PDF

Vibrating Membrane
Introduction
In the following example you compute the natural frequencies of a pretensioned membrane using the 3D Membrane interface. This is an example of “stress stiffening”; where the transverse stiffness of a membrane is directly proportional to the tensile force.
The results are compared with the analytical solution.
Model Definition
The model consists of a circular membrane, supported along its outer edge.
GEOMETRY
Membrane radius, 0.25 m
Material
Young’s modulus, E = 200 GPa
Mass density, ρ = 7850 kg/m3
Constraints
The outer edge of the membrane is supported in the transverse direction. Two points have constraints in the in-plane direction in order to avoid rigid body motions.
Load
The membrane is pretensioned by in the radial direction with σi = 100 MPa, giving a membrane force T0 20 kN/m.
Results and Discussion
The analytical solution for the natural frequencies of the vibrating membrane given in Ref. 1 is:
(1)
The values kij are derived from the roots of the Bessel functions of the first kind.
In Table 1 the computed results are compared with the results from Equation 1. The agreement is very good. The mode shapes for the first six modes are shown in Figure 1 through Figure 6. Note that some of the modes have duplicate eigenvalues, which is a common property for structures with symmetries.
k10 = 2.4048
k11 = 3.8317
k11 = 3.8317
k12 = 5.1356
k12 = 5.1356
k20 = 5.5201
Figure 1: First eigenmode.
Figure 2: Second eigenmode.
Figure 3: Third eigenmode.
Figure 4: Fourth eigenmode.
Figure 5: Fifth eigenmode.
Figure 6: Sixth eigenmode.
Notes About the COMSOL Implementation
An eigenfrequency simulation with a pre-stressed structure can be simulated in two ways. If stresses are known in advance, it is possible to use an initial stress condition. This is shown in the first study.
In a general case, the prestress is given by some external loading, and is thus the result of a previous step in the solution. Such a study would consist of two steps: One stationary step for computing the prestressed state, and one step for the eigenfrequency. The special study type Prestressed Analysis, Eigenfrequency can be used to set up such a sequence. This is shown in the second study in this example.
Since an unstressed membrane has no stiffness in the transverse direction, it is generally difficult to get an analysis to converge without taking special measures. One such method is shown in the second study: A spring foundation is added during initial loading, and is then removed.
Reference
1. A. Bower, Applied Mechanics of Solids, CRC Press, 2010.
Application Library path: Structural_Mechanics_Module/Verification_Examples/vibrating_membrane
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Membrane (mbrn).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Eigenfrequency.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Definitions
Cylindrical System 2 (sys2)
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
2
Right-click Definitions and choose Coordinate Systems>Cylindrical System.
Geometry 1
Work Plane 1 (wp1)
1
In the Geometry toolbar, click  Work Plane.
2
In the Model Builder window, click Work Plane 1 (wp1).
3
In the Settings window for Work Plane, click  Show Work Plane.
Work Plane 1 (wp1)>Circle 1 (c1)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type R.
4
In the Model Builder window, right-click Geometry 1 and choose Build All.
5
Click the  Zoom Extents button in the Graphics toolbar.
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
Membrane (mbrn)
Thickness and Offset 1
1
In the Model Builder window, under Component 1 (comp1)>Membrane (mbrn) click Thickness and Offset 1.
2
In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3
In the d text field, type thic.
Linear Elastic Material 1
In the Model Builder window, click Linear Elastic Material 1.
Initial Stress and Strain 1
1
In the Physics toolbar, click  Attributes and choose Initial Stress and Strain.
2
In the Settings window for Initial Stress and Strain, locate the Initial Stress and Strain section.
3
In the N0 table, enter the following settings:
Prescribed Displacement 1
1
In the Physics toolbar, click  Edges and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in z direction check box.
Fixed Constraint 1
1
In the Physics toolbar, click  Points and choose Fixed Constraint.
2
Prescribed Displacement 2
1
In the Physics toolbar, click  Points and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in y direction check box.
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3
From the Element size list, choose Fine.
Study 1
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 1 click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Study Settings section.
3
Select the Include geometric nonlinearity check box.
4
In the Home toolbar, click  Compute.
Results
Surface 1
1
In the Model Builder window, expand the Mode Shape (mbrn) node, then click Surface 1.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type w.
4
In the Mode Shape (mbrn) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Mode Shape (mbrn)
1
In the Model Builder window, click Mode Shape (mbrn).
2
From the Eigenfrequency list, choose the first frequency at 275.3 Hz.
3
In the Mode Shape (mbrn) toolbar, click  Plot.
4
From the Eigenfrequency list, choose the first frequency at 275.3 Hz.
5
In the Mode Shape (mbrn) toolbar, click  Plot.
6
From the Eigenfrequency list, choose the first frequency at 369.1 Hz.
7
In the Mode Shape (mbrn) toolbar, click  Plot.
8
From the Eigenfrequency list, choose the first frequency at 369.1 Hz.
9
In the Mode Shape (mbrn) toolbar, click  Plot.
10
In the Settings window for 3D Plot Group, locate the Data section.
11
From the Eigenfrequency (Hz) list, choose 396.72.
12
In the Mode Shape (mbrn) toolbar, click  Plot.
Now, prepare a second study where the prestress is instead computed from an external load.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Eigenfrequency, Prestressed.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Membrane (mbrn)
Edge Load 1
1
In the Physics toolbar, click  Edges and choose Edge Load.
2
3
In the Settings window for Edge Load, locate the Coordinate System Selection section.
4
From the Coordinate system list, choose Cylindrical System 2 (sys2).
5
Locate the Force section. Specify the FL vector as
Add a spring with an arbitrary, small stiffness in order to suppress the out-of-plane singularity of the unstressed membrane.
Spring Foundation 1
1
In the Physics toolbar, click  Boundaries and choose Spring Foundation.
2
3
In the Settings window for Spring Foundation, locate the Spring section.
4
5
In the kA table, enter the following settings:
Switch off the initial stress, which should not be part of the second study. In the eigenfrequency step, the stabilizing spring support must also be removed.
Study 2
Step 1: Stationary
1
In the Model Builder window, under Study 2 click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Study Settings section.
3
Select the Include geometric nonlinearity check box.
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the Physics and variables selection tree, select Component 1 (comp1)>Membrane (mbrn), Controls spatial frame>Linear Elastic Material 1>Initial Stress and Strain 1.
6
Click  Disable.
Step 2: Eigenfrequency
1
In the Model Builder window, click Step 2: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Membrane (mbrn), Controls spatial frame>Linear Elastic Material 1>Initial Stress and Strain 1 and Component 1 (comp1)>Membrane (mbrn), Controls spatial frame>Spring Foundation 1.
5
Click  Disable.
6
In the Home toolbar, click  Compute.
Results
Mode Shape (mbrn) 1
The eigenfrequencies computed using this more general approach are the same as before, except some small numerical differences.
To make Study 1 behave as when it was first created, the features added for Study 2 must be disabled.
Study 1
Solver Configurations
1
In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.
2
Select the Modify model configuration for study step check box.
3
In the Physics and variables selection tree, select Component 1 (comp1)>Membrane (mbrn), Controls spatial frame>Edge Load 1 and Component 1 (comp1)>Membrane (mbrn), Controls spatial frame>Spring Foundation 1.
4
Click  Disable.