PDF

Composite Piezoelectric Transducer
Introduction
This example shows how to set up a piezoelectric transducer model following the work of Y. Kagawa and T. Yamabuchi (Ref. 1). The composite piezoelectric ultrasonic transducer has a cylindrical geometry that consists of a piezoceramic (NEPEC 6) layer, two aluminum layers, and two adhesive layers. The layers are organized as follows: aluminum layer–adhesive layer–piezoceramic layer–adhesive layer–aluminum layer.
The system applies an AC potential on the electrode surfaces of both sides of the piezoceramic layer. The potential in this example has a peak value of V in the frequency range 20 kHz to 106 kHz. The goal is to compute the susceptance (the imaginary part of the admittance) Y = I/V, where I is the total current and V is the potential, for a frequency range around the four lowest eigenfrequencies of the structure.
The first step finds the eigenmodes, and the second step runs a frequency sweep across an interval that encompasses the first four eigenfrequencies. Both analyses are fully coupled, and COMSOL Multiphysics assembles and solves both the electric and mechanical parts of the problem simultaneously.
Although you could analyze this problem using a 2D axisymmetric model, in order to illustrate the modeling principles for more complicated problems, this example uses a 3D geometry.
When creating the model geometry, you make use of the symmetry by first making a cut along a midplane perpendicular to the central axis and then by cutting out a 10-degree wedge; doing so reduces memory requirements significantly.
Model Data
The model uses the following material data.
NEPEC 6 Material Parameters
Table 1: Elasticity Matrix cE.
Table 2: Coupling Matrix e.
Aluminum Material Parameters
Adhesive Material Parameters
Results and Discussion
Figure 1 shows the lowest vibration mode of the piezoelectric transducer, while Figure 2 shows the transducer’s input susceptance as a function of the excitation frequency.
Figure 1: The lowest vibration eigenmode of the transducer.
Figure 2: Input susceptance as a function of excitation frequency.
The result is in agreement with the work in Ref. 1. A small discrepancy close to the eigenfrequencies appears because the simulation uses no damping.
Reference
1. Y. Kagawa and T. Yamabuchi, “Finite Element Simulation of a Composite Piezoelectric Ultrasonic Transducer,” IEEE Transactions on Sonics and Ultrasonics, vol. SU-26, no. 2, pp. 81–88, 1979.
Application Library path: MEMS_Module/Piezoelectric_Devices/composite_transducer
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Electromagnetics-Structure Interaction>Piezoelectricity>Piezoelectricity, Solid.
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Multiphysics>Eigenfrequency.
6
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
Work Plane 1 (wp1)
In the Geometry toolbar, click  Work Plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Circle 1 (c1)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type 27.5.
4
In the Sector angle text field, type 10.
5
Click  Build Selected.
6
Click the  Zoom Extents button in the Graphics toolbar.
Extrude 1 (ext1)
1
In the Model Builder window, right-click Geometry 1 and choose Extrude.
2
In the Settings window for Extrude, locate the Distances section.
3
4
Click  Build All Objects.
5
Click the  Go to Default View button in the Graphics toolbar.
This completes the geometry modeling stage.
Before defining material properties, select the domains where each physics applies. Proceeding in this order enables to preselect required material properties during their definition.
Solid Mechanics (solid)
Piezoelectric Material 1
1
In the Model Builder window, under Component 1 (comp1)>Solid Mechanics (solid) click Piezoelectric Material 1.
2
In the Settings window for Piezoelectric Material, locate the Domain Selection section.
3
Click  Clear Selection.
4
Electrostatics (es)
1
In the Model Builder window, under Component 1 (comp1) click Electrostatics (es).
2
In the Settings window for Electrostatics, locate the Domain Selection section.
3
Click  Clear Selection.
4
Now materials can be defined.
Materials
Nepec 6
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Nepec 6 in the Label text field.
3
Locate the Geometric Entity Selection section. Click  Clear Selection.
4
5
Locate the Material Contents section. In the table, enter the following settings:
Alternatively, to define the symmetric elasticity matrix, cE, and the full coupling matrix, eES, you can click the Edit button below the Output properties table under Component1>Materials>Nepec 6>Stress-Charge form in the Model builder and use the matrix input dialogs to enter the data as given in section NEPEC 6 Material Parameters.
Adhesive
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Adhesive in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Aluminum
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Aluminum in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Solid Mechanics (solid)
Now apply the boundary conditions for each physics.
1
In the Model Builder window, under Component 1 (comp1) click Solid Mechanics (solid).
Symmetry 1
1
In the Physics toolbar, click  Boundaries and choose Symmetry.
2
3
Click the  Go to Default View button in the Graphics toolbar.
Electrostatics (es)
In the Model Builder window, under Component 1 (comp1) click Electrostatics (es).
Terminal 1
1
In the Physics toolbar, click  Boundaries and choose Terminal.
2
3
In the Settings window for Terminal, locate the Terminal section.
4
From the Terminal type list, choose Voltage.
5
In the V0 text field, type 0.5.
This is half of the total peak voltage between the terminals, which accounts for modeling only the upper half of the transducer.
Ground 1
1
In the Physics toolbar, click  Boundaries and choose Ground.
2
Definitions
Before generating the mesh, define a variable for the susceptance.
Variables 1
1
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
In the above expression, the factor 36 compensates for the fact that the total current at the Terminal is only computed for a 10 degree wedge of the full transducer. Moreover, the factor 1/2 accounts for the fact that only the upper half of the transducer is modeled because of symmetry in the z direction and hence only half of the actual voltage is applied. Since no damping is modeled, the real part of the admittance es.Y11 will be zero. This is why it is suitable to evaluate only the imaginary part of the admittance, i.e. the susceptance.
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3
From the Element size list, choose Finer.
Free Triangular 1
1
In the Mesh toolbar, click  Boundary and choose Free Triangular.
2
Distribution 1
1
Right-click Free Triangular 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
From the Distribution type list, choose Predefined.
5
In the Number of elements text field, type 20.
6
Click  Build Selected.
Swept 1
1
In the Mesh toolbar, click  Swept.
2
In the Settings window for Swept, click  Build All.
3
Click the  Zoom Extents button in the Graphics toolbar.
Study 1
In the Home toolbar, click  Compute.
Results
Surface 1
1
In the Model Builder window, expand the Mode Shape (solid) node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Displacement>Displacement field - m>w - Displacement field, Z component.
3
In the Mode Shape (solid) toolbar, click  Plot.
Compare the resulting plot to that in Figure 1.
Multislice 1
1
In the Model Builder window, expand the Electric Potential (es) node.
2
Right-click Multislice 1 and choose Delete.
Surface 1
1
In the Model Builder window, right-click Electric Potential (es) and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Electrostatics>Electric>V - Electric potential - V.
3
In the Electric Potential (es) toolbar, click  Plot.
Next, add a separate study for the frequency sweep.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Frequency Domain.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 1: Frequency Domain
1
In the Settings window for Frequency Domain, locate the Study Settings section.
2
Click  Range.
3
In the Range dialog box, type 20[kHz] in the Start text field.
4
In the Stop text field, type 106[kHz].
5
In the Step text field, type 2[kHz].
6
Click Replace.
7
In the Home toolbar, click  Compute.
Results
Multislice 1
1
In the Model Builder window, expand the Electric Potential (es) 1 node.
2
Right-click Multislice 1 and choose Delete.
Electric Potential (es) 1
In the Model Builder window, click Electric Potential (es) 1.
Surface 1
1
In the Electric Potential (es) 1 toolbar, click  Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Electrostatics>Electric>V - Electric potential - V.
3
In the Electric Potential (es) 1 toolbar, click  Plot.
Displacement
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Displacement in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 2/Solution 2 (sol2).
4
From the Parameter value (freq (Hz)) list, choose 1.06E5.
Surface 1
1
In the Displacement toolbar, click  Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Displacement>Displacement field - m>w - Displacement field, Z component.
3
In the Displacement toolbar, click  Plot.
Susceptance
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Susceptance in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 2/Solution 2 (sol2).
Global 1
1
Right-click Susceptance and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the x-Axis Data section. From the Unit list, choose kHz.
5
In the Susceptance toolbar, click  Plot.
Compare the result to that in Figure 2.