

Fluid-Structure Interaction

The following example demonstrates techniques for modeling fluid-structure interactions in COMSOL Multiphysics. It illustrates how fluid flow can deform structures and how to solve for the flow in a continuously deforming geometry using the arbitrary Lagrangian-Eulerian (ALE) technique.

The model geometry consists of a horizontal flow channel in the middle of which is an obstacle, a narrow vertical structure (Figure 1). The fluid flows from left to right, except where the obstacle forces it into a narrow path in the upper part of the channel, and it imposes a force on the structure's walls resulting from the viscous drag and fluid pressure. The structure, being made of a deformable material, bends under the applied load. Consequently, the fluid flow also follows a new path, so solving the flow in the original geometry would generate incorrect results.

The ALE method handles the dynamics of the deforming geometry and the moving boundaries with a moving grid. COMSOL Multiphysics computes new mesh coordinates on the channel area based on the movement of the structure's boundaries and mesh smoothing. The Navier-Stokes equations that solve the flow are formulated for these moving coordinates.

The structural mechanics portion of the model does not require the ALE method, and COMSOL Multiphysics solves it in a fixed coordinate system as usual. However, the strains the model computes in this way are the only source for computing the deformed coordinates with ALE.

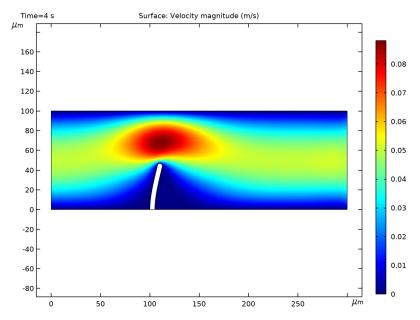


Figure 1: Fluid flows into this horizontal flow channel from the left, and it enters with a parabolic velocity profile. A narrow vertical structure in the channel (the straight vertical structure) forces the flow into a narrow path. Due to fluid pressure and viscous drag, the originally vertical structure bends. This simulation models the fluid flow in a deformed, moving mesh that follows the movement of the bending structure.

Model Definition

In this example the flow channel is 100 µm high and 300 µm long. The vertical structure — 5 μm wide, 50 μm high, and with a semicircular top — sits 100 μm away from the channel's left boundary. Assume that the structure is long in the direction perpendicular to the image.

The fluid is a water-like substance with a density $\rho = 1000 \text{ kg/m}^3$ and dynamic viscosity $\eta = 0.001 \text{ Pa·s}$. To demonstrate the desired techniques, assume the structure consists of a flexible material with a density $\rho = 7850 \text{ kg/m}^3$ and Young's modulus E = 200 kPa.

FLUID FLOW

The fluid flow in the channel is described by the incompressible Navier-Stokes equations for the velocity field, $\mathbf{u} = (u, v)$, and the pressure, p, in the spatial (deformed) moving coordinate system:

$$\rho \frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot [-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \rho((\mathbf{u} - \mathbf{u}_m) \cdot \nabla)\mathbf{u} = \mathbf{F}$$
$$-\nabla \cdot \mathbf{u} = 0$$

In these equations, I denotes the unit diagonal matrix and F is the volume force affecting the fluid. Assume that no gravitation or other volume forces affect the fluid, so that $\mathbf{F} = 0$. The coordinate system velocity is $\mathbf{u}_m = (u_m, v_m)$.

At the channel entrance on the left, the flow has fully developed laminar characteristics with a parabolic velocity profile but its amplitude changes with time. At first flow increases rapidly, reaching its peak value at 0.215 s; thereafter it gradually decreases to a steady-state value of 5 cm/s. The centerline velocity in the x direction, u_{in} (see Figure 4), with the steady-state amplitude U comes from the equation

$$u_{\text{in}} = \frac{U \cdot t^2}{\sqrt{(0.04 - t^2)^2 + (0.1t)^2}}$$

where t must be expressed in seconds.

At the outflow (right-hand boundary), the condition is p = 0. On the solid (nondeforming) walls, no slip conditions are imposed, u = 0, v = 0, while on the deforming interface the velocities equal the deformation rate, $u_0 = u_t$ and $v_0 = v_t$ (the default condition; note that u and v on the right-hand sides refer to the displacement components).

STRUCTURAL MECHANICS

The structural deformations are solved for using an elastic formulation and a nonlinear geometry formulation to allow large deformations.

The obstacle is fixed to the bottom of the fluid channel. All other object boundaries experience a load from the fluid, given by

$$\mathbf{F}_{\mathrm{T}} = -\mathbf{n} \cdot (-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}))$$

where **n** is the normal vector to the boundary. This load represents a sum of pressure and viscous forces.

MOVING MESH

The Navier-Stokes equations are solved on a freely moving deformed mesh, which constitutes the fluid domain. The deformation of this mesh relative to the initial shape of the domain is computed using Hyperelastic smoothing. For more information, please refer

to the Fluid-Structure Interaction interface in the *MEMS Module User's Guide*. Inside the obstacle, the moving mesh follows the deformations of the obstacle. At the exterior boundaries of the flow domain, the deformation is set to zero in all directions.

Results and Discussion

Figure 2 shows the geometry deformation and flow at t = 4 s when the system is close to its steady state. Due to the channel's small dimensions, the Reynolds number of the flow is small (Re << 100), and the flow stays laminar in most of the area. The swirls are restricted to a small area behind the structure. The amount of deformation as well as the size and location of the swirls depend on the magnitude of the inflow velocity.

Figure 2: Flow velocity and geometry deformation at t = 4 s. The streamlines indicate the flow direction and the color indicates flow-velocity magnitude.

Figure 3 shows the mesh velocity at t=0.15 s. The boundaries of the narrow structure are the only moving boundaries of the flow channel. Therefore the mesh velocity also has its largest values near the structure. Depending on the current state of the deformation — whether it is increasing, decreasing or stationary — the mesh velocity can have a very different distribution. Figure 4 further illustrates this point; it compares the average inflow velocity to the horizontal mesh velocity and the horizontal mesh displacement just beside the top of the structure. Most of the time the deformation follows the inflow velocity quite

closely. Whenever the inflow velocity starts to decrease, the deformation also decreases, which you can observe as the negative values on the horizontal mesh velocity. Toward the end of the simulation, when inflow and structure deformation approach their steady-state values, the mesh velocity also decreases to zero.

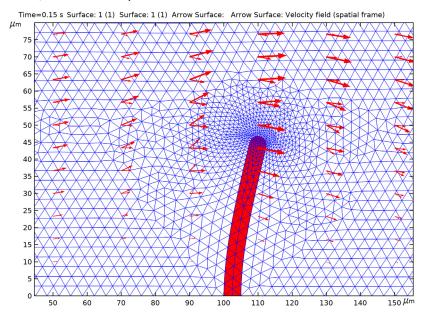


Figure 3: Mesh velocity (arrows) and mesh and geometry deformation at t = 0.15 s.

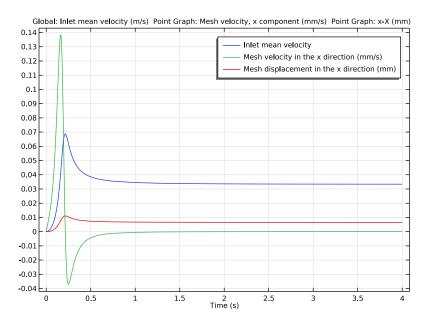


Figure 4: Inflow velocity, horizontal mesh velocity, and mesh deformation. The blue curve shows the average x direction velocity at the inflow boundary (m/s); the green, shows $10^4 \times$ mesh displacement in the x direction $(dx_a = 1)$ at the geometry point $(1.05 \cdot 10^{-4}, 0.5 \cdot 10^{-4})$; and the red curve shows $10^3 \times$ mesh velocity in the x direction (xt; m/s), also at the point $(1.05 \cdot 10^{-4}, 0.5 \cdot 10^{-4})$.

Figure 5 compares the meshes at different times. The first image shows the initial mesh, which you generate prior to solving the model. This mesh is equally distributed around the top of the structure. The second image shows the mesh in its deformed form. Because the structure deforms more in the horizontal direction, the mesh also changes more in this direction: On the left, the mesh elements are stretched; on the right, they are compressed in the *x* direction.

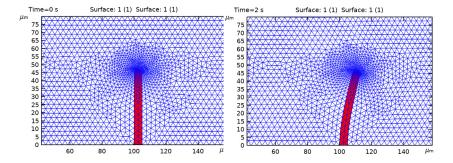


Figure 5: Geometry and mesh near the top of the structure at t = 0 s and 2 s.

Notes About the COMSOL Implementation

This example implements the model using Fluid-Structure Interaction interface. By default the Fluid-Structure Interaction interface treats all domains as fluid. Activate solid material model node in the area of the narrow structure. To get a more accurate computation of the large strains, large deformation analysis is the default setting. The interface automatically identifies the fluid-solid interaction boundaries and assigns the boundary condition to those boundaries.

Application Library path: MEMS_Module/Fluid-Structure_Interaction/ fluid structure interaction

Modeling Instructions

From the File menu, choose New.

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click **2** 2D.

- 2 In the Select Physics tree, select Fluid Flow>Fluid-Structure Interaction>Fluid-Solid Interaction.
- 3 Click Add.
- 4 Click Study.
- 5 In the Select Study tree, select General Studies>Time Dependent.
- 6 Click M Done.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description		
U	3.33[cm/s]	0.0333 m/s	Inlet mean velocity at steady state		
Н	100[um]	IE-4 m	Channel height		

Variables 1

- I In the Home toolbar, click \supseteq Variables and choose Global Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
u_mean	U*t^2/sqrt(t^4-0.07[s^2]* t^2+0.0016[s^4])	m/s	Inlet mean velocity

GEOMETRY I

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, locate the Units section.
- 3 From the Length unit list, choose μm .

Rectangle I (rI)

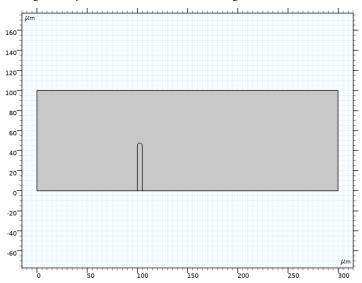
- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- **3** In the **Width** text field, type **300**.

- 4 In the Height text field, type H.
- 5 Click Build All Objects.

Rectangle 2 (r2)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type 5.
- 4 In the Height text field, type 47.5.
- **5** Locate the **Position** section. In the **x** text field, type 100.
- 6 Click **Build All Objects**.

Fillet I (fill)


- I In the **Geometry** toolbar, click **Fillet**.
- 2 On the object r2, select Points 3 and 4 only.

It might be easier to select the points by using the **Selection List** window. To open this window, in the Home toolbar click Windows and choose Selection List. (If you are running the cross-platform desktop, you find **Windows** in the main menu.)

- 3 In the Settings window for Fillet, locate the Radius section.
- 4 In the Radius text field, type 2.5.

5 Click Build All Objects.

The geometry should look like that in the figure below.

Modify the domain selections for the Laminar Flow and Solid Mechanics interface.

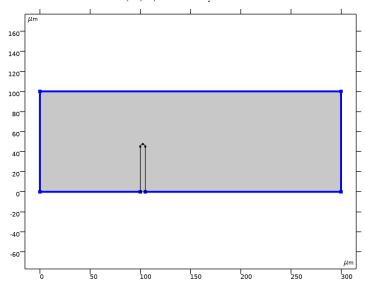
LAMINAR FLOW (SPF)

- I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).
- 2 Select Domain 1 only.

SOLID MECHANICS (SOLID)

- I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
- **2** Select Domain 2 only.

DEFINITIONS


Deforming Domain I

- I In the Model Builder window, under Component I (compl)>Definitions>Moving Mesh click Deforming Domain 1.
- 2 Select Domain 1 only.

Fixed Boundary I

- I In the Definitions toolbar, click Moving Mesh and choose Fixed Boundary.
- 2 In the Settings window for Fixed Boundary, locate the Boundary Selection section.

- 3 From the Selection list, choose All boundaries.
- **4** Select Boundaries 1–3, 5, 7, and 8 only.

LAMINAR FLOW (SPF)

In the Model Builder window, under Component I (compl) click Laminar Flow (spf).

Inlet I

- I In the Physics toolbar, click Boundaries and choose Inlet.
- 2 Select Boundary 1 only.
- 3 In the Settings window for Inlet, locate the Velocity section.
- **4** In the U_0 text field, type u_mean*6*(H-Y)*Y/H^2.

This gives a parabolic velocity profile with the specified mean velocity appropriate for laminar inflow. If you have a license for the CFD Module or Microfluidics Module, you can use the predefined Laminar inflow boundary condition with average velocity u_mean---a boundary condition that works for general inlet shapes.

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 Select Boundary 8 only.

SOLID MECHANICS (SOLID)

In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).

Fixed Constraint I

- I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
- 2 Select Boundary 5 only.

MATERIALS

Material I (mat I)

- I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.
- 2 Select Domain 1 only.
- 3 In the Settings window for Material, locate the Material Contents section.
- **4** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Density	rho	1e3	kg/m³	Basic
Dynamic viscosity	mu	1e-3	Pa·s	Basic

Material 2 (mat2)

- I Right-click Materials and choose Blank Material.
- **2** Select Domain 2 only.
- 3 In the Settings window for Material, locate the Material Contents section.
- **4** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	2e5	Pa	Basic
Poisson's ratio	nu	0.33	I	Basic
Density	rho	7850	kg/m³	Basic

MESH I

Free Triangular I

- I In the Mesh toolbar, click Free Triangular.
- 2 In the Settings window for Free Triangular, locate the Domain Selection section.
- 3 From the Geometric entity level list, choose Entire geometry.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.

- 3 From the Predefined list, choose Fine.
- 4 From the Calibrate for list, choose Fluid dynamics.
- 5 Click III Build All.

STUDY I

Step 1: Time Dependent

- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 In the **Output times** text field, type range (0,0.005,0.75) range (1,0.25,4).
- **4** From the **Tolerance** list, choose **User controlled**.
- 5 In the Relative tolerance text field, type 0.0001.
- 6 In the Home toolbar, click **Compute**.

RESULTS

Velocity (spf)

The first default plot shows the velocity field. The solution is shown on the material frame. Switch to the spatial frame to plot the results in the deformed geometry.

Study I/Solution I (soll)

In the Model Builder window, expand the Results>Datasets node.

Velocity (sbf)

- I In the Model Builder window, expand the Results>Velocity (spf) node, then click Velocity (spf).
- 2 In the Velocity (spf) toolbar, click **Plot**.
- 3 Click the Zoom Extents button in the Graphics toolbar.

Proceed to reproduce Figure 2.

Streamline 1

- I Right-click Velocity (spf) and choose Streamline.
- 2 In the Settings window for Streamline, locate the Streamline Positioning section.
- 3 From the Positioning list, choose Starting-point controlled.
- 4 From the Entry method list, choose Coordinates.
- 5 In the x text field, type $0^{(n)} = 0^{(n)} = 0^{(n)}$.
- 6 In the y text field, type range (0,100/14,100) 20 5.

- 7 Locate the Coloring and Style section. Find the Point style subsection. From the Color list, choose Red.
- 8 In the Velocity (spf) toolbar, click Plot.

To animate flow around the structure, do the following:

Animation I

- I In the **Results** toolbar, click **Animation** and choose **File**.
- 2 In the Settings window for Animation, locate the Target section.
- 3 From the Target list, choose Player.
- 4 Locate the Animation Editing section. From the Time selection list, choose Interpolated.
- 5 In the Times (s) text field, type range (0.025, 0.025, 0.5).
- 6 Right-click Animation I and choose Play.

To inspect the deformed geometry and deformed mesh near the top of the structure, Figure 5, proceed with the following steps.

Deformed mesh and geometry

- I In the Results toolbar, click 2D Plot Group.
- 2 In the Settings window for 2D Plot Group, type Deformed mesh and geometry in the Label text field.
- 3 Locate the Plot Settings section. From the Frame list, choose Spatial (x, y, z).
- 4 Locate the Data section. From the Time (s) list, choose 0.

Surface I

- I Right-click Deformed mesh and geometry and choose Surface.
- 2 In the Settings window for Surface, locate the Expression section.
- **3** In the **Expression** text field, type 1.
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- 5 From the Color list, choose Blue.
- 6 Select the Wireframe check box.
- 7 In the Deformed mesh and geometry toolbar, click **1** Plot.

Surface 2

- I In the Model Builder window, right-click Deformed mesh and geometry and choose Surface
- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the Expression text field, type 1.

4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.

Selection 1

- I Right-click Surface 2 and choose Selection.
- **2** Select Domain 2 only.
- 3 In the Deformed mesh and geometry toolbar, click **Plot**.

Deformed mesh and geometry

- I In the Model Builder window, click Deformed mesh and geometry.
- 2 Click the **Zoom Box** button in the **Graphics** toolbar and then use the mouse to zoom in on the obstacle.
- 3 In the Settings window for 2D Plot Group, locate the Data section.
- 4 From the Time (s) list, choose 2.

Surface 2

- I In the Model Builder window, click Surface 2.
- 2 In the Deformed mesh and geometry toolbar, click **1** Plot.

Add the arrow plot, to reproduce Figure 3.

Arrow Surface 1

- I In the Model Builder window, right-click Deformed mesh and geometry and choose Arrow Surface.
- 2 In the Settings window for Arrow Surface, locate the Expression section.
- **3** In the **x** component text field, type xt.
- 4 In the y component text field, type yt.

Deformed mesh and geometry

- I In the Model Builder window, click Deformed mesh and geometry.
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- **3** From the **Time (s)** list, choose **0.15**.

Arrow Surface 2

Right-click Deformed mesh and geometry and choose Arrow Surface.

Arrow Surface I

I In the Deformed mesh and geometry toolbar, click **Plot**.

Finally, plot the horizontal mesh velocity, the mesh deformation at the point beside the top of the structure, and inflow velocity -- see Figure 4.

Mesh velocity

- I In the Home toolbar, click **Add Plot Group** and choose ID Plot Group.
- 2 In the Settings window for ID Plot Group, type Mesh velocity in the Label text field.

Global I

- I Right-click Mesh velocity and choose Global.
- 2 In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Global definitions>Variables>u_mean -Inlet mean velocity - m/s.
- 3 In the Mesh velocity toolbar, click Plot.

Cut Point 2D I

- I In the Results toolbar, click Cut Point 2D.
- 2 In the Settings window for Cut Point 2D, locate the Point Data section.
- 3 In the x text field, type 105.
- 4 In the y text field, type 50.

Point Graph 1

- I In the Model Builder window, right-click Mesh velocity and choose Point Graph.
- 2 In the Settings window for Point Graph, locate the Data section.
- 3 From the Dataset list, choose Cut Point 2D 1.
- 4 Locate the y-Axis Data section. In the Expression text field, type xt.
- **5** From the **Unit** list, choose **mm/s**.
- **6** Click to expand the **Legends** section. Select the **Show legends** check box.
- 7 From the Legends list, choose Manual.
- **8** In the table, enter the following settings:

Legends Mesh velocity in the x direction (mm/s)

Point Graph 2

- I Right-click **Point Graph I** and choose **Duplicate**.
- 2 In the Settings window for Point Graph, locate the y-Axis Data section.
- 3 In the Expression text field, type x-X.
- 4 From the **Unit** list, choose **mm**.

5 Locate the **Legends** section. In the table, enter the following settings:

Legends Mesh displacement in the x direction (mm)

6 In the Mesh velocity toolbar, click Plot.