PDF

Compact Camera Module
Introduction
Compact camera modules are widely used in electronic devices such as mobile phones and tablet computers. In order to reduce both the size and number of elements required the optical design will typically incorporate several highly aspheric surfaces. This model demonstrates a five element (plus filter) design using the 'Aspheric Even Lens 3D' part from the Ray Optics Module part library.
Model Definition
An overview of the optical design of the compact camera module used in this tutorial is shown in Figure 1. The prescription for this lens design can be found in Ref. 1. It has a 7.0 mm focal length, a f/2.4 focal ratio, and a nominal field of view of 36°.
Figure 1: Overview of the Compact Camera Module optical design. In this cross-section view, the rays have been colored by release index.
The detailed optical prescription is given in Table 1. Instructions for creating the lens geometry sequence (Figure 2) can be found in the Appendix — Geometry Instructions. In addition to the parameters used to define the Compact Camera Module geometry, a set of parameters are required to define the ray tracing model. These are listed in Table 2.
 
A4 = 9.80281·10-3, A6 = -3.81227·10-2, A8 = 2.39681·10-2,
A10 = -6.29128·10-3, A12 = -2.75496·10-3, A14 = -2.69638·10-4
A4 = 3.73187·10-2, A6 = -8.91760·10-3, A8 = -5.89384·10-2, A10 = 4.41115·10-2, A12 = -1.26858·10-2, A14 = 1.16125·10-3
A4 = 6.93172·10-2, A6 = -4.31157·10-2, A8 = 2.33346e·10-2,
A10 = -2.33074·10-2, A12 = 2.22119·10-2, A14 = -4.84076·10-3
A4 = 5.21579·10-3, A6 = 7.15829·10-2, A8 = -4.60926·10-2, A10 = 1.24310·10-2, A12 = 3.32216e·10-2
A4 = 3.96000·10-2, A6 = -3.42179·10-2, A8 = 7.75523·10-2,
A10 = -4.22361·10-2
A4 = 1.01117·10-1, A6 = -3.21118·10-2, A8 = 9.03668·10-2,
A10 = -3.37156·10-2, A12 = -6.52751·10-3
A4 = -4.91398·10-2, A6 = -5.57533·10-3, A8 = 1.31557·10-2, A10 = 1.22280·10-3, A12 = -9.54019·10-4, A14 = -2.40349·10-6
A4 = -8.88955·10-2, A6 = 2.87927·10-2, A8 = -8.83436·10-3, A10 = 1.57329·10-3, A12 = -2.24134·10-4
A4 = -2.38313·10-2, A6 = 5.50321·10-3, A8 = -9.19080·10-4,
A10 = -9.80631·10-5
A4 = -3.17139·10-2, A6 = 3.80781·10-3, A8 = 3.43810·10-4,
A10 = -3.27888·10-5
Figure 2: The Compact Camera Module geometry sequence. Instructions for creating the lens geometry can be found in the Appendix.
 
  λvac
nref,1
nref,2
nref,3
Dpupil
Nring
θ1
θ2
θ3
θ4
Δz
The ray tracing algorithm used by the Geometrical Optics interface computes the refracted ray direction based on a discretized geometry via the underlying finite element mesh. In this model, a cubic geometry shape order is used in order to reduce the discretization error. However, it is sometimes necessary to refine the mesh on certain surfaces in order to further reduce the effects of discretization. The aspheric surfaces of the Compact Camera Module have been assigned to a cumulative selection (Figure 3) on which the mesh has been refined (Figure 4).1
The Compact Camera Module is assumed to be operating in air at room temperature. The wavelength is set to λ = 587.56 nm (that is, the wavelength at which the refractive indices are specified). Other Geometrical Optics features include the use of cumulative selections to define obstructions (see Figure 5) and the focal surface. A hexapolar grid release is used to launch rays at each of the four field angles. Each release has 25 rings, giving a total of 1951 rays per field angle. Detailed instructions for creating this model can be found in Modeling Instructions.
Figure 3: The Compact Camera Module aspheric surface cumulative selection.
Figure 4: The Compact Camera Module mesh. This view shows the aspheric surfaces on which the mesh has been refined.
Figure 5: The Compact Camera Module obstruction cumulative selection.
Results and Discussion
The ray trace of the Compact Camera Module is shown in Figure 6. The lens geometry has been rendered using component selections and Cut Plane datasets. In this figure the rays have been colored according to the radial distance from the centroid of each release at the image plane. It can be seen that the outermost ring of rays contribute most significantly to the rays aberrations.
The spot diagram for this ray tracing study can be seen in Figure 7. In this figure the rays are colored according to their relative radial location at the stop. This also makes the origin of the most aberrant rays apparent.
Figure 6: Ray diagram of the Compact Camera Module where the rays are colored by their radial distance from the centroid on the image plane.
Figure 7: Spot diagram for the Compact Camera Module. The spots have been colored according to their radial distance from the center of the entrance pupil.
Reference
1. R.I. Mercado, 2015. Small form factor telephoto camera. US Patent 9 223 118 B2, filed Oct. 31, 2013 and issued Dec. 29, 2015.
Application Library path: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/compact_camera_module
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Optics>Ray Optics>Geometrical Optics (gop). This model will only consider a single physics ray trace.
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Ray Tracing.
6
Global Definitions
Parameters 1: Lens Prescription
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Parameters 1: Lens Prescription in the Label text field.
. The prescription of the Compact Camera Module (see Table 1) will be added when the geometry sequence is inserted in the following section.
Now, load the model definitions (Table 2) for the Compact Camera Module from a text file.
Parameters 2: General
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Parameters 2: General in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Compact Camera Module
Insert the prepared geometry sequence from file. You can read the instructions for creating the geometry in Appendix — Geometry Instructions. Following insertion, the full set of parameter definitions will be available in the Parameters node.
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, type Compact Camera Module in the Label text field.
3
Locate the Units section. From the Length unit list, choose mm.
4
In the Geometry toolbar, click  Insert Sequence.
5
6
In the Geometry toolbar, click  Build All.
7
Click the  Orthographic Projection button in the Graphics toolbar. Orient the view to place the optical axis (z-axis) horizontal and the y-axis vertical. Compare the resulting geometry to Figure 2. The Cumulative Selections defining the aspheric surfaces and obstructions can be seen in Figure 3 and Figure 5 respectively.
Component 1 (comp1)
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, locate the General section.
3
Find the Mesh frame coordinates subsection. From the Geometry shape function list, choose Cubic Lagrange. The ray tracing algorithm used by the Geometrical Optics interface computes the refracted ray direction based on a discretized geometry via the underlying finite element mesh. A cubic geometry shape order usually introduces less discretization error compared to the default, which uses linear and quadratic polynomials.
Definitions
In the following, create a selection containing the surfaces in 3 of the 4 axially symmetric quadrants of the camera. These will be used during postprocessing.
Box 1
1
In the Definitions toolbar, click  Box.
2
In the Settings window for Box, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Box Limits section. In the x maximum text field, type 0.
5
In the y minimum text field, type 0.
6
Locate the Output Entities section. From the Include entity if list, choose Entity inside box.
Complement 1
1
In the Definitions toolbar, click  Complement.
2
In the Settings window for Complement, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Input Entities section. Under Selections to invert, click  Add.
5
In the Add dialog box, in the Selections to invert list, choose Box 1, All (Stop), Exterior (IR Filter), and All (Image Plane).
6
Materials
Now, define the lens materials. In this tutorial the three lens materials will be assigned a refractive index appropriate for the chosen wavelength. However, the material refractive indices could be defined as a function of wavelength (and temperature) using one of the built-in optical dispersion models.
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
3
In the Settings window for Material, locate the Material Contents section.
4
Material 2 (mat2)
1
Right-click Materials and choose Blank Material.
2
3
In the Settings window for Material, locate the Material Contents section.
4
Material 3 (mat3)
1
Right-click Materials and choose Blank Material.
2
3
In the Settings window for Material, locate the Material Contents section.
4
Geometrical Optics (gop)
In the following sections the physics is defined.
1
In the Model Builder window, under Component 1 (comp1) click Geometrical Optics (gop).
2
In the Settings window for Geometrical Optics, locate the Ray Release and Propagation section.
3
In the Maximum number of secondary rays text field, type 0. In this simulation stray light is not being traced, so reflected rays will not be produced at the lens surfaces.
4
Select the Use geometry normals for ray-boundary interactions check box. In this simulation, the geometry normals are used to apply the boundary conditions on all refracting surfaces. This is appropriate for the highest accuracy ray traces in single-physics simulations, where the geometry is not deformed.
5
Locate the Material Properties of Exterior and Unmeshed Domains section. From the Optical dispersion model list, choose Air, Edlen (1953). It is assumed that the lenses are surrounded by air at room temperature.
Material Discontinuity 1
1
In the Model Builder window, under Component 1 (comp1)>Geometrical Optics (gop) click Material Discontinuity 1.
2
In the Settings window for Material Discontinuity, locate the Rays to Release section.
3
From the Release reflected rays list, choose Never.
Ray Properties 1
1
In the Model Builder window, click Ray Properties 1.
2
In the Settings window for Ray Properties, locate the Ray Properties section.
3
In the λ0 text field, type lambda.
Obstructions
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Obstructions in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Obstructions.
4
Locate the Wall Condition section. From the Wall condition list, choose Disappear.
Image Surface
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Image Surface in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose All (Image Plane).
Release from Grid 1
1
In the Physics toolbar, click  Global and choose Release from Grid.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
From the Grid type list, choose Hexapolar.
4
Specify the qc vector as
5
Specify the rc vector as
6
In the Rc text field, type D_pupil/2.
7
In the Nc text field, type N_ring.
8
Locate the Ray Direction Vector section. Specify the L0 vector as
Release from Grid 2
1
Right-click Release from Grid 1 and choose Duplicate.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
Specify the qc vector as
4
Locate the Ray Direction Vector section. Specify the L0 vector as
Release from Grid 3
1
Right-click Release from Grid 2 and choose Duplicate.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
Specify the qc vector as
4
Locate the Ray Direction Vector section. Specify the L0 vector as
Release from Grid 4
1
Right-click Release from Grid 3 and choose Duplicate.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
Specify the qc vector as
4
Locate the Ray Direction Vector section. Specify the L0 vector as
Mesh 1
Next, refine the mesh on the aspheric surfaces.
Free Triangular 1
1
In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose More Operations>Free Triangular.
2
In the Settings window for Free Triangular, locate the Boundary Selection section.
3
From the Selection list, choose Aspheric Surfaces.
Size 1
1
Right-click Free Triangular 1 and choose Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Extremely fine.
Free Tetrahedral 1
1
In the Model Builder window, right-click Mesh 1 and choose Free Tetrahedral.
2
Right-click Free Tetrahedral 1 and choose Build All.
Study 1
Step 1: Ray Tracing
1
In the Model Builder window, under Study 1 click Step 1: Ray Tracing.
2
In the Settings window for Ray Tracing, locate the Study Settings section.
3
From the Time-step specification list, choose Specify maximum path length.
4
From the Length unit list, choose mm.
5
In the Lengths text field, type 0 10. The second path length is sufficiently long to ensure that all rays make it to the image surface.
6
In the Home toolbar, click  Compute.
Results
In the following steps the default ray diagram is adjusted to show different aspects of the ray trace. First, define two cut planes which can be used to render the Compact Camera Module cross-section.
Cut Plane 1
1
In the Results toolbar, click  Cut Plane.
2
In the Settings window for Cut Plane, locate the Plane Data section.
3
From the Plane list, choose ZX-planes.
Cut Plane 2
In the Results toolbar, click  Cut Plane.
Ray Diagram 1
1
In the Model Builder window, under Results click Ray Trajectories (gop).
2
In the Settings window for 3D Plot Group, type Ray Diagram 1 in the Label text field.
Ray Trajectories 1
In the Model Builder window, expand the Ray Diagram 1 node.
Color Expression 1
1
In the Model Builder window, expand the Ray Trajectories 1 node, then click Color Expression 1.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type gop.prf. This is the index of each of the release features, starting at 1
Filter 1
1
In the Model Builder window, click Filter 1.
2
In the Settings window for Filter, locate the Ray Selection section.
3
From the Rays to include list, choose Logical expression.
4
In the Logical expression for inclusion text field, type at(0,abs(x))<0.01[mm]. Only the tangential rays will be rendered in this view.
Surface 1
1
In the Model Builder window, right-click Ray Diagram 1 and choose Surface.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Cut Plane 2.
4
Locate the Expression section. In the Expression text field, type abs(y).
5
Locate the Coloring and Style section. From the Coloring list, choose Gradient.
6
From the Top color list, choose Black.
7
From the Bottom color list, choose White.
8
Clear the Color legend check box.
9
In the Ray Diagram 1 toolbar, click  Plot. Orient the view to match Figure 1 to show only the tangential rays.
Ray Diagram 2
1
Right-click Ray Diagram 1 and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Ray Diagram 2 in the Label text field.
3
Locate the Plot Settings section. From the View list, choose New view.
4
Locate the Color Legend section. Select the Show units check box.
5
In the Model Builder window, expand the Ray Diagram 2 node.
Color Expression 1
1
In the Model Builder window, expand the Results>Ray Diagram 2>Ray Trajectories 1 node, then click Color Expression 1.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type at('last',gop.rrel). This is the radial coordinate relative to the centroid of each release feature at the image plane.
4
From the Unit list, choose µm.
Filter 1
1
In the Model Builder window, click Filter 1.
2
In the Settings window for Filter, locate the Ray Selection section.
3
From the Rays to include list, choose All.
Surface 2
1
In the Model Builder window, under Results>Ray Diagram 2 right-click Surface 1 and choose Duplicate.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Cut Plane 1.
4
Locate the Expression section. In the Expression text field, type abs(x).
Surface 3
1
In the Model Builder window, right-click Ray Diagram 2 and choose Surface.
2
In the Settings window for Surface, locate the Coloring and Style section.
3
From the Coloring list, choose Uniform.
4
From the Color list, choose Gray.
Selection 1
1
Right-click Surface 3 and choose Selection.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Complement 1.
4
In the Ray Diagram 2 toolbar, click  Plot. Orient the view to match Figure 6 to show the all the rays.
Spot Diagram
In the following steps a spot diagram will be created to show the location of the rays in the image plane.
1
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
2
In the Settings window for 2D Plot Group, type Spot Diagram in the Label text field.
3
Locate the Color Legend section. Select the Show units check box.
Spot Diagram 1
In the Spot Diagram toolbar, click  More Plots and choose Spot Diagram.
Color Expression 1
1
Right-click Spot Diagram 1 and choose Color Expression.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type at(0,gop.rrel). This is the radial coordinate relative to the centroid at the entrance pupil for each ray release.
4
In the Spot Diagram toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar. Compare the resulting image to Figure 7.
Appendix — Geometry Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
Compact Camera Module Geometry Sequence
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, type Compact Camera Module Geometry Sequence in the Label text field.
3
Locate the Units section. From the Length unit list, choose mm.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Part Libraries
1
In the Home toolbar, click  Windows and choose Part Libraries.
2
In the Model Builder window, under Component 1 (comp1) click Compact Camera Module Geometry Sequence.
3
In the Part Libraries window, select Ray Optics Module>3D>Apertures and Obstructions>circular_planar_annulus in the tree.
4
Click  Add to Geometry.
Compact Camera Module Geometry Sequence
Stop
1
In the Model Builder window, under Component 1 (comp1)>Compact Camera Module Geometry Sequence click Circular Planar Annulus 1 (pi1).
2
In the Settings window for Part Instance, type Stop in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Click to expand the Boundary Selections section. In the table, select the Keep check box for All.
5
6
Click New Cumulative Selection.
7
In the New Cumulative Selection dialog box, type Aspheric Surfaces in the Name text field.
8
Click OK. This selection will be used to to refine the mesh on the aspheric surfaces.
9
In the Settings window for Part Instance, locate the Boundary Selections section.
10
Click New Cumulative Selection.
11
In the New Cumulative Selection dialog box, type Obstructions in the Name text field.
12
Part Libraries
1
In the Home toolbar, click  Windows and choose Part Libraries.
2
In the Model Builder window, click Compact Camera Module Geometry Sequence.
3
In the Part Libraries window, select Ray Optics Module>3D>Aspheric Lenses>aspheric_even_lens_3d in the tree.
4
Click  Add to Geometry.
5
In the Select Part Variant dialog box, select Specify clear aperture diameter in the Select part variant list.
6
Compact Camera Module Geometry Sequence
Lens 1
1
In the Model Builder window, under Component 1 (comp1)>Compact Camera Module Geometry Sequence click Aspheric Even Lens 3D 1 (pi2).
2
In the Settings window for Part Instance, type Lens 1 in the Label text field.
3
Locate the Input Parameters section. Click  Load from File.
4
Browse to the model’s Application Libraries folder and double-click the file compact_camera_module_geom_sequence_lens1.txt. These files are simplify the mapping between the lens prescription and the input parameters for this part. Similar files will be used for each of the four remaining lenses.
5
Locate the Boundary Selections section. In the table, enter the following settings:
Lens 2
1
In the Geometry toolbar, click  Parts and choose Aspheric Even Lens 3D.
2
In the Settings window for Part Instance, type Lens 2 in the Label text field.
3
Locate the Input Parameters section. Click  Load from File.
4
5
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 1 (pi2).
6
From the Work plane list, choose Surface 2 vertex intersection (wp2).
7
Find the Displacement subsection. In the zw text field, type T_1.
8
Locate the Boundary Selections section. In the table, enter the following settings:
Lens 3
1
In the Geometry toolbar, click  Parts and choose Aspheric Even Lens 3D.
2
In the Settings window for Part Instance, type Lens 3 in the Label text field.
3
Locate the Input Parameters section. Click  Load from File.
4
5
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 2 (pi3).
6
From the Work plane list, choose Surface 2 vertex intersection (wp2).
7
Find the Displacement subsection. In the zw text field, type T_2.
8
Locate the Boundary Selections section. In the table, enter the following settings:
Lens 4
1
In the Geometry toolbar, click  Parts and choose Aspheric Even Lens 3D.
2
In the Settings window for Part Instance, type Lens 4 in the Label text field.
3
Locate the Input Parameters section. Click  Load from File.
4
5
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 3 (pi4).
6
From the Work plane list, choose Surface 2 vertex intersection (wp2).
7
Find the Displacement subsection. In the zw text field, type T_3.
8
Locate the Boundary Selections section. In the table, enter the following settings:
Lens 5
1
In the Geometry toolbar, click  Parts and choose Aspheric Even Lens 3D.
2
In the Settings window for Part Instance, type Lens 5 in the Label text field.
3
Locate the Input Parameters section. Click  Load from File.
4
5
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 4 (pi5).
6
From the Work plane list, choose Surface 2 vertex intersection (wp2).
7
Find the Displacement subsection. In the zw text field, type T_4.
8
Locate the Boundary Selections section. In the table, enter the following settings:
Part Libraries
1
In the Geometry toolbar, click  Parts and choose Part Libraries.
2
In the Model Builder window, click Compact Camera Module Geometry Sequence.
3
In the Part Libraries window, select Ray Optics Module>3D>Spherical Lenses>spherical_lens_3d in the tree.
4
Click  Add to Geometry.
5
In the Select Part Variant dialog box, select Specify clear aperture diameter in the Select part variant list.
6
Compact Camera Module Geometry Sequence
IR Filter
1
In the Model Builder window, under Component 1 (comp1)>Compact Camera Module Geometry Sequence click Spherical Lens 3D 1 (pi7).
2
In the Settings window for Part Instance, type IR Filter in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 5 (pi6).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_5.
7
Locate the Boundary Selections section. In the table, enter the following settings:
Image Plane
1
In the Geometry toolbar, click  Parts and choose Circular Planar Annulus.
2
In the Settings window for Part Instance, type Image Plane in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose IR Filter (pi7).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_6.
7
Locate the Boundary Selections section. In the table, select the Keep check box for All.
8
In the Geometry toolbar, click  Build All.
9
Click the  Orthographic Projection button in the Graphics toolbar. Orient the view to place the optical axis (z-axis) horizontal and the y-axis vertical. Compare the resulting geometry to Figure 2.
 

1
This level of mesh refinement is only needed for certain surface types. The default physics-controlled mesh is often suitable for single physics ray tracing studies when using the high-accuracy surfaces used in the spherical and conic lens and mirror parts from the Ray Optics Module Part Libraries.