PDF

Heterojunction 1D
This benchmark model simulates three different heterojunction configurations under forward and reverse bias. It shows the difference in using the continuous quasi-Fermi level formulation versus the thermionic emission formulation for the charge transfer across the heterojunction. The simulated energy levels are compared between each configuration in order to illustrate the origin of the charge transfer, that is, whether it is primarily from holes in the valence band or from electrons in the conduction band. The computed I-V curves for each configuration are compared with results from the literature. Several methods for better convergence are demonstrated in the setup of the various study steps.
Introduction
Semiconductor heterojunctions are interfaces where two different semiconducting materials are in contact. There are two types of heterojunctions:
Depending on the configuration, heterojunctions show different behaviors depending on the material band-gap difference and doping type.
Heterojunctions are characterized by a discontinuous conduction (and/or valence) band at the interface. In the Semiconductor Module, one can choose between two models to define the heterojunction. The continuous quasi-Fermi level model and the thermionic emission model.
The continuous quasi-Fermi level model defines the current continuity at the interface by setting the quasi-Fermi level to be continuous on each side of the junction.
The thermionic emission model defines the current continuity through a thermionic current density generated at the potential barrier.
Model Definition
This model simulates the behavior of an heterojunction under reverse and forward bias for three different configurations: isotype n-n, anisotype p-n, and anisotype n-p. The modeled junction is composed of two different materials, GaAs and Al0.25Ga0.75As, respectively located on the left and right side of the junction. As displayed on Figure 1, the junction has a length of 10 μm and a net doping concentration of: 1·1015 cm3 for the GaAs and 1·1016 cm3 for the Al0.25Ga0.75As. A Shockley-Read-Hall recombination feature is also added to the model for the sake of comparison with the reference model reported in Ref. 1.
Figure 1: Schematic of the geometry. The GaAs and Al0.25Ga0.75As are, respectively, located on the left and on the right side of the junction (center). Depending on the configuration (n-n, p-n or n-p), the doping might be of donor type (Nd) or acceptor type (Na) for both materials. Note that the impurity concentration stays the same for each material for all three configurations, that is, 1·1015 cm-3 for GaAs and 1·1016 cm-3 for Al0.25Ga0.75As.
 
Results and Discussion
Figure 2 shows a comparison between the continuous quasi-Fermi level model and the thermionic emission model for the n-n isotype junction under forward and reverse bias. The figure also compares our results with the ones obtained in Ref. 1. Figure 2 shows that the thermionic current model is in good agreement with the reference. The continuous quasi-Fermi level model is a little larger than the reference model in the reverse case.
Figure 2: Comparison of the current densities obtained using the continuous quasi-Fermi level model (green) and the thermionic emission model (blue) with the results obtained in Ref. 1 for the n-n isotype junction under forward and reverse bias.
Figure 3: Comparison of the current densities obtained using the thermionic emission model (blue) with the results obtained in Ref. 1 for the p-n anisotype junction under forward and reverse bias.
Figure 3 shows a comparison between the thermionic emission current density obtained with the model and the reference under forward and reverse bias for the p-n junction. A very good agreement is observed between the two models. Figure 4 shows the same kind of agreement for the n-p junction.
Figure 4: Comparison of the current densities obtained using the thermionic emission model (blue) with the results obtained in Ref. 1 for the n-p anisotype junction under forward and reverse bias
The thermionic current at the junction can come from the electrons in the conduction band or the holes in the valence band. Depending on the configuration, the current is primarily due to one of the two carriers. This is the result of the existence (or nonexistence) of a potential barrier generated by the bending of one of the bands (conduction or valence). Figure 5 displays the energy diagram for the n-n junction under forward bias at Va = 0.05 V. The figure shows that, for this configuration, it is the conduction band that forms the barrier (spike) over which electrons can transit. The current for the isotype heterojunction is then mainly due to electrons. A similar observation can be made on Figure 6 and Figure 7. The latter figures show that the current is mainly produced by electrons for the p-n heterojunction and by holes for the n-p heterojunction. Note that for the n-p junction, the forward bias appears when the applied potential is negative.
Figure 5: Energy diagram for the n-n heterojunction using the thermionic emission model.
Figure 6: Energy diagram for the p-n heterojunction using the thermionic emission model.
Figure 7: Energy diagram for the n-p heterojunction using the thermionic emission model.
Reference
1. K. Horio and H. Yanai, “Numerical Modeling of Heterojunctions Including the Thermionic Emission Mechanism at the Heterojunction Interface,” IEEE Transaction on Electron Devices, vol. 37, no. 4, pp. 1093–1098, 1990.
Application Library path: Semiconductor_Module/Verification_Examples/heterojunction_1d
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  1D.
2
In the Select Physics tree, select Semiconductor>Semiconductor (semi).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Create the geometry, the junction is located at x = 0.
Geometry 1
Interval 1 (i1)
1
In the Model Builder window, under Component 1 (comp1) right-click Geometry 1 and choose Interval.
2
In the Settings window for Interval, locate the Interval section.
3
Interval 2 (i2)
1
Right-click Interval 1 (i1) and choose Duplicate.
2
In the Settings window for Interval, locate the Interval section.
3
Choose um as the default length units.
4
In the Model Builder window, click Geometry 1.
5
In the Settings window for Geometry, locate the Units section.
6
From the Length unit list, choose µm.
Load the material properties for GaAs and Al_0.25Ga_0.75As. The properties will be respectively assigned to the left and right side of the junction.
Definitions
GaAs
1
In the Home toolbar, click  Variables and choose Local Variables.
2
In the Settings window for Variables, type GaAs in the Label text field.
3
Locate the Geometric Entity Selection section. From the Geometric entity level list, choose Domain.
4
5
Locate the Variables section. Click  Load from File.
6
Al_0.25Ga_0.75As
1
In the Home toolbar, click  Variables and choose Local Variables.
2
In the Settings window for Variables, type Al_0.25Ga_0.75As in the Label text field.
3
Locate the Geometric Entity Selection section. From the Geometric entity level list, choose Domain.
4
5
Locate the Variables section. Click  Load from File.
6
Set the reference temperature to T0.
7
Click the  Show More Options button in the Model Builder toolbar.
8
In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.
9
Semiconductor (semi)
1
In the Model Builder window, under Component 1 (comp1) click Semiconductor (semi).
2
In the Settings window for Semiconductor, click to expand the Reference Temperature section.
3
In the T0 text field, type T0.
Set the lattice temperature to T0.
Semiconductor Material Model 1
1
In the Model Builder window, under Component 1 (comp1)>Semiconductor (semi) click Semiconductor Material Model 1.
2
In the Settings window for Semiconductor Material Model, locate the Model Input section.
3
In the T text field, type T0.
Add a Shockley-Read-Hall recombination feature to all domains.
Trap-Assisted Recombination 1
1
In the Physics toolbar, click  Domains and choose Trap-Assisted Recombination.
2
In the Settings window for Trap-Assisted Recombination, locate the Domain Selection section.
3
From the Selection list, choose All domains.
The voltage is applied on the left side of the junction (GaAs). The sign variable is used by the study steps to sweep the applied voltages from reverse to forward.
Metal Contact 1
1
In the Physics toolbar, click  Boundaries and choose Metal Contact.
2
3
In the Settings window for Metal Contact, locate the Terminal section.
4
In the V0 text field, type sign*Va.
The right side of the junction (Al_0.25Ga_0.75As) is grounded.
Metal Contact 2
1
In the Physics toolbar, click  Boundaries and choose Metal Contact.
2
The doping concentration stays constant for each material and for any modeled configuration. Accordingly, the variable Doping, defined in the domain variables GaAs and Al_0.25Ga_0.75As, is used for all the added doping feature. Depending on the chosen configuration, the doping type changes on each side of the junction. For this reason, n- and p-type features are created for each side of the junction. To define the desired configurations, doping features are enabled/disabled in their respective study steps.
Donor doping (left)
1
In the Physics toolbar, click  Domains and choose Analytic Doping Model.
2
In the Settings window for Analytic Doping Model, type Donor doping (left) in the Label text field.
3
4
Locate the Impurity section. From the Impurity type list, choose Donor doping (n-type).
5
In the ND0 text field, type Doping.
Donor doping (right)
1
In the Physics toolbar, click  Domains and choose Analytic Doping Model.
2
In the Settings window for Analytic Doping Model, type Donor doping (right) in the Label text field.
3
4
Locate the Impurity section. From the Impurity type list, choose Donor doping (n-type).
5
In the ND0 text field, type Doping.
Acceptor doping (left)
1
In the Physics toolbar, click  Domains and choose Analytic Doping Model.
2
In the Settings window for Analytic Doping Model, type Acceptor doping (left) in the Label text field.
3
4
Locate the Impurity section. In the NA0 text field, type Doping.
Acceptor doping (right)
1
In the Physics toolbar, click  Domains and choose Analytic Doping Model.
2
In the Settings window for Analytic Doping Model, type Acceptor doping (right) in the Label text field.
3
4
Locate the Impurity section. In the NA0 text field, type Doping.
In order to observe the effect of the different heterojunction models, create an additional feature and change the default continuous quasi-Fermi model for the thermionic emission model.
Continuity/Heterojunction 2
1
In the Physics toolbar, click  Boundaries and choose Continuity/Heterojunction.
2
3
In the Settings window for Continuity/Heterojunction, locate the Heterojunction section.
4
From the Continuity model list, choose Thermionic emission.
Add a material to the model and enter the material properties defined in the domain variables GaAs and Al_0.25Ga_0.75As. This discontinuous material is used to define both sides of the junction.
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
Create a fine mesh using the distribution tool.
Mesh 1
Edge 1
In the Mesh toolbar, click  Edge.
Distribution 1
1
Right-click Edge 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
From the Distribution type list, choose Predefined.
4
In the Number of elements text field, type 500.
5
In the Element ratio text field, type 10.
6
Select the Symmetric distribution check box.
7
Click  Build All.
Create a study to solve the n-n heterojunction with the continuous quasi-Fermi levels model. In order to reduce the number of figure in the model, clear the generate default plots check box.
n-n : Continuous Quasi-Fermi Levels
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type n-n : Continuous Quasi-Fermi Levels in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Select the doping features and heterojunction model needed for this specific configuration. Note that the Voltage continuation sweep proceeds from reverse to forward bias (the sign variable is starting with -1).
Step 1: Stationary
1
In the Model Builder window, under n-n : Continuous Quasi-Fermi Levels click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (left).
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (right).
7
Click  Disable.
8
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Continuity/Heterojunction 2.
9
Click  Disable.
10
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
11
From the Sweep type list, choose All combinations.
12
13
14
15
For assistance in entering ranges of different kinds in the Parameter value list column, click the Range button to launch the Range dialog.
16
From the Reuse solution from previous step list, choose Auto.
The equation system for heterojunctions is highly nonlinear and numerically challenging. In this tutorial we show a few different ways to achieve better convergence. First, we can manually scale the solution variables to their expected magnitudes.
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node, then click Dependent Variables 1.
3
In the Settings window for Dependent Variables, locate the Scaling section.
4
From the Method list, choose None.
5
In the Model Builder window, expand the n-n : Continuous Quasi-Fermi Levels>Solver Configurations>Solution 1 (sol1)>Dependent Variables 1 node, then click Electron solution variable (comp1.Ne).
6
In the Settings window for Field, locate the Scaling section.
7
From the Method list, choose Manual.
8
In the Scale text field, type 1.0e22.
9
In the Model Builder window, click Hole solution variable (comp1.Ph).
10
In the Settings window for Field, locate the Scaling section.
11
From the Method list, choose Manual.
12
In the Scale text field, type 1.0e4.
Change the default relative tolerance to 1E-10. This gives a better resolution to the current density.
13
In the Model Builder window, click Stationary Solver 1.
14
In the Settings window for Stationary Solver, locate the General section.
15
In the Relative tolerance text field, type 1E-10.
16
Click  Compute.
Create another study for the n-n heterojunction using the thermionic emission model.
Add Study
1
In the Study toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Study toolbar, click  Add Study to close the Add Study window.
n-n : Thermionic Emission
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, type n-n : Thermionic Emission in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Select the doping features and heterojunction model needed for this specific configuration. Start with the initial condition given by the solution from the previous study - this is another way to achieve better convergence. Note that the Voltage sweep proceeds from reverse to forward bias (the sign variable is starting with -1).
Step 1: Stationary
1
In the Model Builder window, under n-n : Thermionic Emission click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (left).
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (right).
7
Click  Disable.
8
Click to expand the Values of Dependent Variables section. Find the Initial values of variables solved for subsection. From the Settings list, choose User controlled.
9
From the Method list, choose Solution.
10
From the Study list, choose n-n : Continuous Quasi-Fermi Levels, Stationary.
11
From the Parameter value (Va (V),sign) list, choose 1: Va=0.05 V, sign=-1.
12
Locate the Study Extensions section. Select the Auxiliary sweep check box.
13
From the Sweep type list, choose All combinations.
14
15
16
17
For assistance in entering ranges of different kinds in the Parameter value list column, click the Range button to launch the Range dialog.
18
From the Reuse solution from previous step list, choose Auto.
Change the default relative tolerance to 1E-10. This will give a better resolution on the current density.
Solution 2 (sol2)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 2 (sol2) node, then click Stationary Solver 1.
3
In the Settings window for Stationary Solver, locate the General section.
4
In the Relative tolerance text field, type 1E-10.
5
Click  Compute.
Load the reference’s results in two tables.
Results
n-n : Cont.
1
In the Model Builder window, expand the Results node.
2
Right-click Results>Tables and choose Table.
3
In the Settings window for Table, type n-n : Cont. in the Label text field.
4
Locate the Data section. Click Import.
5
n-n : TE
1
In the Results toolbar, click  Table.
2
In the Settings window for Table, type n-n : TE in the Label text field.
3
Locate the Data section. Click Import.
4
Plot the J-V curve comparison.
n-n : Jx Comparison
1
In the Results toolbar, click  1D Plot Group.
2
In the Settings window for 1D Plot Group, type n-n : Jx Comparison in the Label text field.
3
Locate the Data section. From the Dataset list, choose None.
4
Click to expand the Title section. From the Title type list, choose None.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Legend section. From the Position list, choose Upper left.
Table Graph 1
1
Right-click n-n : Jx Comparison and choose Table Graph.
2
In the Settings window for Table Graph, locate the Coloring and Style section.
3
Find the Line style subsection. From the Line list, choose None.
4
From the Color list, choose Black.
5
Find the Line markers subsection. From the Marker list, choose Asterisk.
6
From the Positioning list, choose In data points.
7
Click to expand the Legends section. Select the Show legends check box.
8
From the Legends list, choose Manual.
9
10
Click the  y-Axis Log Scale button in the Graphics toolbar.
Table Graph 2
1
Right-click Table Graph 1 and choose Duplicate.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Table list, choose n-n : TE.
4
Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Circle.
5
Locate the Legends section. In the table, enter the following settings:
Point Graph 1
1
In the Model Builder window, right-click n-n : Jx Comparison and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose n-n : Continuous Quasi-Fermi Levels/Solution 1 (sol1).
4
5
Locate the y-Axis Data section. In the Expression text field, type abs(semi.JX).
6
In the Unit field, type A/cm^2.
7
Click to expand the Coloring and Style section. From the Color list, choose Green.
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose n-n : Thermionic Emission/Solution 2 (sol2).
4
Locate the Coloring and Style section. From the Color list, choose Blue.
n-n : Jx Comparison
1
In the Model Builder window, click n-n : Jx Comparison.
2
In the n-n : Jx Comparison toolbar, click  Plot.
Create another study for the p-n configuration with the thermionic emission mode. In this study, we show yet another way to achieve better convergence: use the Semiconductor Equilibrium study step to obtain a good initial condition.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Semiconductor Equilibrium.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3
Step 1: Semiconductor Equilibrium
1
In the Settings window for Semiconductor Equilibrium, locate the Physics and Variables Selection section.
2
Select the Modify model configuration for study step check box.
3
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Donor doping (left).
4
Click  Disable.
5
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (right).
6
Click  Disable.
In order to reduce the number of figure in the model, clear the generate default plots check box.
7
In the Model Builder window, click Study 3.
8
In the Settings window for Study, type p-n : Thermionic Emission in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
Add a second stationary step to sweep the voltage from reverse to forward bias. This step will automatically use the solution of the previous step as the initial condition. Right click p-n : thermionic emission then select Study Steps and Stationary.
Stationary
1
In the Study toolbar, click  Study Steps and choose Stationary>Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Donor doping (left).
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (right).
7
Click  Disable.
8
Locate the Study Extensions section. Select the Auxiliary sweep check box.
9
From the Sweep type list, choose All combinations.
10
11
12
13
For assistance in entering ranges of different kinds in the Parameter value list column, click the Range button to launch the Range dialog.
Change the default relative tolerance to 1E-10. This gives a better resolution to the current density.
Solution 3 (sol3)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 3 (sol3) node, then click Stationary Solver 2.
3
In the Settings window for Stationary Solver, locate the General section.
4
In the Relative tolerance text field, type 1E-10.
5
Click  Compute.
Load the references results in a table.
Results
p-n : TE
1
In the Results toolbar, click  Table.
2
In the Settings window for Table, type p-n : TE in the Label text field.
3
Locate the Data section. Click Import.
4
p-n : Jx Comparison
1
In the Results toolbar, click  1D Plot Group.
2
In the Settings window for 1D Plot Group, type p-n : Jx Comparison in the Label text field.
3
Locate the Title section. From the Title type list, choose None.
4
Locate the Plot Settings section. Select the x-axis label check box.
5
6
Select the y-axis label check box.
7
8
Locate the Legend section. From the Position list, choose Upper left.
Table Graph 1
1
Right-click p-n : Jx Comparison and choose Table Graph.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Table list, choose p-n : TE.
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
From the Color list, choose Black.
6
Find the Line markers subsection. From the Marker list, choose Circle.
7
From the Positioning list, choose In data points.
8
Locate the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
11
Click the  y-Axis Log Scale button in the Graphics toolbar.
Point Graph 1
1
In the Model Builder window, right-click p-n : Jx Comparison and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose p-n : Thermionic Emission/Solution 3 (sol3).
4
5
Locate the y-Axis Data section. In the Expression text field, type abs(semi.JX).
6
In the Unit field, type A/cm^2.
7
Locate the Coloring and Style section. From the Color list, choose Blue.
p-n : Jx Comparison
1
In the Model Builder window, click p-n : Jx Comparison.
2
In the p-n : Jx Comparison toolbar, click  Plot.
Another way to achieve better convergence is to ramp up nonlinear contributions to the equation system from small values. The Semiconductor physics interface provides a convenient mechanism to ramp up several quantities simultaneously by using a common continuation parameter as a multiplication factor. Here we will ramp up the doping and thermionic current. Enter the continuation parameter, ramp, in the interface continuation parameter field.
Semiconductor (semi)
1
In the Model Builder window, under Component 1 (comp1) click Semiconductor (semi).
2
In the Settings window for Semiconductor, click to expand the Continuation Settings section.
3
In the Cp text field, type ramp.
4
From the Doping and trap density continuation parameter list, choose Use interface continuation parameter.
Select the interface continuation parameter to ramp the thermionic current. (The doping features are by default ramped with the doping and trap density continuation parameter, which is in turn by default set to be the interface continuation parameter.)
Continuity/Heterojunction 2
1
In the Model Builder window, under Component 1 (comp1)>Semiconductor (semi) click Continuity/Heterojunction 2.
2
In the Settings window for Continuity/Heterojunction, click to expand the Continuation Settings section.
3
From the Continuation type list, choose Use interface continuation parameter.
Create a study to solve the n-p heterojunction with the thermionic emission model. In order to reduce the number of figure in the model, clear the generate default plots check box.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
n-p : Thermionic Emission
1
In the Model Builder window, click Study 4.
2
In the Settings window for Study, type n-p : Thermionic Emission in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Add the ramping step.
Step 1: Stationary
1
In the Model Builder window, under n-p : Thermionic Emission click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Donor doping (right).
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (left).
7
Click  Disable.
8
Locate the Study Extensions section. Select the Auxiliary sweep check box.
9
10
Add the second stationary step to sweep the voltage from reverse to forward bias. In this case, the sign variable starts at 1. Right click n-p : thermionic emission then select Study Steps and Stationary.
Stationary 2
1
In the Study toolbar, click  Study Steps and choose Stationary>Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Donor doping (right).
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Semiconductor (semi)>Acceptor doping (left).
7
Click  Disable.
8
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
9
From the Sweep type list, choose All combinations.
10
11
12
13
For assistance in entering ranges of different kinds in the Parameter value list column, click the Range button to launch the Range dialog.
14
From the Reuse solution from previous step list, choose Auto.
Change the default relative tolerance to 1E-10. This gives a better resolution to the current density.
Solution 5 (sol5)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 5 (sol5) node, then click Stationary Solver 2.
3
In the Settings window for Stationary Solver, locate the General section.
4
In the Relative tolerance text field, type 1E-10.
5
Click  Compute.
Load the references results in a table.
Results
n-p : TE
1
In the Results toolbar, click  Table.
2
In the Settings window for Table, type n-p : TE in the Label text field.
3
Locate the Data section. Click Import.
4
n-p : Jx Comparison
1
In the Results toolbar, click  1D Plot Group.
2
In the Settings window for 1D Plot Group, type n-p : Jx Comparison in the Label text field.
3
Locate the Title section. From the Title type list, choose None.
4
Locate the Plot Settings section. Select the x-axis label check box.
5
6
Select the y-axis label check box.
7
8
Locate the Legend section. From the Position list, choose Upper left.
Table Graph 1
1
Right-click n-p : Jx Comparison and choose Table Graph.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Table list, choose n-p : TE.
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
From the Color list, choose Black.
6
Find the Line markers subsection. From the Marker list, choose Circle.
7
From the Positioning list, choose In data points.
8
Locate the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
11
Click the  y-Axis Log Scale button in the Graphics toolbar.
Point Graph 1
1
In the Model Builder window, right-click n-p : Jx Comparison and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose n-p : Thermionic Emission/Solution 5 (sol5).
4
5
Locate the y-Axis Data section. In the Expression text field, type abs(semi.JX).
6
In the Unit field, type A/cm^2.
7
Locate the Coloring and Style section. From the Color list, choose Blue.
n-p : Jx Comparison
1
In the Model Builder window, click n-p : Jx Comparison.
2
In the n-p : Jx Comparison toolbar, click  Plot.
Generate the thermionic emission model energy diagram figures for each configuration.
n-n : Energy Diagram
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type n-n : Energy Diagram in the Label text field.
3
Locate the Data section. From the Dataset list, choose n-n : Thermionic Emission/Solution 2 (sol2).
4
From the Parameter selection (sign) list, choose Last.
5
From the Parameter selection (Va) list, choose First.
6
Locate the Title section. From the Title type list, choose None.
7
Locate the Legend section. From the Position list, choose Lower right.
Line Graph 1
1
Right-click n-n : Energy Diagram and choose Line Graph.
2
In the Settings window for Line Graph, locate the Selection section.
3
From the Selection list, choose All domains.
4
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Semiconductor>Fermi levels and band edges>Energies>semi.Ec_e - Conduction band energy level - J.
5
Locate the y-Axis Data section. From the Unit list, choose eV.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type x.
8
Click to expand the Coloring and Style section. From the Color list, choose Blue.
9
Click to expand the Legends section. Select the Show legends check box.
10
From the Legends list, choose Manual.
11
Line Graph 2
1
Right-click Line Graph 1 and choose Duplicate.
2
In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Semiconductor>Fermi levels and band edges>Energies>semi.Efn_e - Electron quasi-Fermi energy level - J.
3
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
4
From the Color list, choose Black.
5
Locate the Legends section. In the table, enter the following settings:
Line Graph 3
1
Right-click Line Graph 2 and choose Duplicate.
2
In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Semiconductor>Fermi levels and band edges>Energies>semi.Efp_e - Hole quasi-Fermi energy level - J.
3
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dotted.
4
Locate the Legends section. In the table, enter the following settings:
Line Graph 4
1
Right-click Line Graph 3 and choose Duplicate.
2
In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Semiconductor>Fermi levels and band edges>Energies>semi.Ev_e - Valence band energy level - J.
3
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Solid.
4
From the Color list, choose Green.
5
Locate the Legends section. In the table, enter the following settings:
n-n : Energy Diagram
1
In the Model Builder window, click n-n : Energy Diagram.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the y-axis label check box.
4
5
Select the x-axis label check box.
6
In the n-n : Energy Diagram toolbar, click  Plot.
p-n : Energy Diagram
1
Right-click n-n : Energy Diagram and choose Duplicate.
2
In the Settings window for 1D Plot Group, type p-n : Energy Diagram in the Label text field.
3
Locate the Data section. From the Dataset list, choose p-n : Thermionic Emission/Solution 3 (sol3).
4
From the Parameter selection (Va) list, choose From list.
5
In the Parameter values (Va (V)) list, select 1.05.
6
In the p-n : Energy Diagram toolbar, click  Plot.
n-p : Energy Diagram
1
Right-click p-n : Energy Diagram and choose Duplicate.
2
In the Settings window for 1D Plot Group, type n-p : Energy Diagram in the Label text field.
3
Locate the Data section. From the Dataset list, choose n-p : Thermionic Emission/Solution 5 (sol5).
4
In the n-p : Energy Diagram toolbar, click  Plot.