
M = mphstate(model,'sol1','out',{'Mc','MA','MB','C','D'},...
   'input',{'power','Temp','Text'},'output','comp1.ppb1');
input = [power Temp-T0 Text-T0];
func = @(t,x) M.MA*x + M.MB*input';
opt = odeset('mass',M.Mc,'jacobian',M.MA);
W O R K I N G  W I T H  M A T R I C E S  |  213



214 |  C H A P T E
[t,x] = ode23s(func,0:1:50,zeros(size(M.MA,1),1),opt);
y = M.C*x';
y = y+T0;
plot(t,y,'r+');
hold on;
mphplot(model,'pg1');
G = M.D-M.C*(inv(M.MA))*M.MB;
y_inf = full(G*input');
y_inf = y_inf + T0
comp1.mesh('mesh1').autoMeshSize(7);
M2 = mphstate(model,'sol1','out',{'A','B','C','D'},...
   'input',{'power','Temp','Text'},...

'output','comp1.ppb1');
func = @(t,x) M2.A*x + M2.B*input';
[t,x] = ode45(func,0:1:50,zeros(size(M2.A,1),1));
y2 = M2.C*x';
y2 = y2+T0;
plot(t,y2,'k.')

Extracting Reduced Order State-Space Matrices

COMSOL Multiphysics models often have a large number of degrees of freedom. This 
leads to large state-space model when exported using mphstate. COMSOL 
Multiphysics provides model reduction functionality, which can reduce the number of 
states using an eigenvalue (or eigenfrequency) study leading to a low number of states 
that can be used for simulation and analysis.

The function mphreduction returns state-space matrices or a MATLAB state-space 
model using the ss function of a given reduced-order model set in the COMSOL 
model.

See the Modal Reduced-Order Model and The Modal Solver Algorithm in the 
COMSOL Multiphysics Reference Manual for more information.

E X T R A C T I N G  R E D U C E D  O R D E R  S T A T E - S P A C E  M A T R I C E S

In this section you will find an example that illustrate how to use the mphreduction 
function to extract the reduced order model state-space matrices. 

The problem studied here is a heat transfer model set with a heat source. In the 
expected state space system the heat source is set as input. The temperature at specified 
location is used as output. The tutorial shows how to extract the state space matrices 
and solve the system using the MATLAB functionalities.
R  4 :  W O R K I N G  W I T H  M O D E L S



This is the same problem solved as in Extracting State-Space Matrices so you can 
compare the solution, and computational performance when solving the problem with 
full state space system matrices.

The following example sets up a model using commands from MATLAB. You need 
the Heat Transfer Module or MEMS Module to run the model, as reduced order 
modeling requires eigenvalue of the physical problem. If you don’t have access to one 
of these modules, you can find the commands that sets up and solve the same problem 
using the General Form PDE interface in the section Code for use with MATLAB® - 
General Form PDE.

First, load the model model_tutorial_llmatlab from the Application Library:

model = mphopen('model_tutorial_llmatlab');

This is model is used as base model for documentation tutorial. The geometry, mesh, 
physics is set but for this specific problem you need to edit the model to use parameter 
for the initial and external temperature as they will be used later in the reduced order 
model:

power = 30; Temp = 300; Text = 300; T0 = 293.15;
model.param.set('power', power);
model.param.set('Temp', Temp);
model.param.set('T0', T0);
model.param.set('Text', Text);
comp1 = model.component('comp1');
ht = comp1.physics('ht');
ht.feature('init1').set('Tinit', 'T0');
ht.feature('hf1').set('Text', 'Text');

This model is defined with a temperature constraint, you need to replace it with by a 
heat flux condition as constraints are not supported as input for reduced order models:

ht.feature('temp1').active(false);
hf2 = ht.create('hf2', 'HeatFluxBoundary', 2);
hf2.selection().set(3);
hf2.set('HeatFluxType', 'ConvectiveHeatFlux');
hf2.set('h', '1e6');
hf2.set('Text', 'Temp');

You need now to add a time dependent study:

std1 = model.study.create('std1');
time = std1.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');

Add a domain point probe plot, which will defines the output of the reduced order 
model:
W O R K I N G  W I T H  M A T R I C E S  |  215



216 |  C H A P T E
pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
pdom.set('coords3',[1e-2 1e-2 1e-2]);

Run the study and create a plot group to display the probe:

std1.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
glob1.set('expr', 'comp1.ppb1');

A reduced order model requires eigenvalue solution of the problem. To create an 
eigenfrequency study and specify the number of eigenvalue to 30 enter:

std2 = model.study().create('std2');
eig = std2.create('eig', 'Eigenfrequency');
eig.activate('ht', true);
eig.set('neigsactive', true);
eig.set('neigs', 30);
eig.set('shiftactive', true);
std2.run;

Before adding a reduced-order study to your model you need to set the input, here in 
this example the power variable power, the bottom temperature Temp, and the exterior 
temperature Text:

grmi1 = 
model.common.create('grmi1','GlobalReducedModelInputs','');
grmi1.setIndex('name', 'power', 0);
grmi1.setIndex('name', 'Temp', 1);
grmi1.setIndex('name', 'Text', 2);

Now you can add a model reduction study.

std3 = model.study.create('std3');
mr = std3.create('mr','ModelReduction');
mr.set('trainingStudy','std2');
mr.set('trainingStep','eig');
mr.set('unreducedModelStudy','std1');
mr.set('unreducedModelStep','time');
mr.setIndex('qoiname','Tout',0);
mr.setIndex('qoiexpr','comp1.ppb1',0);
std3.run;

Here the model reduction study generates a Time Dependent, Modal Reduced-Order 
Model node that you can identify with the tag rom1. To get the newly generated 
reduced-order model you can either type the command:

model.reduced;

or inspect the model using the mphnavigator window by typing:
R  4 :  W O R K I N G  W I T H  M O D E L S



mphnavigator

A call to mphreduction creates the state-space matrices needed to simulate the 
reduced-order system.

MR = mphreduction(model, 'rom1', ...
    'out', {'MA' 'MB' 'C' 'D' 'Mc' 'x0'})

Now the reduced-order system can be simulated using the function ode23s.

input = [power Temp-T0 Text-T0];
func = @(t,x) MR.MA*x + MR.MB*input';
opt = odeset('mass',MR.Mc);
x0 = zeros(size(MR.MA,1),1);
[t,x2] = ode23s(func,0:1:50,x0,opt);
y2t = MR.C*x2';
y20 = MR.C*MR.x0;
y2 = y2t+y20;

Compare the solution computed with the system and the one computed with 
COMSOL Multiphysics (see Figure 4-3):

plot(t,y2,'r+');
hold on;
mphplot(model,'pg1');

Figure 4-3: Temperature distribution computed with the reduced order model state-space 
system (red marker) and COMSOL Multiphysics (blue line).

To visualize the reduced order node in the mphnavigator window, you 
need to go the Settings menu and select Advanced.
W O R K I N G  W I T H  M A T R I C E S  |  217



218 |  C H A P T E
Evaluate the steady-state temperature value:

G = -MR.C*(inv(MR.MA))*MR.MB;
y_inf = full(G*input');
y_inf = y_inf + T0

As an alternative to using ode23s, you can use functions in the Control System 
Toolbox, which is an add-on to MATLAB. The matrices stored in MR can be used to 
manually construct a state-space system using the function ss, or you can call 
mphreduction using the return option to specify that mphreduction should do the 
conversion.

sys = mphreduction(model, 'rom1', ...
    'out', {'MA' 'MB' 'A' 'B' 'C' 'D' 'Mc' 'x0' 'Y0' 'Kr'}, ...
    'return', 'ss')

The system can, for example, be simulated using the lsim function.

t = 0:1:50;
u = repmat(input,length(t),1);
figure(2)
[y,t] = lsim(sys, u,t);
grid on

Code for use with MATLAB®

model = mphopen('model_tutorial_llmatlab');
power = 30; Temp = 300; Text = 300; T0 = 293.15;
model.param.set('power', power);
model.param.set('Temp', Temp);
model.param.set('T0', T0);
model.param.set('Text', Text);
comp1 = model.component('comp1');
ht = comp1.physics('ht');
ht.feature('init1').set('Tinit', 'T0');
ht.feature('hf1').set('Text', 'Text');
ht.feature('temp1').active(false);
hf2 = ht.create('hf2', 'HeatFluxBoundary', 2);
hf2.selection().set(3);
hf2.set('HeatFluxType', 'ConvectiveHeatFlux');
hf2.set('h', '1e6');
hf2.set('Text', 'Temp');
std1 = model.study.create('std1');
time = std1.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');
pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
pdom.set('coords3',[1e-2 1e-2 1e-2]);
std1.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
R  4 :  W O R K I N G  W I T H  M O D E L S



glob1.set('expr', 'comp1.ppb1');
std2 = model.study().create('std2');
eig = std2.create('eig', 'Eigenfrequency');
eig.activate('ht', true);
eig.set('neigsactive', true);
eig.set('neigsactive', true);
eig.set('neigs', 30);
eig.set('shiftactive', true);
std2.run;
grmi1 = 
model.common.create('grmi1','GlobalReducedModelInputs','');
grmi1.setIndex('name', 'power', 0);
grmi1.setIndex('name', 'Temp', 1);
grmi1.setIndex('name', 'Text', 2);
std3 = model.study.create('std3');
mr = std3.create('mr','ModelReduction');
mr.set('trainingStudy','std2');
mr.set('trainingStep','eig');
mr.set('trainingRecompute','always');
mr.set('unreducedModelStudy','std1');
mr.set('unreducedModelStep','time');
mr.setIndex('qoiname','Tout',0);
mr.setIndex('qoiexpr','comp1.ppb1',0);
std3.run;
MR = mphreduction(model, 'rom1', ...
    'out', {'MA' 'MB' 'C' 'D' 'Mc' 'x0'})
input = [power Temp-T0 Text-T0];
func = @(t,x) MR.MA*x + MR.MB*input';
opt = odeset('mass',MR.Mc);
x0 = zeros(size(MR.MA,1),1);
[t,x2] = ode23s(func,0:0.1:50,x0,opt);
y2t = MR.C*x2';
y20 = MR.C*MR.x0;
y2 = y2t+y20;
plot(t,y2,'r+');
hold on;
mphplot(model,'pg1');
G = -MR.C*(inv(MR.MA))*MR.MB;
y_inf = full(G*input');
y_inf = y_inf + T0

Code for use with MATLAB® - General Form PDE
model = mphopen('model_tutorial_llmatlab');
power = 30; Temp = 300; Text = 300; T0 = 293.15;
model.param.set('power', power);
model.param.set('Temp', Temp);
model.param.set('T0', T0);
model.param.set('Text', Text);
comp1 = model.component('comp1');
comp1.physics('ht').active(false);
W O R K I N G  W I T H  M A T R I C E S  |  219



220 |  C H A P T E
g = comp1.physics.create('g', 'GeneralFormPDE', {'u'});
g.prop('Units').set('DependentVariableQuantity', 'temperature');
g.prop('Units').setIndex('CustomSourceTermUnit', 'W/m^3', 0, 0);
gfeq1 = g.feature('gfeq1');
gfeq1.setIndex('Ga', {'-material.k11*ux' '-material.k22*uy' 
'-material.k33*uz'}, 0);
g.feature('init1').set('u', 'T0');
gfeq1.setIndex('f', 0, 0);
gfeq1.setIndex('da', 'material.rho*material.Cp', 0);
src1 = g.create('src1', 'SourceTerm', 3);
src1.selection.set([2]);
src1.setIndex('f', 'power/(1[cm]*1[cm]*1[mm])', 0);
flux1 = g.create('flux1', 'FluxBoundary', 2);
flux1.selection.set([7 8 10 11 12]);
flux1.setIndex('g', '10[W/(m^2*K)]*(Text-u)', 0);
flux2 = g.create('flux2', 'FluxBoundary', 2);
flux2.selection.set([3]);
flux2.setIndex('g', '1e6[W/(m^2*K)]*(Temp-u)', 0);
std1 = model.study.create('std1');
time = std1.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');
pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
pdom.set('coords3',[1e-2 1e-2 1e-2]);
std1.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
glob1.set('expr', 'comp1.ppb1');
std2 = model.study().create('std2');
eig = std2.create('eig', 'Eigenfrequency');
eig.activate('ht', true);
eig.set('neigsactive', true);
eig.set('neigsactive', true);
eig.set('neigs', 30);
eig.set('shiftactive', true);
std2.run;
grmi1 = 
model.common.create('grmi1','GlobalReducedModelInputs','');
grmi1.setIndex('name', 'power', 0);
grmi1.setIndex('name', 'Temp', 1);
grmi1.setIndex('name', 'Text', 2);
std3 = model.study.create('std3');
mr = std3.create('mr','ModelReduction');
mr.set('trainingStudy','std2');
mr.set('trainingStep','eig');
mr.set('trainingRecompute','always');
mr.set('unreducedModelStudy','std1');
mr.set('unreducedModelStep','time');
mr.setIndex('qoiname','Tout',0);
mr.setIndex('qoiexpr','comp1.ppb1',0);
R  4 :  W O R K I N G  W I T H  M O D E L S



std3.run;
MR = mphreduction(model, 'rom1', ...
    'out', {'MA' 'MB' 'A' 'B' 'C' 'D' 'Mc' 'x0'})
input = [power Temp-T0 Text-T0];
func = @(t,x) MR.MA*x + MR.MB*input';
opt = odeset('mass',MR.Mc);
x0 = zeros(size(MR.MA,1),1);
[t,x2] = ode23s(func,0:1:50,x0,opt);
y2t = MR.C*x2';
y20 = MR.C*MR.x0;
y2 = y2t+y20;
plot(t,y2,'r+');
hold on;
mphplot(model,'pg1');
G = -MR.C*(inv(MR.MA))*MR.MB;
y_inf = full(G*input');
y_inf = y_inf + T0
W O R K I N G  W I T H  M A T R I C E S  |  221



222 |  C H A P T E
Ex t r a c t i n g  S o l u t i o n  I n f o rma t i o n  and 
S o l u t i o n  V e c t o r s

In this section:

• Obtaining Solution Information

• Retrieving Solution Information and Solution Datasets Based on Parameter Values

• Extracting Solution Vector

Obtaining Solution Information

Get the solution object information with the function mphsolinfo. Specify only the 
model object to obtain the information of the default solution object:

info = mphsolinfo(model)

This section includes information about Specifying the Solution Object and the 
Output Format.

S P E C I F Y I N G  T H E  S O L U T I O N  O B J E C T

To retrieve the information of a specific solution object, set the soltag property with 
the solver tag soltag associated to the solution object:

info = mphsolinfo(model, 'soltag', <soltag>)

If there are several solution datasets attached to the solver, for example, solution 
datasets with different selections, specify the dataset to use to get the solution object 
information with the dataset property:

info = mphsolinfo(model, 'dataset', <dsettag>)

where dsettag the tag of the solution dataset to use.

The function mphsolinfo replaces the function mphgetp. If you are 
using the later you can now replace it as it will be removed in a future 
version.
R  4 :  W O R K I N G  W I T H  M O D E L S



O U T P U T  F O R M A T

The output info is a MATLAB® structure. The default fields available in the structure 
are listed in the table:

To get the information about the number of solutions, set the property nu to on:

info = mphsolinfo(model, 'nu', 'on')

The info structure is added with the following fields:

The batch field is a structure including the following fields:

FIELDS DESCRIPTION

soltag Tag of the solver associated to the solution object

study Tag of the study associated to the solution object

size Size of the solution vector

nummesh Number of mesh in the solution (for automatic remeshing)

sizes Size of solution vector and inner parameters for each mesh

soltype Solver type

solpar Parameter name

sizesolvals Length of parameter list

solvals Inner parameter value

paramsweepnames Outer parameter name

paramsweepvals Outer parameter value

label Solution node label

batch Batch information

dataset Tag of the solution dataset associated to the solution object

FIELDS DESCRIPTION

NUsol Number of solutions vectors stored

NUreacf Number of reaction forces vectors stored

NUadj Number of adjacency vectors stored

NUfsens Number of functional sensitivity vectors stored

NUsens Number of forward sensitivity vectors stored

BATCH FIELDS DESCRIPTION

type The type of batch

psol Tag of the associated solver node
E X T R A C T I N G  S O L U T I O N  I N F O R M A T I O N  A N D  S O L U T I O N  V E C T O R S  |  223



224 |  C H A P T E
Retrieving Solution Information and Solution Datasets Based on 
Parameter Values

A model can contain several solution vectors computed with different values of 
parameters, such as time, eigenvalue, or model parameters. These solution vectors can 
be available in different solution datasets. Use the function mphsolutioninfo to 
retrieve the solution vector corresponding to a specified study parameter value.

The parameters used in a study can be group in two distinct solution number types:

• The inner solution, containing the solution computed with parameters such as 
eigenvalues, time steps, or continuation parameter combinations.

• The outer solution, containing the solution computed with parameters defined in 
parametric sweep.

To get information about all solution object and solution dataset combinations in the 
model enter the command:

info = mphsolutioninfo(model)

The output info is a structure containing these fields:

The substructure info.sol# has these fields:

sol Tag of the stored solution associated to psol

seq Tag of the solver sequence associated to psol

FIELDS DESCRIPTION

solutions List of the solution object tags available in the model

sol# Substructure containing information related to the solution 
number #

FIELDS DESCRIPTION

dataset List of the tags of the dataset associated to the solution

study Tag of the study that computed the solution

sequencetype Type of solution node

cellmap Connections between parameters and inner/outer solution 
numbers; the field is not available by default.

values Values of the parameters used in the solution

parameters Names of the parameters used in the solution

BATCH FIELDS DESCRIPTION
R  4 :  W O R K I N G  W I T H  M O D E L S



You can also retrieve the solution objects and solution datasets related to a specific 
parameter value with the command:

info = mphsolutioninfo(model,'parameters',{'e1','v1','tol1'})

where e1 is the expression name, v1 the value of the expression.

The property parameters can also be set as a 1xN cell array, where N corresponds to 
the number of parameters to specify.

This section includes information about Specifying the Solution Object and the 
Output Format. It also includes the section, Retrieving Solution Information.

S P E C I F Y I N G  T H E  S O L U T I O N  O B J E C T

To retrieve the information of a specific solution object, set the soltag property with 
the solver tag soltag associated to the solution object:

info = mphsolutioninfo(model, 'soltag', <soltag>)

If there are several solution datasets attached to the solver, for example, solution 
datasets with different selections, specify the dataset to use to get the solution object 
information with the dataset property:

info = mphsolutioninfo(model, 'dataset', <dsettag>)

where dsettag the tag of the solution dataset to use.

O U T P U T  F O R M A T

To include the cellmap field in the info.sol# substructure set the property cellmap 
to on:

info = mphsolutioninfo(model, 'cellmap', 'on')

Improve the visibility of the map table by sorting the row using either the column 
number or the name in the map header:

info = mphsolutioninfo(model, 'sort', <idx>)

where <idx> is a positive integer equal to the column number or a string 
corresponding to the name of the column header.

mapheaders Headers of the table stored in the map field

map Connections between the parameter values and the solution 
number (inner and outer solutions)

FIELDS DESCRIPTION
E X T R A C T I N G  S O L U T I O N  I N F O R M A T I O N  A N D  S O L U T I O N  V E C T O R S  |  225



226 |  C H A P T E
R E T R I E V I N G  S O L U T I O N  I N F O R M A T I O N

This example shows how to use the function mphsolutioninfo to retrieve solution 
information in a mode combining a parametric sweep and transient analysis.

Start by loading the base model model_tutorial_llmatlab from the COMSOL 
Multiphysics Application Libraries; this model contains base settings for a thermal 
analysis:

model = mphopen('model_tutorial_llmatlab');

Now create a study combining a parametric sweep and a transient study step. The 
parametric sweep consist by varying the parameters that set the heat source and the 
bottom temperature. This is done with these commands:

std = model.study.create('std');
param = std.feature.create('param', 'Parametric');
param.setIndex('pname', 'power', 0);
param.setIndex('plistarr', '30 60 90',0);
param.setIndex('pname', 'Temp', 1);
param.setIndex('plistarr', '300 320', 1);
time = std.feature.create('time', 'Transient');
time.set('tlist', 'range(0,1,25)');

Set the sweep type to generate all possible combinations of the parameters power and 
tf and compute the study:

param.set('sweeptype', 'filled');
std.run;

Once the solution is computed (it takes about 90 seconds), you can retrieve the 
solution information in the model:

info = mphsolutioninfo(model)

The output info is a structure containing nine fields. By navigating in the info 
structure you can retrieve how the solutions are stored in the model. 

• info.sol1 contains the solution information related to the solver sequence sol1. 
The associated dataset is dset1.

• info.sol2 contains the solution information for the parametric sequence. This 
regroups the solution vectors computed for all outer parameters.

The other substructures contain the solution information for all possible outer solution 
combinations.

Get the relation between the parameter values and the inner and outer solution 
numbers:
R  4 :  W O R K I N G  W I T H  M O D E L S



map = info.sol2.map

Retrieve the solution information related to the parameters power = 60 W:

info = mphsolutioninfo(model, 'parameters', {'power',60,0})

Retrieve the solution information related to the parameters power = 60 W, 
Temp = 300 K and t = 10.4 seconds, for the time use a tolerance of 0.5 seconds to find 
the appropriate inner solution number:

info = mphsolutioninfo(model, 'parameters', {{'power',60,0},...
{'Temp',300,0},{'t',10.4,0.5}})

To get the list of the solutions that contain the given parameters enter:

solnum = info.solutions

Code for use with MATLAB®

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param', 'Parametric');
param.setIndex('pname', 'power', 0);
param.setIndex('plistarr', '30 60 90',0);
param.setIndex('pname', 'Temp', 1);
param.setIndex('plistarr', '300 320', 1);
time = std.feature.create('time', 'Transient');
time.set('tlist', 'range(0,1,25)');
param.set('sweeptype', 'filled');
std.run;
info = mphsolutioninfo(model)
map = info.sol2.map
info = mphsolutioninfo(model, 'parameters', {'power',60,0})
info = mphsolutioninfo(model, 'parameters', {{'power',60,0},...
{'Temp',300,0},{'t',10.4,0.5}})
solnum = info.solutions

Extracting Solution Vector

To extract the solution vector with the function mphgetu, enter:

U = mphgetu(model)

where U is an Nx1 double array, where N is the number of degrees of freedom of the 
COMSOL Multiphysics model. 
E X T R A C T I N G  S O L U T I O N  I N F O R M A T I O N  A N D  S O L U T I O N  V E C T O R S  |  227



228 |  C H A P T E
This section includes information about Specifying the Solution and the Output 
Format.

S P E C I F Y I N G  T H E  S O L U T I O N

Change the solver node to extract the solution vector with the property solname:

U = mphgetu(model, 'soltag', <soltag>)

where <soltag> is the tag of the solver node.

For solver settings that compute for several inner solutions, select the inner solution to 
use with the solnum property:

U = mphgetu(model, 'solnum', <solnum>)

where <solnum> a positive integer vector that corresponds to the solution number to 
use to extract the solution vector. For time-dependent and continuation analyses, the 
default value for the solnum property is the last solution number. For an eigenvalue 
analysis, it is the first solution number.

A model can contain different types of solution vectors — the solution of the problem, 
the reaction forces vector, the adjoint solution vector, the functional sensitivity vector, 
or the forward sensitivity. In mphgetu, you can specify the type of solution vector to 
extract with the type property:

U = mphgetu(model, 'type', type)

where type is one of these strings 'sol', 'reacf', 'adj', or 'sens' used to extract the 
solution vector, the reaction forces, the functional sensitivity, or the forward sensitivity, 
respectively.

O U T P U T  F O R M A T

mphgetu returns the default the solution vector. Get the time derivative of the solution 
vector Udot by adding a second output variable:

[U, Udot] = mphgetu(model)

In case the property solnum is set as a 1xM array and the solver node only uses one 
mesh to create the solution, the default output is an NxM array, where N is the number 
of degrees of freedom of the model. Otherwise, the output U is a cell array that contains 

You can refer to the function mphxmeshinfo to receive the DOF name or 
the node coordinates in the solution vector, see Retrieving Xmesh 
Information.
R  4 :  W O R K I N G  W I T H  M O D E L S



each solution vector. If you prefer to have the output in a cell array format, set the 
property matrix to off:

U = mphgetu(model, 'solnum', <solnum>, 'matrix', 'off')
E X T R A C T I N G  S O L U T I O N  I N F O R M A T I O N  A N D  S O L U T I O N  V E C T O R S  |  229



230 |  C H A P T E
Re t r i e v i n g  Xme sh I n f o rma t i o n

Use LiveLink™ for MATLAB® to retrieve low level information of the COMSOL 
Multiphysics finite element model.

In this section:

• The Extended Mesh (Xmesh)

• Extracting Xmesh Information

The Extended Mesh (Xmesh)

The extended mesh (xmesh) is the finite element mesh used to compute the solution. 
This contains the information about elements, nodes, and degrees of freedom such as 
DOF names, position of the nodes in the assembled matrix system, or how elements 
and nodes are connected.

Extracting Xmesh Information

The function mphxmeshinfo returns the extended mesh information. To get the 
xmesh information of the current solver and mesh node, enter the command:

info = mphxmeshinfo(model)

where info is a MATLAB structure that contains the fields in the table:

FIELDS DESCRIPTION

soltag Tag of the solver node

ndofs Number of degrees of freedom

fieldnames List of field variables names

fieldndofs Number of degrees of freedom for each field variable

meshtypes List of the mesh type

geoms Tag of the geometry node used in the model

dofs Structure containing the dofs information

nodes Structure containing the nodes information

elements Structure containing the elements information
R  4 :  W O R K I N G  W I T H  M O D E L S



The dofs substructure contains the fields listed in the table:

The nodes substructure contains the fields listed in the table:

The elements substructure contains the fields listed in the table:

The type substructure lists the information for each element. The possible mesh types 
are vtx, edg, quad, tri, quad, tet, hex, prism, and pyr. The substructure type 
contains the fields listed in the table:

FIELDS DESCRIPTION

geomnums 1-based geometry numbers for all DOFs.

coords Global coordinates for all DOFs in the model length unit. The kth 
column of this matrix contains the coordinates of DOF number k.

nodes 0-based node numbers for all DOFs.

dofnames DOF names.

nameinds 0-based indices into dofNames() for all DOFs.

solvectorinds 0-based indices into solution vector for all DOFs.

FIELDS DESCRIPTION

coords Global coordinates for all nodes. The nth column contains the 
coordinates of node point number n.

dofnames DOF names in this geometry.

dofs 0-based DOF numbers for all nodes in this geometry. 
dofs()[k][n] is the DOF number for DOF name 
dofNames()[k] at node point n. A value of -1 means that there 
is no DOF with this name at the node. Note: If there is a slit, only 
one of the DOFs is given for each node point.

FIELDS DESCRIPTION

meshtypes List of the type of mesh available.

type Substructure containing the information of element of type type.

FIELDS DESCRIPTION

localcoords Local coordinates of nodes. The kth column contains the 
coordinates of local node point number k.

localdofcoords The local coordinates for each local DOF (one column for 
each local DOF).

localdofnames The name for each local DOF.
R E T R I E V I N G  X M E S H  I N F O R M A T I O N  |  231



232 |  C H A P T E
S P E C I F Y  T H E  I N F O R M A T I O N  T O  R E T R I E V E

To specify the solver node to retrieve the xmesh information, set the property soltag 
as in this command:

info = mphxmeshinfo(model, 'soltag', <soltag>)

where <soltag> is the tag of the solver used to extract the xmesh information.

To retrieve the xmesh information for a specific study step node, specify it with the 
property studysteptag:

info = mphxmeshinfo(model, 'studysteptag', <studysteptag>)

where <studysteptag> is the tag of either a compiled equation node or a variable 
node.

In case several mesh cases have been used by a specific solver, for example, with an 
automatic remeshing procedure, you can specify which mesh case to use to get the 
discretization information:

info = mphxmeshinfo(model, 'meshcase', <meshcase>)

where <meshcase> is the mesh case number or the tag of the mesh case.

nodes 0-based node point indices for all mesh elements of type type. 
A value -1 means that there is no node point at this location.

dofs 0-based DOF numbers for all mesh elements of type type. A 
value -1 means that there is no DOF at this location.

FIELDS DESCRIPTION
R  4 :  W O R K I N G  W I T H  M O D E L S



Nav i g a t i n g  t h e  Mode l

The model object contains all the finite element model settings. To retrieve the model 
information you can navigate in the model object using a graphical user interface or 
directly at the MATLAB® prompt. Learn how to get the list of predefined expressions 
available for a given model and how to extract the value of these expressions and also 
the properties of the method used in the model.

In this section:

• Navigating the Model Object Using a GUI

• Navigating The Model Object At The Command Line

• Finding Model Expressions

• Evaluating the Model Parameters

• Getting Feature Model Properties

• Getting Parameter and Variable Definitions

• Getting Selection Information

Navigating the Model Object Using a GUI

The usual approach to navigate through the model object in a graphical user interface 
(GUI) is to load the model object at the COMSOL Desktop. Then transfer the model 
object from the COMSOL Multiphysics Server to the COMSOL Desktop as in 
Sharing the Model Between the COMSOL Desktop® and the MATLAB® Prompt.

An alternative approach is to call the function mphnavigator that displays the model 
object information in a MATLAB® GUI. To run the function at the MATLAB prompt 
enter the command:

mphnavigator
N A V I G A T I N G  T H E  M O D E L  |  233



234 |  C H A P T E
This command pops-up a MATLAB GUI as in this figure:

If you have installed the COMSOL apps in the MATLAB Apps ribbon, click the 
COMSOL Model Navigator icon ( ).

If the COMSOL model objected is not stored in the MATLAB variable model enter 
the command:

mphnavigator(<modelvar>)

where <modelvar> is the variable name in MATLAB that contains the model.

The appearance and behavior of the mphnavigator window depend on the version of 
MATLAB. Using MATLAB version 2020a or newer will show an updated user 
interface based on App Designer. These user interfaces can be resized and in many 
cases support a faster workflow.

Using the COMSOL Model Navigator apps ( ) only model objects 
with the name model are supported.
R  4 :  W O R K I N G  W I T H  M O D E L S



T H E  M E N U  B A R  I T E M S

In the File menu you will find the file handling commands such as Open and Save as to 
load a new model object in the COMSOL Multiphysics server and update the Model 
Object Navigator window, and save the current model object in the MPH-format 
respectively. If you want to visualize the current model object in the COMSOL 
Desktop click Launch COMSOL Multiphysics. Click Show model thumbnail, to show the 
model thumbnail in a separate window.

In the Tools menu you will find additional functionalities to inspect the model. Click 
Plot to displays the geometry, the mesh, or a plot group in a MATLAB figure. This 
button is only active when one of the corresponding node in the model tree is selected. 
Select Search to open the Model Search window where to search expressions or tags in 
the model object (see Finding Model Expressions). Select Solutions to open the 
Solution Info window that displays the solution object available in the COMSOL 
Multiphysics model object. Select Warnings and Errors to list the error or warning 
nodes available in the model object (see Handling Errors and Warnings). Click Add 

report... (also accessible with the shortcut icon  below the menu list) generate 
report node in the model, you can choose between brief, intermediate or complete 
report. Select Write report (also accessible using the icon ) to write a report, that 
has been previously added to the model, in a document. This opens the Run Report 
window where you can specify the report node to run and the report settings such as 
the filename and the output format. 

Using Livelink for MATLAB, it is quite common to run specific node in loop. To get 
automatically the corresponding code ready to be pasted in a code editor click Copy 

code: loop. This will generate the following commands:

tag1 = <feattag1>;
tag2 = <feattag2>;
tags = cell(model.geom(tag1).feature(tag2).feature.tags);
for i=1:length(tags)
obj = model.geom(tag1).feature(tag2).feature(tags{i});
end

where <feattag1> and <feattag2> are the feature tags to reach the selected 
feature in the model.
N A V I G A T I N G  T H E  M O D E L  |  235



236 |  C H A P T E
In th he Options menu you can set some preferences for the Model Object Navigator 
window. Select Automatic update to get the model tree and properties automatically 
updated as the current model object is changed. A manual update can be achieved by 
pressing  on the toolbar.

Select Use component syntax, to include the component in the COMSOL API 
command. To get the property value as a string when clicking Copy get button, select 
Get property as string. You can also select Show name to display the node name in the 
model tree, instead of the tag node only.

The Help menu you can get the help of a selected node in the model tree (Help button 
or ) as well as the corresponding API help (API Help button or ).

T H E  M O D E L  T R E E  S E C T I O N

The Model Tree section has the list of the nodes of the model object. Use the scrollbar 
to the right to scroll down the list, and click the + icon to expand the model object 
feature nodes.
R  4 :  W O R K I N G  W I T H  M O D E L S



When a feature node is selected, its associated command is listed just beneath the 
model tree. Click Copy to copy syntax to the clipboard and then paste it in your script.

T H E  P R O P E R T I E S  S E C T I O N

This section includes a table that list all the properties of a selected feature node. 

The Properties and the Value columns list the properties of the selected feature node 
and the associated values respectively. The Allowed Value column list the allowed value 
for the corresponding property.

Click Copy set, or Copy get, to copy to the clipboard the command that sets the selected 
property to its current value, respectively get the value of the currently selected 
property. Click Copy Table to copy the entire properties table to the clipboard, then 

The Model Tree list is different from the Model Builder tree available in the 
COMSOL Desktop. This is because mphnavigator displays all feature 
nodes as seen in the COMSOL API which does not use the same filter as 
in the COMSOL Desktop to order the available feature nodes.

Not all feature node returns a list of allowed value for the properties.
N A V I G A T I N G  T H E  M O D E L  |  237



238 |  C H A P T E
paste into a text or spreadsheet editor. To copy a selected cell in the table, click Copy. 
Using the Float window button you can open the Properties table in a separate window.

T H E  M E T H O D S  S E C T I O N

The Methods section lists all the methods associated to the feature node selected in the 
Model Tree section. 

Select a method in the list to get its associated syntax at the button of the Methods 
section. Use the Copy button to copy the syntax to the clipboard. Click Copy call to 
copy the method syntax associated to the selected feature node, the syntax is ready to 
use at the MATLAB prompt.

Navigating The Model Object At The Command Line

Use the command mphmodel at the MATLAB® prompt to retrieve model object 
information, such as tags for nodes and subnodes of a COMSOL Multiphysics model 
object.

To get the list of the main feature nodes and the tags of the model object model, enter 
the command:

mphmodel(model)

To list the subfeature of the node type model.feature enter the command:
R  4 :  W O R K I N G  W I T H  M O D E L S



mphmodel(model.feature)

To list the subfeature node of the feature node model.feature(<ftag>), enter:

mphmodel(model.feature(<ftag>))

Use the flag -struct to return the model object information to MATLAB structure:

str = mphmodel(model,'-struct')

str is a MATLAB structure and the fields consist of each feature node associated to the 
root node.

Retrieving Component Information

A model can contain several components, each component having their own space 
dimension. Each component can have several geometry and mesh nodes. The 
geometric model used by the physics in each component can be set using either the 
geometric node or one of the meshes. Use the function mphcomponentinfo to get the 
component information.

info = mphcomponentinfo(model,<comptag>)

where <comptag> is the tag of the component. info is a MATLAB structure with the 
following fields:

• tag, the tag of the component (<comptag>),

• geom, the list of geometries in the component,

• mesh, the list of meshes in the component,

• geometricmodel, the geometry/mesh node that defines the geometric model for the 
physics,

• scope, the scope expression,

• basesystem, the base unit system used in the component,

• sorder, the shape order,

• geometrycoord, the coordinate variables for the geometry frame,

• mateialcoord, the coordinate variables for the material frame,

• meshcoord, the coordinate variables for the mesh frame,

• spatialcoord, the coordinate variables for the spatial frame.
N A V I G A T I N G  T H E  M O D E L  |  239



240 |  C H A P T E
Finding Model Expressions

Each model object contains predefined expressions that depend on the physics 
interface used in the model. Use the Model Search window to get the list of all the 
expressions, constants, solution variables, or parameters available in the model object. 
To open the Model Search window type at the MATLAB prompt:

mphsearch

The Model Search window shows all the variables available in the model. These are 
listed in the table containing the following information: the Name of the expression, 
the Expression as it is set in the property value, the Description (if there is one) set for 
the expression, theType of the expression, and the Path in the model object.

If you have installed the COMSOL apps in the MATLAB Apps ribbon, click the 
COMSOL Search icon ( ).

If the COMSOL model objected is linked with a MATLAB object with a different 
name than model, enter the command:

mphsearch(<modelname>)

Using the COMSOL Model Search apps( ) only model object with 
name model are supported.
R  4 :  W O R K I N G  W I T H  M O D E L S



where <modelname> is the name of the model object link in MATLAB.

The Search section has a search tool to filter the list. Enter any string in the text field 
and select where to search the string — in the name, the expression, or the description 
of the table entry. You can also select the type you want to list. The expression type can 
be Equation, Field, Function, Geom, Mesh, Tag, VarNames, or Weak. You can select 
Starts with to search for any expression that start with the string enter in the text field. 
Click Go to display the result of the search. Click Clear to clear the search settings.

Additionally you can copy the selected cell in the table to the clipboard just by clicking 
Copy.

Evaluating the Model Parameters

Use the command mphevaluate to evaluate the expression defined in the Parameters 
node as in the command below:

value = mphevaluate(model, <expr>)

The evaluation does not require an existing solution dataset in the model, which means 
you can evaluate the expression even if there is no solution computed in the model.

To evaluate multiple expressions at once, define <expr> as a cell array of expressions 
as in the command below:

str = mphevaluate(model, {<expr1>, <expr2>, ...})

The output str is an array of structs with the same size as for the cell array of 
expressions. For multiple parameters evaluation only a single output is permitted. The 
struct contains the following fields: name, the parameter name; value, its value in the 
unit specified in the field unit; def, the string for the definition of the parameter; and 
descr the string description of the parameter.

To evaluate all the parameters defined in the table enter:

str = mphevaluate(model)

The output str is an array of structs with the same size as for the parameters table.

Get the full information of a model parameter expression with the command:

[value, unit, def, descr] = mphevaluate(model, <expr>)

where value, unit, def, and descr are the parameter value, the parameter unit, the 
parameter definition and the parameter description respectively.

You can specify the unit of the expression to evaluate with the command:
N A V I G A T I N G  T H E  M O D E L  |  241



242 |  C H A P T E
value = mphevaluate(model, <expr>, <unit> )

where <unit> is the unit to evaluate the expression <expr> in.

To evaluate and return only the value of the expression use the command:

value = mphevaluate(model, <expr>, <unit>, 'value')

To evaluate and return only the unit of the expression use the command:

value = mphevaluate(model, <expr>, <unit>, 'unit')

To evaluate and return the definition string of the expression use the command:

value = mphevaluate(model, <expr>, <unit>, 'valueunit')

The above command can be used to set a new parameter using an existing one.

Getting Feature Model Properties

Use the command mphgetproperties to extract at the MATLAB® prompt the 
properties of a specified node of the model object. Not all nodes contains properties. 
Use the command:

str = mphgetproperties(model.<feature>)

where str is a MATLAB structure that lists all the properties and the value of the 
feature node <feature>.

Some model node provides also a list of allowed value for their properties, to get such 
a list enter the command:

[str, allowed] = mphgetproperties(model.<feature>)

this also returns the MATLAB structure allowed containing the list of the allowed 
values for the properties of the feature node <feature>.

If you want to filter the properties in the output use the property propnames as in the 
command below:

str = mphgetproperties(model.<feature>,'propnames',{<prop>,...})

where <prop> is the property name to show only in the output structure.

Set the property returnstrings to off to get the property data not as string as in the 
command below:

str = mphgetproperties(model.<feature>,'returnstrings','off',...)

You can get the selection of the properties with the property showsel set to on as 
described below:
R  4 :  W O R K I N G  W I T H  M O D E L S



str = mphgetproperties(model.<feature>,'showsel','on',...)

Getting Parameter and Variable Definitions

Use the command mphgetexpressions to get the expressions and the descriptions of 
parameters and variables. Use the command:

expr = mphgetexpressions(<node>)

where <node> is the node to get the expressions from. Nodes that can be used are 
model.param, model.variable(<tag>), and model.result.param.

expr is an Nx3 cell array where N is the number of expressions for this node.

Getting Selection Information

Use the function mphgetselection to retrieve the model selection information:

str = mphgetselection(model.selection(<seltag>))

where <seltag> is the tag a selection node defined in the model object. The output 
str is a MATLAB® structure with the following fields:

• dimension, the space dimension of the geometric entity selected,

• geom, the tag of the geometry node used in the selection,

• entities, the list of the entity indexes listed in the selection, and 

• isGlobal, Boolean value to indicate if the selection is global or not.
N A V I G A T I N G  T H E  M O D E L  |  243



244 |  C H A P T E
Hand l i n g  E r r o r s  and Wa rn i n g s

In this section:

• Errors and Warnings

• Using MATLAB® Tools to Handle COMSOL® Exceptions

• Displaying Warnings and Errors in the Model

Errors and Warnings

COMSOL Multiphysics reports these types of problems:

• Errors, which prevents the program from completing a task, and

• Warnings, which are problems that do not prevent the completion of a task but that 
might affect the accuracy or other aspects of the model.

For both errors and warnings a message is stored in a separate node located just below 
the problematic model feature node.

In case of errors, a Java® Exception is thrown to MATLAB®, which also breaks the 
execution of the script.

Using MATLAB® Tools to Handle COMSOL® Exceptions

When running a model that returns an error in MATLAB®, the execution of the script 
is automatically stopped. You can use MATLAB tools to handle exceptions and prevent 
the script from breaking. Use the try and catch MATLAB statements to offer 
alternatives to a failed model. 

In a loop, for example, use the try and catch statements to continue to the next 
iteration. For automatic geometry or mesh generation you can use it to set the model 
properties with alternative values that circumvent the problem.

Displaying Warnings and Errors in the Model

Use the command mphshowerrors to search in a given model object for warning or 
error nodes. To display the error and warning messages and their location in the model 
object enter the command:

mphshowerrors(model)
R  4 :  W O R K I N G  W I T H  M O D E L S



Alternatively mphshowerrors can also return the error and warning information in a 
MATLAB® variable:

str = mphshowerrors(model)

where str is an Nx2 cell array, where N is the number of error and warning nodes that 
contain the model object. str{i,1}, which contains the location in the model of the 
i:th error or warning message, str{i,2} contains the message of the ith error or 
warning message, and str{i,3} contains a cell arrays of the model tree nodes that 
contain the error information. This last information makes it easier to extract error 
information for automated processing of error and warning conditions.
H A N D L I N G  E R R O R S  A N D  W A R N I N G S  |  245



246 |  C H A P T E
Imp r o v i n g  P e r f o rman c e  f o r  L a r g e  
Mode l s

Memory management is key to successful modeling. In COMSOL Multiphysics the 
finite element model can store a large amount of data depending on the complexity of 
the model. Exchanging such a large amount of data between MATLAB® and the 
COMSOL server can be problematic in terms of memory management or execution 
time. This section discusses the model settings if you are experiencing memory 
problems or slowness of command execution. 

• Allocating Memory

• Disabling Model Feature Update

• Disabling The Model History

Allocating Memory

COMSOL Multiphysics stores the data in Java®. If you are experiencing memory 
problems during meshing, postprocessing operations, or when exchanging data 
between the COMSOL server and MATLAB®, this can mean that the Java heap size 
is set with too low a value. 

Either set The COMSOL Multiphysics Server Java Heap Size or Setting Manually the 
Memory in MATLAB.

T H E  C O M S O L  M U L T I P H Y S I C S  S E R V E R  J A V A  H E A P  S I Z E

The Java heap size settings for the COMSOL Multiphysics Server process are stored 
in the comsolmphserver.ini file. You can find this file in the 
COMSOL56/Multiphysics/bin/<arch> directory. <arch> correspond to the 
architecture of the machine where the COMSOL Multiphysics Server is running 
(win64, maci64, or glnxa64).

Edit the file with a text editor. The Java heap settings are defined as in the following 
lines:

Increasing the memory allocated for the Java process necessarily decreases 
the memory available for the solver.
R  4 :  W O R K I N G  W I T H  M O D E L S



-Xss4m
-Xms40m
-Xmx1024m
-XX:MaxPermSize=256m

The values are given in Mb; modify these value to satisfy the model requirements.

S E T T I N G  M A N U A L L Y  T H E  M E M O R Y  I N  M A T L A B

To modify the Java heap size you need to edit the java.opts file available under the 
COMSOL with MATLAB startup directory. The java.opts file is stored by default 
with the following settings:

-Xss4m
-Xmx768m
-XX:MaxPermSize=256m

The values are given in Mb; modify these value to satisfy the model requirements.

To modify the MATLAB Java Heap size the java.opts file has to be stored at the 
MATLAB startup directory. This is the case when starting COMSOL with MATLAB.

Disabling Model Feature Update

Every time a setting in changed in a model, COMSOL Multiphysics automatically 
checks the settings for that particular feature and updates any other feature that may 
depend on the new setting. This operation ensures that the features are built with 
updated expressions and that any error messages appear as soon as possible after a 
COMSOL command has been run.

For models that contain a large amount of physics feature nodes, this update operation 
can take some time. For small models this is not an issue, but for larger models the 
checks can be time consuming. It can then help to deactivate the model feature update. 
To disable the feature model update, enter the command:

model.disableUpdates(true)

You have to enable the feature update again prior to computing the solution in order 
to make sure that COMSOL works on an updated model definition. Enabling the 

If you are manually connecting MATLAB with a COMSOL Multiphysics 
Server, make sure you have the java.opts at the MATLAB startup 
directory.
I M P R O V I N G  P E R F O R M A N C E  F O R  L A R G E  M O D E L S  |  247



248 |  C H A P T E
feature update is also necessary before building the geometry or the mesh in case these 
are defined using expressions.

To enable the feature model update, enter the command:

model.disableUpdates(false)

Disabling The Model History

If you run a model in a loop you can experience a slowdown when the number of 
iterations increases. This happens only with a large amount of iterations. The 
increasing memory requirements for storing the model history explains this slowdown. 
You can see all the operations performed on the model when saving it as an M-file. If 
you run a model in a loop you do not need to store the model history because it 
contains the same operations as many times as you have iterations in the loop. The 
solution is to disable the history recording. To do this, enter the command:

model.hist.disable

When the model history is disabled you no longer see the commands used to set up 
the model when saving it as an M-file.

To activate the model history, enter the command:

model.hist.enable

The functions mphload and mphopen automatically disables the model 
history when loading a model.
R  4 :  W O R K I N G  W I T H  M O D E L S



C r e a t i n g  a  Cu s t om U s e r  I n t e r f a c e

You can use the MATLAB® Guide or App Designer functionality to create a GUI and 
connect the interface to a COMSOL Multiphysics model object. Each operation in the 
GUI sets the value of a MATLAB variable or calls a MATLAB command. You can call 
commands at the MATLAB prompt to set up a COMSOL model object or set 
MATLAB variables in the COMSOL model object.

The figure below illustrates a GUI made in MATLAB and linked to a COMSOL model 
object. 

The simplified GUI only allows the user to compute a heat transfer problem on a given 
geometry. The user can only change the radius and the position of the bottom circle 
geometry. The heat source applied to the bottom circle is also defined by the user. 

The button runs the building operation of the geometry and mesh. Another button 
runs the computation of the solution.
C R E A T I N G  A  C U S T O M  U S E R  I N T E R F A C E  |  249



250 |  C H A P T E
 R  4 :  W O R K I N G  W I T H  M O D E L S



 5
C a l l i n g  E x t e r n a l  F u n c t i o n s
This section introduces you to the MATLAB® function callback from the 
COMSOL Desktop® and COMSOL Multiphysics® model object.

In this chapter:

• Running External Function

• The MATLAB® Function Feature Node
 251



252 |  C H A P T E
Runn i n g  Ex t e r n a l  F un c t i o n

When running the model containing a MATLAB function feature node, COMSOL 
Multiphysics automatically starts a MATLAB process that evaluates the function and 
returns the value to the COMSOL model.

Allowing External MATLAB Functions

To run MATLAB functions you need to allow external processes in the security 
preferences.

In the COMSOL Desktop go to the Preferences and select Security, locate the General 
section. To enable permanently external MATLAB function, in the list Allow external 

MATLAB® functions select Yes. To enable external MATLAB function only once set the 
list Allow external MATLAB® functions to Ask. Using the later option, you will be asked 
to enable external functions when the function is run.

In the COMSOL Server™, you need to connect as administrator then go to 
Administration>Preferences, in the Security section select Allow external MATLAB® 

functions. Then click Save.

A L L O W I N G  E X T E R N A L  P R O C E S S E S  I N  T H E  C O M M A N D  L I N E

Add the flag -allowexternalmatlab on to the COMSOL startup command to 
enable external processes.

You do not need to start COMSOL with MATLAB to call a MATLAB 
function from within the model; starting the COMSOL Desktop is 
sufficient. The MATLAB process starts automatically to evaluate the 
function.

On Linux operating systems, specify the MATLAB root directory path 
MLROOT and load the gcc library when starting the COMSOL Desktop: 
comsol -mlroot MLROOT -forcegcc.
R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



Disabling MATLAB® Splash Screen at Startup

To disable the MATLAB splash screen that pops up when the MATLAB engine is 
started you need to create the environment variable COMSOL_MATLAB_INIT before 
starting COMSOL and set this variable with the value "matlab -nosplash".

Running a MATLAB® Function in Applications

To run an application from the COMSOL Server™ that uses an external MATLAB 
function, it is recommended to embed the function M-file in the application. The 
Application Builder offers the possibility to upload file that can then be accessible on 
the server. Under the Libraries node, select Files, and in the Files node’s Settings 
window, click the Add File to Library button ( ) to add the M-file to the library..

Applications that use external MATLAB function are not supported using 
the COMSOL Client. It is only possible to use such applications using a 
browser.

After embedding an M-file used by an existing MATLAB function, the 
embedded M-file will only be used for new solutions. So it is 
recommended to update any solutions that are saved in the application, if 
they depend on the embedded M-file.
R U N N I N G  E X T E R N A L  F U N C T I O N  |  253



254 |  C H A P T E
Th e  MAT LAB® Fun c t i o n  F e a t u r e  Node

MATLAB® functions are global in scope and you can use them in a model to define 
model settings such as 

• Parameters

• Geometry settings

• Mesh settings

• Material properties

• Physics settings (domain conditions, boundary conditions, etc.)

Material properties and physics settings are evaluated while the model is solved 
whereas the features can be used while the model is constructed.

• Defining a MATLAB® Function in the COMSOL® Model

• Setting the Function Directory Path in MATLAB®

• Adding a MATLAB® Function with the COMSOL® API Syntax

• Function Input/Output Considerations

• Updating Functions

• Defining Function Derivatives

Defining a MATLAB® Function in the COMSOL® Model

These topics are described for the MATLAB® function:

• Adding the MATLAB Function Node

• Defining the MATLAB Function

• Plotting the Function

• Example: Define the Hankel Function

A D D I N G  T H E  M A T L A B  F U N C T I O N  N O D E

To evaluate a MATLAB function from in the COMSOL Multiphysics model you need 
to add a MATLAB node in the model object where the function name, the list of the 
arguments, and, if required, the function derivatives, are defined.
R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



To add a MATLAB function node, on the Home toolbar, click Functions and select 
Global>MATLAB( ).

The Settings window of the MATLAB node has these sections:

• Functions, where you declare the name of the MATLAB functions and their 
arguments.

• Derivatives, where you define the derivative of the MATLAB functions with respect 
to all function arguments.

• Plot Parameters, where you can define the limit of the arguments value in order to 
display the function in the COMSOL Desktop Graphics window.
T H E  M A T L A B ®  F U N C T I O N  F E A T U R E  N O D E  |  255



256 |  C H A P T E
D E F I N I N G  T H E  M A T L A B  F U N C T I O N

This figure illustrates the Settings window for MATLAB:

Under Functions, you define the function name and the list of the function arguments.

In the table columns and rows, enter the Function name and the associated function 
Arguments. The table supports multiple function definitions. You can define several 
functions in the same table or add several MATLAB nodes, as you prefer.

About Requirements for Functions and How to Test Them
Any function that you want to call using a MATLAB node must fulfill the following 
requirements:

• It can take any number of inputs as vectors and must return a single output vector.

• The input vectors can be of arbitrary size, but in a single call the inputs vectors will 
all have the same length. The returned vector must have exactly the same length as 
the input vectors.

For example, functions such as + and - (plus and minus) work well on vector inputs, 
but matrix multiplication (*, mtimes) and matrix power (^, mpower) do not. Instead, 
use the elementwise array operators .* and .^. See also Function Input/Output 
Considerations.
R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



It is good practice to test your own functions and any MALTLAB functions that you 
want to call from COMSOL Multiphysics by running them on the MATLAB 
command line using vectors with suitable values as inputs. For example, using 
besselj, a Bessel function of the first kind:

input = (1:10)'
size(input)
out = besselj(input, input)
size(out)

Here there are no errors, and the size of the input and output is the same.

As another example, test the corrcoef function for computing correlation 
coefficients:

input = (1:10)'
size(input)
out = corrcoef(input, input)
size(out)

There are no errors when calling corrcoef using vector inputs, but the result does not 
have the same size as the input and hence a call to corrcoef in this way will not work.

P L O T T I N G  T H E  F U N C T I O N

Click the Plot button ( ) to display a plot of the function.

Click the Create Plot button ( ) to create a plot group under the Results node.

To plot the function you first need to define limits for the arguments. Expand the Plot 

Parameters section and enter the desired value in the Lower limit and Upper limit 
columns. In the Plot Parameters table the number of rows correspond to the number 
of input arguments of the function. The first input argument corresponds to the top 
row.

In case there are several functions declared in the Functions table, only the function that 
has the same number of input arguments as the number of filled in rows in the Plot 

Parameters table is plotted.

If several functions have the same number of input arguments, the first function in the 
table (from top to bottom) is plotted. Use the Move up ( ) and Move down ( ) 
buttons to change the order of functions in the table.
T H E  M A T L A B ®  F U N C T I O N  F E A T U R E  N O D E  |  257



258 |  C H A P T E
E X A M P L E :  D E F I N E  T H E  H A N K E L  F U N C T I O N

Assume that you want to use MATLAB’s Bessel function of the third kind (Hankel 
function) in a COMSOL model. Add a MATLAB function node, then define the 
following settings:

To plot the function you need first to define the lower and upper limits for both nu 
and x. In the Plot Parameters table set the first row (which corresponds to the first 
argument nu) of the Lower limit column to 0 and the Upper limit column to 5 and set 
the second row (corresponding of x) of the Lower limit column to 0 and the Upper limit 
column to 10:

FUNCTION NAME ARGUMENTS

besselh nu, x
R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



Click the Plot button ( ) to get this plot:

Setting the Function Directory Path in MATLAB®

To be able to run a model that use an external MATLAB® function, the path directory 
of the function has to be set in MATLAB before it is called by COMSOL Multiphysics 

to evaluate the function.

To proceed you have these options to set the directory path in MATLAB:

•  the model MPH-file in the same directory as for the M-functions;

• Set the system environment variable COMSOL_MATLAB_PATH with the 
M-functions directory path; or 

• Use the Set Path window to specify the MATLAB search path. To open the window 
type pathtool at the MATLAB prompt or in the MATLAB desktop go the Home 
toolbar, Environment group.

Adding a MATLAB® Function with the COMSOL® API Syntax

To add a MATLAB® feature node to the COMSOL Multiphysics model using the 
COMSOL API, enter the command:
T H E  M A T L A B ®  F U N C T I O N  F E A T U R E  N O D E  |  259



260 |  C H A P T E
model.func.create(<ftag>, 'MATLAB')

Define the function name and function arguments with the command:

model.func(<ftag>).setIndex('funcs', <function_name>, 0, 0)
model.func(<ftag>).setIndex('funcs', <arglist>, 0, 1)

where <function_name> is a string set with the function name and <arglist> is a 
string that defines the list of the input arguments.

Function Input/Output Considerations

The functions called from COMSOL Multiphysics must support vector arguments of 
any length. COMSOL calls a MATLAB® function using vector arguments to reduce 
the number of expensive calls from COMSOL to MATLAB. All common MATLAB 
functions such as sin, abs, and other mathematical functions support vector 
arguments.

Consider the following example function where the coefficient c depends on the x 
coordinate:

function c = func1(x)
if x > 0.6

c = x/1.6;
else

c = x^2+0.3;
end

This function looks good at first but it does not work in COMSOL Multiphysics 
because the input x is a vector:

• Element-by-element multiplication, division, and power must be used—that is, the 
operators .*, ./, and .^. Replace expressions such as x/1.6 and x^2+0.3 with 
x./1.6 and x.^2+0.3, respectively.

• The comparison x > 0.6 returns a matrix with ones (true) for the entries where the 
expression holds true and zeros (false) where it is false. The function evaluates the 
conditional statement if, and only if, all the entries are true (1).

When you write your own functions, remember that the input arguments 
are vectors. The output must have the same size as the input. All 
arguments and results must be double-precision vectors real or complex 
valued. 
R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



You can replace the if statement with a single assignment to the indices retrieved from 
the x > 0.6 operation and another assignment to the indices where x ≤ 0.6. The 
function could then look like this:

function c = func2(x)
c = (x./1.6).*(x>0.6) + (x.^2+0.3).*(x<=0.6);

Updating Functions

If the function M-file is modified using a text editor, click Clear Functions to ensure that 
the functions’ modifications are updated in the COMSOL Multiphysics model.

An alternative is to select the Clear functions automatically before solving check box.

Defining Function Derivatives

Automatic differentiation is not supported with MATLAB® functions. In case the 
MATLAB function has Jacobian contributions, its derivatives with respect to the 
function input arguments need to be defined. By default COMSOL Multiphysics 

assumes the derivatives to be null.

Expand the Derivatives section to define the derivatives of the function with respect to 
the function arguments. In the table define the derivative for each function argument. 
In the Function column enter the function name, in the Argument column enter the 
argument. Finally in the Function derivative column enter the expression for the 
corresponding derivative.

The section, Example: Define the Hankel Function, defined the function derivative by 
entering the following settings in the table:

The function derivatives can also be defined by additional MATLAB 
functions.

FUNCTION ARGUMENT FUNCTION DERIVATIVE

besselh nu (besselh(nu-1,x)-besselh(nu+1,x))/2

besselh x (besselh(0,x)-besselh(2,x))/2
T H E  M A T L A B ®  F U N C T I O N  F E A T U R E  N O D E  |  261



262 |  C H A P T E
 R  5 :  C A L L I N G  E X T E R N A L  F U N C T I O N S



 6
C o m m a n d  R e f e r e n c e
The main reference for the syntax of the commands available with LiveLink™ for 
MATLAB® is the COMSOL Multiphysics Programming Reference Manual. This 
section documents additional interface functions that come with the product.

In this chapter:

• Summary of Commands

• Commands Grouped by Function
 263



264 |  C H A P T E
S umma r y  o f  C ommand s

colortable

mphaddplotdata

mphapplicationlibraries

mphcd

mphcomponentinfo

mphdoc

mpheval

mphevalglobalmatrix

mphevalpoint

mphevalpointmatrix

mphevaluate

mphgeom

mphgeominfo

mphgetadj

mphgetcoords

mphgetexpressions

mphgetproperties

mphgetselection

mphgetu

mphglobal

mphimage2geom

mphinputmatrix

mphint2

mphinterp

mphinterpolationfile

mphlaunch

mphload

mphmatrix

mphmax

mphmean

mphmeasure

mphmesh

mphmeshstats

mphmin

mphmodel

mphnavigator

mphopen

mphparticle

mphplot

mphquad2tri

mphray

mphreadstl

mphreduction

mphreport

mphsave

mphsearch

mphselectbox

mphselectcoords

mphshowerrors

mphsolinfo

mphsolutioninfo

mphstart

mphstate

mphsurf

mphtable

mphtags

mphthumbnail

mphversion

mphviewselection

mphwritestl

mphxmeshinfo
R  6 :  C O M M A N D  R E F E R E N C E



Command s  G r oup ed b y  Fun c t i o n
I N T E R F A C E  F U N C T I O N S

G E O M E T R Y  F U N C T I O N S

M E S H  F U N C T I O N S

U T I L I T Y  F U N C T I O N S

FUNCTION PURPOSE

mphcd Change the directory to the directory of the model.

mphdoc Open help window for a certain topic.

mphlaunch Launch a COMSOL Multiphysics Client, connect it to the 
server and load a model.

mphload Load a COMSOL model MPH-file.

mphopen GUI for opening recent model files.

mphsave Save a COMSOL model.

mphstart Connect MATLAB to a COMSOL server.

mphthumbnail Set or get model thumbnail.

mphversion Return the version number of COMSOL Multiphysics

FUNCTION PURPOSE

mphgeom Plot a geometry in a MATLAB figure.

mphgeominfo Get geometry information.

mphimage2geom Convert image data to geometry.

mphmeasure Measure entities in a geometry.

mphviewselection Display a geometric entity selection in a MATLAB figure.

FUNCTION PURPOSE

mphmesh Plot a mesh in a MATLAB figure.

mphmeshstats Return mesh statistics and mesh data information.

FUNCTION PURPOSE

mphevaluate Evaluate Parameters expressions in model.

mphgetadj Return geometric entity indices adjacent to each other.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  265



266 |  C H A P T E
mphgetcoords Return point coordinates of geometry entities.

mphgetu Return solution vectors.

mphinputmatrix Add matrix system for a linear solver.

mphinterpolationfile Save data in file readable by the Interpolation feature.

mphmatrix Get model matrices.

mphquad2tri Convert plot data quad mesh into simplex mesh.

mphreadstl Read an STL file and returns the data as a struct.

mphreduction Return reduced-order state-space matrices for a model.

mphselectbox Select a geometric entity using a rubber band/box.

mphselectcoords Select a geometric entity using point coordinates.

mphsolinfo Get information about a solution object.

mphsolutioninfo Get information about solution objects and datasets 
containing given parameters.

mphstate Get state-space matrices for dynamic systems.

mphsurf Create plot data structure from surf data.

mphwritestl Export plot data as an STL file.

mphxmeshinfo Extract information about the extended mesh.

FUNCTION PURPOSE
R  6 :  C O M M A N D  R E F E R E N C E



P O S T P R O C E S S I N G  F U N C T I O N S

M O D E L  I N F O R M A T I O N  A N D  N A V I G A T I O N

FUNCTION PURPOSE

mphaddplotdata Add a data plot to a model.

mpheval Evaluate expressions on node points.

mphevalglobalmatrix Evaluate global matrix variables.

mphevalpoint Evaluate expressions at geometry vertices.

mphevalpointmatrix Evaluate matrix quantities at points in the geometry

mphglobal Evaluate global quantities.

mphint2 Perform integration of expressions.

mphinterp Evaluate expressions in arbitrary points or datasets.

mphmax Perform maximum of expressions.

mphmean Perform mean of expressions.

mphmin Perform minimum of expressions.

mphparticle Evaluate expressions on particle trajectories.

mphplot Render a plot group in a figure window.

mphray Evaluate expressions on particle and ray trajectories.

mphreport Generate report to model or write report.

mphtable Get table data.

mphray Evaluate expressions on ray trajectories.

FUNCTION PURPOSE

mphapplicationlibraries GUI for viewing the product Application Libraries.

mphcomponentinfo Get information about a component.

mphgetexpressions Get the model variables and parameters.

mphgetproperties Get properties from a model node.

mphgetselection Get information about a selection node.

mphmodel Return tags for the nodes and subnodes in the 
COMSOL model object.

mphnavigator GUI for viewing the COMSOL model object.

mphsearch GUI for searching expressions in the COMSOL model 
object.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  267



268 |  C H A P T E
colortable

Return a MATLAB® colormap for a COMSOL Multiphysics color table.

S Y N T A X

map = colortable(name)
colortable(name)
list = colortable

D E S C R I P T I O N

map = colortable(name) returns the color table (of 256 colors) for name, where 
name can be one of the list below.

colortable(name) creates a plot of the colortable name.

list = colortable returns a list of the available colortables.

The available colortable are listed below:

• AuroraAustralis, AuroraAustralisDark, AuroraBorealis, and 
JupiterAuroraBorealis - color tables resemble the colors in the aurora australis 
(southern light), aurora borealis (northern light), and Jupiter’s aurora, respectively. 
The AuroraAustralis color table spans from white through green and indigo to blue. 
The AuroraAustralisDark color is similar to AuroraAustralis but does not start with 
absolute white so that the end value’s color is different from a white background. 
The AuroraBorealis color table also spans from white through green and indigo to 
blue but with a larger indigo portion. The JupiterAuroraBorealis color table spans 
from black through blue to white.

• Twilight - color table uses colors associated with twilight (the illumination of the 
Earth’s lower atmosphere when the Sun is not directly visible), spanning colors from 
pink through white to blue.

• Cividis - color table uses yellow and blue colors in a color table that is suited for 
normal vision, a deuteranomaly, or red-green colorblindness. It was created by 
Jamie Nuñez, Ryan Renslow, and Chris Anderton at the Biological Sciences 

mphshowerrors Show messages in error and warning nodes in the 
COMSOL model object.

mphtags Get tags and names for nodes in a COMSOL model.

mphthumbnail Get and set model thumbnail images

FUNCTION PURPOSE
R  6 :  C O M M A N D  R E F E R E N C E



Division of the Pacific Northwest National Laboratory (located in Richland, 
Washington state, United States).

• Cyclic and CyclicClassic - color tables are useful for displaying periodic 
functions because they have a sharp color gradient — it varies the hue component 
of the hue-saturation-value (HSV) color model, keeping the saturation value 
constant (equal to 1). The colors begin with red, then pass through yellow, green, 
cyan, blue, magenta, and finally return to red.

• Dipole - color table has been developed for plots where the majority of the solution 
is close to zero (or centered around some meaningful reference point) and where, 
in some places, positive and negative excitations occur. Typical cases are the electric 
potential distribution around positively and negatively charged objects with the field 
relaxing to zero at infinity and the pressure distribution of an acoustic wave 
propagating in a large open space. For those cases, the scale tends to white in areas 
of relative inactivity, allowing for a good contrast with titles, legends, dataset edges, 
and other plot elements. This reasoning is similar to the one used for the Prism color 
scale. The main difference is that Dipole is symmetric (or “diverging”), making it 
suitable for positive and negative scalar fields, whereas Prism is more suitable for 
vector field norms (which are positive only).

• DipoleDark - similar but uses slightly darker colors. 

You can use a combination of Dipole color tables to visualize streamlines, contour 
lines, and arrows using DipoleDark on top of a surface plot using Dipole.

• Disco and DiscoClassic - color tables span from red through magenta and cyan 
to blue. DiscoDark and DiscoLight are similar but use darker and lighter colors, 
respectively.

You can use a combination of Disco color tables to visualize streamlines or contour 
lines using DiscoLight on top of a surface plot using Disco. The same way, 
DiscoDark can be used to draw on top of Disco.

• Gaia - color table spans colors that make it suitable for visualizing plots related to 
topography and bathymetry. 

• GaiaLight - similar but use lighter colors.

You can use a combination of Gaia color tables to visualize streamlines or contour 
lines using GaiaLight on top of a surface plot using Gaia.

• GrayBody - color table is based on the Planckian locus for blackbody radiation. It is 
useful within the context of metal processing, for example. 
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  269



270 |  C H A P T E
• GrayBodyLight - is similar but use lighter colors.

You can use a combination of GrayBody color tables to visualize streamlines or 
contour lines using GrayBodyLight on top of a surface plot using GrayBody.

• GrayScale  - color table uses the linear gray scale from black to white — the easiest 
palette to understand and order.

• GrayPrint - color table varies linearly from dark gray (RGB: 0.95, 0.95, 0.95) to 
light gray (RGB: 0.05, 0.05, 0.05). Choose this color table to overcome two 
difficulties that the GrayScale color table has when used for printing on paper — it 
gives the impression of being dominated by dark colors, and white is 
indistinguishable from the background.

Gray scale plots are often easier to use for publication. People can also better 
perceive structural detail in a gray scale than with color.

• Inferno, Magma, and Plasma - color tables use a general bluish to reddish to 
yellowish color sequence, which is relatively friendly to common forms of color 
vision deficiencies. They are designed so that they are analytically perceptually 
uniform, both in regular form and when converted to black-and-white images. They 
were created by Stéfan van der Walt and Nathaniel Smith.

• Prism - slightly similar to the Rainbow color table but includes a white tip and is 
brighter. It has been developed for plots where the majority of the solution is close 
to zero (typically at the outer perimeter of the modeling domain) and where, in 
some places, singularities or “hot spots” occur. This is especially true for electric and 
magnetic field norms in electromagnetic models, but may also occur for stress and 
strain norms in structural mechanics models, for example. For those cases, the scale 
tends to white in areas of relative inactivity, allowing for a good contrast with titles, 
legends, dataset edges, and other plot elements. This is the default color table for 
plots when using structural mechanics physics interfaces.

• PrismDark - similar but uses slightly darker colors. It can be used, in combination 
with Prism, to add arrows or streamlines on top of a plane, for instance. Close to the 
hot spots the contrast between the two color scales increases, and in the wake 
regions the contrast will fade.

You can use a combination of Prism color tables to visualize streamlines, contour 
lines, and arrows using PrismDark on top of a surface plot using Prism.

• Rainbow - the default for most plots that support color tables. The color ordering 
corresponds to the wavelengths of the visible part of the electromagnetic spectrum. 
It starts at the small-wavelength end with dark blue. The colors range through 
shades of blue, cyan, green, yellow, and red. The disadvantage of this color table is 
R  6 :  C O M M A N D  R E F E R E N C E



that people with color vision deficiencies (affecting up to 10% of technical 
audiences) cannot see distinctions between reds and greens.

• RainbowClassic - the rainbow color table used in versions of COMSOL 
Multiphysics earlier than version 6.0. Compared to RainbowClassic, the current 
Rainbow color table is less saturated, more uniform, more smooth, and more 
balanced.

• RainbowDark and RainbowLight - similar to Rainbow but use darker and lighter 
colors, respectively.

You can use a combination of Rainbow color tables to visualize streamlines or 
contour lines using RainbowLight on top of a surface plot using Rainbow. The same 
way, RainbowDark can be used to draw on top of Rainbow.

• Spectrum and SpectrumClassic are similar to the Rainbow color tables but 
include violet at the small-wavelength end of the visible spectrum. They also include 
richer shades of green to more closely replicate the human perception of visible 
light.

• SpectrumLight - similar but use lighter colors. You can use them with the Ray 
Optics Module, for example, to accurately visualize polychromatic light.

You can use a combination of Spectrum color tables to visualize streamlines or 
contour lines using SpectrumLight on top of a surface plot using Spectrum.

• Thermal and ThermalClassic - differ in that the Thermal color table uses equal 
distances from dark red to orange, yellow, and white, which means that the region 
with the lowest values is red instead of black as in the ThermalClassic color table. 
The colors correspond to the colors iron takes as it heats up.

• ThermalLight and ThermalLightClassic - similar but use lighter colors.

• ThermalDark - similar but uses darker colors.

You can use a combination of Thermal color tables to visualize streamlines or 
contour lines using ThermalLight on top of a surface plot using Thermal. The same 
way, ThermalDark can be used to draw on top of Thermal.

• ThermalWave - designed for wave phenomena with a thermal character. It is 
calibrated to have a 100% symmetric luminance.

• ThermalWaveDark - similar to ThermalWave but with slightly darker colors.

You can use a combination of ThermalWave color tables to visualize streamlines, 
contour lines, and arrows using ThermalWaveDark on top of a surface plot using 
ThermalWave.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  271



272 |  C H A P T E
• Traffic and TrafficClassic - color tables span from green through yellow to 
red.

• TrafficLight and TrafficLightClassic - similar but use lighter colors.

You can use a combination of Traffic color tables to visualize streamlines or contour 
lines using TrafficLight on top of a surface plot using Traffic.

• Viridis - color table uses a general bluish to greenish to yellowish color sequence, 
which is relatively friendly to common forms of color vision deficiencies. It is 
designed so that it is analytically perceptually uniform, both in regular form and 
when converted to a black-and-white image. It was created by Stéfan van der Walt 
and Nathaniel Smith.

• Wave and WaveClassic - color tables are useful for data that naturally has positive 
and negative attributes in addition to a magnitude. As an example of a double-ended 
color scheme, it ranges linearly from blue to light gray, and then linearly from white 
to red. When the range of the visualized quantity is symmetric around zero, the 
color red or blue indicates whether the value is positive or negative, and the 
saturation indicates the magnitude.

People with color vision deficiencies can interpret the Wave color table because it 
does not use red-green-gray distinctions, making it efficient for 99.98% of the 
population.

• WaveLight and WaveLightClassic - similar and range linearly from a lighter blue 
to a lighter red.

You can use a combination of Wave color tables to visualize streamlines or contour 
lines using WaveLight on top of a surface plot using Wave.

Note: The classic versions of some color tables correspond to that same color table in 
COMSOL Multiphysics versions earlier than version 6.0 (for example, 
RainbowClassic correspond to the Rainbow color table in versions before 6.0. The 
new versions of these color tables are typically less saturated, more uniform, more 
smooth, and more balanced.

E X A M P L E

Create a rainbow color map

map = colortable('Rainbow');
colortable('Prism')
R  6 :  C O M M A N D  R E F E R E N C E



mphaddplotdata

S Y N T A X

mphaddplotdata(model,'type',type,'data',data,...)

D E S C R I P T I O N

mphaddplotdata(model,'type',type,'data',data,...) create a new plot using 
the data data as a plottype type.

The function mphaddplotdata accepts the following property/value pairs:

S E E  A L S O

mphplot

TABLE 6-1:  PROPERTY/VALUE PAIRS FOR THE MPHADDPLOTDATA COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

arrowtype arrow | 
arrowhead | 
cone

arrow Arrow type

arrowbase head | tail | 
center

tail Arrow base

clearplot off | on off Clear plot group

color vector | 
string | index 
| matrix

Color specification

colortable string | cell 
array

Color table name

data matrix Coordinates data

edges off| on on Plot dataset edges

elementdata matrix Element data (low level)

latex off | on off Use LaTeX markup

normaldata matrix Data for normals (low level)

plotgroup string Plot group tag

radius vector Radius for tubes

type arrow | line | 
surface | 
annotation | 
tube | point

Plot type

vector matrix Direction vector
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  273



274 |  C H A P T E
mphapplicationlibraries

Graphical user interface (GUI) for viewing the Application Libraries.

S Y N T A X

mphapplicationlibraries

D E S C R I P T I O N

mphapplicationlibraries starts a GUI to visualize and access the example model 
available in the COMSOL Application Libraries. The model MPH-file can be loaded 
in MATLAB® and the model documentation PDF-file is accessible directly. 

Models that are specific to LiveLink™ for MATLAB® also contains the script M-file.

Models that are specific to LiveLink™ for Simulink® also contains the simulation 
SLX-file and opens directly in Simulink.

mphcd

Change directory to the directory of the model.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

mphcd(model)

D E S C R I P T I O N

mphcd(model) changes the current directory in MATLAB® to the directory where the 
model was last saved.

S E E  A L S O

mphload, mphsave

mphcomponentinfo

Get information about a component.

S Y N T A X

info = mphcomponent(model, comptag)

D E S C R I P T I O N

info = mphcomponent(model, comptag) returns information about the 
component comptag. 

If the model contains only one component, the tag comptag is optional.

The output structure info contains the following fields:

TABLE 6-2:  FIELDS IN THE INFO STRUCTURE

FIELD DESCRIPTION

tag Component tag of the component

geom Geometries in the component

mesh Meshes in the component

geometricmodel Geometric model defining the physics

scope Full scope

basesystem Tag of the unit system

sorder Geometry shape function order

geometrycoord Geometry frame coordinate variables

materialcoord Material frame coordinate variables

meshcoord Mesh frame coordinate variables

spatialcoord Spatial frame coordinate variables
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  275



276 |  C H A P T E
S E E  A L S O

mphnavigator

mphdoc

Open help window for a certain topic.

S Y N T A X

mphdoc
mphdoc(node)
mphdoc(node,fname)
mphdoc api

D E S C R I P T I O N

mphdoc opens the COMSOL documentation Help Desk.

mphdoc(node) opens the help window for the entry on node.

mphdoc(node,fname) opens the help window for the entry on node with the feature 
fname.

mphdoc api opens a window with the JavaDoc help for the COMSOL API.

E X A M P L E

Create a model a model object:

model = ModelUtil.create('Model');

Get the documentation for the mesh node;

mphdoc(model.mesh)

Get the documentation of the geometry feature Rectangle:

mphdoc(model.geom,'Rectangle')

S E E  A L S O

mphapplicationlibraries

mpheval

Evaluate expressions on node points.

S Y N T A X

pd = mpheval(model,{e1,...,en},...)
R  6 :  C O M M A N D  R E F E R E N C E



D E S C R I P T I O N

pd = mpheval(model,{e1,...,en},...) returns the post data pd for the 
expressions e1,...,en.

The output value pd is a structure with fields expr, p, t, ve, unit and fields for data 
values. 

• The field expr contains the expression name evaluated.

• For each expression e1,...,en a field with the name d1,... dn is added with the 
numerical values. The columns in the data value fields correspond to node point 
coordinates in columns in p. The data contains only the real part of complex-valued 
expressions.

• The field p contains node point coordinate information. The number of rows in p 
is the number of space dimensions. 

• The field t contains the indices to columns in p of a simplex mesh, each column in 
t representing a simplex. 

• The field ve contains indices to mesh elements for each node point. 

• The field unit contains the list of the unit for each expression. 

The function mpheval accepts the following property/value pairs:

TABLE 6-3:  PROPERTY/VALUE PAIRS FOR THE MPHEVAL COMMAND.

PROPERTY PROPERTY 
VALUE

DEFAULT DESCRIPTION

complexfun off | on on Use complex-valued functions with 
real input

complexout off | on on Return complex values

dataonly off | on off Only return expressions value

dataset String Dataset tag

edim point | 
edge | 
boundary | 
domain | 0 
| 1 | 2 | 3

Geometry 
space 
dimension 

Evaluate on elements with this 
space dimension

matherr off | on off Error for undefined operations or 
expressions

outersolnum Positive 
integer | 
all | end

1 Solution number for parametric 
sweep

pattern lagrange | 
gauss

lagrange Specifies if evaluation takes place in 
Lagrange points or in Gauss points
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  277



278 |  C H A P T E
The property Dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The property Edim decides which elements to evaluate on. Evaluation takes place only 
on elements with space dimension Edim. If not specified, Edim equal to the space 
dimension of the geometry is used. The setting is specified as one of the following 
strings 'point', 'edge', 'boundary' or 'domain'. In previous versions it was only 
possible to specify Edim as a number. For example, in a 3D model, if evaluation is done 
on edges (1D elements), Edim is 1. Similarly, for boundary evaluation (2D elements), 
Edim is 2, and for domain evaluation (3D elements), Edim is 3 (default in 3D).

Use Recover to recover fields using polynomial-preserving recovery. This techniques 
recover fields with derivatives such as stresses or fluxes with a higher theoretical 
convergence than smoothing. Recovery is expensive so it is turned off by default. The 
value pprint means that recovery is performed inside domains. The value ppr means 
that recovery is also applied on all domain boundaries.

The property Refine constructs evaluation points by making a regular refinements of 
each element. Each mesh edge is divided into Refine equal parts.

phase Scalar 0 Phase angle in degrees

recover off | ppr | 
pprint

off Accurate derivative recovery

refine Integer 1 Refinement of elements for 
evaluation points

selection Integer vector 
| string | all

all Set selection tag or entity number

smooth internal | 
none | 
everywhere

internal Smoothing setting

solnum Integer vector 
| all | end

all Solutions for evaluation

t Double array Times for evaluation

unit String | Cell 
array

Unit to use for the evaluation

TABLE 6-3:  PROPERTY/VALUE PAIRS FOR THE MPHEVAL COMMAND.

PROPERTY PROPERTY 
VALUE

DEFAULT DESCRIPTION
R  6 :  C O M M A N D  R E F E R E N C E



The property Smooth controls if the post data is forced to be continuous on element 
edges. When Smooth is set to internal, only elements not on interior boundaries are 
made continuous.

The property Solnum is used to select the solution to plot when a parametric, 
eigenvalue, or time-dependent solver has been used to solve the problem.

The property Outersolnum is used to select the solution to plot when a parametric 
sweep has been used in the study.

When the property Phase is used, the solution vector is multiplied with 
exp(i*phase) before evaluating the expression.

The expressions e1,...,en are evaluated for one or several solutions. Each solution 
generates an additional row in the data fields of the post data output structure. The 
properties Solnum and t control which solutions are used for the evaluations. The 
Solnum property is available when the dataset has multiple solutions — for example, in 
the case of parametric, eigenfrequency, or time-dependent solutions. The t property is 
available only for time-dependent problems. If Solnum is provided, the solutions 
indicated by the indices provided with the Solnum property are used. If t is provided, 
solutions are interpolated. If neither Solnum nor t is provided, all solutions are 
evaluated.

For time-dependent problems, the variable t can be used in the expressions ei. The 
value of t is the interpolation time when the property t is provided, and the time for 
the solution, when Solnum is used. Similarly, lambda and the parameter are available 
as eigenvalues for eigenvalue problems and as parameter values for parametric 
problems, respectively.

E X A M P L E

Evaluate the temperature at node points:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

dat = mpheval(model,'T');

Evaluate both the total heat flux magnitude and the temperature:

data = mpheval(model,{'ht.tfluxMag', 'T'});

Evaluate the temperature and return the data only:

data = mpheval(model,'T','dataonly','on');
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  279



280 |  C H A P T E
Evaluate the temperature at the node points in domain 2:

data = mpheval(model,'T','selection',2);

Evaluate the temperature at the node points on boundary 7:

data = mpheval(model,'T','selection',7,'edim','boundary');

Evaluate the temperature at second order Lagrange points:

data = mpheval(model,'T','refine',2);

Evaluate the temperature at the Gauss points:

data = mpheval(model,'T','pattern','gauss');

Evaluate the temperature at every time step computed with power set to 30:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

data = mpheval(model,'T','dataset','dset2');

Evaluate the temperature at the fifth time step:

data = mpheval(model,'T','dataset','dset2','solnum',5);

Evaluate the temperature at 10.5 sec and 15.2 sec:

data = mpheval(model,'T','dataset','dset2','t',[10.5,15.2]);

Evaluate the temperature at every time step computed with power set to 90:

data = mpheval(model,'T','dataset','dset2','outersolnum',3);

S E E  A L S O

mphevalglobalmatrix, mphevalpoint, mphevalpointmatrix, mphglobal, 
mphint2, mphinterp, mphparticle, mphray

mphevalglobalmatrix

Evaluate global matrix variables.

S Y N T A X

M = mphevalglobalmatrix(model,expr,...)
R  6 :  C O M M A N D  R E F E R E N C E



D E S C R I P T I O N

M = mphevalglobalmatrix(model,expr,...) evaluates the global matrix of the 
variable expr and returns the full matrix M.

The function mphevalglobalmatrix accepts the following property/value pairs:

Note: S-parameters evaluation requires the RF module.

E X A M P L E

Load lossy_circulator_3d.mph from the RF Module’s Applications Libraries:

model = mphopen('lossy_circulator_3d.mph');

Evaluate the S-parameters matrix using the solution dataset dset4:

M = mphevalglobalmatrix(model,'emw.SdB','dataset','dset4');

TABLE 6-4:  PROPERTY/VALUE PAIRS FOR THE MPHEVALGLOBALMATRIX COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

dataset String Dataset tag

dataseries none | average | 
sum

none Data series operation

outerdataseries none | average | 
sum

none Outer data series 
operation

outersolnum Positive integer | 
end | all

1 Solution number for 
parametric sweep

solnum Integer vector | 
end | all

all Solution for evaluation

t Double array Time for evaluation

trans none | inverse | 
maxwellmutual | 
mutualmaxwell | sy 
| sz | ys | yz | zs | 
zy

none The transformation to 
apply to the matrix

y0 Double array Taken from 
the physics 
interfaces

If trans is sy or ys: The 
characteristic admittance

z0 Double array Taken from 
the physics 
interfaces

If trans is sz or zs: The 
characteristic impedance
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  281



282 |  C H A P T E
S E E  A L S O

mpheval, mphevalpoint, mphevalpointmatrix, mphglobal, mphint2, mphinterp, 
mphparticle, mphray

mphevalpoint

Evaluate expressions at geometry vertices.

S Y N T A X

[v1,...,vn] = mphevalpoint(model,{e1,...,en},...)
[v1,...,vn,unit] = mphevalpoint(model,{e1,...,en},...)

D E S C R I P T I O N

[v1,...,vn] = mphevalpoint(model,{e1,...,en},...) returns the results from 
evaluating the expressions e1,...,en at the geometry vertices. The values v1,...,vn 
can either be a cell array or a matrix depending on the options.

[v1,...,vn,unit] = mphevalpoint(model,{e1,...,en},...) also returns the 
unit of all expressions e1,...,en in the 1xN cell array unit.

The function mphevalpoint accepts the following property/value pairs:

TABLE 6-5:  PROPERTY/VALUE PAIRS FOR THE MPHEVALPOINT COMMAND.

PROPERTY PROPERTY 
VALUE

DEFAULT DESCRIPTION

dataset String Dataset tag

dataseries none | mean | 
int | max | 
min | rms | 
std | var

none Data series operation

matrix off | on on Return a matrix if possible

minmaxobj real | abs real The value being treated if 
dataseries is set to max or min

outersolnum Positive integer 
| all | end

1 Solution number for parametric 
sweep

selection Integer vector 
| string | all

All 
domains

Set selection tag or entity number

solnum Integer vector 
| all | end

all Solutions for evaluation

squeeze on | off on Squeeze singleton dimension

t Double array Times for evaluation
R  6 :  C O M M A N D  R E F E R E N C E



The property Dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The Dataseries property is used to control any filtering of the data series. The 
supported operations are: average (mean), integral (int), maximum (max), minimum 
(min), root mean square (rms), standard deviation (std) and variance (var).

Set the property Matrix to off to get the results in a cell array format.

In case the property Datseries is either min or max, you can specify how the values 
are treated using the property Minmaxobj. Use either the real data or the absolute data.

The property Solnum is used to select the solution to plot when a parametric, 
eigenvalue, or time-dependent solver has been used to solve the problem.

The expressions e1,...,en are evaluated for one or several solutions. Each solution 
generates an additional row in the data fields of the post data output structure. The 
properties Solnum and t control which solutions are used for the evaluations. The 
Solnum property is available when the dataset has multiple solutions — for example in 
the case of parametric, eigenfrequency, or time-dependent solutions. The t property is 
available only for time-dependent problems. If Solnum is provided, the solutions 
indicated by the indices provided with the Solnum property are used. If t is provided, 
solutions are interpolated. If neither Solnum nor t is provided, all solutions are 
evaluated.

For time-dependent problems, the variable t can be used in the expressions ei. The 
value of t is the interpolation time when the property t is provided, and the time for 
the solution, when Solnum is used. Similarly, lambda and the parameter are available 
as eigenvalues for eigenvalue problems and as parameter values for parametric 
problems, respectively.

E X A M P L E

Evaluate the temperature on all geometry points:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary'); std.run;

T = mphevalpoint(model,'T');

Evaluate the temperature on point 5:

T = mphevalpoint(model,'T','selection',5);
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  283



284 |  C H A P T E
Evaluate the temperature and the magnitude of the total heat flux on point 5:

[T, heatflux, unit] = mphevalpoint(model,{'T','ht.tfluxMag'},...
   'selection',5);

Evaluate the temperature at every time step computed with power set to 30:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0)
param.setIndex('plistarr','30 60 90',0);
 std.run;

T = mphevalpoint(model,'T','selection',5,'dataset','dset2');

Evaluate the temperature at the seventh time step:

T = mphevalpoint(model,'T','selection',5,'dataset','dset2',...
   'solnum',7);

Evaluate the temperature at 10.5 sec:

T = mphevalpoint(model,'T','selection',5,'dataset','dset2',...
   't',10.5);

Evaluate the temperature on point 5 computed with power set to 90:

T = mphevalpoint(model,'T','selection',5,'dataset','dset2',...
   'outersolnum',3)

Evaluate the temperature average over all time steps:

T_avg = mphevalpoint(model,'T','selection',5,...
   'dataset','dset2','dataseries','average');

S E E  A L S O

mpheval, mphevalglobalmatrix, mphevalpointmatrix, mphglobal, mphint2, 
mphinterp, mphparticle, mphray

mphevalpointmatrix

Evaluate matrix quantities at points in the geometry.

S Y N T A X

M = mphevalpointmatrix(model, expr, ...)
R  6 :  C O M M A N D  R E F E R E N C E



D E S C R I P T I O N

M = mphevalpointmatrix(model, expr, ...) evaluates the point matrix of the 
variable expr and returns the full matrix M.

The function mphevalpointmatrix accepts the following property/value pairs:

S E E  A L S O

mpheval, mphevalglobalmatrix, mphevalpoint, mphglobal, mphint2, 
mphinterp, mphparticle, mphray

mphevaluate

Evaluate parameter expressions in models.

S Y N T A X

mphevaluate(model,expr)
str = mphevaluate(model)
[value,unit,def,descr] = mphevaluate(model,expr,...)
[value,...] = mphevaluate(model,expr,unit)
[value,...] = mphevaluate(model,expr,asvalue)

D E S C R I P T I O N

mphevaluate(model,expr) evaluates the expression expr defined in the Parameters 
node.

str = mphevaluate(model) returns all the expressions defined in the Parameters 
node as a structs arrays.

TABLE 6-6:  PROPERTY/VALUE PAIRS FOR THE MPHEVAL COMMAND.

PROPERTY PROPERTY 
VALUE

DEFAULT DESCRIPTION

dataset String Dataset tag

dataseries none | 
average | sum

none Dataseries operation

outersolnum Positive integer 
| end | all

1 Solution number for parametric 
sweep

selection String | positive 
integer array

Set selection tag or entity number

solnum Integer vector 
| end | all

all Solution for evaluation

t Double array Time for evaluation
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  285



286 |  C H A P T E
str = mphevaluate(model,{e1,...}) returns all the expressions defined in the cell 
array {e1,...} as a structs arrays. When multiple expressions are evaluated only one 
output is supported.

[value,unit,def,descr] = mphevaluate(model,expr,...) evaluates the 
expression expr and return the unit (unit), the definition in the model (def) and the 
description (descr).

[value,...] = mphevaluate(model,expr,unit) evaluates the expression expr in 
the unit defined by unit.

value = mphevaluate(model,expr,unit,'value') returns only the value of the 
expression expr.

unit = mphevaluate(model,expr,unit,'unit') returns only the unit of the 
expression expr.

def = mphevaluate(model,expr,unit,'valueunit') returns as a string the value 
and the unit of the expression expr. This is useful to set a new parameter based on an 
existing one.

The evaluation does not require an existing solution dataset in the model.

E X A M P L E

Evaluate the parameter power defined in the model:

model = mphopen('model_tutorial_llmatlab');
power = mphevaluate(model,'power');

Evaluate Temp in degrees Celsius and its definition in the model:

[Temp,unit,def] = mphevaluate(model,'Temp','degC');

Evaluate an expression of parameters:

Temp = mphevaluate(model,'Temp+20[degC]','degF');

S E E  A L S O

mpheval, mphglobal, mphinterp, mphparticle, mphray

mphgeom

Plot a geometry in a MATLAB® figure.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

mphgeom(model)
mphgeom(model,geomtag,...)
mphgeom(model,geomtag,'workplane',wptag,...)
h = mphgeom(model,geomtag,...)

D E S C R I P T I O N

mphgeom(model) plots the model geometry in a MATLAB figure. If the model only 
contains one geometry then the geomtag can be empty.

mphgeom(model,geomtag,...) plots the model geometry with the tag geomtag in a 
MATLAB figure. 

mphgeom(model,geomtag,'workplane',wptag...) plots the 2D geometry defined 
in the workplane with the tag wptag in a MATLAB figure. 

h = mphgeom(model,geomtag,...) also returns a handle of the plotted entities.

The function mphgeom accepts the following property/value pairs:

TABLE 6-7:  PROPERTY/VALUE PAIRS FOR THE MPHGEOM COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

build on | off | 
current | 
string

on Build the geometry before 
plotting

domainlabels on | off off Show domain labels

domainlabelscolor Char k Color for domain labels

edgecolor Char k Edge color

edgelabels on | off off Show edge labels

edgelabelscolor Char k Color for edge labels

edgemode on | off on Show edges

entity point | edge 
| boundary | 
domain

Geometric entity to select

facealpha Double 1 Set transparency value

facecolor Char | vector 
of RGB values

gray Face color

facelabels on | off off Show face labels

facelabelscolor Char k Color for face labels

facemode on | off on Show faces
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  287



288 |  C H A P T E
The Build property determines if mphgeom build the geometry prior to display it. If 
the Build property is set with a geometry object tag, the geometry is built up to that 
object. mphgeom only displays built geometry objects.

Use the Workplane property to show the 2D geometry that is define inside the 
workplane with specified tag.

E X A M P L E

Plot the model geometry:

model = mphopen('model_tutorial_llmatlab.mph');

mphgeom(model)

Plot the model geometry with face labels:

mphgeom(model,'geom1','facelabels','on','facelabelscolor','r');

Plot boundaries 7, 8, 9 and 11:

mphgeom(model,'geom1','entity','boundary',...
   'selection',[7:9,11]);

The geometry can be plotted with view settings applied. This results in a geometry plot 
with grid, axes labels, lights, hiding etc. applied to the plot. Usually it is sufficient to 
use the auto setting, but any valid view can be applied:

mphmesh(model, 'mesh1', 'view', 'auto')

Plot the model geometry on an existing axis:

figure(2);
mphgeom(model, 'geom1','parent', gca);

S E E  A L S O

mphmesh, mphviewselection

parent Double Parent axes

selection Positive 
integer array

Selection

vertexlabels on | off off Show vertex labels

vertexlabelscolor Char k Color for vertex labels

vertexmode on | off off Show vertices

view String | auto '' View settings

TABLE 6-7:  PROPERTY/VALUE PAIRS FOR THE MPHGEOM COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION
R  6 :  C O M M A N D  R E F E R E N C E



mphgeominfo

Get geometry information.

S Y N T A X

info = mphgeominfo(model, geomtag)
info = mphgeominfo(model)
[info,data] = mphgeominfo(model,geomtag,...)

D E S C R I P T I O N

info = mphgeominfo(model,geomtag) returns the information of the geometry 
defined with the tag geomtag. The tag geomtag can also be the tag of a geometry part. 
If only a unique geometry node is defined in the model, the tag geomtag is optional. 

[info,data] = mphgeominfo(model,geomtag,...) returns the information and 
geometry data of a specific entity. 

The function mphgeominfo accepts the following property/value pairs to return 
geometry data:

The output structure info contains the following fields:

TABLE 6-8:  PROPERTY/VALUE PAIRS FOR THE MPHGEOMINFO COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

build on | off | 
string

off Build the geometry object 
while retrieving the 
information

entity face | edge | 
vertex

Geometric entity to select

selection Positive integer 
array

Selection

steps Positive integer 
array

[10 10] Number of point for data 
evaluation

TABLE 6-9:  FIELDS IN THE INFO STRUCTURE

FIELD DESCRIPTION

sdim Space dimension

label Label of the selected geometry

component Component tag

geometricmodel Geometric model used by the physics

autobuildnew Build geometric operation automatically when added
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  289



290 |  C H A P T E
autorebuild Geometry sequence automatically rebuilt

lengthunit Current length unit

angularunit Current angular unit

objectnames Names of all objects that exist in the current state

current Tag of the current feature

geomrep Geometry representation

scaleunitvalue Scale numeric values in the geometry and meshing 
sequences

repairtol Relative repair tolerance

repairtoltype Repair tolerance type

absrepairtol Absolute repair tolerance

useconstrdim Constraints and dimensions functionality enabled

constrdimbuild Constraints and dimensions used when building the 
geometry object

constrdimstatus Overall status of the constraints and dimensions

ispart Object is a geometry part

view Current view

exists Geometry object exists

isaxisymmetric Geometry is axisymmetric

boundingbox Bounding box of the geometry objects

type Object type

Ndomains Number of domains

Nboundaries Number of boundaries

Nedges Number of edges

Nvertices Number of vertices

Nfinitevoids Number of finite voids

Nfaces Number of faces

problems List of error/warning messages

TABLE 6-9:  FIELDS IN THE INFO STRUCTURE

FIELD DESCRIPTION
R  6 :  C O M M A N D  R E F E R E N C E



For a face evaluation, the output structure data contains the following fields:

For an edge evaluation, the output structure data contains the following fields:

* edgenormal is only returned for 2D space dimension.

** edgetorsion is only returned for 3D space dimension.

For a vertex evaluation, the output structure data contains the following fields:

TABLE 6-10:  FIELDS IN THE DATA STRUCTURE FOR FACE ENTITY

FIELD DESCRIPTION

paramrange Parameter ranges of face

facex Face coordinates

facedx Face first order derivatives

faceddx Face second order derivatives

facenormal Face normal

faceff1 Face first fundamental form

faceff2 Face second fundamental form

facegausscurvature Face Gauss curvature

meancurvature Face mean curvature

updown Up and down domain indices

TABLE 6-11:  FIELDS IN THE DATA STRUCTURE FOR FACE ENTITY

FIELD DESCRIPTION

paramrange Parameter ranges of face

edgex Edge coordinates

edgedx Edge first order derivatives

edgeddx Edge second order derivatives

edgecurvature Edge curvature values

edgenormal* Edge normal values

edgetorsion** Edge torsion values

updown Up and down domain indices

TABLE 6-12:  FIELDS IN THE DATA STRUCTURE FOR FACE ENTITY

FIELD DESCRIPTION

p Vertex coordinates

domainnumber Domain index for isolated vertices
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  291



292 |  C H A P T E
E X A M P L E

Get model geometry information:

model = mphopen('model_tutorial_llmatlab.mph');

info = mphgeominfo(model)

Get geometry data for face number 4:

[info, data] = mphgeominfo(model,'geom1','entity','face',...
'selection',4);

Get geometry data for face number 4 using a 5x10 grid:

[info, data] = mphgeominfo(model,'geom1','entity','face',...
'selection',4,'steps',[5 10]);

S E E  A L S O

mphcomponentinfo, mphmeshstats

mphgetadj

Return geometric entity indices that are adjacent to each other.

S Y N T A X

n = mphgetadj(model,geomtag,returntype,adjtype,adjnumber)
[n,m] = mphgetadj(model,geomtag,returntype,adjtype,adjnumber)

D E S C R I P T I O N

n = mphgetadj(model,geomtag,returntype,adjtype,adjnumber) returns the 
indices of the adjacent geometry entities.

[n,m] = mphgetadj(model,geomtag,returntype,adjtype,adjnumber) returns 
the indices of the adjacent geometry entities in n. m contains the indices of entities that 
connect the entities adjnumber the best.

returntype is the type of the geometry entities whose index are returned.

adjtype is the type of the input geometric entity.

The entity type can be one of 'point', 'edge', 'boundary', or 'domain' following 
the entity space dimension defined below:

• 'domain': maximum geometry space dimension

• 'boundary': maximum geometry space dimension − 1
R  6 :  C O M M A N D  R E F E R E N C E



• 'edges': 1 (for 3D geometries only)

• 'point': 0

E X A M P L E

Return the indices of the boundaries adjacent to point 2:

model = mphopen('model_tutorial_llmatlab');

bnd_idx = mphgetadj(model, 'geom1', 'boundary', 'point', 2);

Return the indices of the points adjacent to domain 2:

pt_idx = mphgetadj(model, 'geom1', 'point', 'domain', 2);

Return the indices of the adjacent edges to boundaries 1, 2 and 9 and the indices of 
the edges that connect the boundaries the best. Then show the results in a figure:

[idx1, idx2] = mphgetadj(model, 'geom1', 'edge',...
'boundary', [1, 2, 9]);

mphviewselection(model,'geom1',[1,2,9],'entity','boundary',...
'edgemode','off')

hold on
mphviewselection(model,'geom1',idx1,'entity','edge',...

'edgemode','off','facemode','off','edgecolorselected','b')
mphviewselection(model,'geom1',idx2,'entity','edge',...

'edgemode','off','facemode','off','edgecolorselected','g')

S E E  A L S O

mphgetcoords, mphselectbox, mphselectcoords

mphgetcoords

Return point coordinates of geometry entities.

S Y N T A X

c = mphgetcoords(model,geomtag,entitytype,entitynumber)

D E S C R I P T I O N

c = mphgetcoords(model,geomtag,entitytype,entitynumber) returns the 
coordinates of the points that belong to the entity object with the type entitytype 
and the index entitynumber.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  293



294 |  C H A P T E
The entitytype property can be one of 'point', 'edge', 'boundary' or 'domain' 
following the entity space dimension defined below:

• 'domain': maximum geometry space dimension

• 'boundary': maximum geometry space dimension -1

• 'edge': 1 (only for 3D geometry)

• 'point': 0

E X A M P L E

Return the coordinates of points that belong to domain 2:

model = mphopen('model_tutorial_llmatlab');

c0 = mphgetcoords(model, 'geom1', 'domain', 2);

Return the coordinates of points that belong to boundary 5:

c1 = mphgetcoords(model, 'geom1', 'boundary', 5);

Return the coordinates of point number 10:

c2 = mphgetcoords(model, 'geom1', 'point', 10);

S E E  A L S O

mphgetadj, mphselectbox, mphselectcoords

mphgetexpressions

Get the model variables and model parameters expressions.

S Y N T A X

expr = mphgetexpressions(modelnode)

D E S C R I P T I O N

expr = mphgetexpressions(modelnode) returns expressions from the node 
modelnode as a cell array. expr contains the list of the variable names, the variable 
expressions and the variable descriptions.

Note that not all nodes have expressions defined.

E X A M P L E

Get the expressions defined in the parameters node

model = mphopen('model_tutorial_llmatlab');
expr = mphgetexpressions(model.param)
R  6 :  C O M M A N D  R E F E R E N C E



S E E  A L S O

mphgetproperties, mphgetselection, mphmodel, mphnavigator, mphsearch

mphgetproperties

Get the properties from a model node.

S Y N T A X

str = mphgetproperties(modelnode)
[str,allowed] = mphgetproperties(modelnode)

D E S C R I P T I O N

str = mphgetproperties(modelnode) returns the structure str containing the 
properties that are defined for the node modelnode.

[str,allowed] = mphgetproperties(modelnode) also returns the structure 
allowed containing the allowed values for the corresponding properties.

The function mphgetproperties accepts the following property/value pairs:

E X A M P L E

Build the mesh in the model model_tutorial_llmatlab.mph and get the mesh size 
properties and their allowed values:

model = mphopen('model_tutorial_llmatlab');
mesh1 = model.component('comp1').mesh('mesh1');
mesh1.run;
msize = mesh1.feature('size');
[prop, allowed] = mphgetproperties(msize)

Get the min and max mesh size properties only:

prop = mphgetproperties(msize,'propnames',{'hmin','hmax'})

Return the property data not as string:

prop = mphgetproperties(msize,'propnames',{'hmin','hmax'},...

TABLE 6-13:  PROPERTY/VALUE PAIRS FOR THE MPHGETPROPERTIES COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

propnames String cell 
array

List of properties to 
show only

returnstrings on | off on Return data as string

showsel on | off off Return the properties 
selection
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  295



296 |  C H A P T E
'returnstrings','off')

S E E  A L S O

mphgetexpressions, mphgetselection, mphmodel, mphnavigator, mphsearch

mphgetselection

Get information about a selection node.

S Y N T A X

info = mphgetselection(selnode)

D E S C R I P T I O N

info = mphgetselection(selnode) returns the selection data of the selection node 
selnode.

The output info is a MATLAB® structure defined with the following fields:

• dimension, the space dimension of the geometric entity selected.

• geom, the geometry tag.

• entities, the indices of the selected entities.

• isGlobal, a Boolean expression that indicates if the selection is global.

E X A M P L E

Add a selection node to the model busbar.mph and retrieve its information:

model = mphopen('model_tutorial_llmatlab.mph');
ball = model.selection.create('ball','Ball');
ball.set('entitydim',2);
ball.set('posz',11e-3');
ball.set('r',1e-5);
info = mphgetselection(model.selection('ball'))

S E E  A L S O

mphgetexpressions, mphgetproperties, mphmodel, mphnavigator, mphsearch

mphgetu

Return a solution vector.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

U = mphgetu(model,...)
[U,Udot] = mphgetu(model,...)

D E S C R I P T I O N

U = mphgetu(model) returns the solution vector U for the default solution dataset.

[U,Udot] = mphgetu(model,...) returns in addition Udot, which is the time 
derivative of the solution vector. This syntax is available for a time-dependent solution 
only.

For a time-dependent and parametric analysis type, the last solution is returned by 
default. For an eigenvalue analysis type the first solution number is returned by default.

The function mphgetu accepts the following property/value pairs:

The Solname property set the solution dataset to use associated with the defined solver 
node.

Type is used to select the solution type. This is 'Sol' by default. The valid types are: 
'Sol' (main solution), 'Reacf' (reaction force), 'Adj' (adjoint solution), 'Fsens' 
(functional sensitivity) and 'Sens' (forward sensitivity).

If Solnum is a vector and the result has been obtained with the same mesh then the 
solution is stored in a matrix if the Matrix option is set to 'on'.

E X A M P L E

Extract the solution vector:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

U = mphgetu(model);

Extract the reaction force vector:

reacf = mphgetu(model,'type','reacf');

TABLE 6-14:  PROPERTY/VALUE PAIRS FOR THE MPHGETU COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

soltag String Solver node tag

solnum Positive integer vector Solution for evaluation

type String Sol Solution type

matrix off | on on Store as matrix if possible
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  297



298 |  C H A P T E
Extract the solution vectors for the first and the last time step:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

U = mphgetu(model,'solnum',[1,26]);

Extract the solution vector computed with power set to 30:

U = mphgetu(model,'soltag','sol3');

S E E  A L S O

mphsolinfo

mphglobal

Evaluate global quantities.

S Y N T A X

[d1,...,dn] = mphglobal(model,{e1,...,en},...)
[d1,...,dn,unit] = mphglobal(model,{e1,...,en},...)

D E S C R I P T I O N

[d1,...,dn] = mphglobal(model,{e1,...,en},...) returns the results from 
evaluating the global quantities specified in the string expression e1,..., en.

[d1,...,dn,unit] = mphglobal(model,{e1,...,en},...) also returns the unit 
of the expressions e1,..., en. unit is a nx1 cell array.

The function mphglobal accepts the following property/value pairs:

TABLE 6-15:  PROPERTY/VALUE PAIRS FOR THE MPHGLOBAL COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

complexfun off | on on Use complex-valued functions 
with real input

complexout off | on on Return complex values

dataset String Active solution 
dataset

Dataset tag
R  6 :  C O M M A N D  R E F E R E N C E



The property Dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on solution datasets.

When the property Phase is used, the solution vector is multiplied with 
exp(i*phase) before evaluating the expression.

The expressions ei are evaluated for one or several solutions. Each solution generates 
an additional row in the output data array di. The properties solnum and t control 
which solutions are used for the evaluations. The solnum property is available when 
the dataset has multiple solutions — for example, in the case of parametric, 
eigenfrequency, or time-dependent solutions. The t property is available only for 
time-dependent problems. If solnum is provided, the solutions indicated by the indices 
provided with the solnum property are used. If t is provided, solutions are 
interpolated. If neither solnum nor t is provided, all solutions are evaluated.

For time-dependent problems, the variable t can be used in the expressions ei. The 
value of t is the interpolation time when the property t is provided, and the time for 
the solution, when solnum is used. Similarly, lambda and the parameter are available 
as eigenvalues for eigenvalue problems and as parameter values for parametric 
problems, respectively.

In case of multiple expression if the unit property is defined with a string, the same 
unit is used for both expressions. To use different units, set the property with a cell 
array. In case of inconsistent unit definition, the default unit is used instead.

Solnum is used to select the solution number when a parametric, eigenvalue, or 
time-dependent solver has been used.

matherr off | on off Error for undefined operations 
or expressions

outersolnum Positive integer | 
all | end

1 Solution number for 
parametric sweep

phase Scalar 0 Phase angle in degrees

solnum Integer vector | 
all | end

all Solution for evaluation

t Double array Time for evaluation

unit String | cell array Unit to use for the evaluation

TABLE 6-15:  PROPERTY/VALUE PAIRS FOR THE MPHGLOBAL COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  299



300 |  C H A P T E
Outersolnum is used to select the outer solution number when a parametric sweep 
has been used in the study step node.

E X A M P L E

Evaluate the maximum temperature in the model

model = mphopen('model_tutorial_llmatlab');
model.cpl.create('maxop','Maximum','geom1').selection.all;
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

maxT = mphglobal(model,'maxop(T)')

Evaluate the maximum temperature in the model in degrees Celsius

maxT = mphglobal(model,'maxop(T)','unit','degC')

Evaluate a global expression at every time step computed with power set to 30:

model = mphopen('model_tutorial_llmatlab');
model.cpl.create('maxop', 'Maximum', 'geom1').selection.all;
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

maxT = mphglobal(model,'maxop(T)','dataset','dset2');

Evaluate maxop(T) for the first and fifth time step:

maxT = mphglobal(model,'maxop(T)',dataset','dset2',...
   'solnum',[1,5]);

Evaluate maxop(T) at 20.512 sec:

maxT = mphglobal(model,'maxop(T)',dataset','dset2',...
   't',20.512);

Evaluate maxop(T) at every time step computed with power set to 90:

maxT = mphglobal(model,'maxop(T)','dataset','dset2',...
   'outersolnum',3);

S E E  A L S O

mpheval, mphevalglobalmatrix, mphevalpoint, mphevalpointmatrix, mphint2, 
mphinterp
R  6 :  C O M M A N D  R E F E R E N C E



mphimage2geom

Convert image data to a geometry.

S Y N T A X

model = mphimage2geom(imagedata,level,...)

D E S C R I P T I O N

model = mphimage2geom(imagedata,level,...) converts the image contained in 
imagedata into a geometry which is returned in the model object model.

The contour of the image is defined by the value level. imagedata must be a 2D 
matrix.

The function mphimage2geom accepts the following property/value pairs:

TABLE 6-16:  PROPERTY/VALUE PAIRS FOR THE MPHIMAGE2GEOM COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

compose on | off on Create compose nodes for 
overlapping solids

curvetype auto | polygon auto Type of curve to create the 
geometry object

geom Geometry node geom1 Geometry creation 

minarea Value 1 Minimum area for interior 
curves (in square pixels)

mindist Value 1 Minimum distance between 
coordinates in curves (in 
pixels)

modeltag String Model Model tag in a COMSOL 
server

rectangle on | off off Insert rectangle in the 
geometry

rtol Value 1e-3 Relative tolerance for 
interpolation curves

scale Value 1 Scale factor from pixels to 
geometry scale

type solid | closed | 
open

solid Type of geometry object
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  301



302 |  C H A P T E
The default curve types creates a geometry with the best suited geometrical primitives. 
For interior curves this is Interpolation Curves, and for curves that are touching the 
perimeter of the image, Polygons is used.

To add the geometry created with mphimage2geom, specify the geometry node with 
property geom.

E X A M P L E

Create a set of point coordinates:

p = (peaks+7)*5;

Display contour plot of the point data: 

figure(1); [c,h] = contourf(p); clabel(c, h); colorbar

Create a geometry object following the contour made with point of value 50:

model = mphimage2geom(p, 50);
figure(2); mphgeom(model)

Create the same geometry object with a scale factor of 1e-3 and add it into an existing 
3D model: 

model = mphopen('model_tutorial_llmatlab');
wp1 = model.component('comp1').geom('geom1').feature.create('wp1', 
'WorkPlane');
wp1.set('quickz', 1e-2);
mphimage2geom(p, 50,'scale',1e-3,wp1.geom);
mphgeom(model)

Create a geometry using MRI data. The geometry object is created following the 
contour made with point of value 30 and disregard objects with an area (in pixel) lower 
than 2:

mri = load('mri');
im = mri.D(:,:,1,1);
figure(1); image(im);
mphimage2geom(im, 30,'minarea',2);

mphinputmatrix

Add a matrix system for linear solvers.

S Y N T A X

mphinputmatrix(model,str,soltag,soltypetag)
R  6 :  C O M M A N D  R E F E R E N C E



D E S C R I P T I O N

mphinputmatrix(model,str,soltag,soltypetag) adds the system matrices and 
vectors stored in the MATLAB® structure str to the model. The system matrices is 
associated to the linear solver configuration defined with the tag soltag and solved 
with the solver defined with the tag soltypetag.

soltypetag can only be one of the following solver type: Stationary, Eigenvalue, 
Time.

A valid structure for a stationary solver includes the following fields:

A valid structure for a time-dependent/ eigenvalue solver includes the following fields:

There is also the possibility to include the constraint force Jacobian vector NF.

Once the matrix system is loaded in the model, the solver configuration is set ready to 
run.

Note: The system matrices are not stored in the model when it is saved as an 
MPH-file or loaded into the COMSOL Desktop.

E X A M P L E

Create a model with a square geometry

model = ModelUtil.create('Model');

FIELD NAME DESCRIPTION

K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

FIELD NAME DESCRIPTION

K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

D Damping matrix

E Mass matrix
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  303



304 |  C H A P T E
comp = model.component.create('comp1', true);
geom = comp.geom.create('geom1', 2);
geom.create('sq1', 'Square');
geom.run;

Add an Equation General Form physics interface

g = comp.physics.create('g', 'GeneralFormPDE', 'geom1');
g.prop('ShapeProperty').set('order', 1)
g.prop('ShapeProperty').set('boundaryFlux', false);
cons = g.create('cons1', 'Constraint', 1).set('R', 'u');
cons.selection.set([1 2]);

Create a mapped mesh

map = comp.mesh.create('mesh1').create('map1', 'Map');
map.create('dis1', 'Distribution').set('numelem', 2);
map.feature('dis1').selection.set([1 2]);

Set-up the study and the solver configuration for a stationary problem:

std = model.study.create('std1');
std.create('stat', 'Stationary');
sol = model.sol.create('sol1');
sol.study('std1');
sol.feature.create('st1', 'StudyStep').set('studystep', 'stat');
sol.feature.create('v1', 'Variables');
sol.feature.create('s1', 'Stationary');

Extract the linear stationary matrix system in MATLAB:

str = mphmatrix(model,'sol1','out',{'K','L','M','N'},...
'initmethod','sol','initsol','zero');

Change the linear system by scaling the stiffness matrix:

str.K = str.K*0.5;

Insert the system matrix back to the model:

mphinputmatrix(model,str,'sol1','s1')

Run the solver configuration:

model.sol('sol1').runAll;

S E E  A L S O

mphmatrix, mphxmeshinfo

mphint2

Perform integration of expressions.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

[v1,...,v2] = mphint2(model,{e1,...,en},edim,...)
[v1,...,v2,unit] = mphint2(model,{e1,...,en},edim,...)

D E S C R I P T I O N

[v1,...,vn] = mphint2(model,{e1,...,en},...) evaluates the integrals of the 
string expressions e1,...,en and returns the result in N matrices v1,...,vn with M 
rows and P columns. M is the number of inner solution and P the number of outer 
solution used for the evaluation. edim defines the element dimension, as a string: line, 
surface, volume or as an integer value. 

[v1,...,vn] = mphint2(model,{e1,...,en},...) also returns the units of the 
integral in a 1xN cell array.

The function mphint2 accepts the following property/value pairs:

TABLE 6-17:  PROPERTY/VALUE PAIRS FOR THE MPHINT2 COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

dataseries none | average | 
integral | 
maximum | rms | 
stddev | variance

none Data series operation

dataset String Active solution 
dataset

Dataset tag

intorder Positive integer 4 Integration order

intsurface on | off off Compute surface integral

intvolume on | off off Compute volume integral

matrix on | off on Returns data as a matrix or 
as a cell

method auto | 
integration | 
summation

auto Integration method

outersolnum Positive integer | all 
| end

1 Solution number for 
parametric sweep

selection Integer vector | 
string | all

all Selection list or named 
selection

solnum Integer vector | end 
| all

all Solution for evaluation

squeeze on | off on Squeeze singleton 
dimensions

t Double array Time for evaluation
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  305



306 |  C H A P T E
The property dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The expressions e1,...,en are integrated for one or several solutions. Each solution 
generates an additional column in the returned matrix. The properties solnum and t 
control which solutions are used for the integrations. The solnum property is available 
when the dataset has multiple solutions — for example, in the case of parametric, 
eigenfrequency, or time-dependent solutions. The t property is available only for 
time-dependent problems. If solnum is provided, the solutions indicated by the indices 
provided with the solnum property are used. If t is provided, solutions are 
interpolated. If neither solnum nor t is provided, all solutions are evaluated.

For time-dependent problems, the variable t can be used in the expressions ei. The 
value of t is the interpolation time when the property t is provided, and the time for 
the solution, when solnum is used. Similarly, lambda and the parameter are available 
as eigenvalues for eigenvalue problems and as parameter values for parametric 
problems, respectively.

The unit property defines the unit of the integral, if a inconsistent unit is entered, the 
default unit is used. In case of multiple expression, if the unit property is defined with 
a string, the same unit is used for both expressions. To use different units, set the 
property with a cell array. In case of inconsistent unit definition, the default unit is used 
instead.

Solnum is used to select the solution number when a parametric, eigenvalue, or 
time-dependent solver has been used.

Outersolnum is used to select the outer solution number when a parametric sweep 
has been used in the study step node.

E X A M P L E

Integrate the normal heat flux across all boundaries:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

[Q, unit] = mphint2(model,'ht.ntflux','surface');

Integrate the normal heat flux across all exterior boundaries

[Q, unit] = mphint2(model,'ht.ntflux','surface',...
   'selection',[1:5,7:12]);
R  6 :  C O M M A N D  R E F E R E N C E



S E E  A L S O

mpheval, mphevalglobalmatrix, mphevalpoint, mphevalpointmatrix, mphint2, 
mphinterp, mphparticle, mphray

mphinterp

Evaluate expressions in arbitrary points or datasets.

S Y N T A X

[v1,...,vn] = mphinterp(model,{e1,...,en},'coord',coord,...)
[v1,...,vn] = mphinterp(model,{e1,...,en},'dataset',dsettag,...)
[v1,...,vn,unit] = mphinterp(model,{e1,...,en},...)

D E S C R I P T I O N

[v1,...,vn] = mphinterp(model,{e1,...,en},'coord',coord,...) evaluates 
expressions e1,...en at the coordinates specified in the double matrix coord. 
Evaluation is supported only on Solution datasets.

[v1,...,vn] = mphinterp(model,{e1,...,en},'dataset',dsettag,...) 
evaluates expressions e1,...en on the specified dataset dsettag. In this case the 
dataset needs to be of a type that defines an interpolation in itself, such as cut planes, 
revolve, and so forth.

[v1,...,vn,unit] = mphinterp(model,{e1,...,en},...) returns in addition 
the unit of the expressions.

The function mphinterp accepts the following property/value pairs:

TABLE 6-18:  PROPERTY/VALUE PAIRS FOR THE MPHINTERP COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

complexfun off | on on Use complex-valued functions 
with real input

complexout off | on on Return complex values

coord Double array Coordinates for evaluation

coorderr off | on on Give an error message if all 
coordinates are outside the 
geometry

dataset String Auto Dataset tag
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  307



308 |  C H A P T E
The columns of the matrix coord are the coordinates for the evaluation points. If the 
number of rows in coord equals the space dimension, then coord are global 
coordinates, and the property edim determines the dimension in which the expressions 
are evaluated. For instance, edim='boundary' means that the expressions are 
evaluated on boundaries in a 3D model. If edim is less than the space dimension, then 
the points in coord are projected onto the closest point on a domain of dimension 

differential off | on on Whether the expression should 
be linearized at the linearization 
point. Applicable only if 
evalmethod is harmonic

edim point | edge | 
boundary | 
domain | 0 | 1 | 2 
| 3

Geometry 
space 
dimension

Element dimension for 
evaluation

evalmethod linpoint | 
harmonic | 
lintotal | 
lintotalavg | 
lintotalrms | 
lintotalpeak

harmonic Applicable only for solutions 
with a stored linearization point. 
Controls if the linearization 
point, the perturbation, or a 
combination should be used 
when evaluating the expression.

ext Double between 0 
and 1

0.1 Extrapolation distance: How 
much outside the mesh that the 
interpolation searches. The scale 
is in terms of the local element 
size.

matherr off | on off Error for undefined operations 
or expressions

outersolnum Positive integer | 
all | end

1 Solution number for parametric 
sweep

phase Scalar 0 Phase angle in degrees

recover off | ppr | 
pprint

off Accurate derivative recovery

selection Positive integer 
array | all

all Selection list

solnum Positive integer 
array | all | end

all Inner solutions for evaluation

t Double array Time for evaluation

unit String | Cell array Unit to use for the evaluation

TABLE 6-18:  PROPERTY/VALUE PAIRS FOR THE MPHINTERP COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION
R  6 :  C O M M A N D  R E F E R E N C E



edim. If, in addition, the property selection is given, then the closest point on 
domain number selection in dimension edim is used.

If the number of rows in coord is less than the space dimension, then these coordinates 
are parameter values on a geometry face or edge. In that case, the domain number for 
that face or edge must be specified with the property selection.

The expressions that are evaluated can be expressions involving variables, in particular 
physics interface variables.

The matrices v1,...,vn are of the size k-by-size(coord,2), where k is the number of 
solutions for which the evaluation is carried out, see below. The value of expression ei 
for solution number j in evaluation point coord(:,m) is vi(j,m).

The vector pe contains the indices m for the evaluation points code(:,m) that are 
outside the mesh, or, if a domain is specified, are outside that domain.

The property Data controls which dataset is used for the evaluation. Datasets contain 
or refer to the source of data for postprocessing purposes. Evaluation is supported only 
on Solution datasets. The active solution dataset is used by default.

The property edim decides which elements to evaluate on. Evaluation takes place only 
on elements with space dimension edim. If not specified, edim equal to the space 
dimension of the geometry is used. The setting is specified as one of the following 
strings 'point', 'edge', 'boundary' or 'domain'. In previous versions it was only 
possible to specify edim as a number. For example, in a 3D model, if evaluation is done 
on edges (1D elements), edim is 1. Similarly, for boundary evaluation (2D elements), 
edim is 2, and for domain evaluation (3D elements), edim is 3 (default in 3D).

The property evalmethod decides which solution to use in presence of linearization 
point. Set the property value to harmonic to harmonic perturbation analysis, 
linpoint evaluates the expression by taking the values of any dependent variables 
from the linearization point of the solution, lintotal evaluates the expression by 
adding the linearization point and the harmonic perturbation and taking the real part 
of this sum. lintotalavg (lintotalrms and lintotalpeak) do the same as with 
lintotal and then averaging (taking the RMS and taking the maximum respectively) 
over all phases of the harmonic perturbation. When harmonic is selected, the property 
differential specify to evaluate the differential of the expression with respect to the 
perturbation at the linearization point (on) or to evaluates the expression by taking the 
values of any dependent variables from the harmonic perturbation part of the solution 
(off).
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  309



310 |  C H A P T E
Use Recover to recover fields using polynomial-preserving recovery. This techniques 
recover fields with derivatives such as stresses or fluxes with a higher theoretical 
convergence than smoothing. Recovery is expensive so it is turned off by default. The 
value pprint means that recovery is performed inside domains. The value ppr means 
that recovery is also applied on all domain boundaries.

The property Refine constructs evaluation points by making a regular refinements of 
each element. Each mesh edge is divided into Refine equal parts.

When the property phase is used, the solution vector is multiplied with 
exp(i*phase) before evaluating the expression.

The expressions e1,...,en are evaluated for one or several solutions. Each solution 
generates an additional row in the data fields of the post data output structure. The 
properties solnum and t control which solutions are used for the evaluations. The 
solnum property is available when the dataset has multiple solutions — for example, in 
the case of parametric, eigenfrequency, or time-dependent solutions. The t property is 
available only for time-dependent problems. If solnum is provided, the solutions 
indicated by the indices provided with the solnum property are used. If t is provided, 
solutions are interpolated. If neither solnum nor t is provided, all solutions are 
evaluated.

For time-dependent problems, the variable t can be used in the expressions ei. The 
value of t is the interpolation time when the property t is provided, and the time for 
the solution, when solnum is used. Similarly, lambda and the parameter are available 
as eigenvalues for eigenvalue problems and as parameter values for parametric 
problems, respectively.

In case of multiple expression, if the unit property is defined with a string, the same 
unit is used for both expressions. To use different units, set the property with a cell 
array. In case of inconsistent unit definition, the default unit is used instead.

The property solnum is used to select the solution number when a parametric, 
eigenvalue, or time-dependent solver has been used.

The property outersolnum is used to select the outer solution number when a 
parametric sweep has been used in the study step node.

E X A M P L E

Evaluate the temperature at given coordinates:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
R  6 :  C O M M A N D  R E F E R E N C E



std.feature.create('stat','Stationary');
std.run;

coord = [0,0,1e-2;0,0,1e-2;0,1e-2,1e-2];
T = mphinterp(model,'T','coord',coord);

Evaluate both the temperature and the heat flux magnitude:

[T,tfluxMag] = mphinterp(model,{'T','ht.tfluxMag'},...
   'coord',coord);

Evaluate the temperature field on a structure grid:

x0 = [0,1e-2,2.5e-2,5e-2]; y0 = x0; z0 = [5e-3,1e-2,1.1e-2];
[x,y,z] = meshgrid(x0,y0,z0); xx = [x(:),y(:),z(:)]';
T = mphinterp(model,'T','coord',xx);

Evaluate the temperature on boundary 7 using global coordinates:

x0 = [0,5e-3,1e-2]; y0 = x0; z0 = [1.1e-2];
[x,y,z] = meshgrid(x0,y0,z0); xx = [x(:),y(:),z(:)]';
T  = mphinterp(model,'T','coord',xx,'edim','boundary',...
   'selection',7);

Evaluate the temperature and evaluation point global coordinates on boundary 7 using 
local coordinates:

s10 = [0,0.25,0.5]; s20 = [0,0.25,0.5]; 
[s1,s2] = meshgrid(s10,s20); ss = [s1(:),s2(:)]';
[x,y,z,T]  = mphinterp(model,{'x','y','z','T'},'coord',ss,...
   'edim','boundary','selection',7);

Modify the extrapolation distance for point coordinates outside of the geometry:

coord = [5e-2;5e-2;1.1e-2];
T = mphinterp(model,'T','coord',coord)
T = mphinterp(model,'T','coord',coord,'ext',0.5);

Extract data using a cut line dataset. First create the cut line dataset, then evaluate the 
temperature field along the line:

cln = model.result.dataset.create('cln', 'CutLine3D');
cln.setIndex('genpoints','1e-2',1,0);
cln.setIndex('genpoints','1e-2',0,2);
cln.setIndex('genpoints','5e-2',1,0);
T = mphinterp(model,'T','dataset','cln');

Evaluation including several solution

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  311



312 |  C H A P T E
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

Evaluate the temperature at every time step computed with power set to 30:

coord = [0 0 1e-2;0 0 1e-2;0 1e-2 1e-2];
T = mphinterp(model,'T','coord',coord,'dataset','dset2');

Evaluate the temperature at the fifth time step:

T = mphinterp(model,'T','coord',coord,'dataset','dset2',...
   'solnum',5);

Evaluate the temperature at 10.5 sec:

T = mphinterp(model,'T','coord',coord,'dataset','dset2',...
    't',10.5);

Evaluate the temperature at every time step computed with power set to 90:

T = mphinterp(model,'T','coord',coord,'dataset','dset2',...
   'outersolnum',3)

S E E  A L S O

mpheval, mphevalglobalmatrix, mphevalpoint, mphevalpointmatrix, mphint2, 
mphint2, mphparticle, mphray

mphinterpolationfile

Save data in files readable by the Interpolation feature.

S Y N T A X

mphinterpolationfile(filename,type,data)
mphinterpolationfile(filename,type,data,xdata)
mphinterpolationfile(filename,type,data,xdata,ydata)

D E S C R I P T I O N

mphinterpolationfile(filename,type,data) saves the NxM matrix data into 
the text file filename with the format type. The interpolation coordinates are vectors 
with values from 1 to N and 1 to M.

mphinterpolationfile(filename,type,data,xdata) saves the vector data and 
the interpolation coordinate xdata into the text file filename with the format type.
R  6 :  C O M M A N D  R E F E R E N C E



mphinterpolationfile(filename,type,data,xdata,ydata) saves the matrix 
data and the interpolation coordinate vectors xdata and ydata into the text file 
filename with the format type.

type can be either 'grid', 'sectionwise' or 'spreadsheet'.

E X A M P L E

Create random 10x10 interpolation data to file using grid format:

data = cumsum(0.1*randn(size(10)));
mphinterpolationfile('datagrid.txt','grid',data);

 1D interpolation data to file using spreadsheet format:

t = 0:0.05:2*pi;
z = sin(cos(t)*4)+sin(51*t)*0.05;
mphinterpolationfile('dataspread.txt','spreadsheet',z,t);

 2D interpolation data to file using sectionwise format:

z = magic(9); x = 1:9; y = 0:8;
mphinterpolationfile('datasection.txt','sectionwise',z,x,y);

S E E  A L S O

mphquad2tri, mphreadstl, mphsurf, mphwritestl

mphlaunch

Launch COMSOL Desktop, connect it to the running server, and import an 
application.

S Y N T A X

mphlaunch
mphlaunch(model)
mphlaunch ModelTag
mphlaunch(..., timeout)

D E S C R I P T I O N

mphlaunch launches a COMSOL Multiphysics Client and connect it to the same 
server as MATLAB® is connected to. Then it imports the model on the server into the 
COMSOL Multiphysics Client.

mphlaunch(model) does the same as above, but uses the model argument to select 
which model is imported.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  313



314 |  C H A P T E
mphlaunch ModelTag uses the model with the tag 'ModelTag' in the server to be 
imported. This can also be done using the syntax: mphlaunch('ModelTag')

mphlaunch(..., tms) uses the timeout tms (in milliseconds) to force MATLAB to 
wait until the COMSOL server is free again. The default timeout value is 500. A 
negative value results in no timeout.

E X A M P L E

Load the file model_tutorial_llmatlab.mph:

model = mphopen('model_tutorial_llmatlab');

Launch a COMSOL Multiphysics Client, connect it with the running server, import 
the model defined as model:, and set a timeout of 1 s:

mphlaunch(model,1000);

mphload

Load a COMSOL Multiphysics model MPH-file.

S Y N T A X

model = mphload(filename)
model = mphload(filename, mtag)
model = mphload(filename, mtag, '-history')
model = mphload(filename, mtag, pwd)
[model, filename] = mphload(filename, ...)

D E S C R I P T I O N

model = mphload(filename) loads a COMSOL model object saved with the name 
filename and assigns the default tag Model in the COMSOL server. If a model with 
tag Model already exists and is also open in a COMSOL Multiphysics client, the loaded 
model an index number is appended to the tag, for instance Model1. The model object 
is accessible at the MATLAB prompt using the variable model.

model = mphload(filename, mtag) loads a COMSOL model object and assigns 
the tag mtag in the COMSOL server.

model = mphload(filename, mtag, '-history') turns on model history 
recording.

model = mphload(filename, mtag, pwd) loads the COMSOL model object saved 
with the name filename protected with the password pwd.
R  6 :  C O M M A N D  R E F E R E N C E



model = mphload(mtag) link the model already loaded on the COMSOL server with 
the tag mtag. The model object is accessible at the MATLAB prompt using the variable 
model.

[model, filenameloaded] = mphload(filename, ...) also returns the full file 
name filenameloaded of the file that was loaded.

The model tag mtag and the password pwd are defined as string.

If the model tag is the same as a model that is currently in the COMSOL server the 
loaded model overwrites the existing one.

Note that MATLAB® searches for the model on the MATLAB path if an absolute path 
is not supplied. 

mphload turns off the model history recording by default, unless the property 
'-history' is used.

The extension mph can be omitted.

mphload does not look for lock file when opening a model in the COMSOL server.

E X A M P L E

Load the file model_tutorial_llmatlab.mph:

model = mphload('model_tutorial_llmatlab');

Load the file model_tutorial_llmatlab.mph and set the model name in the 
COMSOL server to Model2:

model = mphload('model_tutorial_llmatlab','Model2');

Load model_tutorial_llmatlab.mph and return the filename:

[model, filename] = mphload('model_tutorial_llmatlab');

S E E  A L S O

mphopen, mphsave

mphmatrix

Get model matrices.

S Y N T A X

str = mphmatrix(model,soltag,'Out',...)
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  315



316 |  C H A P T E
D E S C R I P T I O N

str = mphmatrix(model,soltag,'Out',{'A'},...) returns a MATLAB® 
structure str containing the matrix A assembled using the solver node soltag and 
accessible as str.A, A being taken from the Out property list.

str = mphmatrix(model,soltag,fname,'Out',{'A','B',...}) returns a 
MATLAB structure str containing the matrices A, B, … assembled using the solver 
node solname and accessible as str.A and str.B, A and B being taken from the Out 
property list.

The function mphmatrix accepts the following property/value pairs:

TABLE 6-19:  PROPERTY/VALUE PAIRS FOR THE MPHMATRIX COMMAND

PROPERTY EXPRESSION DEFAULT DESCRIPTION

complexfun on | off off Use complex-valued 
functions with real input

eigname String lambda Eigenvalue name

eigref Double 0 Value of eigenvalue 
linearization point

extractafter Solution feature 
tag

end Specify where in the solver 
sequence to extract the 
matrices

initmethod init | sol init Use linearization point

initsol String | zero Active solver 
tag

Solution to use for 
linearization

matherr on | off on Error for undefined 
operations

nullfun flnullorth | 
flspnull | 
flexplicit | 
auto

auto Null-space function

out Cell array of 
strings

List of matrices to assemble

rowscale on | off on Row equilibration

solnum Positive integer | 
auto

auto Solution number

study Study tag {First 
study}

Study to use with 
initmethod

symmetry on | off | 
hermitian | 
auto

auto Symmetric matrices
R  6 :  C O M M A N D  R E F E R E N C E



The following values are valid for the out property:

(*) Requires the Optimization Module.

Note that the assembly of the eliminated matrices uses the current solution vector as 
scaling method. To get the unscaled eliminated system matrices, it is required to set 
the scaling method to 'none' in the variables step of the solver configuration node.

The matrices are assembled using the current solution available as linearization point 
unless the initmethod property is provided. In case of the presence of a solver step 
node you need to either disable the solver step node in the model or set the property 
extractafter with the tag of the Dependent Variables node.

In case the matrices are assembled after a solver step node (which is the case by 
default), the load vector corresponds then to the residual of the problem.

Property/Value Pairs for the property out.

PROPERTY EXPRESSION DESCRIPTION

out K Stiffness matrix

L Load vector

M Constraint vector

N Constraint Jacobian

D Damping matrix

E Mass matrix

NF Constraint force Jacobian

NP Optimization constraint Jacobian (*)

MP Optimization constraint vector (*)

MLB Lower bound constraint vector (*)

MUB Upper bound constraint vector (*)

Kc Eliminated stiffness matrix

Lc Eliminated load vector

Dc Eliminated damping matrix

Ec Eliminated mass matrix

Null Constraint null-space basis

Nullf Constraint force null-space matrix

ud Particular solution ud

uscale Scale vector
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  317



318 |  C H A P T E
The function mphmatrix does not solve the problem as the assembly is performed 
before the solver node in the solution sequence. You can specify the solution feature 
node after which to assemble the system matrices with the property extractafter. 
This is useful if you need to compute the solution before extracting the matrices or if 
you have a solution sequence using different solver sequences and you want to extract 
the matrices for a specific one.

The section in the COMSOL Multiphysics Reference Manual, describes the 
functionality corresponding to the properties complexfun, nullfun, and rowscale.

Use the property symmetric to assemble the model matrix system as 
symmetric/Hermitian, or you can use the automatic feature to find out (see Advanced 
in the COMSOL Multiphysics Reference Manual).

E X A M P L E

Evaluate the system matrices of a stationary problem

model = mphopen('model_tutorial_llmatlab');
model.mesh('mesh1').autoMeshSize(8);
std = model.study.create('std1');
std.feature.create('stat', 'Stationary');
std.run;

Get the stationary matrix system, use the initial solution as linearization point:

str = mphmatrix(model,'sol1','out',{'K','L','M','N'},...
   'initmethod','init');

Display the sparsity of the stiffness matrix and the constraint Jacobian and compute the 
total load applied in the matrix system:

subplot(2,1,1); spy(str.K);subplot(2,1,2);spy(str.N)
Q = sum(str.L)

Get the eliminated matrix system, use the initial solution as linearization point:

str = mphmatrix(model,'sol1','out',{'Kc'},'initmethod','init');

Compare the sparsity between the eliminated and non-eliminated stiffness matrix:

subplot(2,1,1); hold on; spy(str.Kc,'r')

Evaluate the eliminated load vector using the current solution as linearization point:

str = mphmatrix(model,'sol1','out',{'Lc'},'initmethod','sol');

Evaluate the system matrices of a dynamic problem

model = mphopen('model_tutorial_llmatlab');
model.mesh('mesh1').autoMeshSize(8);
R  6 :  C O M M A N D  R E F E R E N C E



std = model.study.create('std1');
time = std.feature.create('time', 'Transient');
time.set('tlist', 'range(0,1,25)');
model.param.set('timestep', '1[s]');
std.run;

Get the dynamic matrix system:

str = mphmatrix(model,'sol1','out',{'E','D','K','L','M','N'});

Display the sparsity of the mass and stiffness matrices:

subplot(1,2,1); spy(str.D); subplot(1,2,2); spy(str.K);

Get the eliminated dynamic matrix system:

str = mphmatrix(model,'sol1','out',{'Ec','Dc','Kc','Lc','M','N'});

Assemble the Jacobian using solution number 15 as linearization point. First run the 
model to get available linearization point list:

std.run;
str = mphmatrix(model,'sol1','out',{'K'},...
   'initmethod','sol','initsol','sol1','solnum',15);

Assemble the Jacobian using the zero vector as linearization point:

str = mphmatrix(model,'sol1','out',{'K'},...
   'initmethod','sol','initsol','zero');

S E E  A L S O

mphstate, mphxmeshinfo, mphinputmatrix

mphmax

Perform a maximum of expressions.

S Y N T A X

[v1,...,vn] = mphmax(model,{e1,...,en},edim,...)
[v1,...,vn,unit] = mphmax(model,{e1,...,en},edim,...)

D E S C R I P T I O N

[v1,...,vn] = mphmax(model,{e1,...,en},edim,...) evaluates the maximum 
of the string expressions e1,...,en and returns the result in N matrices v1,...,vn 
with M rows and P columns. M is the number of inner solution and P the number of 
outer solution used for the evaluation. edim defines the element dimension: line, 
surface, volume or as an integer value. 
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  319



320 |  C H A P T E
[v1,...,vn] = mphmax(model,{e1,...,en},edim,...) also returns the units of 
the maximum in a 1xN cell array.

The function mphmax accepts the following property/value pairs:

The property dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The maximum expressions e1,...,en is evaluated for one or several solutions. Each 
solution generates an additional column in the returned matrix. The properties solnum 
and t control which solutions are used for the evaluation. The solnum property is 
available when the dataset has multiple solutions — for example, in the case of 
parametric, eigenfrequency, or time-dependent solutions. The t property is available 
only for time-dependent problems. If solnum is provided, the solutions indicated by 
the indices provided with the solnum property are used. If t is provided, solutions are 
interpolated. If neither solnum nor t is provided, all solutions are evaluated.

TABLE 6-20:  PROPERTY/VALUE PAIRS FOR THE MPHMAX COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

dataseries none | average | 
integral | maximum | 
minimum | rms | 
stddev | variance

none Data series operation

dataset String Active 
solution 
dataset

Dataset tag

matrix on | off on Returns data as a matrix or 
as a cell

outersolnum Positive integer array | 
all | end

1 Solution number for 
parametric sweep

position on|off off Extract position as well as 
value

selection Integer vector | string | 
all

all Selection list or named 
selection

solnum Integer vector | end | 
all

all Solution for evaluation

squeeze on | off on Squeeze singleton 
dimensions

t Double array Time for evaluation
R  6 :  C O M M A N D  R E F E R E N C E



The property solnum is used to select the solution number when a parametric, 
eigenvalue, or time-dependent solver has been used.

The property outersolnum is used to select the outer solution number when a 
parametric sweep has been used in the study step node.

If the matrix property is set to off the output is cell arrays of length P containing cell 
arrays of length M.

E X A M P L E

Evaluate the maximum temperature in the model domain:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

maxT = mphmax(model,'T','volume');

Evaluate the maximum temperature on boundary 9:

maxT = mphmax(model,'T','surface','selection',9);

Evaluate maximum of expression using several solution:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

Evaluate the maximum of the temperature at every time step computed with power set 
to 30:

maxT = mphmax(model,'T','volume','dataset','dset2');

Evaluate the maximum of the temperature at the fifth time step:

maxT = mphmax(model,'T','volume','dataset','dset2',...
   'solnum',5);

Evaluate the maximum of the temperature at 10.5 sec and 15.2 sec:

maxT = mphmax(model,'T','volume','dataset','dset2',...
   't',[10.5,15.2]);

Evaluate the maximum of the temperature at every time step computed with power set 
to 90:
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  321



322 |  C H A P T E
maxT = mphmax(model,'T','volume','dataset','dset2',....
   'outersolnum',3);

S E E  A L S O

mphmean, mphmin

mphmean

Perform a mean of expressions.

S Y N T A X

[v1,...,vn] = mphmean(model,{e1,...,en},edim,...)
[v1,...,vn,unit] = mphmean(model,{e1,...,en},edim,...)

D E S C R I P T I O N

[v1,...,vn] = mphmean(model,{e1,...,en},edim,...) evaluates the means of 
the string expressions e1,...,en and returns the result in N matrices v1,...,vn with 
M rows and P columns. M is the number of inner solution and P the number of outer 
solution used for the evaluation. edim defines the element dimension: line, surface, 
volume or as an integer value. 

[v1,...,vn] = mphmean(model,{e1,...,en},edim,...) also returns the units of 
the maximum in a 1xN cell array.

The function mphmean accepts the following property/value pairs:

TABLE 6-21:  PROPERTY/VALUE PAIRS FOR THE MPHMEAN COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

dataseries none | average | 
integral | maximum | 
minimum | rms | 
stddev | variance

none Data series operation

dataset String Active 
solution 
dataset

Dataset tag

intorder Positive integer 4 Integration order

matrix off | on on Returns data as a matrix or 
as a cell

method auto | integration | 
summation

auto Integration method

outersolnum Positive integer array | 
all | end

1 Solution number for 
parametric sweep
R  6 :  C O M M A N D  R E F E R E N C E



The property dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The mean of expressions e1,...,en is evaluated for one or several solutions. Each 
solution generates an additional column in the returned matrix. The properties solnum 
and t control which solutions are used for the evaluation. The solnum property is 
available when the dataset has multiple solutions — for example, in the case of 
parametric, eigenfrequency, or time-dependent solutions. The t property is available 
only for time-dependent problems. If solnum is provided, the solutions indicated by 
the indices provided with the solnum property are used. If t is provided, solutions are 
interpolated. If neither solnum nor t is provided, all solutions are evaluated.

The property solnum is used to select the solution number when a parametric, 
eigenvalue, or time-dependent solver has been used.

The property outersolnum is used to select the outer solution number when a 
parametric sweep has been used in the study step node.

If the matrix property is set to off the output is cell arrays of length P containing cell 
arrays of length M.

E X A M P L E

Evaluate the mean temperature in the model domain:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

maxT = mphmean(model,'T','volume');

Evaluate the mean temperature on boundary 9:

maxT = mphmean(model,'T','surface','selection',9);

selection Integer vector | string | 
all

all Selection list or named 
selection

solnum Integer vector | end | 
all

all Solution for evaluation

squeeze on | off on Squeeze singleton 
dimensions

t Double array Time for evaluation

TABLE 6-21:  PROPERTY/VALUE PAIRS FOR THE MPHMEAN COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  323



324 |  C H A P T E
Evaluate mean of expression using several solution:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

Evaluate the mean of the temperature at every time step computed with power set to 
30:

maxT = mphmean(model,'T','volume','dataset','dset2');

Evaluate the mean of the temperature at the fifth time step:

maxT = mphmean(model,'T','volume','dataset','dset2',...
   'solnum',5);

Evaluate the mean of the temperature at 10.5 sec and 15.2 sec:

maxT = mphmean(model,'T','volume','dataset','dset2',...
   't',[10.5,15.2]);

Evaluate the mean of the temperature at every time step computed with power set to 
90:

maxT = mphmean(model,'T','volume','dataset','dset2',....
   'outersolnum',3);

S E E  A L S O

mphmax, mphmin 

mphmeasure

Measure entities in geometry

S Y N T A X

[measure, misc] = mphmeasure(model,geomtag,entity,...)

D E S C R I P T I O N

[measure, misc] = mphmeasure(model,geomtag,entity,...) measure the 
entity with the type entity in the geometry defined with the tag geomtag. entity 
can be one of 'point', 'edge', 'boundary', or 'domain'.
R  6 :  C O M M A N D  R E F E R E N C E



The function mphmeasure accepts the following property/value pairs: 

E X A M P L E

Get the volume of all domains in the geometry:

model = mphopen('busbar');
vm = mphmeasure(model,'geom1','domain')

Get the volume and the surface area of all domains in the geometry:

[vm, am]= mphmeasure(model,'geom1','domain')

Get midpoint and distance between points 2 and 4:

[m, dist] = mphmeasure(model,'geom1','point','selection',[2,4])

Length of edges bounded by vertex 1, 29, 41 and 42:

[~, a] = mphgetadj(model,'geom1','edge','point',[1,29,41,42])
mphviewselection(model,'geom1',[1,29,41,42],'point')
hold on
mphviewselection(model,'geom1',a,'edge','edgecolorselected','b')
m = mphmeasure(model,'geom1','edge','selection',a)

mphmesh

Plot a mesh in a MATLAB® figure window.

S Y N T A X

mphmesh(model)
mphmesh(model,meshtag,...)
pd=mphmesh(model,meshtag,...)

D E S C R I P T I O N

mphmesh(model) plots the mesh in a MATLAB figure.

TABLE 6-22:  PROPERTY/VALUE PAIRS FOR THE MPHMEASURE COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

Build on | off | string on Build the geometry before 
plotting

Objects Cell array Selection matrix

Selection Positive integer 
array

all Selection (finalized 
geometry)

Usefinal on | off on Measure on the finalized 
geometry
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  325



326 |  C H A P T E
mphmesh(model,meshtag,...) plots the mesh meshtag in a MATLAB figure. If 
there is only one mesh in the model the meshtag can be left empty.

The function mphmesh accepts the following property/value pairs: 

E X A M P L E

Plot the mesh

model = mphopen('model_tutorial_llmatlab');
model.component('comp1').mesh.run;
mphmesh(model)

Create a second mesh with an “extra fine” default mesh settings and plot it:

mesh = model.component('comp1').create('mesh2');
mesh.autoMeshSize(2);
mesh.run;

mphmesh(model,'mesh2','meshcolor','r');

The mesh can be plotted with view settings applied. This results in a mesh with grid, 
axes labels, lights, hiding etc. applied to the plot. Usually it is sufficient to use the auto 
setting, but any valid view can be applied:

TABLE 6-23:  PROPERTY/VALUE PAIRS FOR THE MPHMESH COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

Parent Double Parent axis

Edgecolor Char k Edge color

Edgelabels on | off off Show edge labels

Edgelabelscolor Char k Color for edge labels

Edgemode on | off on Show edges

Facealpha Double 1 Set transparency value

Facelabels on | off off Show face labels

Facelabelscolor Char k Color for face labels

Facemode on | off on Show faces

Meshcolor Char | vector gray Color for face element

Vertexcolor Char | vector k Color for vertices

Vertexlabels on | off off Show vertex labels

Vertexlabelscolor Char | vector k Color for vertex labels

Vertexmode on | off off Show vertices

View String | 'auto' | 
''

View settings
R  6 :  C O M M A N D  R E F E R E N C E



mphmesh(model, 'mesh1', 'view', 'auto')

Plot data can be returned from mphmesh. This can be used to create the plot later or 
to extract information used to create the plot for further analysis

pd = mphmesh(model, 'mesh1');
mphplot(pd)

S E E  A L S O

mphgeom, mphmeshstats, mphplot

mphmeshstats

Return mesh statistics and mesh data information.

S Y N T A X

stats = mphmeshstats(model)
stats = mphmeshstats(model, meshtag, ...)
[stats,data] = mphmeshstats(model, meshtag, ...)

D E S C R I P T I O N

stats = mphmeshstats(model) returns mesh statistics of the model mesh in the 
structure str.

stats = mphmeshstats(model, meshtag, ...) returns mesh statistics of a mesh 
meshtag in the structure str.

[stats,data] = mphmeshstats(model, meshtag, ...) returns in addition the 
mesh data information such as vertex coordinates and definitions of elements in the 
structure data.

The function mphmeshstats accepts the following property/value pairs: 

TABLE 6-24:  PROPERTY/VALUE PAIRS FOR THE MPHMESHSTATS COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

entity* domain | 
boundary | 
edge | point

Selected entity type

qualityhistogram Integer 20 Number of bins in the quality 
distribution histogram
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  327



328 |  C H A P T E
* Selection and Entity properties cannot be set if the data structure is returned.

The output structure stats contains the following fields:

qualitymeasure condition | 
growth | 
maxangle | 
skewness | 
volcircum | 
vollength

volcircum Quality measure

selection String | 
Positive 
integer array

Selection tag or entity number

type* ctx | edg | 
tri | quad | 
tet | pyr | 
prism | hex

Restrict statistics to element 
types. Can also be a cell array.

TABLE 6-25:  FIELDS IN THE STATS STRUCTURE

FIELD DESCRIPTION

meshtag Mesh tag

geomtag Geometry tag 

geometricmodel Geometric model used by the mesh sequence

component Component tag

componentgeometricmodel Geometric model used by the physics

current Current mesh feature tag

isempty Is the mesh empty?

hasproblems Does the mesh have problems?

iscomplete Is the mesh built to completion?

secondorderelements Does the mesh have second-order elements?

sdim Space dimension

contributing Contributing physics or multiphysics interface for the 
physics-controlled mesh

types Element types present in the mesh

numelem Number of elements for each mesh type

qualitymeasure Quality measure

minquality Minimum quality

meanquality Mean quality

TABLE 6-24:  PROPERTY/VALUE PAIRS FOR THE MPHMESHSTATS COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION
R  6 :  C O M M A N D  R E F E R E N C E



* Provides statistics for the entire selection regardless of the element type property.

The output structure data contains the following fields:

E X A M P L E

Get the mesh statistics:

model = mphopen('model_tutorial_llmatlab');
model.component('comp1').mesh.run;

stats = mphmeshstats(model)

Show the mesh quality distribution in a figure:

bar(linspace(0,1,20),stats.qualitydistr)

Get the mesh statistics and the mesh data:

[stats,data] = mphmeshstats(model);

Show the element vertices in a plot:

plot3(data.vertex(1,:), data.vertex(2,:), data.vertex(3,:), '.')
axis equal

Get the number of edge element:

numedgeelem = stats.numelem(strcmp(stats.types,'edg'))

S E E  A L S O

mphmesh

qualitydistr Quality distribution

minvolume Volume/area/length of the smallest element

maxvolume Volume/area/length of the largest element

volume Volume/area/length of the mesh

maxgrowthrate Maximum growth rate*

meangrowthrate Mean growth rate*

TABLE 6-26:  FIELDS IN THE DATA STRUCTURE

FIELD DESCRIPTION

vertex Coordinates of mesh vertices

elem Cell array of definition of each element type

elementity Entity information for each element type

TABLE 6-25:  FIELDS IN THE STATS STRUCTURE

FIELD DESCRIPTION
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  329



330 |  C H A P T E
mphmin

Perform a minimum of expressions.

S Y N T A X

[v1,...,vn] = mphmin(model,{e1,...,en},edim,...)
[v1,...,vn,unit] = mphmin(model,{e1,...,en},edim,...)

D E S C R I P T I O N

[v1,...,vn] = mphmin(model,{e1,...,en},edim,...) evaluates the minimum 
of the string expressions e1,...,en and returns the result in N matrices v1,...,vn 
with M rows and P columns. M is the number of inner solution and P the number of 
outer solution used for the evaluation. edim defines the element dimension: line, 
surface, volume or as an integer value. 

[v1,...,vn] = mphmin(model,{e1,...,en},edim,...) also returns the units in 
a 1xN cell array.

The function mphmin accepts the following property/value pairs:

TABLE 6-27:  PROPERTY/VALUE PAIRS FOR THE MPHMIN COMMAND.

PROPERTY PROPERTY VALUE DEFAULT DESCRIPTION

dataseries none | average | 
integral | maximum | 
minimum | rms | 
stddev | variance

none Data series operation

dataset String Active 
solution 
dataset

Dataset tag

matrix off | on on Returns data as a matrix or 
as a cell

outersolnum Positive integer array | 
all | end

1 Solution number for 
parametric sweep

position on|off off Extract position as well as 
value

selection Integer vector | string | 
all

all Selection list or named 
selection

solnum Integer vector | end | 
all

all Solution for evaluation

squeeze on | off on Squeeze singleton 
dimensions

t Double array Time for evaluation
R  6 :  C O M M A N D  R E F E R E N C E



The property dataset controls which dataset is used for the evaluation. Datasets 
contain or refer to the source of data for postprocessing purposes. Evaluation is 
supported only on Solution datasets.

The mean of expressions e1,...,en is evaluated for one or several solutions. Each 
solution generates an additional column in the returned matrix. The properties solnum 
and t control which solutions are used for the evaluation. The solnum property is 
available when the dataset has multiple solutions — for example, in the case of 
parametric, eigenfrequency, or time-dependent solutions. The t property is available 
only for time-dependent problems. If solnum is provided, the solutions indicated by 
the indices provided with the solnum property are used. If t is provided, solutions are 
interpolated. If neither solnum nor t is provided, all solutions are evaluated.

The property solnum is used to select the solution number when a parametric, 
eigenvalue, or time-dependent solver has been used.

The property outersolnum is used to select the outer solution number when a 
parametric sweep has been used in the study step node.

If the matrix property is set to off the output is cell arrays of length P containing cell 
arrays of length M.

E X A M P L E

Evaluate the minimum temperature in the model domain:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

maxT = mphmin(model,'T','volume');

Evaluate the minimum temperature on boundary 9:

maxT = mphmin(model,'T','surface','selection',9);

Evaluate minimum of expression using several solution:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  331



332 |  C H A P T E
Evaluate the minimum of the temperature at every time step computed with power set 
to 30:

maxT = mphmin(model,'T','volume','dataset','dset2');

Evaluate the minimum of the temperature at the fifth time step:

maxT = mphmin(model,'T','volume','dataset','dset2',...
   'solnum',5);

Evaluate the minimum of the temperature at 10.5 sec and 15.2 sec:

maxT = mphmin(model,'T','volume','dataset','dset2',...
   't',[10.5,15.2]);

Evaluate the minimum of the temperature at every time step computed with power set 
to 90:

maxT = mphmin(model,'T','volume','dataset','dset2',....
   'outersolnum',3);

S E E  A L S O

mphmax, mphmean 

mphmodel

Return tags for the nodes and subnodes in the COMSOL model object.

S Y N T A X

mphmodel(model)
str = mphmodel(model,'-struct')

D E S C R I P T I O N

mphmodel(model) returns the tags for the nodes and subnodes of the object model.

str = mphmodel(model,'-struct') returns the tags for the nodes and subnodes of 
the object model as a MATLAB® structure str.

The function mphmodel can be used when navigating the model object and learning 
about its structure. The mphmodel function is mainly designed for usage when working 
on the command line and one needs to learn what nodes are placed under a particular 
node.

E X A M P L E

Load the model busbar.mph and get the list of the nodes available under the root 
node:
R  6 :  C O M M A N D  R E F E R E N C E



model = mphopen('busbar')
mphmodel(model)

Get the model information as a structure:

res = mphmodel(model, '-struct')

S E E  A L S O

mphgetexpressions, mphgetproperties, mphgetselection, mphnavigator, 
mphsearch, mphshowerrors

mphnavigator

Graphical user interface (GUI) for viewing the COMSOL Multiphysics model object. 

S Y N T A X

mphnavigator
mphnavigator(model)

D E S C R I P T I O N

mphnavigator opens the Model Object Navigator which is a graphical user interface 
that can be used to navigate the model object and to view the properties and methods 
of the nodes in the model tree.

The GUI requires that the COMSOL object is stored in a variable in the base 
workspace (at the MATLAB® command prompt) with the name model.

mphnavigator(model) opens the model object defined with the name model in 
Model Object Navigator window.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  333



334 |  C H A P T E
E X A M P L E

Load busbar.mph from the Model Library:

mphopen busbar

Navigate the model object that is accessible with the variable model

mphnavigator

Load effective_diffusivity.mph from the Applications Libraries and set the 
model object with the variable eff_diff:

eff_diff = mphopen('effective_diffusivity');

Navigate the model object that is accessible with the variable eff_diff

mphnavigator(eff_diff)

S E E  A L S O

mphgetexpressions, mphgetproperties, mphgetselection, mphmodel, 
mphsearch, mphshowerrors

mphopen

Graphical user interface (GUI) to open recent model files.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

mphopen
mphopen -dir dirpath
mphopen -clear
model = mphopen(filename)
model = mphopen(filename, mtag)
model = mphopen(filename, mtag, '-nostore')
model = mphopen(filename, mtag, '-history')
model = mphopen(filename, mtag, pwd)
[model, filenameloaded] = mphopen(filename,...)

D E S C R I P T I O N

mphopen starts a GUI with the recent opened files list.

mphopen -dir dirpath starts a GUI with a list of the files in the specified directory 
dirpath. If dirpath is not specified the working directory is taken by default.

mphopen -clear resets the recent opened files list.

model = mphopen(filename) loads a COMSOL model object saved with the name 
filename and assigns the default tag Model in the COMSOL server. If a model with 
tag Model already exists and is also open in a COMSOL Multiphysics client, the loaded 
model an index number is appended to the tag, for instance Model1.

model = mphopen(filename, mtag) loads a COMSOL model object and assigns 
the tag mtag in the COMSOL server.

model = mphopen(filename, mtag, '-nostore') does not update the recent 
opened model list.

model = mphopen(filename, mtag, '-history') turns on history recording.

model = mphopen(filename, mtag, pwd) loads the COMSOL model in the file 
protected with the password pwd.

[model, filenameloaded] = mphopen(filename, …) also returns the full file 
name filenameloaded of the file that was loaded.

The model tag mtag and the password pwd are defined as string.

If the model tag is the same as a model that is currently in the COMSOL server the 
loaded model overwrites the existing one.

Note that MATLAB® searches for the model on the MATLAB path if an absolute path 
is not supplied. 
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  335



336 |  C H A P T E
mphopen turns off the model history recording by default, unless the property 
'-history' is used.

The extension mph can be omitted.

mphopen does not look for a lock file when opening a model in the COMSOL server.

S E E  A L S O

mphload, mphsave

mphparticle

Evaluate expressions on particle and ray trajectories.

S Y N T A X

pd = mphparticle(model)
pd = mphparticle(model,'expr',{e1,...,en},...)

D E S C R I P T I O N

mphparticle(model) returns particle position and particle velocity at all time steps 
stored in the first particle dataset.
R  6 :  C O M M A N D  R E F E R E N C E



mphparticle(model,'expr',{e1,...,en},...) returns particle position, particle 
velocity and expressions e1,..., en evaluated on particle trajectories.

The function mphparticle accepts the following property/value pairs:

The returned value pd is a structure with the following content

Note: mphparticle only evaluates expressions using particle and ray datasets.

E X A M P L E

Load the model trapped_protons from the Applications Libraries:

model = mphopen('trapped_protons');

Extract the particle positions and particle velocities along the computed trajectories at 
every time steps stored in the model:

pd = mphparticle(model)

Evaluate the mirror point latitude (Lm) and the particle equatorial pitch angle (Ea) at 
t = 0.7 sec., extract only the data:

pd = mphparticle(model,'dataset','dset2',...

TABLE 6-28:  PROPERTY/VALUE PAIRS FOR THE MPHPARTICLE COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

expr String | Cell array Expressions to evaluate

dataonly on | off off Return only expression values

dataset String First 
particle 
dataset

Dataset tag

t Double array Time for evaluation

TABLE 6-29:  FIELDS IN THE INFO STRUCTURE

FIELD CONTENT

v Velocity of the particles

p Position of the particles

d# Result of evaluation #

t Time for evaluation

expr Evaluated expressions

unit Unit of evaluations
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  337



338 |  C H A P T E
'expr',{'Lm','Ea*180/pi'},'t',0.7,'dataonly','on')

S E E  A L S O

mpheval, mphevalpoint, mphint2, mphinterp, mphray

mphplot

Render a plot group in a figure window.

S Y N T A X

mphplot(model)
mphplot(model,pgtag,...)
pd = mphplot(model,pgtag,...)
mphplot(pd,...)

D E S C R I P T I O N

mphplot(model) opens a figure window and adds a menu where it is possible to 
switch between all the different result plots in a model as well as any geometry and 
mesh plots. A toolbar is added to the figure that allows the user to control the use of 
views, lights, and camera settings.

mphplot(model,pgtag,...) renders the plot group tagged pgtag from the model 
object model in a figure window in MATLAB®.

pd = mphplot(model,pgtag,...) also returns the plot data used in the MATLAB 
figure in a cell array pd. pd contains ordinary MATLAB data and can later be used to 
recreate the plot using mphplot. It is also possible to investigate and extract data from 
the plot this way in order to create plots in other ways or to further analyze the data. 
Set createplot to off if a plot should be not be created. Note that pd contains data 
in single precision even though all calculations in COMSOL Multiphysics are carried 
out in double precision.

mphplot(pd,...) makes a plot using the post data structure pd that is generated 
using the function mpheval. Plots involving points, lines and surfaces are supported.

The function mphplot accepts the following property/value pairs:

TABLE 6-30:  PROPERTY/VALUE PAIRS FOR THE MPHPLOT COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

colortable char rainbow Color table used for plotting post 
data structure 

createplot on | off on Create a plot
R  6 :  C O M M A N D  R E F E R E N C E



Note: The plot on server option requires that you start COMSOL with MATLAB in 
graphics mode.

Only one color range bar and one legend bar is supported in a MATLAB figure. When 
the option plot on server is active, all active color range bar are displayed.

The property createplot is useful when extracting plot data structure on machines 
without a graphics display.

The data fields returned by mphplot are subject to change. The most important fields 
are:

• p, the coordinates for each point that are used for creating lines or triangles.

• n, the normals in each point for the surfaces. These are not always available.

• t, contains the indices to columns in p of a simplex mesh, each column in t 
representing a simplex. 

• d, the data values for each point.

• rgb, the color values (red, green and blue) entities at each point.

E X A M P L E

Display the plot settings pg using a MATLAB figure

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;
model.result.dataset.create('mir', 'Mirror3D');

index Positive integer 1 Index of variable to use for 
plotting post data structure

mesh on | off on Plot the mesh when using post 
data structure

parent Double Set the parent axes

rangenum Positive integer none Color range bar (or legend) to 
display

server on | off off Plot on server

view char | 'auto' | '' '' View settings tag

TABLE 6-30:  PROPERTY/VALUE PAIRS FOR THE MPHPLOT COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  339



340 |  C H A P T E
pg = model.result.create('pg', 'PlotGroup3D');
pg.set('data', 'mir');
surf1 = pg.feature.create('surf1', 'Surface');
surf1.set('colortable', 'Thermal');

mphplot(model,'pg')

Combine plot types on the same plot group:

surf2 = pg.feature.create('surf2', 'Surface');
surf2.set('data', 'dset1');
surf2.set('expr', 'ht.tfluxMag');

Display the plot group and the color range bar of the second plot type:

mphplot(model,'pg','rangenum',2)

Display the plot group on the server:

mphplot(model,'pg','server','on')

Display expression value evaluated using mpheval:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

Extract temperature and total heat flux magnitude in domain 2:

pd = mpheval(model,{'T','ht.tfluxMag'},'selection',2);

Plot the temperature data using thermal color table:

mphplot(pd,'index',1,'colortable','Thermal','rangenum',1)

S E E  A L S O

colortable, mpheval

mphquad2tri

Convert plot data quad mesh into simplex mesh.

S Y N T A X

pdout = mphquad2tri(pdin)

D E S C R I P T I O N

pdout = mphquad2tri(pdin) converts the plot data stored in the structure pdin into 
the structure pdout using a simplex mesh.
R  6 :  C O M M A N D  R E F E R E N C E



The input and output structures, respectively pdin and pdout, are structures with 
fields p, d, t, rgb and expr.

• The field p is a 2xN array containing the vertex coordinates.

• The field saved is a Nx1 array containing the data value at the vertices.

• The field t is an array containing the indices to columns in p of a quad mesh for 
pdin and of a simplex mesh for pdout, each column in t representing respectively 
a quad and a simplex. 

• The field rgb is a Nx3 array containing the color model data as RGB values. This 
field is optional. 

• The field expr is a string containing the description of the data. This field is 
optional.

E X A M P L E

Generate 3D surf data

[x,y] = meshgrid(-0.1:0.2:1.1,-0.4:0.2:0.4);
z = cumsum(0.1*randn(size(x)));

Create plotdata in a quad mesh:

pd = mphsurf(x,y,z);

Convert the plot data into triangle mesh:

pd = mphquad2tri(pd);
mphplot(pd)

S E E  A L S O

mphsurf, mphreadstl, mphwritestl

mphray

Evaluate expressions on particle and ray trajectories.

S Y N T A X

pd = mphray(model)
pd = mphray(model,'expr',{e1,...,en},...)

D E S C R I P T I O N

pd = mphray(model) returns particle position and particle velocity at all time steps 
stored in the first particle dataset.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  341



342 |  C H A P T E
pd = mphray(model,'expr',{e1,...,en},...) returns particle position, particle 
velocity and expressions e1,...,en evaluated on particle or ray trajectories.

pd is a structure with fields p, v, d#, t, expr, and unit.

• The field p contains the position of the particles.

• The field v contains the velocity of the particles.

• The field d# contains the result of evaluation #.

• The field t contains the time for evaluation.

• The field expr contains the evaluated expressions.

• The field unit contains the unit of evaluations.

The function mphray accepts the following property/value pairs:

Note: mphray only evaluates expressions using particle and ray datasets.

S E E  A L S O

mpheval, mphevalpoint, mphevalpoint, mphint2, mphinterp, mphparticle

mphreadstl

Read an STL file and return the data into a plot data structure.

TABLE 6-31:  PROPERTY/VALUE PAIRS FOR THE MPHRAY COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

dataonly on | off off Return only expression values

dataset String Dataset tag

expr String | Cell 
array

Expressions to evaluate

outersolnum Positive 
integer

1 Outer solution for evaluation

solnum Positive 
integer array 
| all | end

all Inner solution for evaluation

t Double array Time for evaluation

times on | off on Return times

velocities on | off on Return velocities
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

pd = mphreadstl(filename)

D E S C R I P T I O N

pd = mphreadstl(filename) reads the STL file filename and returns the data into 
the plot data structure pd.

pd is a structure with fields n, p, t, name, ref, rgb, expr, and d1.

• The field n contains the normal vector for the triangle.

• The field p contains node point coordinate information.

• The field t contains the indices to columns in p of a simplex mesh, each column in 
t representing a simplex.

• The field name contains the name of the file the data come from.

• The field ref contains the header of the file.

• The field rgb contains the color model data at each vertices. The columns 
correspond to node point coordinates in columns in p.

• The field expr contains the data description.

• The field d1 contains the data value at each vertices. The columns correspond to 
node point coordinates in columns in p.

Both binary and ASCII STL files are supported.

S E E  A L S O

mphquad2tri, mphsurf, mphwritestl

mphreduction

Return reduced-order state-space matrices for a model.

S Y N T A X

data = mphreduction(model, romtag, ...)

D E S C R I P T I O N

data = mphreduction(model, romtag, ...) extracts the reduced order state-space 
matrices from the reduced order model romtag. The reduced order model can either 
be created in the COMSOL GUI or via the API.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  343



344 |  C H A P T E
The function mphreduction accepts the following property/value pairs:

The following values are valid for the out property:

The return type ss requires that the Control System Toolbox is installed.

S E E  A L S O

mphstate

TABLE 6-32:  PROPERTY/VALUE PAIRS FOR THE MPHREDUCTION COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

out Cell array of strings 'all' Names of output matrices

return struct | ss struct Return type

TABLE 6-33:  PROPERTY/VALUE PAIRS FOR THE PROPERTY OUT.

PROPERTY EXPRESSION DESCRIPTION

out Kr Stiffness matrix

Dr Damping matrix

Dra Damping ratio matrix

Er Mass matrix

Br Input matrix

Cr Output matrix

F Input feedback matrix

B0r Initial value input matrix

B0rdot Initial value time derivative input matrix

Brdot Time derivative input matrix

Brdotdot Second time derivative input matrix

Mc Damping matrix

MA | A Stiffness matrix

MB | B Input matrix

D Input feedback matrix

C Output matrix

L Load vector

Y0 Output bias

U0 Initial value vector

Udot0 Initial derivative vector

Kud Stiffness matrix times ud
R  6 :  C O M M A N D  R E F E R E N C E



mphreport

Generate report to model or write report.

S Y N T A X

mphreport(model,...)
mphreport(model,'action','run','tag',rpttag,...)

D E S C R I P T I O N

mphreport(model,...) generate report to the model model.

mphreport(model,'action','run','tag',rpttag,...) write report defined 
with the tag rpttag.

The function mphreport accepts the following property/value pairs:

E X A M P L E

Generate a brief report set with the tag 'myreport':

mphreport(model,'tag','myreport','type','brief')

Write report set with the tag 'myreport' to the Microsoft Word document 
'modelreport.docx':

mphreport(model,'action','run','tag','myreport',...
'filename','modelreport','format','docx')

Do not open the report once written:

mphreport(model,'action','run','tag','myreport',...
'open','off')

TABLE 6-34:  PROPERTY/VALUE PAIRS FOR THE MPHREPORT COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

action add|run add Add or run report

filename String Report filename

format html | docx | 
pptx

html Output format

open on | off on Open report when finished

tag String Report tag

template String User template

type brief | 
intermediate | 
complete

intermediate Report type
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  345



346 |  C H A P T E
mphsave

Save a COMSOL Multiphysics model.

S Y N T A X

mphsave(model)
mphsave(model,filename,...)
mphsave(filename)
mphsave(mtag)
mphsave(mtag,filename,...)

D E S C R I P T I O N

mphsave(model) saves the COMSOL model object model.

mphsave(model,filename,...) saves the COMSOL model object model to the file 
named filename.

mphsave(filename) saves the unique COMSOL model that is loaded in the 
COMSOL server to the file named filename.

mphsave(mtag) saves the COMSOL model loaded in the COMSOL server with the 
tag mtag.

mphsave(mtag,filename,...) aves the COMSOL model loaded in the COMSOL 
server with the tag mtag to the file named filename.

The function mphsave accepts the following property/value pairs:

If the file name is not provided, the model has to be saved previously on disk.

TABLE 6-35:  PROPERTY/VALUE PAIRS FOR THE MPHSAVE COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

component on | off off Save M-file using the component 
syntax

copy on | off off Save a copy of the model

description String Set or append model description

excludedata on | off Exclude built, computed, an 
plotted data

filenameis fullpath | 
name | path

fullpath Use filename as the selected type

optimize size | speed Optimize for speed or file size

store on | off on Store the filename in most 
recently used files
R  6 :  C O M M A N D  R E F E R E N C E



If the file name does not provide a path, the file is saved relatively to the current path 
in MATLAB®.

The model can be saved as an MPH-file, Java file, or M-file. The file extension 
determines which format that is saved.

Note: Model created with older version than COMSOL 5.3 cannot be saved using 
the component syntax.

S E E  A L S O

mphopen, mphload

mphsearch

Graphical user interface (GUI) for searching expressions in the COMSOL model 
object.

S Y N T A X

mphsearch(model)

D E S C R I P T I O N

mphsearch(model) opens a graphical user interface that can be used to search 
expressions in the model object model. Search using a text available in the name, 
expression or description of the variable.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  347



348 |  C H A P T E
S E E  A L S O

mphgetexpressions, mphgetproperties, mphgetselection, mphmodel, 
mphnavigator

mphselectbox

Select geometric entity using a rubberband/box.

S Y N T A X

n = mphselectbox(model,geomtag,boxcoord,entity,...)

D E S C R I P T I O N

n = mphselectbox(model,geomtag,boxcoord,entity,...) returns the indices of 
the geometry entities that are inside the rubberband domain (rectangle or box). This 
method looks only on the vertex coordinates and does not observe all points on curves 
and surfaces.

boxcoord set the coordinates of the selection domain, specified as a Nx2 array, where 
N is the geometry space dimension.

entity can be one of point, edge, boundary, or domain following the entity space 
dimension defined below:

• domain: maximum geometry space dimension
R  6 :  C O M M A N D  R E F E R E N C E



• boundary: maximum geometry space dimension − 1

• edges: 1 (for 3D geometries only)

The function mphpselectbox accepts the following property/value pairs:

When a model uses form an assembly, more than one vertex can have the same 
coordinate if the coordinate is shared by separate geometry objects. In that case you 
can use the adjnumber property to identify the domain that the vertices should be 
adjacent to.

E X A M P L E

Find the domains using a box selection:

model = mphopen('model_tutorial_llmatlab');
coordBox = [-1e-3 11e-3;-1e-3 11e-3;9e-3 11e-3];
n = mphselectbox(model,'geom1',coordBox,'domain');

Find the boundaries inside the selection box:

n = mphselectbox(model,'geom1',coordBox,'boundary');

Find the boundaries inside the selection box that are adjacent to domain number 1:

n = mphselectbox(model,'geom1',coordBox,'boundary',...
   'adjnumber',1);

Find geometric entity number in an assembly

model = mphopen('model_tutorial_llmatlab');
geom = model.component('comp1').geom('geom1');
geom.feature('fin').set('action','assembly');
geom.run('fin');

Find the boundaries within a box:

coordBox = [-1e-3,51e-3;-1e-3,51e-3;9e-3,11e-3];
n = mphselectbox(model,'geom1',coordBox,'boundary');

Find the boundary adjacent to domain 2:

n = mphselectbox(model,'geom1',coordBox,'boundary',...
   'adjnumber',2);

S E E  A L S O

mphgetadj, mphgetcoords, mphselectcoords, mphviewselection

TABLE 6-36:  PROPERTY/VALUE PAIRS FOR THE MPHSELECTBOX COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

adjnumber Scalar None Adjacent entity number
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  349



350 |  C H A P T E
mphselectcoords

Select a geometric entity using point coordinates.

S Y N T A X

n = mphselectcoords(model,geomtag,coord,entity,...)

D E S C R I P T I O N

n = mphselectcoords(model,geomtag,coord,entity,...) finds geometric 
entity numbers based on their vertex coordinates.

One or more coordinates can be provided. The function searches for vertices near 
these coordinates using a tolerance radius. The list of the entities that are adjacent to 
such vertices is returned.

coord is a NxM array where N correspond of the number of point to use and M the 
space dimension of the geometry.

entity can be one of point, edge, boundary or domain following the entity space 
dimension defined below:

• domain: maximum geometry space dimension

• boundary: maximum geometry space dimension -1

• edges: 1(only for 3D geometry)

The function mphpselectcoords accepts the following property/value pairs:

When a model uses form an assembly, more than one vertex can have the same 
coordinate if the coordinate is shared by separate geometry objects. In that case you 
can use the adjnumber property to identify the domain that the vertices should be 
adjacent to.

The radius property is used to specify the radius of the sphere or circle that the search 
should be within. A small positive radius (based on the geometry size) is used by 
default in order to compensate for rounding errors.

TABLE 6-37:  PROPERTY/VALUE PAIRS FOR THE MPHSELECTCOORDS COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

adjnumber Scalar Adjacent entity number

radius Scalar auto Search radius

include all | any all Include all or any vertices
R  6 :  C O M M A N D  R E F E R E N C E



Use the property include when two point coordinates are used. Set it to all to select 
objects within the search radius of all points. any returns objects within the search 
radius of any points. 

E X A M P L E

Find the geometric entity number:

model = mphopen('model_tutorial_llmatlab');
coord = [10e-3 0 10e-3;0 10e-3 10e-3];
n = mphselectcoords(model,'geom1',coord','point')

Return the indices of the point at coordinates within a search radius of 0.011:

n = mphselectcoords(model,'geom1',coord','point',...
   'radius',0.011)

Return the indices of the boundaries that have a vertex within the search radius:

n = mphselectcoords(model,'geom1',coord','boundary',...
    'radius',11e-3)

Return the indices of the edges that have a vertex within the search radius from all 
points:

coord = [5e-3 0 10e-3;0 5e-3 10e-3];
n = mphselectcoords(model,'geom1',coord','edge',...
    'radius',6e-3);

Return the indices of the edges that have a vertex within the search radius from at least 
one point:

n = mphselectcoords(model,'geom1',coord','edge',...
   'radius',6e-3,'include','any');

Find geometric entity index in an assembly

model = mphopen('model_tutorial_llmatlab');
geom = model.component('comp1').geom('geom1');
geom.feature('fin').set('action', 'assembly');
geom.run('fin');

Return the indices of the boundaries that have any vertices within the search range of 
a point:

coord = [0,0,10e-3];
n0 = mphselectcoords(model,'geom1',coord,'boundary')

Return the indices of the boundaries that also are adjacent to domain 1:

n1 = mphselectcoords(model,'geom1',coord,'boundary',...
   'adjnumber',1);
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  351



352 |  C H A P T E
Return the indices of the boundaries that also are adjacent to domain 2:

n1 = mphselectcoords(model,'geom1',coord,'boundary',...
   'adjnumber',2);

S E E  A L S O

mphgetadj, mphgetcoords, mphselectbox, mphviewselection

mphshowerrors

Show the messages in error nodes in the COMSOL Multiphysics model.

S Y N T A X

mphshowerrors(model)
list = mphshowerrors(model)

D E S C R I P T I O N

mphshowerrors(model) shows the error and warning messages stored in the model 
and where they are located. The output is displayed in the command window.

list = mphshowerrors(model) returns the error and warning messages stored in 
the model and where they are located in the N-by-3 cell array list, N corresponding to 
the number of errors or warning found in the model object. The first column contains 
the node of the error, the second column contain the error message and the third 
column contains a cell arrays of the model tree nodes that contain the error 
information, which can help for automated processing of error and warning 
conditions.

mphsolinfo

Get information about a solution object.

S Y N T A X

info = mphsolinfo(model,...)
info = mphsolinfo(model,'solname',soltag,...)

D E S C R I P T I O N

info = mphsolinfo(model,...) returns information about the solution object.
R  6 :  C O M M A N D  R E F E R E N C E



The function mphsolinfo accepts the following property/value pairs:

The returned value info is a structure with the following content

You can use the function mphgetu to obtain the actual values of the solution vector. 
Note that these functions are low level functions and you most often would use 
functions such as mphinterp and mpheval to extract numerical data from a model.

TABLE 6-38:  PROPERTY VALUE PAIRS FOR THE MPHSOLINFO COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

soltag String Active solution object Solution object tag

dataset String Active solution dataset Dataset tag

NU on | off off Get info about number of 
solutions

TABLE 6-39:  FIELDS IN THE INFO STRUCTURE

FIELD CONTENT

soltag Solution node tag

study Study node tag

size Size of the solution vector

nummesh Number of meshes in the solution (for automatic 
remeshing)

sizes Size of the solution vector for each mesh and number of 
time steps/parameters for each mesh

soltype Solver type (Stationary, Parametric, Time or Eigenvalue)

solpar Name of the parameter

sizesolvals Length of the parameter list

solvals Values of the parameters, eigenvalues, or time steps

paramsweepnames Parametric sweep parameter names

paramsweepvals Parametric sweep parameter values

label Solution node label

batch Information about solutions for parametric sweeps

dataset List of datasets that directly use the solution

NUsol Number of solution vectors stored

NUreacf Number of reaction forces vectors stored

NUadj Number of adjacency vectors stored

NUfsens Number of functional sensitivity vectors stored

NUsens Number of forward sensitivity vectors stored
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  353



354 |  C H A P T E
E X A M P L E

Get the information about the default solution object:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
std.feature.create('stat','Stationary');
std.run;

solinfo = mphsolinfo(model)

Get information of multiple solver solution:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');
time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90',0);
std.run;

Get the information about the 1st outer solution (power = 30):

solinfo = mphsolinfo(model,'soltag','sol3');

Get the solution vector for 2nd outer solution (power = 60):

solinfo = mphsolinfo(model,'soltag','sol4');

S E E  A L S O

mphgetu, mphxmeshinfo, mphsolutioninfo

mphsolutioninfo

Get information about solution objects and datasets containing given parameters.

S Y N T A X

info = mphsolutioninfo(model)
info = mphsolutioninfo(model,'parameters',{{ei,vi,toli},...},…)

D E S C R I P T I O N

info = mphsolutioninfo(model) returns information about all solution object and 
solution dataset combinations in model.

info = mphsolutioninfo(model,'parameters',{{ei,vi,toli}, ...},…) 
returns information about solution object and solution dataset containing the given 
R  6 :  C O M M A N D  R E F E R E N C E



inner/outer solution parameters ei with the value equal to vi within the tolerance 
toli.

The function mphsolutioninfo accepts the following property/value pairs:

The returned value info is a structure with the following content

The substructure info.sol# has the following content

TABLE 6-40:  PROPERTY VALUE PAIRS FOR THE MPHSOLUTIONINFO COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

cellmap off | on off Set to return a cell version of the 
map with headers

dataset String Active 
solution 
dataset

Dataset tag

parameters Cell | Cell array Filter parameters, values, and 
tolerances

soltag String | String cell 
array

Solution object tag

sort String | Scalar | 
auto

auto Sort the map by column number or 
header tag

TABLE 6-41:  FIELDS IN THE INFO STRUCTURE

FIELD CONTENT

solutions List of matched solution tags

sol# Substructure containing information related to solution number 
#

TABLE 6-42:  FIELDS IN THE INFO.SOL# SUBSTRUCTURE

FIELD CONTENT

dataset Tag of the solution dataset

study Tag of the study associated to the solution

sequencetype Type of solution object

cellmap Cellmap describing the connections between parameters and 
inner/outer solution numbers

values Parameters values used in the solution

parameters Parameters names used in the solution

mapheaders Headers for the map

map Map describing the connections between parameters and 
inner/outer solution numbers
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  355



356 |  C H A P T E
E X A M P L E

Load model_tutorial_llmatlab.mph:

model = mphopen('model_tutorial_llmatlab');

Create a study combining a parametric sweep and a transient study step:

std = model.study.create('std');
param = std.feature.create('param','Parametric');
time = std.feature.create('time','Transient');

Set the time stepping and the parametric sweep parameters:

time.set('tlist', 'range(0,1,25)');
param.setIndex('pname','power',0);
param.setIndex('plistarr','30 60 90', 0);

Run the study:

std.run;

Retrieve the solution information corresponding to power = 30 W:

info = mphsolutioninfo(model,'parameters',{'power',30,0})

Retrieve the solution information corresponding to power = 90 W and around 
t = 10.4 sec. and its associated solution dataset:

info = mphsolutioninfo(model,'parameters',{{'power',90,0},...
   {'t',10.4,0.5}})

Get the solution solution dataset associated:

dset = info.sol2.dataset

Get the inner and outer solution number:

solnum = info.sol2.map(end-1)
outersolnum = info.sol2.map(end)

S E E  A L S O

mphgetu, mphxmeshinfo, mphsolinfo

mphstart

Connect MATLAB® to a COMSOL server.
R  6 :  C O M M A N D  R E F E R E N C E



S Y N T A X

mphstart
mphstart(port)
mphstart(ipaddress, port)
mphstart(ipaddress, port, username, password)
mphstart(ipaddress, port, comsolpath)
mphstart(ipaddress, port, comsolpath, username, password)

D E S C R I P T I O N

mphstart creates a connection with a COMSOL server using the default port number 
(which is 2036).

mphstart(port) creates a connection with a COMSOL server using the specified 
port number port.

mphstart(ipaddress, port) creates a connection with a COMSOL server using 
the specified IP address ipaddress and the port number port. This command 
assumes that the client and the server machine share the same login properties.

mphstart(ipaddress, port, username, password) creates a connection with a 
COMSOL server using the specified IP address ipaddress and the port number 
port, the username username and password password.

mphstart(ipaddress, port, comsolpath) creates a connection with a COMSOL 
server using the specified IP address and port number using the comsolpath that is 
specified. This is useful if mphstart cannot find the location of the COMSOL 
Multiphysics installation.

mphstart(ipaddress, port, comsolpath, username, password) creates a 
connection with a COMSOL server using the specified IP address, the port number, 
the username and password using the comsolpath that is specified. This is useful if 
mphstart cannot find the location of the COMSOL Multiphysics installation.

mphstart can be used to create a connection from within MATLAB when this is 
started without using the COMSOL with MATLAB option. mphstart then sets up 
the necessary environment and connect to COMSOL.

Prior to calling mphstart it is necessary to set the path of mphstart.m in the 
MATLAB path or to change the current directory in MATLAB (for example, using the 
cd command) to the location of the mphstart.m file.

A COMSOL server must be started prior to running mphstart.

mphstart connect to either a COMSOL Multiphysics Server (started with the 
command: comsol mphserver) or the COMSOL Server™. To connect to the 
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  357



358 |  C H A P T E
COMSOL Server™ from a computer that has just MATLAB installed it is necessary to 
run the COMSOL Server™ Client installer.

Once MATLAB is connected to the server, import the COMSOL class in order to use 
the ModelUtil commands. To import the COMSOL class enter:

import com.comsol.model.*
import com.comsol.model.util.*

E X A M P L E

Connect manually MATLAB to a COMSOL Multiphysics Server and create a model:

mphstart
import com.comsol.model.*
import com.comsol.model.util.*
model = ModelUtil.create('Model');

Connect manually MATLAB to a COMSOL Multiphysics Server running on the 
computer with the IP address 192.168.0.1 using port 2037:

mphstart('192.168.0.1',2037)

mphstate

Get state-space matrices for a dynamic system.

S Y N T A X

str = mphstate(model,soltag,'Out',{'SP'})
str = mphstate(model,soltag,'Out',{'SP1','SP2',...})

D E S C R I P T I O N

str = mphstate(model,soltag,'out',{'SP'}) returns a MATLAB® structure 
str containing the state-space matrix SP assembled using the solver node soltag and 
accessible as str.SP, SP being taken from the Out property list.

str = mphstate(model,soltag,'out',{'SP1','SP2',...}) returns a MATLAB 
structure str containing the state-space matrices SP1, SP2, ... assembled using the 
solver node soltag and accessible as str.SP1and str.SP2. SP1 and SP2 being taken 
from the out property list.
R  6 :  C O M M A N D  R E F E R E N C E



The function mphstate accepts the following property/value pairs:

The property Sparse controls whether the matrices A, B, C, D, M, MA, MB, and Null are 
stored in the sparse format. 

The equations correspond to the system below:

where x are the state variables, u are the input variables, and y are the output variables.

A static linearized model of the system can be described by:

The full solution vector U can be then obtained from

where Null is the null-space matrix, ud the constraint contribution, and u0 is the 
linearization point, which is the solution stored in the sequence once the state-space 
export feature is run.

The matrices MC and MCA are produced by the same algorithms that do the 
finite-element assembly and constraint elimination in COMSOL Multiphysics. MC and 

TABLE 6-43:  PROPERTY VALUE FOR THE MPHSTATE COMMAND

PROPERTY VALUE DEFAULT DESCRIPTION

extractafter Solution feature tag Specify where to extract the 
matrices

initmethod init | sol init Use linearization point

initsol soltag | zero soltag Solution to use for linearization

input String Input variables

keepfeature off | on off Keep the StateSpace feature in the 
model

out MA | MB | A | B | C | 
D | Mc | Null | ud | 
x0 

Output matrix

output String Output variables

solnum Positive integer auto Solution number

sparse off | on off Return sparse matrices

MCx· MCAx MCBu+=

y Cx Du+=



y D C MCA( ) 1– MCB–( )u=

U Nullx ud u0+ +=
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  359



360 |  C H A P T E
MCA are the same as the matrices DC (eliminated mass matrix) and −KC (KC is the 
eliminated stiffness matrix). The matrices are produced from an exact residual vector 
Jacobian calculation (that is, differentiation of the residual vector with respect to the 
degrees of freedoms x) plus an algebraic elimination of the constraints. The matrix C 
is produced in a similar way (that is, the exact output vector Jacobian matrix plus 
constraint elimination).

The matrices MCB and D are produced by a numerical differentiation of the residual 
and output vectors, respectively, with respect to the input parameters (the algorithm 
systematically perturbs the input parameters by multiplying them by a factor 1+10−8).

The input cannot be a variable constraint in the model.

The matrices are assembled using the current solution available as linearization point 
unless the initmethod property is provided. In case of the presence of a solver step 
node you need either to disable the solver step node in the model or to set the property 
extractafter with the Dependent Variables node tag.

E X A M P L E

Load model_tutorial_llmatlab.mph:

model = mphopen('model_tutorial_llmatlab');
comp1 = model.component('comp1');
comp1.mesh('mesh1').autoMeshSize(9);
std = model.study.create('std');
time = std.feature.create('time','Transient');
time.set('tlist','range(0,1,50)');

Edit the model to use parameter for the initial and external temperature:

model.param.set('T0','293.15[K]');
model.param.set('Text','300[K]');
ht = model.component('comp1').physics('ht');
ht.feature('init1').set('Tinit', 'T0');
ht.feature('hf1').set('Text', 'Text');

Add a domain point probe plot:

pdom = comp1.probe.create('pdom', 'DomainPoint');
pdom.model('comp1');
pdom.set('coords3',[0 0 1.1e-2]);

Run the study and create a plot group to display the probe:

std.run;
pg1 = model.result.create('pg1', 'PlotGroup1D');
glob1 = pg1.create('glob1', 'Global');
glob1.setIndex('expr', 'comp1.ppb1', 0);
R  6 :  C O M M A N D  R E F E R E N C E



Extract the state-space system matrices of the model with power, Temp, and Text as 
input and the probe evaluation comp1.ppb1 as output:

M = mphstate(model,'sol1','out',{'A','B','C','D'},...
   'input',{'power','Temp','Text'},'output','comp1.ppb1');

Plot the sparsity of the matrix A:

subplot(1,2,1); spy(M.A); subplot(1,2,2); spy(abs(M.A)>1e-2)

Set the input power parameter and the reference temperature:

power = 30; Temp = 300; Text = 300; T0 = 293.15;

Compute the system solution:

input = [power Temp-T0 Text-T0];
func = @(t,x) M.A*x + M.B*input';
[t,x] = ode45(func,0:1:50,zeros(size(M.A,1),1));
y = M.C*x';
y = y+T0;

Plot the result:

plot(t,y,'r');
hold on;
mphplot(model,'pg1'); 

Evaluate the steady-state temperature value:

G = M.D-M.C*(inv(M.A))*M.B;
y_inf = full(G*input');
y_inf = y + T0

mphsurf

Create plot data structure from surf data.

S Y N T A X

pd = mphsurf(x,y,z)
pd = mphsurf(z)

D E S C R I P T I O N

pd = mphsurf(x,y,z) creates the plot data structure pd from surf data x, y, and z.

pd = mphsurf(z) creates the plot data structure pd from surf data z. A unit scale is 
assumed for the x and y coordinates.
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  361



362 |  C H A P T E
E X A M P L E

Create random height data

[x,y] = meshgrid(-0.1:0.2:1.1,-0.4:0.2:0.4);
z = cumsum(0.1*randn(size(x)));

Create 3D surface plotdata structure

pd = mphsurf(x,y,z);
mphplot(pd)

S E E  A L S O

mphquad2tri, mphreadstl, mphwritestl

mphtable

Get table data.

S Y N T A X

info = mphtable(model,tabletag)

D E S C R I P T I O N

info = mphtable(model,tabletag) returns the structure info containing the data 
with the tabletag tag and its headers.

The returned value info is a structure with the following content

E X A M P L E

Load model_tutorial_llmatlab.mph, add a stationary study and compute the 
solution for different power values:

model = mphopen('model_tutorial_llmatlab');
std = model.study.create('std');
stat = std.feature.create('stat','Stationary')
stat.setIndex('pname','power',0);
stat.setIndex('plistarr','30 60 90',0);
std.run;

TABLE 6-44:  FIELDS IN THE INFO STRUCT

FIELD CONTENT

headers Headers of the table

tag Tag of the table

data Data of the extracted table

filename Filename when table exported to file
R  6 :  C O M M A N D  R E F E R E N C E



Evaluate the maximum temperature in the model and set the results in a table:

max = model.result.numerical.create('max','MaxVolume');
max.selection.all;
tbl = model.result.table.create('tbl','Table');
tbl.comments('Volume Maximum (T)');
max.set('table','tbl');
max.setResult;

Extract the table data:

str = mphtable(model,'tbl');
tbl_data = str.data

S E E  A L S O

mpheval, mphevalpoint, mphglobal, mphint2, mphinterp, mphmax, mphmean, 
mphmin

mphtags

Get tags and names for nodes in a COMSOL Multiphysics model.

S Y N T A X

mphtags(model)
mphtags(node)
mphtags(model, type)
[tags,labels,displaystrings] = mphtags(...)
mphtags
mphtags -show
[tags,filename,fullfilename] = mphtags

D E S C R I P T I O N

mphtags is used to retrieve tags from nodes in a COMSOL Multiphysics model or tags 
from models that are loaded on the server.

When mphtags is called with a model or node variable the tags are returned form the 
model. mphtags also be called using a model variable and a type, where type can be 
one of these strings: result, dataset, table, numerical, and export to give 
easy access to the nodes under the result node. It is sufficient to use the first letter of 
the types.

If mphtags is called with output arguments it is possible to get both the tags as well as 
labels and display names used for the nodes. For example,

[tags,labels,displaystrings] = mphtags(model.geom)
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  363



364 |  C H A P T E
If mphtags is called with the root model node as argument, the filename of the model 
can be returned:

[tag,filename,displaystring] = mphtags(model)

mphtags can be used to return a list of files currently loaded on the server. For 
example,

[tags,filename,fullfilename] = mphtags

In order to see this information quickly it is possible to call mphtags like this:

mphtags -show

that just produces output that is useful viewing on screen.

mphthumbnail

Set or get model thumbnail.

S Y N T A X

mphthumbnail(model,filename)
mphthumbnail(model,image)
mphthumbnail(model,fig)
mphthumbnail(model,'')
[image,imagefilename] = mphthumbnail(model)

D E S C R I P T I O N

mphthumbnail sets or gets the model thumbnail for model loaded on the server. In 
order to update the model thumbnail on disk the model must be saved.

mphthumbnail(model,filename) sets the thumbnail for the model to the image 
contained in filename. The file must be a PNG- or JPG-file.

mphthumbnail(model,image) sets the thumbnail using the image data image. image 
is either a NxM or a NxMx3 matrix. The preferred size of the image is 280 by 210 
pixels.

mphthumbnail(model,fig) sets the thumbnail using the image in the figure with 
handle fig.

mphthumbnail(model, '') clears the thumbnail from the model.

[image,imagefilename] = mphthumbnail(model) gets the image data image and 
the image filename imagefilename for the thumbnail stored in the model model.
R  6 :  C O M M A N D  R E F E R E N C E



E X A M P L E

Load model_tutorial_llmatlab.mph:

model = mphopen('model_tutorial_llmatlab');

Get the thumbnail image:

im = mphthumbnail(model);

Show the thumbnail in a MATLAB figure:

imshow(im)

Save the current figure image as an image file:

filename = fullfile(tempdir,'imagefile.png');
print(filename,'-dpng','-r48')

Set the thumbnail for the model:

mphthumbnail(model,filename)

S E E  A L S O

mphload, mphsave

mphversion

Return the version number for COMSOL Multiphysics.

S Y N T A X

v = mphversion
[v,vm] = mphversion(model)

D E S C R I P T I O N

v = mphversion returns the COMSOL Multiphysics version number that MATLAB 
is connected to as a string.

[v,vm] = mphversion(model) returns the COMSOL Multiphysics version number 
that MATLAB is connected to as a string in the variable v and the version number of 
the model in the variable vm.

E X A M P L E

Load model_tutorial_llmatlab.mph:

model = mphopen('model_tutorial_llmatlab');

Get the version numbers:
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  365



366 |  C H A P T E
[version, model_version] = mphversion(model)

S E E  A L S O

mphload, mphsave

mphviewselection

Display a geometric entity selection in a MATLAB® figure.

S Y N T A X

mphviewselection(model,geomtag,number,entity,...)
mphviewselection(model,seltag,...)

D E S C R I P T I O N

mphviewselection(model,geomtag,number,entity,...) displays the geometric 
entity number of type entity in MATLAB figure including the representation of the 
geometry geomtag.

mphviewselection(model,seltag,...) displays the geometric entity selection 
seltag in a MATLAB figure including the representation of the geometry.

The function mphviewselection accepts the following property/value pairs:

TABLE 6-45:  PROPERTY VALUE/PAIRS FOR THE MPHVIEWSELECTION FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

edgecolor Char | RGB array k Color for edges 

edgecolorselected RGB array [1,0,0] Color for selected 
edges

edgelabels on | off off Show edge labels

edgelabelscolor Char | RGB array g Color for edge labels

edgemode on | off on Show edges

entity Domain | 
boundary | edge | 
point

Set the selected entity 
type

facealpha Double 1 Set transparency value

facecolor RGB array [0.6,0.6,
0.6]

Color for face

facecolorselected RGB array [1,0,0] Color for selected 
face

facelabels on | off off Show face labels

facelabelscolor Char | RGB array b Color for face labels
R  6 :  C O M M A N D  R E F E R E N C E



E X A M P L E

Plot boundary 6 using yellow color:

model = mphopen('model_tutorial_llmatlab');
mphviewselection(model,'geom1',6,'boundary',...
   'facecolorselected',[1 1 0],'facealpha',0.5)

Plot edges 1 to 8 using green color:

mphviewselection(model,'geom1',1:8,'edge',...
   'edgecolorselected',[0 1 0])

Add an explicit selection for boundaries 7 to 12 and plot the selection in a figure:

model.selection.create('sel1','Explicit').geom(2).set(7:12);
mphviewselection(model,'sel1');

Add a selection to get the vertex indices with the box delimited with the coordinates 
[-1e-3 11e-3;-1e-3 11e-3;9e-3 11e-3] and plot both the selected entities and the 
selector:

facemode on | off on Show faces

geommode on | off on Show entire geometry

marker . Vertex marker

markercolorselected Char | RGB array r Color for selected 
vertex marker

markersize Int 12 Font size of marker

parent Double Parent axis

renderer Opengl | zbuffer opengl Set the rendering 
method

selection String | Positive 
integer array

Set selection name or 
entity number

selectoralpha Double 0.25 Set selector 
transparency value

selectorcolor RGB array [0,0,1] Color for selected 
marker

showselector on | off on Show Selector

vertexlabels on | off off Show vertex labels

vertexlabelscolor Char | RGB array r Color for vertex labels

vertexmode on | off off Show vertices

TABLE 6-45:  PROPERTY VALUE/PAIRS FOR THE MPHVIEWSELECTION FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  367



368 |  C H A P T E
box = model.selection.create('box1', 'Box');
box.set('entitydim', '0'); 
box.set('xmin', '-1e-3').set('xmax', '11e-3');
box.set('ymin', '-1e-3').set('ymax', '11e-3');
box.set('zmin', '10e-3').set('zmax', '11e-3');
mphviewselection(model,'box1','facemode','off');

S E E  A L S O

mphgeom, mphselectbox, mphselectcoords

mphwritestl

Export plot data as an STL file.

S Y N T A X

mphwritestl(filename, pd)
mphwritestl(filename, pd, '-binary')

D E S C R I P T I O N

mphwritestl(filename, pd) exports data in the plot data structure pd as the STL 
file filename.

mphwritestl(filename, pd, '-binary') exports data in the plot data structure 
pd as the STL file filename using the binary file format.

pd is a structure with fields pd and t.

• The field p contains node point coordinate information.

• The field t contains the indices to columns in p of a simplex mesh, each column in 
t representing a simplex.

Other fields in the plot data structure are not considered to generate the surface mesh.

E X A M P L E

.Generate a surface mesh from solution plot:

model = mphopen('vacuum_flask_llmatlab')
pd = mphplot(model, 'pg1')
pd2stl = pd{2}{1};
mphwritestl('vacuum_flask.stl', pd2stl)

Generate a surface mesh from a volume mesh

model = mphopen('model_tutorial_llmatlab');
model.component('comp1').mesh('mesh1').run;
[s,d] = mphmeshstats(model, 'mesh1');
R  6 :  C O M M A N D  R E F E R E N C E



idx = strcmp(s.types, 'tri');
pdmesh.p = d.vertex;
pdmesh.t = d.elem{idx};
mphwritestl('mesh2geom.stl', pdmesh);

S E E  A L S O

mphquad2tri, mphreadstl, mphsurf

mphxmeshinfo

Extract information about the extended mesh.

S Y N T A X

info = mphxmeshinfo(model, ...)

D E S C R I P T I O N

info = mphxmeshinfo(model,...) extracts extended mesh information from the 
active solution object.

The function mphxmeshinfo accepts the following property/value pairs:

The function xmeshinfo returns a structure with the fields shown in the table below

TABLE 6-46:  PROPERTY VALUE/PAIRS FOR THE MPHXMESHINFO FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

soltag String Active solution 
object

Solution object tag

studysteptag String Study step node tag

meshcase Positive integer | String 1 Mesh case tag

TABLE 6-47:  FIELD IN THE RETURNED STRUCTURE FROM MPHXMESHINFO

FIELD DESCRIPTION

soltag Tag of the solution object

ndofs Number of DOFs

fieldnames Names of the field variables

fieldndofs Number of DOFs per field name

meshtypes Types of mesh element

dofs Structure with information about the degrees of 
freedom

nodes Structure with information about the nodes

elements Structure with information about each element type
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  369



370 |  C H A P T E
The extended mesh information provide information about the numbering of 
elements, nodes, and degrees of freedom (DOFs) in the extended mesh and in the 
matrices returned by mphmatrix and mphgetu.

E X A M P L E

Extract xmesh information:

model = mphopen('model_tutorial_llmatlab.mph');
std = model.study.create('std');
std.feature.create('stat', 'Stationary');
std.run;
info = mphxmeshinfo(model)

Get the number of degrees of freedom and the nodes coordinates:

dofs = info.ndofs
coords = info.dofs.coords;

Get the DOFs indices connected to the tetrahedron:

idx = info.elements.tet.dofs

Retrieve the xmesh information with several physics

model = mphopen('model_tutorial_llmatlab.mph');
comp1 = model.component('comp1');
ec = comp1.physics.create('ec','ConductiveMedia','geom1');
ec.feature.create('gnd1','Ground',2).selection.set(3);
pot = ec.feature.create('pot','ElectricPotential',2);
pot.selection.set(7);
pot.set('V0',1,'50[mV]');
hs = comp1.physics('ht').feature('hs1');
hs.set('heatSourceType',1,'generalSource');
hs.set('Q_src',1,'root.comp1.ec.Qh');
std = model.study.create('std');
std.feature.create('stat', 'Stationary'); 
std.run;
info = mphxmeshinfo(model)

Get the index of the nodes for element with the index 100:

idx_nodes = info.elements.tet.nodes(:,100)

Get the index of the DOFs for element with the index 100:

idx_dofs = info.elements.tet.dofs(:,100)

Get the index of the variables names corresponding to the DOFs with the index 
idx_dofs:

idx_names = info.dofsinds(idx_dofs);
R  6 :  C O M M A N D  R E F E R E N C E



Find the dofnames index corresponding to the variable V:

idx_dofnames = find(strcmp(info.dofs.dofnames,'comp1.V'))-1;

Get the list of DOFs that correspond to the variable V:

idx = find(idx_names==idx_dofnames)

Get the coordinates of the DOFs corresponding to the dependent variable V that 
belong to element 100:

info.dofs.coords(:,idx_dofs(idx))

S E E  A L S O :

mphgetu, mphmatrix, mphsolinfo, mphsolutioninfo
C O M M A N D S  G R O U P E D  B Y  F U N C T I O N  |  371



372 |  C H A P T E
 R  6 :  C O M M A N D  R E F E R E N C E



I n d e x

A adding

animations 153

ball selections 129

box selections 131

geometry operations 50

global equations 124

interpolation functions 125

job sequences 140

MATLAB feature node 259

mesh sequences 79

parametric sweeps 140

physics interfaces 69, 118

plot groups 143

study nodes 137

adjacent selections 133

advancing front method 85

animation export 153

animation player 154

Application Libraries window 20

ASCII format 153

aurora color tables 268

average of expressions 173

B ball selections 129, 135

batch jobs 140

batch mode 192

boundary layer meshes 98

boundary meshes 102

boundary modeling 57

box selections 131, 135

building

geometry sequences 51

mesh sequences 80

meshes 90

C calling MATLAB functions 36, 159

cividis color table 268

clearing

functions 261

model objects 40

client/server mode 24

cluster computing 140

color display, selections 135

color tables 148

combining meshes 97

compact history 41

compose operation 55

composite object, creating 54

COMSOL API 38

COMSOL exceptions 244

COMSOL Multiphysics binary files 106

COMSOL Multiphysics text files 106

COMSOL server 24

connect to server 48

connecting MATLAB 28

constructor name 117

converting

curve segments 58

image data 74

image file to data 72

mesh elements 105

copying

boundary meshes 102

mphnavigator properties 237

creating

1D geometries 53

2D geometries 54, 57

3D geometries 59

composite objects 54

geometry from image data 72

materials 121

mesh information 112

model objects 39
I N D E X | 373



374 | I N D E X
curve interpolation, example 71

D data export 154

data, extracting 188

datasets syntax 151

defining

materials 121

MATLAB functions 256

selections 128

settings 125

Delaunay method 85

derivative recovery 165

difference operation 55

dipole color tables 269

directory path, MATLAB function 259

disabling model history 248

disco color tables 269

disconnecting MATLAB 30

displaying

geometries 51

meshes 80

plot groups 144

selections 134

documentation 19

dofs, xmesh 231

E element, xmesh 231

emailing COMSOL 21

enabling model history 248

entity, geometry 52

equations, modifying 122

errors 244

evaluating

data 152

expressions 175

global expressions 183

global matrix 186

integrals 170

explicit selections 128

exporting

data 154

expression average 173

extended mesh 230

extracting

data 161, 188

eliminated matrices 198

matrices 207

mesh information 112

plot data 146

solution vectors 227

system matrices 194

extruding meshes 93, 95

F floating network license (FNL) 29

free meshing 97

free quad mesh, example 87

function derivatives 261

function inputs/outputs 260

functions

interpolation 125

MATLAB 159

MATLAB, adding 254

G geometry

creating 70

displaying 51

parameterized 67

parametrization, example 190

retrieve information 64

sequence 50

global equations 124

global expressions 183

global matrix 186

H Hankel function 258

history, model 42

I image data conversion, example 74

image data, create geometry 72

importing

meshes 106



imread (MATLAB function) 72

inferno color table 270

inner solution 224

integrals, evaluating 170

internet resources 18

interpolation curve 70

interpolation functions 125

J Java 38

Java heap size 246

job sequences 140

K knowledge base, COMSOL 21

L linear matrix 200

linearization points 195, 208

Linux 26

list model object 40

load model 41

loops 189, 248

M Mac OS X 26

magma color table 270

mass matrix 206

materials 121

MATLAB desktop 24

MATLAB feature node 259

MATLAB functions 159, 254

MATLAB functions, plot 257

matrices, state-space 206

maximum of expression 168

memory requirements 248

mesh

boundary layers 98

converting 105

copying 102

data 112

displaying 80

element size, controlling 81

importing 106

refining 101

resolution 82

sequence 79

statistics 109

methods 38

methods, mphnavigator 238

Microsoft Windows 26

minimum of expressions 78, 165

model examples 18

model features 247

model history 42, 248

model object

calling 159

create custom GUI 249

information 238

methods 39

navigating 233

Model Tree 236

models, running in loops 189

ModelUtil method 39

modifying equations 122

mpheval 175–178

mphevalglobalmatrix 186

mphevalpoint 179–180

MPH-files 20

mphgetexpressions 243

mphgetproperties 241–242

mphgetselection 243

mphgetu 227–228

mphglobal 183–184

mphinputmatrix 200–201

mphint2 170, 172

mphinterp 161–163, 165

mphmatrix 194–195, 198

mphmax 168–169

mphmean 173–174

mphmin 78, 165–167

mphmodel 238

mphnavigator 233, 236–238
I N D E X | 375



376 | I N D E X
mphparticle 181–182

mphray 181

mphshowerrors 244

mphsolinfo 62, 222–223

mphsolutioninfo 64, 224–226

mphstate 206–208, 210, 214

mphtable 188

mphxmeshinfo 203, 230, 232

myscript 192

N NASTRAN 106

node points 175

nodes, xmesh 231

numerical node syntax 152

O ODE problem, example 124

outer solution 224

P parameterized geometries 67

parametric jobs 140

parametric sweep 140

particle trajectories 181

Physics Builder 127

physics interfaces 117–118

plasma color table 270

plot data, extracting 146

plot groups 143–144

plot while solving 141

plotting data, example 149

port number 24

preferences 32

prism mesh 95

progress bar 40

Q quadrilateral mesh, example 88

R rainbow color tables 270

ray trajectories 181

refining meshes 101

remove model object 40

resolution, mesh 82

results evaluation 152

revolved prism mesh, example 93

revolving face meshes 93

run solver sequences 139

running, models in loops 189

S save model object 45

selecting, linearization points 195

selections

defining 128

displaying 134

sequences of operations 38

sequences, solvers 139

set method 158

set operations 55

set the feature property 51

setindex method 159

setting

linear matrix system 200

linearization points 208

simplex elements 101

solid modeling 59

solution information 222, 224

solution object 222

solution vector 227

solutions, specifying 228

solver configurations syntax 138

solving, ODE problems 124

spectrum color table 271

squeezed singleton 181

state-space export 206

statistics, mesh 109

structured meshes 88

study syntax 137

sweeping meshes 93

swept meshing 97

syntax

datasets 151

materials 121

numerical node 152



physics interfaces 117

plot groups 143

solver configurations 138

studies 137

system matrices 194

T table data 188

technical support, COMSOL 21

thermal color tables 271

tolerance radius 130

traffic color tables 272

transparency, selections 135

triangular mesh, example 82

twilight color table 268

U updates, disable 247

user-defined physics interface 127

W warnings 244

wave color tables 272

weak form equation, example 122

websites, COMSOL 21

X xmesh 230

xterm 192–193
I N D E X | 377



378 | I N D E X


	Contents
	Chapter 1: Introduction
	About This Product 12
	Help and Documentation 14

	Chapter 2: Getting Started
	The Client/Server Architecture 24
	Running COMSOL Models at the Command Line 26
	The COMSOL Apps 34
	Calling External Functions From Within the Model 36

	Chapter 3: Building Models
	The Model Object 38
	Working with Geometries 50
	Working with Meshes 79
	Modeling Physics 117
	Creating Selections 128
	Computing the Solution 137
	Analyzing the Results 143

	Chapter 4: Working With Models
	Using Workspace Variables in Model Settings 158
	Extracting Results 161
	Running Models in a Loop 189
	Running Models in Batch Mode 192
	Working with Matrices 194
	Extracting Solution Information and Solution Vectors 222
	Retrieving Xmesh Information 230
	Navigating the Model 233
	Handling Errors and Warnings 244
	Improving Performance for Large Models 246
	Creating a Custom User Interface 249

	Chapter 5: Calling External Functions
	Running External Function 252
	The MATLAB® Function Feature Node 254

	Chapter 6: Command Reference
	Summary of Commands 264
	Commands Grouped by Function 265


	Introduction
	About This Product
	Help and Documentation
	Getting Help
	Where Do I Access the Documentation and the Application Libraries?


	Getting Started
	The Client/Server Architecture
	Running COMSOL Models at the Command Line
	Starting COMSOL® with MATLAB® on Windows ®/ Mac OSX / Linux®
	Connecting a COMSOL Server and MATLAB® Manually
	Connecting to COMSOL Server™
	Changing the MATLAB® Version

	The COMSOL Apps
	Installing Apps in the MATLAB Apps Ribbon
	Removing Apps in the MATLAB Apps Ribbon.
	The COMSOL Apps

	Calling External Functions From Within the Model

	Building Models
	The Model Object
	Important Notes About the Model Object
	The Model Object Methods
	The General Utility Functionality
	The Model History
	Loading and Saving a Model
	Sharing the Model Between the COMSOL Desktop® and the MATLAB® Prompt

	Working with Geometries
	The Geometry Sequence Syntax
	Displaying the Geometry
	Working with Geometry Sequences
	Retrieving Geometry Information
	Modeling with a Parameterized Geometry
	Images and Interpolation Data
	Measuring Entities in Geometry

	Working with Meshes
	The Meshing Sequence Syntax
	Displaying the Mesh
	Mesh Creation Functions
	Importing External Meshes and Mesh Objects
	Visualizing Mesh Quality
	Getting Mesh Statistics Information
	Getting and Setting Mesh Data

	Modeling Physics
	The Physics Interface Syntax
	Getting the Geometric Model Defined for the Physics
	The Material Syntax
	Modifying the Equations
	Adding Global Equations
	Defining Model Settings Using External Data File
	Access the User-Defined Physics Interface

	Creating Selections
	The Selection Node
	Coordinate-Based Selections
	Selection Using Adjacent Geometry
	Displaying Selections

	Computing the Solution
	The Study Node
	The Solver Sequence Syntax
	Run the Solver Sequence
	Adding a Parametric Sweep
	Adding a Job Sequence
	Plot While Solving

	Analyzing the Results
	The Plot Group Syntax
	Displaying The Results
	The Dataset Syntax
	The Numerical Node Syntax
	Exporting Data
	Generating Report


	Working With Models
	Using Workspace Variables in Model Settings
	The Set and SetIndex Methods
	Using a MATLAB® Function to Define Model Properties

	Extracting Results
	Extracting Data at Arbitrary Points
	Evaluating a Minimum of Expression
	Evaluating a Maximum of Expression
	Evaluating an Integral
	Evaluating an Expression Average
	Extracting Data at Node Points
	Evaluating an Expression at Geometry Vertices
	Evaluating Expressions on Particle/Ray Trajectories
	Evaluating a Global Expression
	Evaluating a Matrix Expression at Points
	Evaluating a Global Matrix
	Extracting Data From Tables

	Running Models in a Loop
	The Parametric Sweep Node
	Running Model in a Loop Using the MATLAB® Tools

	Running Models in Batch Mode
	The Batch Node
	Running an M-File in Batch Mode
	Running an M-File in Batch Mode Without Display

	Working with Matrices
	Extracting System Matrices
	Set System Matrices in the Model
	Extracting State-Space Matrices
	Extracting Reduced Order State-Space Matrices

	Extracting Solution Information and Solution Vectors
	Obtaining Solution Information
	Retrieving Solution Information and Solution Datasets Based on Parameter Values
	Extracting Solution Vector

	Retrieving Xmesh Information
	The Extended Mesh (Xmesh)
	Extracting Xmesh Information

	Navigating the Model
	Navigating the Model Object Using a GUI
	Navigating The Model Object At The Command Line
	Retrieving Component Information
	Finding Model Expressions
	Evaluating the Model Parameters
	Getting Feature Model Properties
	Getting Parameter and Variable Definitions
	Getting Selection Information

	Handling Errors and Warnings
	Errors and Warnings
	Using MATLAB® Tools to Handle COMSOL® Exceptions
	Displaying Warnings and Errors in the Model

	Improving Performance for Large Models
	Allocating Memory
	Disabling Model Feature Update
	Disabling The Model History

	Creating a Custom User Interface

	Calling External Functions
	Running External Function
	Allowing External MATLAB Functions
	Disabling MATLAB® Splash Screen at Startup
	Running a MATLAB® Function in Applications

	The MATLAB® Function Feature Node
	Defining a MATLAB® Function in the COMSOL® Model
	Setting the Function Directory Path in MATLAB®
	Adding a MATLAB® Function with the COMSOL® API Syntax
	Function Input/Output Considerations
	Updating Functions
	Defining Function Derivatives


	Command Reference
	Summary of Commands
	Commands Grouped by Function
	colortable
	mphaddplotdata
	mphapplicationlibraries
	mphcd
	mphcomponentinfo
	mphdoc
	mpheval
	mphevalglobalmatrix
	mphevalpoint
	mphevalpointmatrix
	mphevaluate
	mphgeom
	mphgeominfo
	mphgetadj
	mphgetcoords
	mphgetexpressions
	mphgetproperties
	mphgetselection
	mphgetu
	mphglobal
	mphimage2geom
	mphinputmatrix
	mphint2
	mphinterp
	mphinterpolationfile
	mphlaunch
	mphload
	mphmatrix
	mphmax
	mphmean
	mphmeasure
	mphmesh
	mphmeshstats
	mphmin
	mphmodel
	mphnavigator
	mphopen
	mphparticle
	mphplot
	mphquad2tri
	mphray
	mphreadstl
	mphreduction
	mphreport
	mphsave
	mphsearch
	mphselectbox
	mphselectcoords
	mphshowerrors
	mphsolinfo
	mphsolutioninfo
	mphstart
	mphstate
	mphsurf
	mphtable
	mphtags
	mphthumbnail
	mphversion
	mphviewselection
	mphwritestl
	mphxmeshinfo


	Index

