PDF

Impedance Matching
Introduction
A radio frequency (RF) power supply is used to supply power to a capacitively coupled plasma (CCP). Commercially available RF power supplies are specified to deliver power into a 50 ohm load, and interconnecting coaxial cables and connectors have a 50 ohm characteristic impedance. On the other hand the CCP impedance is typically not equal to 50 ohm and has both resistive and reactive components. For instance in this example the plasma impedance is at 13.56 MHz and 10 W. A matching network is introduced between the RF power supply and the CCP allowing maximum power transfer and a safe operating region for the power supply. In operation the match components may be fixed or variable and “tuned” either manually or automatically. Modern plasma reactors may be powered by multiple power supplies at different operating frequencies. This note shows how a match can be designed using dimensions of the chamber, properties of the feed gas and the specification of the power supply.
Model Definition
Figure 1 is a schematic of a RF power supply (Vs, Rs) connected to a L–type match network (Lm, Cp) with an additional DC blocking capacitor (Cb). The match network is connected to a plasma load with a parallel stray capacitance (Cs). The plasma voltage and current are V and I.
Figure 1: L–match including blocking and stray capacitance.
Figure 2 shows a simplified schematic, in this case the blocking capacitor (Cb) is removed (since the discharge is symmetric and there will be no DC self –bias). The stray capacitance (Cs) is ignored.
Figure 2: L–match used in this model.
In order to compute the optimum values for the parallel capacitor Cp and the inductor Lm, the plasma impedance is required, Zp. Using and the generator source resistance, Rs, the following can be used to compute Cp and Lm. Defining:
(1)
and
(2)
then the match inductance is given by:
(3)
and the parallel capacitance is given by:
(4).
Results and Discussion
In order to evaluate the results, two meaningful measures are used, the maximum power transfer coefficient and the efficiency. The maximum power transfer is given by:
(5)
where Vs is the generator voltage, and the maximum power transfer coefficient is then given by:
(6).
The efficiency is then simply:
(7)
where Ps is the power lost in the generator.
Figure 3 shows that the maximum of power transfer coefficient is 1 when the plasma power dissipation is 10 W. This is expected because the values of Cp and Lm used to calculated the match components were determined at 10 W plasma power.
Figure 4 and Figure 5 show a plot of maximum power transfer coefficient as a function of frequency and pressure respectively. Matching occurs at 13.56 MHz and 1 torr corresponding to the conditions used to determine Cp and Lm. At low pressure the plasma is more resistive and a significant mismatch occurs. The effect is less pronounced at higher pressures.
Effect of Harmonics
Finally, the plasma impedance was measured at 50 W, a match was designed. Figure 6 shows the power transfer coefficient as a function of power. It is evident that the maximum value is around 45 W, 10 % lower than expected.
The match parameters are calculated from the voltage and current amplitudes at the fundamental frequency. However the current waveform has a significant third harmonic contribution (4.5%) which accounts for the difference between the measured and calculated power at maximum power transfer coefficient.
These results show how a matching network for a CCP reactor can be designed using the dimensions of the reactor, the properties of the feed gas and the characteristics of the generator. Estimates of the power transfer coefficient as a function of power frequency and pressure can be made. The same procedure can be used for 2D reactor geometries.
Figure 3: Plot of the power transfer coefficient and efficiency vs. power..
Figure 4: Plot of the power transfer coefficient and efficiency vs. frequency.
Figure 5: Plot of the power transfer coefficient and efficiency vs. pressure.
Figure 6: Plot of the power transfer coefficient and efficiency vs. power at high power.
Reference
1. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
Application Library path: Plasma_Module/Capacitively_Coupled_Plasmas/impedance_matching
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, The model is set up in an identical way to the computing plasma impedance model, except an external circuit is used to drive the discharge.
2
3
In the Select Physics tree, select Plasma>Plasma, Time Periodic (ptp).
4
Click Add.
5
Click  Study.
6
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Periodic.
7
Geometry 1
Add parameters to compute the match inductance and capacitance.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
50 Ω
Geometry 1
Interval 1 (i1)
1
In the Model Builder window, under Component 1 (comp1) right-click Geometry 1 and choose Interval.
2
In the Settings window for Interval, locate the Interval section.
3
4
Click  Build All Objects.
5
Click the  Zoom Extents button in the Graphics toolbar.
Plasma, Time Periodic (ptp)
1
In the Model Builder window, under Component 1 (comp1) click Plasma, Time Periodic (ptp).
2
In the Settings window for Plasma, Time Periodic, locate the Out-of-Plane Thickness section.
3
In the A text field, type As.
4
Locate the Extra Dimension Settings section. In the Pxd text field, type 1/f0.
5
In the N text field, type 30.
6
Locate the Plasma Properties section. Select the Use reduced electron transport properties check box.
Cross Section Import 1
1
In the Physics toolbar, click  Global and choose Cross Section Import.
2
In the Settings window for Cross Section Import, locate the Cross Section Import section.
3
Click Browse.
4
Species: He
1
In the Model Builder window, click Species: He.
2
In the Settings window for Species, locate the Species Formula section.
3
Select the From mass constraint check box.
4
Locate the General Parameters section. From the Preset species data list, choose He.
Species: Hes
1
In the Model Builder window, click Species: Hes.
2
In the Settings window for Species, locate the General Parameters section.
3
From the Preset species data list, choose He.
Species: He+
1
In the Model Builder window, click Species: He+.
2
In the Settings window for Species, locate the Species Formula section.
3
Select the Initial value from electroneutrality constraint check box.
4
Locate the General Parameters section. From the Preset species data list, choose He.
5
Click to collapse the Species Formula section. Click to expand the Mobility and Diffusivity Expressions section. From the Specification list, choose Specify mobility, compute diffusivity.
6
From the Ion temperature list, choose Use local field approximation.
7
Click to expand the Mobility Specification section. From the Specify using list, choose Helium ion in helium.
Plasma Model 1
1
In the Model Builder window, click Plasma Model 1.
2
In the Settings window for Plasma Model, locate the Model Inputs section.
3
In the T text field, type T0.
4
In the pA text field, type p0.
Surface Reaction 1
1
In the Physics toolbar, click  Boundaries and choose Surface Reaction.
2
In the Settings window for Surface Reaction, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Reaction Formula section. In the Formula text field, type He+=>He.
5
Locate the Reaction Parameters section. In the γf text field, type 0.
6
Locate the Secondary Emission Parameters section. In the γi text field, type 0.1.
7
In the εi text field, type 5.8.
2: He+=>He
1
Right-click Surface Reaction 1 and choose Duplicate.
2
In the Settings window for Surface Reaction, locate the Reaction Formula section.
3
In the Formula text field, type Hes=>He.
4
Locate the Reaction Parameters section. In the γf text field, type 1.
Wall 1
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Ground 1
1
In the Physics toolbar, click  Boundaries and choose Ground.
2
Metal Contact 1
1
In the Physics toolbar, click  Boundaries and choose Metal Contact.
2
3
In the Settings window for Metal Contact, locate the Terminal section.
4
From the Terminal type list, choose Circuit.
5
From the Circuit type list, choose L-network.
6
From the Source type list, choose Power source.
7
Locate the Circuit Settings section. In the Ps text field, type P0.
8
In the Rs text field, type Rs.
9
In the Cp text field, type Cp.
10
In the Lm text field, type Lm.
11
In the fp text field, type f0.
Mesh 1
Edge 1
In the Mesh toolbar, click  Edge.
Distribution 1
1
Right-click Edge 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
From the Distribution type list, choose Predefined.
4
In the Number of elements text field, type 125.
5
In the Element ratio text field, type 10.
6
Select the Symmetric distribution check box.
7
Click  Build All.
Since we’re not really interested in the spatial distribution of the plasma variables, disable the default plots.
Power Sweep
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Power Sweep in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
4
Clear the Generate convergence plots check box.
First, sweep over power.
Step 1: Time Periodic
1
In the Model Builder window, under Power Sweep click Step 1: Time Periodic.
2
In the Settings window for Time Periodic, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
7
Click  Range.
8
In the Range dialog box, choose Number of values from the Entry method list.
9
In the Start text field, type 1.
10
In the Stop text field, type 30.
11
In the Number of values text field, type 50.
12
Click Replace.
13
In the Settings window for Time Periodic, locate the Study Extensions section.
14
15
In the Home toolbar, click  Compute.
Results
Add a plot to see how the efficiency changes with power.
1D Plot Group 1
1
In the Model Builder window, expand the Results node.
2
Right-click Results and choose 1D Plot Group.
Global 1
1
In the Model Builder window, right-click 1D Plot Group 1 and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Plasma, Time Periodic>Metal Contact 1>Circuit variables>ptp.mct1.alphaP - Maximum power transfer coefficient.
3
Click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Plasma, Time Periodic>Metal Contact 1>Circuit variables>ptp.mct1.etaP - Efficiency.
4
In the 1D Plot Group 1 toolbar, click  Plot.
Power Sweep
1
In the Model Builder window, click 1D Plot Group 1.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the y-axis label check box.
4
In the associated text field, type Maximum power transfer efficiency (1) and efficiency (1).
5
Click to expand the Title section. From the Title type list, choose None.
6
Locate the Legend section. From the Position list, choose Lower right.
7
In the 1D Plot Group 1 toolbar, click  Plot.
8
In the Label text field, type Power Sweep.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Periodic.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 1: Time Periodic
Now sweep over frequency.
1
In the Settings window for Time Periodic, locate the Study Extensions section.
2
Select the Auxiliary sweep check box.
3
4
5
6
Click  Range.
7
In the Range dialog box, type 11 in the Start text field.
8
From the Entry method list, choose Number of values.
9
In the Stop text field, type 16.
10
In the Number of values text field, type 51.
11
Click Replace.
12
In the Settings window for Time Periodic, locate the Study Extensions section.
13
14
In the Model Builder window, click Study 2.
15
In the Settings window for Study, locate the Study Settings section.
16
Clear the Generate default plots check box.
17
Clear the Generate convergence plots check box.
18
In the Label text field, type Frequency Sweep.
19
In the Home toolbar, click  Compute.
Results
Frequency Sweep
1
In the Model Builder window, right-click Power Sweep and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Frequency Sweep in the Label text field.
3
Locate the Data section. From the Dataset list, choose Frequency Sweep/Solution 2 (sol2).
Global 1
1
Click the  Zoom Extents button in the Graphics toolbar.
2
From the Home menu, choose Add Study.
Add Study
1
Go to the Add Study window.
2
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Periodic.
3
Click Add Study in the window toolbar.
4
From the Home menu, choose Add Study.
Study 3
Step 1: Time Periodic
Next, sweep over pressure.
1
In the Settings window for Time Periodic, locate the Study Extensions section.
2
Select the Auxiliary sweep check box.
3
4
5
6
Click  Range.
7
In the Range dialog box, choose Number of values from the Entry method list.
8
In the Start text field, type 2.
9
In the Stop text field, type 0.4.
10
In the Number of values text field, type 30.
11
Click Replace.
12
In the Settings window for Time Periodic, locate the Study Extensions section.
13
14
In the Model Builder window, expand the Frequency Sweep node, then click Study 3.
15
In the Settings window for Study, type Pressure Sweep in the Label text field.
16
Locate the Study Settings section. Clear the Generate default plots check box.
17
Clear the Generate convergence plots check box.
18
In the Home toolbar, click  Compute.
Results
Pressure Sweep
1
In the Model Builder window, right-click Frequency Sweep and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Pressure Sweep in the Label text field.
3
Locate the Data section. From the Dataset list, choose Pressure Sweep/Solution 3 (sol3).
Global 1
1
In the Model Builder window, expand the Pressure Sweep node, then click Global 1.
2
In the Settings window for Global, locate the x-Axis Data section.
3
From the Unit list, choose Torr.
4
In the Pressure Sweep toolbar, click  Plot.
Finally, change the impedance so that the match occurs at 50 W, then sweep over power once more.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Periodic.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 4
Step 1: Time Periodic
1
In the Settings window for Time Periodic, locate the Study Extensions section.
2
Select the Auxiliary sweep check box.
3
4
5
6
Click  Range.
7
In the Range dialog box, choose Number of values from the Entry method list.
8
In the Start text field, type 10.
9
In the Stop text field, type 80.
10
In the Number of values text field, type 51.
11
Click Replace.
12
In the Settings window for Time Periodic, locate the Study Extensions section.
13
14
In the Model Builder window, click Study 4.
15
In the Settings window for Study, locate the Study Settings section.
16
Clear the Generate convergence plots check box.
17
Clear the Generate default plots check box.
18
In the Label text field, type High Power Sweep.
19
In the Home toolbar, click  Compute.
Results
1D Plot Group 4
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, locate the Data section.
3
From the Dataset list, choose High Power Sweep/Solution 4 (sol4).
Global 1
1
Right-click 1D Plot Group 4 and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Plasma, Time Periodic>Metal Contact 1>Circuit variables>ptp.mct1.alphaP - Maximum power transfer coefficient.
3
In the 1D Plot Group 4 toolbar, click  Plot.
Global 2
1
In the Model Builder window, right-click 1D Plot Group 4 and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Plasma, Time Periodic>Metal Contact 1>Circuit variables>ptp.mct1.etaP - Efficiency.
High Power Sweep
1
In the Model Builder window, under Results click 1D Plot Group 4.
2
In the Settings window for 1D Plot Group, type High Power Sweep in the Label text field.
3
Locate the Plot Settings section. Select the Two y-axes check box.
4
In the table, select the Plot on secondary y-axis check box for Global 2.
5
Locate the Title section. From the Title type list, choose None.
6
Locate the Legend section. From the Position list, choose Lower right.
7
In the High Power Sweep toolbar, click  Plot.
8
Click the  Zoom Extents button in the Graphics toolbar.