PDF

Performance of a Porous Microchannel Heat Sink
Introduction
This model studies the performance of a microchannel heat sink (MCHS) with a porous block structure and compares its performance with that of a conventional MCHS. Todays demands on electronic components to become smaller and more efficient at the same time place equally high demands on the corresponding cooling devices. The use of porous material along the flow channels can enhance the heat transfer, by increasing the heat transfer surface area. At the same time, the pressure drop is also increased, requiring more pumping power. With a parametric study over the thickness of the porous substrate an optimized design of the porous MCHS can be found.
Figure 1: Geometry and operating conditions of the porous MCHS.
Model Definition
The design and operating conditions are taken from Ref. 1 and are illustrated in Figure 1. The problem can be reduced to modeling only one half of a single channel. This is sufficient, because the performance is mainly influenced by the pressure drop and heat transfer from the bottom boundary to the water in the channel. The geometry of the modeled domain is shown in Figure 2.
Figure 2: Geometry of the modeling domain. The free flow domain used to provide the inflow profile for the MCHS is not shown.
The flow channels contain sintered porous metal blocks with a porosity of ε = 0.402 on each side. A heat source with qin = 100 W/cm2 is attached to the bottom. Water with an inlet velocity of u = 0.2m/s and a temperature of Tin = 300 K is used as cooling fluid. The flow is assumed to be laminar, incompressible and stationary. The flow properties are also independent of the temperature field. Inside the porous domains the governing equation is the Brinkman equation with a Forchheimer correction term (also known as the Brinkman-Forchheimer or Darcy-Brinkman-Forchheimer equation). The pressure drop depends on the velocity field u as
(1)
where μ (Pa·s) is the fluid viscosity, ρ (kg/m3) the density, and κ (m2) the permeability of the porous substrate.
To evaluate the performance of the porous MCHS over the conventional MCHS, the first computation solves the model assuming only free flow. Then, a second study performs a parametric sweep over the thickness of the porous substrate (thp). The following performance parameters are evaluated:
1
2
(2)
with the average wall temperature at the bottom centerline .
3
(3)
with the hydraulic diameter Dh (m) that is defined based on the length and width of the free flow channel, lf and wf respectively, as follows:
4
(4)
where kf is the fluids thermal conductivity.
5
(5)
The index base refers to the values for the MCHS without the porous structure and Ω = uinlfwfΔp is the pumping power.
Equation 1 is valid for 1 ≤ Re ≤ 1000. An estimation of the Reynolds number (Equation 3) results in Re ∼ 300 such that the choice of the Brinkman-Forchheimer equation is valid.
Results and Discussion
Figure 3 shows the velocity field in a cross section of the channel. The velocity magnitude inside the porous structure is small (dark blue) compared to that of the free flow channel.
Figure 3: Cross section of the velocity field along the channel (scaled view). The dark blue color indicates the porous structure, because the velocity magnitude is small in this area.
The temperature distribution is shown together with the velocity profile in Figure 4.
Figure 4: Temperature distribution (color) and velocity field (arrows) with the gray scale indicating the pressure.
The pressure drop and average heat transfer coefficient as a function of the thickness of the porous structure are shown in Figure 5. With increasing thickness, both values also increase.
Figure 5: Pressure drop and average heat transfer coefficient.
Figure 6 shows how the dimensionless Reynolds and Nusselt numbers depend on this thickness. The Reynolds number decreases with increasing thp and varies in the range from 100 to 210, meaning that the choice of the Brinkman-Forchheimer equation is justified. The Nusselt number has a maximum at thp = 0.125 mm.
Figure 6: Reynolds and Nusselt numbers.
The Figure of Merit (Figure 7) shows that the optimal performance is achieved for thp = 0.1 mm.
Figure 7: The Figure of Merit comparing the performances of the porous and the conventional MCHS.
Notes About the COMSOL Implementation
This model shows how to analyze the performance of the porous MCHS for varying porous substrate thickness. The model geometry and operating conditions are fully parametrized, such that you can easily extend the model for various parameters, as for example the inlet velocity or other channel dimensions.
Reference
1. A. Ghahremannezhad and K. Vafai, “Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates,” Int. J. Heat Mass Transfer, vol. 122, pp. 1313–1326, 2018.
Application Library path: Porous_Media_Flow_Module/Heat_Transfer/porous_microchannel_heat_sink
Modeling Instructions
Root
Start by loading the model file that contains the geometry and selections used throughout the modeling process.
1
From the File menu, choose Open.
2
Global Definitions
Parameters 1
The geometry parameters are already present after loading the file. Add a few more parameters for the material properties and operating conditions.
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Add Physics
1
In the Home toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Fluid Flow>Single-Phase Flow>Laminar Flow (spf).
4
Click Add to Component 1 in the window toolbar.
5
In the tree, select Heat Transfer>Heat Transfer in Solids and Fluids (ht).
6
Click Add to Component 1 in the window toolbar.
7
In the Home toolbar, click  Add Physics to close the Add Physics window.
Add Multiphysics
1
In the Home toolbar, click  Add Multiphysics to open the Add Multiphysics window.
2
Go to the Add Multiphysics window.
3
In the tree, select Heat Transfer>Conjugate Heat Transfer>Laminar Flow.
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Multiphysics to close the Add Multiphysics window.
This adds the coupling between the Laminar Flow and Heat Transfer in Solids and Fluids interfaces.
Next, add the materials. For the fluid use a user-defined material with the parameters defined above. Load steel from the Material Library.
Global Definitions
Water
1
In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Water in the Label text field.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Built-in>Steel AISI 4340.
4
Click Add to Global Materials in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Material Link 1 (matlnk1)
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose More Materials>Material Link.
Material Link 2 (matlnk2)
1
Right-click Materials and choose More Materials>Material Link.
2
In the Settings window for Material Link, locate the Link Settings section.
3
From the Material list, choose Steel AISI 4340 (mat2).
4
Locate the Geometric Entity Selection section. From the Selection list, choose Solid.
Porous Material 1 (poromat1)
1
Right-click Materials and choose More Materials>Porous Material.
2
In the Settings window for Porous Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Porous.
4
Locate the Nonporous Material Setting section. From the Material list, choose Water (mat1).
Fluid 1 (poromat1.fluid1)
Right-click Porous Material 1 (poromat1) and choose Fluid.
Solid 1 (poromat1.solid1)
1
In the Model Builder window, right-click Porous Material 1 (poromat1) and choose Solid.
2
In the Settings window for Solid, locate the Solid Properties section.
3
From the Material list, choose Steel AISI 4340 (mat2).
4
In the θs text field, type 1-por.
Now, set up the domain conditions. This determines which material properties are required and you can fill in the missing materials afterward. For this step the selections are helpful.
Laminar Flow (spf)
Assume incompressible flow.
1
In the Model Builder window, under Component 1 (comp1) click Laminar Flow (spf).
2
In the Settings window for Laminar Flow, locate the Physical Model section.
3
From the Compressibility list, choose Incompressible flow.
4
Select the Enable porous media domains check box.
5
Locate the Domain Selection section. From the Selection list, choose Flow Domain.
Fluid and Matrix Properties 1
1
In the Physics toolbar, click  Domains and choose Fluid and Matrix Properties.
2
In the Settings window for Fluid and Matrix Properties, locate the Domain Selection section.
3
From the Selection list, choose Porous.
4
Locate the Fluid Properties section. From the Fluid material list, choose Water (mat1).
5
Locate the Porous Matrix Properties section. From the Porous material list, choose Steel AISI 4340 (mat2).
6
From the εp list, choose User defined. In the associated text field, type por.
7
From the Permeability model list, choose Non-Darcian.
8
From the κ list, choose User defined. In the associated text field, type kappa.
Heat Transfer in Solids and Fluids (ht)
Fluid 1
1
In the Model Builder window, under Component 1 (comp1)>Heat Transfer in Solids and Fluids (ht) click Fluid 1.
2
In the Settings window for Fluid, locate the Domain Selection section.
3
From the Selection list, choose Flow Domain.
Porous Medium 1
1
In the Physics toolbar, click  Domains and choose Porous Medium.
2
In the Settings window for Porous Medium, locate the Domain Selection section.
3
From the Selection list, choose Porous.
Porous Matrix 1
1
In the Model Builder window, expand the Porous Medium 1 node, then click Porous Matrix 1.
2
In the Settings window for Porous Matrix, locate the Matrix Properties section.
3
From the Define list, choose Solid phase properties.
You can now specify the values of the missing material properties.
Global Definitions
Water (mat1)
1
In the Model Builder window, under Global Definitions>Materials click Water (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Complete the physics setup by adding the boundary conditions.
Laminar Flow (spf)
In the Model Builder window, under Component 1 (comp1) click Laminar Flow (spf).
Inlet 1
1
In the Physics toolbar, click  Boundaries and choose Inlet.
2
In the Settings window for Inlet, locate the Boundary Selection section.
3
From the Selection list, choose Inlet.
4
Locate the Velocity section. In the U0 text field, type u_in.
Outlet 1
1
In the Physics toolbar, click  Boundaries and choose Outlet.
2
In the Settings window for Outlet, locate the Boundary Selection section.
3
From the Selection list, choose Outlet.
Symmetry 1
1
In the Physics toolbar, click  Boundaries and choose Symmetry.
2
In the Settings window for Symmetry, locate the Boundary Selection section.
3
From the Selection list, choose Symmetry.
Heat Transfer in Solids and Fluids (ht)
In the Model Builder window, under Component 1 (comp1) click Heat Transfer in Solids and Fluids (ht).
Boundary Heat Source 1
1
In the Physics toolbar, click  Boundaries and choose Boundary Heat Source.
2
3
In the Settings window for Boundary Heat Source, locate the Boundary Heat Source section.
4
In the Qb text field, type q_in.
Inflow 1
1
In the Physics toolbar, click  Boundaries and choose Inflow.
2
In the Settings window for Inflow, locate the Boundary Selection section.
3
From the Selection list, choose Inlet.
4
Locate the Upstream Properties section. In the Tustr text field, type T_in.
Outflow 1
1
In the Physics toolbar, click  Boundaries and choose Outflow.
2
In the Settings window for Outflow, locate the Boundary Selection section.
3
From the Selection list, choose Outlet.
Symmetry 1
1
In the Physics toolbar, click  Boundaries and choose Symmetry.
2
In the Settings window for Symmetry, locate the Boundary Selection section.
3
From the Selection list, choose Symmetry.
To evaluate the performance, define new variables (see Equation 2 to Equation 5).
To evaluate the pressure drop define a nonlocal average coupling at the inlet of the porous MCHS. Use the average temperature of the centerline at the bottom surface to evaluate the heat transfer coefficient.
Definitions (comp1)
Average: Inlet of Porous MCHS
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Average.
2
In the Settings window for Average, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Click the  Wireframe Rendering button in the Graphics toolbar.
5
6
In the Label text field, type Average: Inlet of Porous MCHS.
Average: Centerline, Bottom Surface
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Average.
2
In the Settings window for Average, locate the Source Selection section.
3
From the Geometric entity level list, choose Edge.
4
5
In the Label text field, type Average: Centerline, Bottom Surface.
Variables 1
1
In the Model Builder window, right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Mesh 1
In order to solve the model efficiently and achieve high accuracy, two aspects must be considered. The geometry has a high aspect ratio which can lead to an unnecessarily large number of mesh elements. The boundary heat source at the bottom surface leads to a high temperature gradient in z-direction close to this boundary.
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3
From the Element size list, choose Finer.
4
In the table, clear the Use check boxes for Heat Transfer in Solids and Fluids (ht) and Nonisothermal Flow 1 (nitf1). to build a mesh for the flow domains only.
5
Locate the Mesh Settings section. From the Sequence type list, choose User-controlled mesh.
Free Tetrahedral 1
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Free Tetrahedral 1.
2
In the Settings window for Free Tetrahedral, click to expand the Scale Geometry section.
3
In the y-direction scale text field, type 0.3.
4
In the z-direction scale text field, type 0.5.
5
Click  Build All.
This mesh is optimized for the calculation of the flow equation. To take the high temperature gradient at the bottom of the porous MCHS into account build a mesh optimized for the heat transport.
Mesh 2
In the Mesh toolbar, click  Add Mesh.
Reference 1
1
In the Mesh toolbar, click  Modify and choose Mesh>Reference.
2
In the Settings window for Reference, locate the Reference section.
3
From the Mesh list, choose Mesh 1.
This creates the same mesh. Additionally a mesh for the solid part is required.
Free Tetrahedral 1
In the Mesh toolbar, click  Free Tetrahedral.
Finally, the mesh is refined in the lower area to resolve the large temperature gradient properly.
Refine 1
1
In the Mesh toolbar, click  Modify and choose Elements>Refine.
2
In the Settings window for Refine, locate the Refine Options section.
3
From the Refinement method list, choose Regular refinement.
4
Click to expand the Refine Elements in Box section. Select the Specify bounding box check box.
5
In row x, set Upper bound to width.
6
In row y, set Upper bound to length.
7
In row z, set Upper bound to 3*th_solid.
8
Click  Build All.
Add Study
Now add a study. Use a one-way stationary study where you first solve for the flow field using the first mesh and then use the solution obtained when solving for the heat transfer with the second mesh.
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Multiphysics>Stationary, One-Way NITF.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 1
Step 1: Stationary
To compare the performance of the porous MCHS with that of a conventional one, ignore the porous domain in the first study. To do so, deactivate the relevant features.
1
In the Settings window for Stationary, click to expand the Mesh Selection section.
2
3
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Laminar Flow (spf)>Fluid and Matrix Properties 1.
5
Click  Go to Source.
Laminar Flow (spf)
Fluid and Matrix Properties 1
In the Model Builder window, under Component 1 (comp1)>Laminar Flow (spf) right-click Fluid and Matrix Properties 1 and choose Disable in All Studies.
Heat Transfer in Solids and Fluids (ht)
Porous Medium 1
In the Model Builder window, under Component 1 (comp1)>Heat Transfer in Solids and Fluids (ht) right-click Porous Medium 1 and choose Disable in All Studies.
Study 1: Reference MCHS
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study 1: Reference MCHS in the Label text field.
3
In the Home toolbar, click  Compute.
Results
Global Evaluation 1
Next, evaluate the performance parameters of the reference MCHS.
1
In the Results toolbar, click  Global Evaluation.
2
In the Settings window for Global Evaluation, locate the Expressions section.
3
4
Click  Evaluate.
Add Study
Add a second study and perform a parametric sweep over the thickness of the porous substrate. Of course you can run a parametric sweep over many parameters. For this demo model a single parameter is sufficient to demonstrate the principal approach.
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Multiphysics>Stationary, One-Way NITF.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
Step 1: Stationary
1
In the Model Builder window, click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Mesh Selection section.
3
4
In the Study toolbar, click  Compute.
Create a cross-section plot of the velocity (Figure 3) as follows:
Results
Cut Plane 1
1
In the Results toolbar, click  Cut Plane.
2
In the Settings window for Cut Plane, locate the Data section.
3
From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
4
Locate the Plane Data section. From the Plane list, choose xy-planes.
5
In the z-coordinate text field, type height/2.
Velocity, Cross Section
1
In the Results toolbar, click  2D Plot Group.
2
In the Settings window for 2D Plot Group, type Velocity, Cross Section in the Label text field.
3
Locate the Data section. From the Dataset list, choose Cut Plane 1.
4
Locate the Plot Settings section. Clear the Plot dataset edges check box.
Surface 1
Right-click Velocity, Cross Section and choose Surface.
Streamline 1
1
In the Model Builder window, right-click Velocity, Cross Section and choose Streamline.
2
In the Settings window for Streamline, locate the Streamline Positioning section.
3
From the Positioning list, choose Magnitude controlled.
4
In the Density text field, type 10.
Color Expression 1
1
Right-click Streamline 1 and choose Color Expression.
2
In the Settings window for Color Expression, locate the Coloring and Style section.
3
From the Color table list, choose GrayPrint.
4
Locate the Expression section. In the Expression text field, type p.
5
In the Velocity, Cross Section toolbar, click  Plot.
6
In the Model Builder window, expand the Results>Views node.
Axis
1
In the Model Builder window, expand the Results>Views>View 2D 6 node, then click Axis.
2
In the Settings window for Axis, locate the Axis section.
3
From the View scale list, choose Automatic.
4
From the Automatic list, choose Anisotropic.
5
In the y weight text field, type 3.
6
Click  Update.
7
Click the  Zoom Extents button in the Graphics toolbar.
Velocity, Cross Section
1
In the Model Builder window, click Velocity, Cross Section.
2
In the Velocity, Cross Section toolbar, click  Plot.
Global Evaluation 1
To analyze the performance of the porous MCHS, duplicate the Global Evaluation 1 node and apply the new dataset.
Global Evaluation 2
1
In the Model Builder window, under Results>Derived Values right-click Global Evaluation 1 and choose Duplicate.
2
In the Settings window for Global Evaluation, locate the Data section.
3
From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
4
Clicknext to  Evaluate, then choose New Table.
Table
1
Go to the Table window.
2
Click Table Graph in the window toolbar.
Results
Table Graph 1
1
In the Model Builder window, under Results>1D Plot Group 10 click Table Graph 1.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Plot columns list, choose Manual.
4
In the Columns list, select Pressure drop (Pa).
5
Click to expand the Legends section. Select the Show legends check box.
Table Graph 2
1
Right-click Results>1D Plot Group 10>Table Graph 1 and choose Duplicate.
2
In the Settings window for Table Graph, locate the Data section.
3
In the Columns list, select Heat transfer coefficient of MCHS (W/(m^2*K)).
4
In the 1D Plot Group 10 toolbar, click  Plot.
Heat-Transfer Coefficient and Pressure Drop
1
In the Model Builder window, under Results click 1D Plot Group 10.
2
In the Settings window for 1D Plot Group, type Heat-Transfer Coefficient and Pressure Drop in the Label text field.
3
Locate the Plot Settings section. Select the Two y-axes check box.
4
In the table, select the Plot on secondary y-axis check box for Table Graph 2.
5
Locate the Legend section. From the Position list, choose Upper left.
6
In the Heat-Transfer Coefficient and Pressure Drop toolbar, click  Plot, and compare with Figure 5.
Reynolds and Nusselt Numbers
Plot the dimensionless Reynolds and Nusselt numbers in the same way.
1
Right-click Heat-Transfer Coefficient and Pressure Drop and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Reynolds and Nusselt Numbers in the Label text field.
Table Graph 1
1
In the Model Builder window, expand the Reynolds and Nusselt Numbers node, then click Table Graph 1.
2
In the Settings window for Table Graph, locate the Data section.
3
In the Columns list, select Reynolds number (1).
Table Graph 2
1
In the Model Builder window, click Table Graph 2.
2
In the Settings window for Table Graph, locate the Data section.
3
In the Columns list, select Nusselt number (1).
4
In the Reynolds and Nusselt Numbers toolbar, click  Plot, and compare with Figure 6.
Reynolds and Nusselt Numbers
1
In the Model Builder window, click Reynolds and Nusselt Numbers.
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
From the Position list, choose Lower middle.
Global Evaluation 3
To compare the different designs in terms of overall performance, the figure of merit can be calculated according to Equation 5 as follows:
1
In the Results toolbar, click  Global Evaluation.
2
In the Settings window for Global Evaluation, locate the Data section.
3
From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
4
Locate the Expressions section. In the table, enter the following settings:
With the withsol operator, you can use results from other solutions than that of the chosen dataset.
5
Clicknext to  Evaluate, then choose New Table.
Table
1
Go to the Table window.
2
Click Table Graph in the window toolbar.
Results
FOM
1
In the Model Builder window, under Results click 1D Plot Group 12.
2
In the Settings window for 1D Plot Group, click to expand the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Figure of Merit (FOM).
5
In the 1D Plot Group 12 toolbar, click  Plot, and compare with fig Figure 7.
6
In the Label text field, type FOM.
With a porous substrate thickness of 0.1 mm the performance has increased by approximately 12%.
Study 2/Parametric Solutions 1 (sol5)
To reproduce Figure 4, proceed as follows.
In the Model Builder window, click Study 2/Parametric Solutions 1 (sol5).
Selection
1
In the Results toolbar, click  Attributes and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Domain.
4
Mirror 3D 1
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
Surface 3
1
In the Results toolbar, click  More Datasets and choose Surface.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
4
Mirror 3D 2
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Surface 3.
Cut Plane 2
1
In the Results toolbar, click  Cut Plane.
2
In the Settings window for Cut Plane, locate the Data section.
3
From the Dataset list, choose Mirror 3D 1.
4
Locate the Plane Data section. From the Plane list, choose xy-planes.
5
In the z-coordinate text field, type 1.
Velocity and Temperature Fields
1
In the Results toolbar, click  3D Plot Group.
2
In the Settings window for 3D Plot Group, type Velocity and Temperature Fields in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 2/Parametric Solutions 1 (sol5).
4
From the Parameter value (th_porous (mm)) list, choose 0.1.
Surface 1
1
Right-click Velocity and Temperature Fields and choose Surface.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Mirror 3D 2.
4
From the Solution parameters list, choose From parent.
5
Locate the Expression section. In the Expression text field, type T.
6
Locate the Coloring and Style section. From the Color table list, choose ThermalLight.
Velocity and Temperature Fields
In the Model Builder window, click Velocity and Temperature Fields.
Streamline Surface 1
1
In the Velocity and Temperature Fields toolbar, click  More Plots and choose Streamline Surface.
2
In the Settings window for Streamline Surface, locate the Data section.
3
From the Dataset list, choose Cut Plane 2.
4
From the Solution parameters list, choose From parent.
5
Locate the Streamline Positioning section. From the Positioning list, choose Magnitude controlled.
6
In the Density text field, type 8.
7
Locate the Coloring and Style section. Find the Point style subsection. From the Type list, choose Arrow.
8
From the Arrow type list, choose Cone.
Color Expression 1
1
Right-click Streamline Surface 1 and choose Color Expression.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type p.
4
Locate the Coloring and Style section. From the Color table list, choose GrayScale.
Velocity and Temperature Fields
1
In the Model Builder window, click Velocity and Temperature Fields.
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
Clear the Plot dataset edges check box.
Add a view to get a better impression.
4
Click the  Show More Options button in the Model Builder toolbar.
5
In the Show More Options dialog box, in the tree, select the check box for the node Results>Views.
6
View 3D 7
In the Model Builder window, right-click Views and choose View 3D.
Camera
1
In the Model Builder window, expand the View 3D 7 node, then click Camera.
2
In the Settings window for Camera, locate the Camera section.
3
From the View scale list, choose Manual.
4
In the x scale text field, type 5.
5
In the z scale text field, type 2.
Rotate the geometry to get a similar image as Figure 4.