

Laser Heating of a Silicon Wafer

Introduction

A silicon wafer is heated up by a laser that moves radially in and out over time while the wafer itself rotates on its stage. Modeling the incident heat flux from the laser as a spatially distributed heat source on the surface, the transient thermal response of the wafer is obtained. The average, maximum, and minimum temperatures, as well as the peak temperature difference across the wafer, are stored at every calculation step. The temperature distribution across the entire wafer is stored at a specified number of output time steps.

Figure 1: A silicon wafer is heated with a laser that moves back and forth. The wafer is also being rotated about its axis.

Model Definition

A 2-inch silicon wafer, as shown in Figure 1, is heated for one minute by a 10 W laser that moves back and forth, while the wafer rotates on its stage. Assuming good thermal insulation from the environment, the only source of heat loss is from the top surface via radiation to the processing chamber walls, which are assumed to be at a fixed temperature of 20°C.

The laser beam heat source is modeled as a heat source moving across the surface of the spinning wafer. To model the rotation of the wafer, use the **Moving Mesh>Rotating Domain** feature. Use a Waveform function and a set of variables to define the Gaussian distribution of the laser heat load around the focal point, as it moves back and forth across the spinning structure.

In the results visualization of the temperature profile across the wafer, the results can be visualized in either the spatial frame or the material frame, representing the point of view of an outside observer or an observer moving with the rotation of the wafer, respectively.

The emissivity of the surface of the wafer is approximately 0.8. At the operating wavelength of the laser, it is assumed that absorptivity equals emissivity. The heat load due to the laser is thus multiplied by the emissivity. Assuming also that the laser is operating at a wavelength at which the wafer is opaque, no light is passing through the wafer. Therefore, all of the laser heat is deposited at the surface.

The wafer is meshed using a triangular swept mesh. Swept meshing allows for only a single thin element through the thickness, and still maintains reasonable element size in the plane. Also, the solver relative tolerance is slightly lowered to better capture the effect of the moving heat load. A finer mesh and tighter solver tolerances would give slightly more accurate predictions of the peak temperature, but predictions of average and minimum temperature would not be greatly affected.

Results and Discussion

Figure 2 shows the probe plots of the maximum, minimum, and average temperatures of the wafer, while Figure 3 shows the probe plot of the difference between the maximum and minimum temperature. The temperature distribution across the wafer is plotted in Figure 4.

The heating profile does introduce some significant temperature variations, because the laser deposits the same amount of heat over a larger total swept area when it is focused at the outside of the wafer. An interesting modification to this example would be to investigate alternative heating profiles for smoother heating.

Figure 2: Maximum, minimum, and average temperatures of the wafer as functions of time.

Figure 3: Difference between maximum and minimum temperatures on the wafer.

4 | LASER HEATING OF A SILICON WAFER

Figure 4: Temperature variation across the wafer.

Application Library path: COMSOL_Multiphysics/Heat_Transfer/

laser_heating_wafer

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 间 3D.
- 2 In the Select Physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
- 3 Click Add.

4 Click 🔿 Study.

5 In the Select Study tree, select General Studies>Time Dependent.

6 Click **M** Done.

GLOBAL DEFINITIONS

Start by defining parameters for use in the geometry, functions, and physics settings.

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.

Name	Expression	Value	Description
r_wafer	1[in]	0.0254 m	Wafer radius
thickness	275[um]	2.75E-4 m	Wafer thickness
v_rotation	10[rpm]	0.16667 1/s	Rotational speed
period	20[s]	20 s	Time for laser to move back and forth
r_spot	2[mm]	0.002 m	Laser beam radius
emissivity	0.8	0.8	Surface emissivity of wafer
p_laser	10[W]	10 W	Laser power

3 In the table, enter the following settings:

Here, the unit 'rpm' is revolution per minute.

GEOMETRY I

Create a cylinder for the silicon wafer.

Cylinder I (cyl1)

- I In the **Geometry** toolbar, click 💭 **Cylinder**.
- 2 In the Settings window for Cylinder, locate the Size and Shape section.
- 3 In the Radius text field, type r_wafer.
- 4 In the **Height** text field, type thickness.

Block I (blk1)

- I In the **Geometry** toolbar, click 🗍 **Block**.
- 2 In the Settings window for Block, locate the Size and Shape section.
- 3 In the Width text field, type 2*r_wafer.

- 4 In the **Depth** text field, type 2*r_wafer.
- 5 In the **Height** text field, type thickness.
- 6 Locate the Position section. In the x text field, type -0.95*r_wafer.
- 7 In the y text field, type -r_wafer.

Intersection 1 (int1)

- I In the Geometry toolbar, click P Booleans and Partitions and choose Intersection.
- 2 Click in the Graphics window and then press Ctrl+A to select both objects.
- 3 In the Settings window for Intersection, click 🟢 Build All Objects.

DEFINITIONS

Define functions for use before setting up the physics.

Variables I

- I In the Model Builder window, under Component I (compl) right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Variables section.

Name	Expression	Unit	Description
x_focus	r_wafer*Triangle(t/ period)		x-location of laser focal point
y_focus	O[m]	m	y_location of laser focal point
r_focus	<pre>sqrt((x-x_focus)^2+(y- y_focus)^2)</pre>		distance from focal point
Flux	((2*p_laser)/(pi* r_spot^2))*exp(-(2* r_focus^2)/r_spot^2)		laser heat flux, Gaussian profile

3 In the table, enter the following settings:

Waveform 1 (wv1)

- I In the Home toolbar, click f(X) Functions and choose Local>Waveform.
- 2 In the Settings window for Waveform, type Triangle in the Function name text field.
- 3 Locate the Parameters section. From the Type list, choose Triangle.
- 4 Clear the **Smoothing** check box.
- 5 In the Angular frequency text field, type 2*pi.
- 6 In the **Phase** text field, type pi/2.
- 7 Click 💽 Plot.

8 | LASER HEATING OF A SILICON WAFER

Maximum

- I In the Definitions toolbar, click probes and choose Domain Probe.
- 2 In the Settings window for Domain Probe, type Maximum in the Label text field.
- **3** In the **Variable name** text field, type T_max.
- 4 Locate the Probe Type section. From the Type list, choose Maximum.

Average

- I In the Definitions toolbar, click probes and choose Domain Probe.
- 2 In the Settings window for Domain Probe, type Average in the Label text field.
- **3** In the **Variable name** text field, type **T_average**.

Minimum

- I In the Definitions toolbar, click probes and choose Domain Probe.
- 2 In the Settings window for Domain Probe, type Minimum in the Label text field.
- **3** In the **Variable name** text field, type T_min.
- 4 Locate the Probe Type section. From the Type list, choose Minimum.

Global Variable Probe 1 (var1)

- I In the Definitions toolbar, click probes and choose Global Variable Probe.
- 2 In the Settings window for Global Variable Probe, type T_diff in the Variable name text field.
- **3** Locate the **Expression** section. In the **Expression** text field, type T_max-T_min.

Rotating Domain I

- I In the Definitions toolbar, click Moving Mesh and choose Rotating Domain.
- 2 In the Settings window for Rotating Domain, locate the Domain Selection section.
- **3** From the Selection list, choose All domains.
- **4** Locate the **Rotation** section. From the **Rotation type** list, choose **Specified rotational velocity**.
- 5 From the Rotational velocity expression list, choose Constant revolutions per time.
- **6** In the *f* text field, type v_rotation.

HEAT TRANSFER IN SOLIDS (HT)

Set up the physics. First, include the wafer's rotational velocity in the governing heat transfer equation.

Next, add heat flux and surface-to-ambient radiation on the wafer's top surface.

Heat Flux 1

- I In the Model Builder window, under Component I (compl) right-click Heat Transfer in Solids (ht) and choose Heat Flux.
- **2** Select Boundary 4 only.

- 3 In the Settings window for Heat Flux, locate the Heat Flux section.
- **4** In the q_0 text field, type emissivity*Flux.

Surface-to-Ambient Radiation I

- I In the Physics toolbar, click 🔚 Boundaries and choose Surface-to-Ambient Radiation.
- 2 Select Boundary 4 only.
- **3** In the Settings window for Surface-to-Ambient Radiation, locate the Surface-to-Ambient Radiation section.
- **4** From the ε list, choose **User defined**. In the associated text field, type emissivity.

ADD MATERIAL

- I In the Home toolbar, click 🙀 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Silicon.
- 4 Click Add to Component in the window toolbar.
- 5 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

MESH I

Use a fine triangular swept mesh.

Swept I

- I In the Mesh toolbar, click 🦓 Swept.
- 2 In the Settings window for Swept, click to expand the Sweep Method section.
- 3 From the Face meshing method list, choose Triangular (generate prisms).

Distribution I

- I Right-click Swept I and choose Distribution.
- 2 In the Settings window for Distribution, locate the Distribution section.
- **3** In the **Number of elements** text field, type **1**.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Fine.
- 4 Click 📗 Build All.

STUDY I

Step 1: Time Dependent

- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 In the **Output times** text field, type range(0,1,60).

Tighten the relative tolerance to better capture the effect of the moving heat load.

- 4 From the Tolerance list, choose User controlled.
- 5 In the **Relative tolerance** text field, type 1e-3.
- 6 In the Home toolbar, click **=** Compute.

RESULTS

Study I/Solution I (soll)

Change the frame to Spatial in order to visualize the wafer displacement.

- I In the Model Builder window, expand the Results>Datasets node, then click Study I/ Solution I (soll).
- 2 In the Settings window for Solution, locate the Solution section.
- 3 From the Frame list, choose Spatial (x, y, z).

Temperature (ht)

The first default plot shows the temperature on the wafer surface.

- I In the Model Builder window, click Temperature (ht).
- 2 In the Settings window for 3D Plot Group, locate the Plot Settings section.
- 3 From the Frame list, choose Spatial (x, y, z).
- **4** In the **Temperature (ht)** toolbar, click **I** Plot.
- **5** Click the **Com Extents** button in the **Graphics** toolbar.

Compare the temperature variation with that shown in Figure 4.

Isothermal Contours (ht)

The second default plot shows the isosurface temperature.

Probe Plot Group 3

- I In the Model Builder window, click Probe Plot Group 3.
- 2 In the Settings window for ID Plot Group, locate the Legend section.
- 3 From the Position list, choose Upper left.

Probe Table Graph I

- I In the Model Builder window, expand the Probe Plot Group 3 node, then click Probe Table Graph 1.
- 2 In the Settings window for Table Graph, locate the Data section.
- 3 In the Columns list, choose Temperature (K), Maximum, Temperature (K), Average, and Temperature (K), Minimum.
- **4** In the **Probe Plot Group 3** toolbar, click **O Plot**.

Probe Plot Group 4

- I In the Home toolbar, click 📠 Add Plot Group and choose ID Plot Group.
- 2 In the Settings window for ID Plot Group, type Probe Plot Group 4 in the Label text field.

Probe Table Graph 1

- I Right-click **Probe Plot Group 4** and choose **Table Graph**.
- **2** In the **Settings** window for **Table Graph**, type **Probe Table Graph 1** in the **Label** text field.
- **3** Locate the **Data** section. From the **Plot columns** list, choose **Manual**.
- 4 In the Columns list, select T_max-T_min (K).
- 5 In the Probe Plot Group 4 toolbar, click 💽 Plot.