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Introduction

High quality factor MEMS resonators are the key components in the emerging MEMS 
timing industry. In these applications a MEMS resonator is driven at its resonant frequency 
by a feedback loop to produce a circuit that oscillates at a fixed frequency. Such frequency 
references are used in a huge range of electronic devices, from CPU clocks to mobile 
phones. For oscillator applications the quality factor of the resonator, together with the 
stability of the resonant frequency, determines the ultimate performance achievable. 
Higher quality factor resonators have a sharper peak in their frequency spectrum at the 
resonant frequency and therefore pick out a particular frequency with higher fidelity. For 
many resonant modes the limit to the achievable quality factor is determined by 
thermoelastic damping.

To understand thermoelastic damping consider the stretching of a thermally isolated 
elastic rod. When such a rod is stretched uniformly and reversibly its temperature drops. 
The drop in temperature compensates for the increase in entropy caused by the stress in 
the rod (since the process is reversible the entropy remains constant). Similarly on 
compression the rod heats up. When a structure vibrates in a more complex normal mode 
there are some regions of compression and some of extension. Depending on the time 
scale of the vibration, heat flows from the warmer parts of the structure to the cooler parts. 
Since heat flow is an irreversible process, this heat flow is associated with energy loss from 
the vibrational mode, and corresponding damping for the resonant mode. Thermoelastic 
damping is particularly important in smaller MEMS structures, in which regions of 
compression and expansion are in close proximity.

Model Definition

The model consists of a single beam vibrating in its fundamental mode, perpendicular to 
its long axis. The model geometry is shown in Figure 1. The two ends of the beam are 
fixed and are assumed to be connected to a much larger body (for example, a contact pad), 
which acts as a thermal reservoir.
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Figure 1: Symmetric model geometry. The geometry consists of a silicon beam 12 μm thick and 
400 μm long. The beam width is 20 μm but since the geometry is symmetric only half of the 
beam width is shown and the symmetry boundary conditions is used. The two ends of the beam 
are assumed to be clamped to a body with a large thermal mass, such as a contact pad.

This analysis computes the resonator quality factor, assuming that thermoelastic damping 
is the dominant damping mechanism. The coupled equations of thermoelasticity are 
solved within the resonator.

D E R I V A T I O N  O F  T H E  T H E R M O E L A S T I C I T Y  E Q U A T I O N S

References 1 to 7 provide useful background information.

The equations of thermoelasticity are derived from the first law of thermodynamics, which 
can be stated as follows:

 (1)

where dU is the change in internal energy, dQ' is the heat flow into the system (the prime 
indicates an inexact differential in this case) and dW' is the work done on the system. For 
a small part of a solid (sufficiently small that the stresses and strains are uniform), with an 
initial reference density, ρ0, the first law can be rewritten in the following form (assuming 
that the differential changes occur between equilibrium states):

 (2)

where Ta is the absolute temperature, s is the entropy per unit mass, σ is the elastic part 
of the second Piola-Kirchhoff stress (in general a rank 2 tensor), ε is the material strain 

Ud dQ' dW'+=

du Tads 1
ρ0
------σ: εd+=
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(also a tensor). In general the second Piola-Kirchhoff stress tensor, p, must be split into 
elastic (σ) and inelastic (τ) parts such that:

The elastic part of the stress tensor, σ, does work σ:dε during a change in the strain. The 
inelastic part of the strain tensor, τ, generates heat at a rate τ:(dε/dτ) when the strain is 
changing and is identified with internal or material damping. These internal damping 
mechanisms are associated with microscopic phenomena such as dislocation movement.

From Equation 2 it is possible to make the following identifications for Ta and σ:

Next the entropy balance equation must be derived. Because thermoelasticity involves 
irreversible processes, the assumption of equilibrium required to derive Equation 2 is no 
longer valid. Instead an assumption of ‘local’ equilibrium is made. It is assumed that 
although the system is not in equilibrium, there exists within small elements a state of local 
equilibrium, for which the local entropy per unit mass, s, is the same function of the 
internal energy, strain, and particle number as it was in equilibrium. This assumption is 
commonly employed in the modeling of transport phenomena and is justified only by the 
validity of conclusions derived from it and by results obtained from specific microscopic 
models, for near-equilibrium situations. For a small volume element in the material frame 
Equation 2 can then be written as

The rate of change of entropy can then be written as

 (3)

From the first law (Equation 1) the rate of change of internal energy is given by:

where w is the work done per unit volume and q is the heat accumulated per unit volume. 
The heat accumulated can be written as the sum of the heat sources and the divergence in 
the material frame heat flux:

p σ τ+=

Ta S∂
∂u
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ε
= σ ρ0 ε∂

∂u
 
 

S
=

ρ0 sd 1
Ta
-------ρ0 ud 1

Ta
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ρ0
ds
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1
Ta
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Ta
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where Q represents the heat source per unit volume and τ is the inelastic part of the stress 
tensor. The rate of doing work (per unit reference volume) by a linear elastic material is 
given by the elastic part of the second Piola-Kirchhoff stress contracted with the rate of 
material strain. Per unit volume the following equation is obtained:

so Equation 3 reduces to

The definition of the material thermal conductivity gives

where κ is the thermal conductivity, defined in the material frame.

Therefore the equation is

 (4)

It is now necessary to derive an expression for the rate of change of entropy with respect 
to time. In order to do this an assumption of local equilibrium is used once again. Using 
Equation 2 the equation is written

which defines a new thermodynamic potential, the Gibbs free energy per unit mass, given 
by

Changes in the Gibbs free energy per unit mass take the form

dq
dt
------- ∇ q⋅( )– Q τ:

td
dε

+ +=

dw
dt
-------- σ:dε

dt
------=

ρ0
ds
dt
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which leads to the relations

By differentiating each of the above equations a second time, it is possible to derive the 
following Maxwell relation

 (5)

It is now possible to derive an expression for the entropy of the solid. Assuming that the 
elastic stress is an invertible function of the strain, we can write s=s(σ,Ta). Thus,

Using the Maxwell relation in Equation 5 gives

so that

By definition the heat capacity of the solid at constant stress is given by

Thus,

 (6)

Substituting Equation 6 into Equation 4 gives the following equation for thermoelasticity:

 (7)
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An additional heat source term is present in Equation 7, compared to the standard heat 
transfer equations in solids. This term couples the structural problem with the heat transfer 
problem. In turn the heat transfer equation couples back into the structural problem 
through the constitutive relationship. The COMSOL Multiphysics software solves a 
linearized form of the anisotropic thermoelasticity equations given in Equation 7.

In the particular case of a linear elastic material (in the absence of damping) the stress and 
strain are related by Duhamel-Hooke’s law:

where C is the elasticity tensor, σi is the initial stress, εi is the initial strain and Tref is the 
reference temperature at which the strain and stresses take the initial values.

This equation couples the heat transfer equation to the structural problem. Given a 
temperature independent thermal expansivity, and no material damping, Equation 7 takes 
the form

which is the usual form of the equation for linear thermoelasticity.

Results and Discussion

Figure 2 shows the mode shape and the corresponding temperature distribution within 
the beam. The mode has an eigenfrequency of 63.3 kHz and a quality factor of 10700. In 
Ref. 4 Zener derived an approximate analytic expression for the quality factor of a thin 
isotropic beam vibrating in its fundamental mode, by considering only the thermal 
gradients in the direction of flexure. Zener’s expression is given by:

 (8)

where E is the Young’s modulus of the beam, α is the isotropic thermal expansivity, ω is 
the mechanical angular resonant frequency and τ is the thermal relaxation time constant 
of the system, given by:
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where h is the beam thickness and κ is the thermal conductivity of the mode. The resonant 
frequency of the beam can also be computed analytically and is given by:

 (9)

Table 1 compares the COMSOL Multiphysics model with values computed using 
Equation 8 and Equation 9 and with experimental results, obtained from Ref. 7. Note 
that the COMSOL Multiphysics model has a slightly higher quality factor than the 
theoretical result because some of the thermal gradients are removed by the isothermal 
boundary condition (the quality factor is reduced significantly if a thermal insulation 
boundary condition is applied to the end boundaries — in practice the real boundary 
condition is somewhere between these two extremes).

Figure 2: Fundamental mode shape and corresponding temperature distribution within the 
beam.

TABLE 1:  COMPARISON OF RESULTS FROM THE MODEL WITH THEORY AND EXPERIMENT.

SOURCE RESONANT FREQUENCY (MHZ) QUALITY FACTOR

COMSOL Model 0.63 10.7×103

ω 22.373 h

L2
------ E

12ρ0
-------------=
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Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

Equation 8 and 
Equation 9

0.63 10.3×103

Experiment (Ref. 7) 0.57 10.3×103

TABLE 1:  COMPARISON OF RESULTS FROM THE MODEL WITH THEORY AND EXPERIMENT.

SOURCE RESONANT FREQUENCY (MHZ) QUALITY FACTOR
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M O D E L  W I Z A R D

1 In the Model Wizard window, click 3D.

2 In the Select Physics tree, select Structural Mechanics>Thermal-Structure Interaction>

Thermoelasticity.

3 Click Add.

4 Click Study.

5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces>

Heat Transfer in Solids>Thermal Perturbation, Eigenfrequency.

6 Click Done.

G E O M E T R Y  1

The Model Wizard led to the Geometry node in the Model Builder tree structure. Start 
building the simple beam structure by specifying a convenient length unit.

1 In the Model Builder window, under Component 1 (comp1) click Geometry 1.

2 In the Settings window for Geometry, locate the Units section.

3 From the Length unit list, choose µm.

Block 1 (blk1)
1 In the Geometry toolbar, click Block.

2 In the Settings window for Block, locate the Size and Shape section.

3 In the Width text field, type 400.

4 In the Depth text field, type 12.

5 In the Height text field, type 12.

6 Click Build All Objects.

Import material parameters from a file.

G L O B A L  D E F I N I T I O N S

Parameters 1
1 In the Model Builder window, under Global Definitions click Parameters 1.

2 In the Settings window for Parameters, locate the Parameters section.

3 Click Load from File.

4 Browse to the model’s Application Libraries folder and double-click the file 
thermoelastic_damping_3d_parameters.txt.
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Create a blank material and fill in the material properties using the parameters that we just 
imported.

M A T E R I A L S

Material 1 (mat1)
1 In the Model Builder window, under Component 1 (comp1) right-click Materials and 

choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.

3 In the table, enter the following settings:

Set up boundary conditions. For the solid mechanics part, the beam is fixed at the two 
ends and has a symmetry B.C. on one of its sides.

S O L I D  M E C H A N I C S  ( S O L I D )

Fixed Constraint 1
1 In the Model Builder window, under Component 1 (comp1) right-click 

Solid Mechanics (solid) and choose Fixed Constraint.

2 Select Boundaries 1 and 6 only.

Symmetry 1
1 In the Physics toolbar, click Boundaries and choose Symmetry.

2 Select Boundary 2 only.

Property Variable Value Unit Property 
group

Young’s modulus E E0 Pa Basic

Poisson’s ratio nu nu0 1 Basic

Density rho rho0 kg/m³ Basic

Thermal conductivity k_iso ; kii = 
k_iso, kij = 0

kappa0 W/(m·K) Basic

Heat capacity at constant 
pressure

Cp Cp0 J/(kg·K) Basic

Coefficient of thermal 
expansion

alpha_iso ; 
alphaii = 
alpha_iso, 
alphaij = 0

alpha0 1/K Basic
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For the heat transfer part, the temperature at the two ends of the beam are fixed at the 
default stationary temperature. For the Eigenfrequency study step, the same Temperature 
boundary condition sets the temperature deviation to zero.

H E A T  T R A N S F E R  I N  S O L I D S  ( H T )

In the Model Builder window, under Component 1 (comp1) click Heat Transfer in Solids (ht).

Temperature 1
1 In the Physics toolbar, click Boundaries and choose Temperature.

2 Select Boundaries 1 and 6 only.

Create a structured mesh for the beam.

M E S H  1

Mapped 1
1 In the Mesh toolbar, click Boundary and choose Mapped.

2 Select Boundary 1 only.

Distribution 1
1 Right-click Mapped 1 and choose Distribution.

2 Select Edges 1 and 2 only.

Swept 1
In the Mesh toolbar, click Swept.

Distribution 1
1 Right-click Swept 1 and choose Distribution.

2 In the Settings window for Distribution, locate the Distribution section.

3 In the Number of elements text field, type 70.
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4 Click Build All.

Give the eigenfrequency study a good initial guess. Use the Larger real part option to avoid 
spurious modes near zero frequency.

S T U D Y  1

Step 2: Eigenfrequency
1 In the Model Builder window, under Study 1 click Step 2: Eigenfrequency.

2 In the Settings window for Eigenfrequency, locate the Study Settings section.

3 Select the Desired number of eigenfrequencies check box.

4 In the associated text field, type 1.

5 Select the Search for eigenfrequencies around check box.

6 In the associated text field, type 0.63e6.

7 From the Eigenfrequency search method around shift list, choose Larger real part.

Since the stationary study step is only used to compute the linearization point for the 
eigenvalue study (corresponding to zero displacement and a uniform temperature) the 
dependent variables need to be scaled manually.
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Solution 1 (sol1)
1 In the Study toolbar, click Show Default Solver.

2 In the Model Builder window, expand the Solution 1 (sol1) node, then click 
Dependent Variables 1.

3 In the Settings window for Dependent Variables, locate the Scaling section.

4 From the Method list, choose Manual.

5 In the Study toolbar, click Compute.

R E S U L T S

Mode Shape (solid)
Add mode shape deformation to the default temperature plot.

Temperature (ht)
1 In the Model Builder window, click Temperature (ht).

2 In the Settings window for 3D Plot Group, locate the Color Legend section.

3 Clear the Show legends check box.

Deformation 1
1 In the Model Builder window, expand the Temperature (ht) node.

2 Right-click Surface and choose Deformation.

3 In the Temperature (ht) toolbar, click Plot.

Compare the plot with Figure 2.

Isothermal Contours (ht)
1 In the Model Builder window, click Isothermal Contours (ht).

2 In the Settings window for 3D Plot Group, locate the Color Legend section.

3 Clear the Show legends check box.

Compute the Q factor.

Global Evaluation 1
1 In the Results toolbar, click Global Evaluation.

2 In the Settings window for Global Evaluation, click Replace Expression in the upper-right 
corner of the Expressions section. From the menu, choose Component 1 (comp1)>

Solid Mechanics>Global>solid.Q_eig - Quality factor for eigenvalue.

3 Click Evaluate.

Compare the result with that in Table 1.
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