

Optimization of a Tesla Microvalve

A Tesla valve inhibits backward flow on a fixed geometry by utilizing friction forces instead of moving parts, Ref. 1. This means fluid can flow freely in one direction but not in the reverse direction. Typically the Reynolds number of the flow in microfluidics is between 1 and 100.

Model Definition

The model solves two instances of the Navier-Stokes equations, one for the forward flow and one for the reverse. The Reynolds number is 100 in this example. A measure of the effectiveness of the design is the ratio of the pressure drop between the inlet and outlet for the forward and reverse flow. The pressure drop is defined as:

$$L\Delta p_{\text{forward}} = \int_{\text{inlet}} pdS - \int_{\text{outlet}} pdS$$

where L is the length of the inlet and outlet. For the reverse flow the same expression is used, except the inlet and outlet correspond to different boundaries in the model. The ratio of the pressure drop between the reverse and forward flow is then:

$$D_i = \frac{\Delta p_{\text{backward}}}{\Delta p_{\text{forward}}}$$

Unfortunately this expression does not form a well posed objective function, so an alternative expression is required for the optimization problem. According to Ref. 2, the energy dissipation is a well posed objective function for topological optimization:

$$obj = \int_{\Omega} (\tau : \mathbf{S} + \alpha (\mathbf{u} \cdot \mathbf{u})) dV$$

where τ is the viscous stress and **S** is the strain rate tensor:

$$\mathbf{S} = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$

The fluid flow is described by the Navier-Stokes equations:

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nabla \cdot \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \alpha(\theta)\mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

where the coefficient $\alpha(\theta)$ depends on the distribution of material which impedes the flow within the device. In this example, $\alpha(\theta)$ is given by:

$$\begin{split} \alpha(\theta_p) &= \alpha_0 \theta_p, \quad \theta_p = \frac{\alpha_0(q+\theta)}{q+\theta} \\ \theta &= \frac{(\tanh(\beta(\theta_f - \theta_\beta)) + \tanh(\beta\theta_\beta))}{(\tanh(\beta(1-\theta_\beta)) + \tanh(\beta\theta_\beta))} \\ \theta_f &= R_{\min}^2 \nabla^2 \theta_f + \theta_c \end{split}$$

where θ_c and θ_f , θ and θ_p are the control- and filtered material volume factor. To avoid the effect of grayscale the filtered field is projected to construct the material volume factor, θ , which is related to the damping term using a convex function, see Ref. 3. This method is used to avoid grayscale and spurious holes as seen in Figure 1.

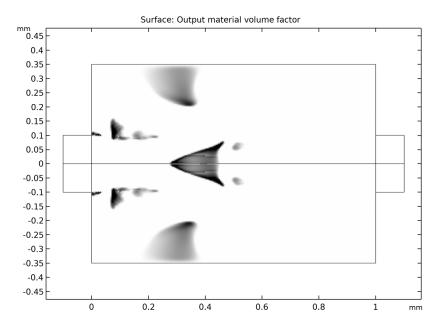


Figure 1: Optimizing without a filter gives a design with interpretation issues.

Results and Discussion

As expected, the forward and reverse flow are identical but in opposite directions for the initial topology; see Figure 2 and Figure 3. The forward flow in the optimized design after 200 iterations can be seen in Figure 4. Material has been added close to the outlet in a

triangular shape that makes the forward flow bend smoothly around it. This smooth diversion of the flow from the point of impingement results in an overall low pressure drop between the inlet and the outlet. The reverse flow, shown in Figure 5, is far more interesting. The triangular shaped obstacle has a flat edge normal to the incident fluid, which means the velocity is redirected upward and downward toward the exterior walls. The redirected flow is then directed toward additional obstacles that further impede the flow path.

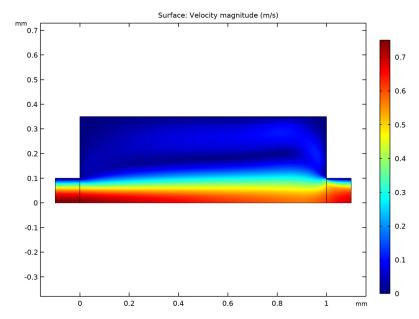


Figure 2: Forward flow velocity field, initial geometry.

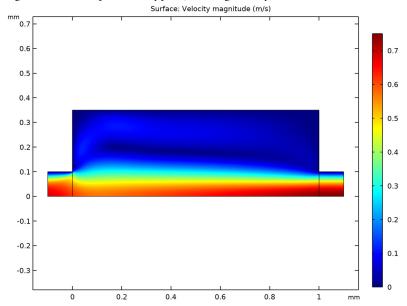


Figure 3: Reverse flow velocity field, initial geometry.

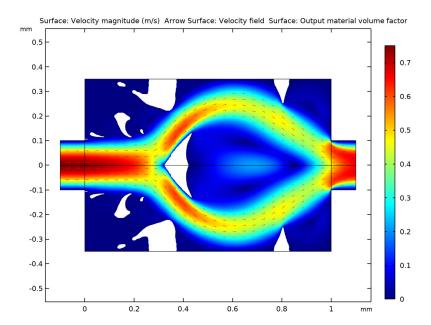


Figure 4: Forward flow, optimized topology.

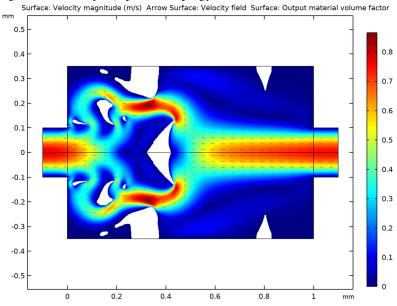


Figure 5: Reverse flow, optimized topology.

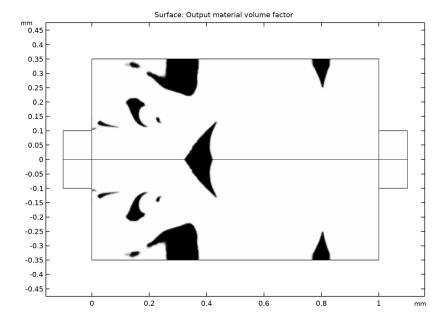


Figure 6: Control variable after optimization.

Finally, a global evaluation is used to compute the ratio of the pressure drop between the forward and reverse flow for a damping 100 times the value used for the optimization. The computed value should be approximately 2.34.

References

- 1. S. Lin, "Topology Optimization of Micro Tesla Valve in low and moderate Reynolds number," Chinese Academy of Sciences, China, September 27, 2011 http:// senlin.weebly.com/uploads/6/6/1/4/6614199/ sen_lin_topology_optimization_of_micro_tesla_valve.pdf.
- 2. L. Højgaard Olesen, F. Okkels, and H. Bruus, "A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow," Int. J. Numer. Meth. Engng, vol. 65, pp. 975-1001, 2006.
- 3. T. Borrvall and J. Petersson, "Topology optimization of fluids in Stokes flow," Int. J. Numer. Meth. Fluid, vol. 41, pp. 77-107, 2003.

Notes About the COMSOL Implementation

The model is set up using two Laminar Flow interfaces, one for the forward flow and one for the reverse.

Application Library path: Optimization Module/Topology Optimization/ tesla microvalve optimization

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **2** 2D.
- 2 In the Select Physics tree, select Fluid Flow>Single-Phase Flow>Laminar Flow (spf). Add two Laminar Flow interfaces, one for the forward flow and one for the backward flow.
- 3 Click Add.
- 4 In the Select Physics tree, select Fluid Flow>Single-Phase Flow>Laminar Flow (spf).
- 5 Click Add.
- 6 Click Study.
- 7 In the Select Study tree, select General Studies>Stationary.
- 8 Click **Done**.

GEOMETRY I

The geometry is on the order of millimeters, so change the geometry unit.

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, locate the Units section.
- 3 From the Length unit list, choose mm.

Add some parameters to compute the average inlet velocity for the flow, based on a chosen Reynolds number, in this case, 100.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
Re	100	100	Reynolds number
D	0.2[mm]	2E-4 m	Characteristic dimension
L	5*D	0.001 m	Length of channel
Н	1.75*D	3.5E-4 m	Width of channel
mu0	1E-3[Pa*s]	0.001 Pa·s	Dynamic viscosity
rho0	1E3[kg/m^3]	1000 kg/m³	Density
Uin	Re*muO/(rhoO*D)	0.5 m/s	Average inlet velocity
meshsz	0.005*L	5E-6 m	Mesh size

GEOMETRY I

Rectang	le 1	(rl)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type L.
- 4 In the **Height** text field, type H.

Rectangle 2 (r2)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type D/2.
- 4 In the Height text field, type D/2.
- **5** Locate the **Position** section. In the **x** text field, type -D/2.
- 6 Click Pauld Selected.

Rectangle 3 (r3)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.

- 3 In the Width text field, type D/2.
- 4 In the Height text field, type D/2.
- **5** Locate the **Position** section. In the **x** text field, type L.

Symmetry

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Symmetry in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the y maximum text field, type 1e3*eps.
- 5 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.

Left

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Left in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x maximum text field, type -D/2+1e3*eps.
- 5 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.

Right

- I In the Geometry toolbar, click Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Right in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x minimum text field, type L+D/2-1e3*eps.
- 5 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.
- 6 Click **Build All Objects**.
- 7 Click the **Zoom Extents** button in the **Graphics** toolbar.

GLOBAL DEFINITIONS

Add a blank material for rho0 and mu0.

Material I (mat I)

I In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.

- 2 In the Materials toolbar, click **User-Defined Property Group**.
- 3 In the Settings window for Property Group, locate the Output Properties section.
- 4 Click + Select Quantity.
- 5 In the Physical Quantity dialog box, type density in the text field.
- 6 Click **Filter**.
- 7 In the tree, select General>Density (kg/m^3).
- 8 Click OK.
- 9 In the Settings window for Property Group, locate the Output Properties section.
- **10** In the table, enter the following settings:

Property	Variable	Expression	Unit	Size
Density	rho	rho0	kg/m³	lxl

- II Click + Select Quantity.
- 12 In the Physical Quantity dialog box, type viscosity in the text field.
- I3 Click **Filter**.
- 14 In the tree, select Transport>Dynamic viscosity (Pa*s).
- I5 Click OK.
- 16 In the Settings window for Property Group, locate the Output Properties section.
- 17 In the table, enter the following settings:

Property	Variable	Expression	Unit	Size
Dynamic viscosity	mu	muO	Pa·s	lxl

MATERIALS

Material Link I (matlnk I)

In the Model Builder window, under Component I (compl) right-click Materials and choose More Materials>Material Link.

LAMINAR FLOW (SPF)

Inlet I

- I In the Model Builder window, under Component I (compl) right-click Laminar Flow (spf) and choose Inlet.
- 2 In the Settings window for Inlet, locate the Boundary Selection section.

- 3 From the Selection list, choose Left.
- 4 Locate the Boundary Condition section. From the list, choose Fully developed flow.
- **5** Locate the **Fully Developed Flow** section. In the U_{av} text field, type Uin.

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 In the Settings window for Outlet, locate the Boundary Selection section.
- 3 From the Selection list, choose Right.

Wall 2

- I In the Physics toolbar, click Boundaries and choose Wall.
- 2 In the Settings window for Wall, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Symmetry**.
- 4 Locate the Boundary Condition section. From the Wall condition list, choose Slip.

LAMINAR FLOW 2 (SPF2)

In the Model Builder window, under Component I (compl) click Laminar Flow 2 (spf2).

Inlet 1

- I In the **Physics** toolbar, click **Boundaries** and choose **Inlet**.
- 2 In the Settings window for Inlet, locate the Boundary Selection section.
- 3 From the Selection list, choose Right.
- 4 Locate the Boundary Condition section. From the list, choose Fully developed flow.
- **5** Locate the **Fully Developed Flow** section. In the U_{av} text field, type Uin.

Outlet 1

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 In the Settings window for Outlet, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Left**.

Wall 2

- I In the Physics toolbar, click Boundaries and choose Wall.
- 2 In the Settings window for Wall, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Symmetry**.
- 4 Locate the Boundary Condition section. From the Wall condition list, choose Slip.

The advancing front mesher propagates the directions of the geometry into the interior, so use a Delaunay mesh to avoid favored directions in the mesh.

MESH I

- I In the Model Builder window, under Component I (compl) click Mesh I.
- 2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
- 3 From the Element size list, choose Extremely fine.

Free Triangular I

- I In the Mesh toolbar, click Free Triangular.
- 2 In the Settings window for Free Triangular, click to expand the Tessellation section.
- 3 From the Method list, choose Delaunay.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, click to expand the Element Size Parameters section.
- **3** Locate the **Element Size** section. Click the **Custom** button.
- 4 Locate the Element Size Parameters section. In the Maximum element size text field, type meshsz.
- 5 Click **Build All**.

STUDY I

In the **Home** toolbar, click **Compute**.

RESULTS

Mirror 2D I

- I In the Results toolbar, click More Datasets and choose Mirror 2D.
- 2 In the Settings window for Mirror 2D, locate the Axis Data section.
- 3 In row Point 2, set x to 1 and y to 0.

Velocity (spf)

- I In the Model Builder window, click Velocity (spf).
- 2 In the Velocity (spf) toolbar, click Plot.
- 3 Click the Zoom Extents button in the Graphics toolbar.

Velocity (spf2)

I In the Model Builder window, click Velocity (spf2).

2 In the Velocity (spf2) toolbar, click Plot.

Now define two average operators on the inlet and outlet of the modeling domain. These will be used to compute the pressure ratio between the inlet and outlet for the forward and reverse flow.

DEFINITIONS

Average I (aveob I)

- I In the Definitions toolbar, click // Nonlocal Couplings and choose Average.
- 2 In the Settings window for Average, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Left.

Average 2 (aveob2)

- I In the Definitions toolbar, click Monlocal Couplings and choose Average.
- 2 In the Settings window for Average, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Right.

Integration | (intob|)

- I In the Definitions toolbar, click // Nonlocal Couplings and choose Integration.
- 2 Select Domain 2 only.

Define the variable corresponding to the ratio of the pressure difference between the forward and backward flow.

Variables 1

- I In the **Definitions** toolbar, click **a= Local Variables**.
- 2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
dP_forward	aveop1(p)-aveop2(p)	Pa	Pressure difference, forward direction
dP_backward	aveop2(p2)-aveop1(p2)	Pa	Pressure difference, backward direction
Di	dP_backward/dP_forward		Ratio of pressure differences

In order to evaluate the ratio of the pressure differences, the model needs updating. Note that the model does not need to be solved again.

STUDY I

In the Study toolbar, click C Update Solution.

RESULTS

Diodicity

- I In the Results toolbar, click **Evaluation Group**.
- 2 In the Settings window for Evaluation Group, type Diodicity in the Label text field.

Global Evaluation 1

- I Right-click Diodicity and choose Global Evaluation.
- 2 In the Settings window for Global Evaluation, click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Component I (compl)> Definitions>Variables>Di - Ratio of pressure differences.
- 3 In the Diodicity toolbar, click **Evaluate**.

TABLE

I Go to the **Table** window.

Observe that the ratio of the pressure differences is very close to 1. This concludes solving of the forward problem, now the optimization problem needs to be set up.

Add a density topology feature, which can be used to distinguish between free flow and solid regions. This variable will be coupled back to the Laminar Flow interfaces later. The filter radius should not be smaller than the mesh element size, so the default will work, but a fixed value has to be chosen to make the result of the optimization mesh independent.

DEFINITIONS

Density Model I (dtopol)

- I In the **Definitions** toolbar, click ?? **Optimization** and choose **Density Model**. Only the center part of the channel geometry is needed in the optimization, so you only have to define the feature there.
- 2 Select Domain 2 only.

We use a filter to prevent the checkboard instability for the control variable theta which may otherwise occur.

- 3 In the Settings window for Density Model, locate the Interpolation section.
- 4 From the Interpolation type list, choose Darcy.
- 5 Locate the Projection section. From the Projection type list, choose Hyperbolic tangent projection.
- **6** Locate the **Interpolation** section. In the $q_{\rm Darcy}$ text field, type 1.
- 7 Locate the Control Variable Initial Value section. In the θ_0 text field, type 1.
- 8 Locate the Control Variable Discretization section. From the Element order list, choose Constant.

Now the design variable used in the optimization is defined. The initial value 1 corresponds to a channel free from porous material.

Now define the friction force to be used in the Laminar Flow interfaces, the viscous and friction dissipation which can be integrated over the domain to obtain a suitable objective function.

Variables 1

- I In the Model Builder window, click Variables I.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
phi_forward	spf.Qvd+alpha*(u^2+v^2)	W/m³	Dissipation density, forward flow
phi_backward	spf2.Qvd+alpha*(u2^2+ v2^2)	W/m³	Dissipation density, backward flow
phi_total	phi_backward+phi_forward	W/m³	Total dissipation

Name	Expression	Unit	Description
E_forward	<pre>intop1(phi_forward)</pre>	W/m	Energy dissipation, forward flow
E_backward	<pre>intop1(phi_backward)</pre>	W/m	Energy dissipation, backward flow
obj	E_backward/E_forward		Objective function
alpha	16.*mu0*dtopo1.theta_p/ meshsz^2	Pa·s/m²	Friction force

LAMINAR FLOW (SPF)

Add the friction force to the Laminar Flow interfaces so that the fluid flows around regions where theta is 0 and through regions where theta is 1.

I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).

Volume Force 1

- I In the Physics toolbar, click **Domains** and choose **Volume Force**.
- 2 Select Domain 2 only.
- 3 In the Settings window for Volume Force, locate the Volume Force section.
- **4** Specify the \mathbf{F} vector as

-alpha*u	x
-alpha*v	у

LAMINAR FLOW 2 (SPF2)

- I In the Model Builder window, under Component I (compl) click Laminar Flow 2 (spf2).
- 2 In the Physics toolbar, click **Domains** and choose **Volume Force**.

Volume Force 1

- I Select Domain 2 only.
- 2 In the Settings window for Volume Force, locate the Volume Force section.
- **3** Specify the \mathbf{F} vector as

-alpha*u2	x
-alpha*v2	у

OPTIMIZATION

- I In the Model Builder window, click Study I.
- 2 In the Settings window for Study, type Optimization in the Label text field.

Topology Optimization

- I Right-click Optimization and choose Optimization>Topology Optimization.
- 2 In the Settings window for Topology Optimization, locate the Optimization Solver section.
- **3** From the **Method** list, choose **SNOPT**.
- 4 In the **Optimality tolerance** text field, type 1E-9.
- 5 In the Maximum number of iterations text field, type 200.
- 6 Click Add Expression in the upper-right corner of the Objective Function section. From the menu, choose Component I (compl)>Definitions>Variables>compl.obj -Objective function.
- 7 Locate the Objective Function section. From the Type list, choose Maximization.
- 8 In the Study toolbar, click $\underset{=0}{\overset{\cup}{}}$ Get Initial Value.

Solver Configurations

In the Model Builder window, expand the Optimization>Solver Configurations node.

Solution I (soll)

- I In the Model Builder window, expand the Optimization>Solver Configurations> Solution I (soll)>Optimization Solver I>Stationary I node, then click Fully Coupled I.
- 2 In the Settings window for Fully Coupled, click to expand the Method and Termination section.
- 3 From the Nonlinear method list, choose Constant (Newton).

RESULTS

Mirror 2D I

Use the mirrored dataset to plot the value of theta during the optimization.

Topology

- I In the Home toolbar, click **Add Plot Group** and choose **2D Plot Group**.
- 2 In the Settings window for 2D Plot Group, type Topology in the Label text field.
- 3 Locate the Data section. From the Dataset list, choose Mirror 2D 1.

Surface I

I Right-click Topology and choose Surface.

- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the Expression text field, type dtopo1.theta.
- 4 Locate the Coloring and Style section. From the Color table list, choose GrayScale.
- 5 Clear the Color legend check box.
- **6** Click to expand the **Range** section. Select the **Manual color range** check box.
- 7 In the Maximum text field, type 1.
- 8 In the **Topology** toolbar, click **Plot**.

OPTIMIZATION

Topology Optimization

- I In the Model Builder window, under Optimization click Topology Optimization.
- 2 In the Settings window for Topology Optimization, locate the Output While Solving section.
- **3** Select the **Plot** check box.
- 4 From the Plot group list, choose Topology.
- 5 In the Home toolbar, click **Compute**.

RESULTS

Forward Flow

The forward and backward flow pattern computed using the optimization solver can now be visualized.

- I In the Settings window for 2D Plot Group, locate the Data section.
- 2 From the Dataset list, choose Mirror 2D 1.
- 3 In the Velocity (spf) toolbar, click Plot.
- 4 In the Label text field, type Forward Flow.

Arrow Surface 1

Right-click Forward Flow and choose Arrow Surface.

Arrow Surface 1

- I In the Model Builder window, expand the Results>Forward Flow node, then click Arrow Surface 1.
- 2 In the Settings window for Arrow Surface, locate the Arrow Positioning section.
- **3** Find the **x** grid points subsection. In the **Points** text field, type **30**.

- 4 Find the y grid points subsection. In the Points text field, type 30.
- 5 In the Forward Flow toolbar, click **Plot**.

Surface 2

- I In the Model Builder window, right-click Forward Flow and choose Surface.
- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the Expression text field, type dtopo1.theta.
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- **5** From the **Color** list, choose **White**.
- 6 Locate the Range section. Select the Manual data range check box.
- 7 In the Maximum text field, type 0.5.
- 8 In the Forward Flow toolbar, click Plot.
- 9 Click the Zoom Extents button in the Graphics toolbar. Now follow a similar procedure for the backward flow.

- I In the Model Builder window, under Results>Forward Flow, Ctrl-click to select Arrow Surface I and Surface 2.
- 2 Right-click and choose Copy.

Arrow Surface 1, Surface 2

Backward Flow

- I In the Model Builder window, under Results click Velocity (spf2).
- 2 In the Settings window for 2D Plot Group, type Backward Flow in the Label text field.

Arrow Surface 1

- I Right-click Backward Flow and choose Paste Multiple Items.
- 2 In the Settings window for Arrow Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Laminar Flow 2>Velocity and pressure>u2,v2 - Velocity field.
- 3 In the Backward Flow toolbar, click Plot.

Backward Flow

- I In the Model Builder window, click Backward Flow.
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Mirror 2D 1.
- 4 In the Backward Flow toolbar, click Plot.

- **5** Click the **Zoom Extents** button in the **Graphics** toolbar.
- 6 In the Backward Flow toolbar, click Plot.

Topology

- I In the Model Builder window, click Topology.
- 2 In the **Topology** toolbar, click **2** Plot.
- 3 Click the **Zoom Extents** button in the **Graphics** toolbar.

Backward Flow, Forward Flow, Pressure (spf), Pressure (spf2)

- I In the Model Builder window, under Results, Ctrl-click to select Forward Flow, Pressure (spf), Backward Flow, and Pressure (spf2).
- 2 Right-click and choose Group.

Optimized Design

In the Settings window for Group, type Optimized Design in the Label text field.

Lets evaluate the damping with respect to the relative amount of dissipation in the solid region to see, if the optimization result can be trusted.

Dissipation in Solid Regions

- I In the Results toolbar, click **Evaluation Group**.
- 2 In the Settings window for Evaluation Group, type Dissipation in Solid Regions in the Label text field.

Global Evaluation 1

- I Right-click Dissipation in Solid Regions and choose Global Evaluation.
- 2 In the Settings window for Global Evaluation, locate the Expressions section.
- **3** In the table, enter the following settings:

Expression	Unit	Description Relative dissipation in solid	
<pre>intop1(phi_total*(1- dtopo1.theta))/ intop1(phi_total)</pre>	1	Relative dissipation in solid	

4 In the Dissipation in Solid Regions toolbar, click **= Evaluate**.

There is significant power loss in the solid regions, which is unphysical. Therefore it is a good idea to setup a verification analysis in a new component.

The **Density Model** triggers a **Filter Dataset**, when the default plots are created, but we added it later, and therefore we create the Filter Dataset manually.

Filter I

- I In the Results toolbar, click More Datasets and choose Filter.
- 2 In the Settings window for Filter, locate the Expression section.
- 3 In the Expression text field, type dtopo1.theta.
- 4 Locate the Filter section. In the Lower bound text field, type 0.5.
- **5** Locate the **Evaluation** section. Clear the **Use derivatives** check box.
- 6 Click I Plot.
- 7 Right-click Filter I and choose Create Mesh Part.

MESH PART I

Adapt I

- I In the Mesh toolbar, click A Modify and choose Elements>Adapt.
- 2 In the Model Builder window, right-click Mesh Part I and choose Build All.
- 3 Right-click Mesh Part I and choose Create Geometry from Mesh.
- 4 In the Settings window for Adapt, locate the Adaptation section.
- 5 In the Size expression text field, type meshsz/2.
- 6 In the Maximum coarsening factor text field, type Inf.

MATERIALS

Material Link 2 (matlnk2)

In the Model Builder window, under Component 2 (comp2) right-click Materials and choose More Materials>Material Link.

LAMINAR FLOW (SPF), LAMINAR FLOW 2 (SPF2)

- I In the Model Builder window, under Component I (compl), Ctrl-click to select Laminar Flow (spf) and Laminar Flow 2 (spf2).
 - Copy/paste the physics from the first component and fix the selections.
- 2 Right-click and choose Copy.

LAMINAR FLOW (SPF3)

In the Model Builder window, right-click Component 2 (comp2) and choose Paste Multiple Items.

LAMINAR FLOW (SPF3), LAMINAR FLOW 2 (SPF4)

- I In the Model Builder window, under Component 2 (comp2), Ctrl-click to select Laminar Flow (spf3) and Laminar Flow 2 (spf4).
- 2 In the Messages from Paste dialog box, click OK.

Inlet 1

- I In the Model Builder window, under Component 2 (comp2)>Laminar Flow (spf3) click Inlet 1.
- 2 In the Settings window for Inlet, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Left** (**Import 1**).

Outlet 1

- I In the Model Builder window, click Outlet 1.
- 2 In the Settings window for Outlet, locate the Boundary Selection section.
- 3 From the Selection list, choose Right (Import I).

Wall 2

- I In the Model Builder window, click Wall 2.
- 2 In the Settings window for Wall, locate the Boundary Selection section.
- 3 From the Selection list, choose Symmetry (Import 1).

Volume Force 1

In the Model Builder window, right-click Volume Force I and choose Delete.

LAMINAR FLOW 2 (SPF4)

Inlet I

- I In the Model Builder window, under Component 2 (comp2)>Laminar Flow 2 (spf4) click
- 2 In the Settings window for Inlet, locate the Boundary Selection section.
- 3 From the Selection list, choose Right (Import 1).

Outlet 1

- I In the Model Builder window, click Outlet 1.
- 2 In the Settings window for Outlet, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Left** (**Import I**).

Wall 2

I In the Model Builder window, click Wall 2.

- 2 In the Settings window for Wall, locate the Boundary Selection section.
- 3 From the Selection list, choose Symmetry (Import 1).

Volume Force 1

In the Model Builder window, right-click Volume Force I and choose Delete.

DEFINITIONS (COMP2)

Setup a new average operators, so a new diodicity variable can be defined for the new component.

Average 3 (aveop3)

- I In the Definitions toolbar, click Monlocal Couplings and choose Average.
- 2 In the Settings window for Average, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Left (Import 1).

Average 4 (aveop4)

- I Right-click Average 3 (aveop3) and choose Duplicate.
- 2 In the Settings window for Average, locate the Source Selection section.
- 3 From the Selection list, choose Right (Import I).

Variables 2

- I In the Model Builder window, right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
Di	(aveop4(p2)-aveop3(p2))/ (aveop3(p)-aveop4(p))		Ratio of pressure differences

MESH 2

Change the mesh settings to avoid element concentrations near irrelevant details of the imported geoemtry.

Free Triangular I

In the Mesh toolbar, click Free Triangular.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size Parameters section.

- 3 In the Maximum element size text field, type 0.01.
- 4 In the Curvature factor text field, type 10.
- 5 In the Resolution of narrow regions text field, type 0.1.
- 6 Click Build All.

ADD STUDY

- I In the Home toolbar, click Add Study to open the Add Study window.
- 2 Go to the Add Study window.
- 3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
- 4 Find the Physics interfaces in study subsection. In the table, clear the Solve check boxes for Laminar Flow (spf) and Laminar Flow 2 (spf2).
- 5 Click Add Study in the window toolbar.
- **6** In the **Model Builder** window, click the root node.
- 7 In the Home toolbar, click Add Study to close the Add Study window.

OPTIMIZATION

Step 1: Stationary

- I In the Settings window for Stationary, locate the Physics and Variables Selection section.
- 2 In the table, clear the Solve for check boxes for Laminar Flow (spf3) and Laminar Flow 2 (spf4).

VERIFICATION

- I In the Model Builder window, click Study 2.
- 2 In the Settings window for Study, locate the Study Settings section.
- 3 Select the Generate default plots check box.
- 4 In the Label text field, type Verification.
- 5 In the Home toolbar, click **Compute**.

RESULTS

Velocity (spf3)

In the Model Builder window, collapse the Results>Velocity (spf3) node.

Pressure (spf3), Pressure (spf4), Velocity (spf3), Velocity (spf4)

I In the Model Builder window, under Results, Ctrl-click to select Velocity (spf3), Pressure (spf3), Velocity (spf4), and Pressure (spf4).

2 Right-click and choose Group.

Verification

In the **Settings** window for **Group**, type Verification in the **Label** text field.

Topology Optimization

In the Model Builder window, right-click Topology Optimization and choose Delete.

Diodicity

Compute the diodicity for the component (without power loss in solid domains).

Global Evaluation 2

a good design topology.

- I In the Model Builder window, right-click Diodicity and choose Global Evaluation.
- 2 In the Settings window for Global Evaluation, locate the Data section.
- 3 From the Dataset list, choose Verification/Solution 2 (3) (sol2).
- 4 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Component 2 (comp2)>Definitions>Variables>Di -Ratio of pressure differences.
- 5 In the **Diodicity** toolbar, click **= Evaluate**. The diodicity is actually higher for the verification simulation, so optimization has found