

Action on Structures Exposed to Fire — Thermal Elongation

This model is licensed under the COMSOL Software License Agreement 5.6. All trademarks are the property of their respective owners. See www.comsol.com/trademarks.

Introduction

This is the 4th verification example from (Ref. 1) which is part of the European Standard EN-1991-1-2:2010-12, Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. It verifies that the calculated elongation matches the expected values.

Model Definition

The modeled geometry is a cube with side length of 100 mm. The temperature in the block is homogeneous and prescribed. The thermal strain function dL (Figure 1) is given in (Ref. 2).

Figure 1: Temperature dependent thermal strain function.

The model is a pure structural mechanics problem. The thermal expansion is calculated according to

$$\varepsilon_{\rm th} = dL(T, T_{\rm ref})$$

with the given thermal strain function dL, the reference temperature $T_{ref} = 20^{\circ}C$ and the prescribed temperature T (Table 1).

Results and Discussion

The reference and calculated values are given in Table 1 and match exactly. This is expected, because the thermal strain function prescribes the deformation and the deformation is what you compute.

TEMPERATURE (°C)	REFERENCE ELONGATION	CALCULATED ELONGATION
100	0.09984	0.09984
300	0.37184	0.37184
500	0.67584	0.67584
600	0.83984	0.83984
700	1.0118	1.0118
900	1.18000	1.18000

TABLE I: REFERENCE AND CALCULATED ELONGATION.

References

1. DIN EN 1991-1-2/NA, National Annex - Nationally determined parameters -Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire

2. DIN EN 1993-1-2 Eurocode 3: Design of steel structures - Part 1-2: General rules -Structural fire design; German version EN 1993-1-2:2005 + AC:2009

Application Library path: Heat_Transfer_Module/Verification_Examples/ fire_effects_thermal_elongation

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 间 3D.

- 2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
- 3 Click Add.
- 4 Click 🔿 Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click 🗹 Done.

GEOMETRY I

Define a parameter for the temperature which is the input for the thermal expansion. A parametric sweep over this temperature will be performed.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
T_in	100[degC]	373.15 K	Temperature

GEOMETRY I

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, locate the Units section.
- 3 From the Length unit list, choose mm.

Block I (blkI)

- I In the **Geometry** toolbar, click 🗍 **Block**.
- 2 In the Settings window for Block, locate the Size and Shape section.
- **3** In the **Width** text field, type 100.
- **4** In the **Depth** text field, type 100.
- **5** In the **Height** text field, type 100.
- 6 Click 🟢 Build All Objects.

MATERIALS

Define the material properties for steel.

Steel

- I In the Model Builder window, under Component I (comp1) right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, type Steel in the Label text field.
- 3 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	210000[N/mm^2]	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	7850	kg/m³	Basic

- 4 Click to expand the Material Properties section. In the Material properties tree, select Solid Mechanics>Thermal expansion>Thermal strain (dL).
- 5 Click + Add to Material.

Piecewise I (pwI)

- I In the Model Builder window, expand the Component I (compl)>Materials>Steel (matl) node.
- 2 Right-click Thermal expansion (ThermalExpansion) and choose Functions>Piecewise.
- 3 In the Settings window for Piecewise, type dL in the Function name text field.
- 4 Locate the **Definition** section. In the **Argument** text field, type T.
- 5 Find the Intervals subsection. In the table, enter the following settings:

Start	End	Function
20	750	1.2e-5*T+0.4e-8*T^2-2.416e-4
750	860	1.1e-2
860	1200	2e-5*T-6.2e-3

6 Locate the Units section. In the Arguments text field, type degC.

7 Click **I** Plot. Compare with Figure 1.

Steel (mat1)

- I In the Model Builder window, click Thermal expansion (ThermalExpansion).
- 2 In the Settings window for Property Group, locate the Output Properties section.

3 In the table, enter the following settings:

Property	Variable	Expression	Unit	Size
Thermal strain	dL_iso ; dLii = dL_iso, dLij = 0	dL(T)	I	3x3

The variable T is not known, yet. Add the temperature in the **Model Inputs** section to define it.

- 4 Locate the Model Inputs section. Click + Select Quantity.
- 5 In the Physical Quantity dialog box, type temperature in the text field.
- 6 Click 🔫 Filter.
- 7 In the tree, select General>Temperature (K).
- 8 Click OK.

SOLID MECHANICS (SOLID)

Roller 1

- I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose Roller.
- **2** Select Boundaries 3, 5, and 6 only.

The roller condition ensures that the structure expands in all directions uniformly.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material I.

Thermal Expansion 1

- I In the Physics toolbar, click 🔙 Attributes and choose Thermal Expansion.
- **2** In the **Settings** window for **Thermal Expansion**, locate the **Thermal Expansion Properties** section.
- 3 From the Input type list, choose Thermal strain.

Define a parameter for the input temperature.

4 Locate the **Model Input** section. From the *T* list, choose **User defined**. In the associated text field, type T_in.

MESH I

Swept *I* In the **Mesh** toolbar, click Ass. Swept. Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- **3** From the **Predefined** list, choose **Extremely coarse**.
- 4 Click 📗 Build All.

A very coarse mesh is sufficient. Even just one element would be enough, because the deformation is prescribed and you verify that the calculated deformation gives the same value. This is a basic test to validate that the tested functionality works correctly.

STUDY I

Step 1: Stationary

Set up a parametric sweep over the input temperature.

Parametric Sweep

- I In the Study toolbar, click **Parametric Sweep**.
- 2 In the Settings window for Parametric Sweep, locate the Study Settings section.
- 3 Click + Add.
- 4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
T_in (Temperature)	100 300 500 600 700 900	degC

5 In the **Study** toolbar, click **= Compute**.

A 3D stress plot is created automatically. Add a new plot group to visualize the displacement field.

RESULTS

Displacement field

- I In the Home toolbar, click 🚛 Add Plot Group and choose 3D Plot Group.
- 2 In the Settings window for 3D Plot Group, type Displacement field in the Label text field.

Volume 1

I Right-click Displacement field and choose Volume.

2 In the **Displacement field** toolbar, click **Displacement Field** toolbar, click **Displacement**

Surface Average 1

- I In the Results toolbar, click 8.85 e-12 More Derived Values and choose Average> Surface Average.
- **2** Select Boundary 4 only.
- 3 In the Settings window for Surface Average, locate the Expressions section.
- **4** In the table, enter the following settings:

Expression	Unit	Description
W	mm	Displacement field, Z component

5 Click **=** Evaluate.

TABLE

I Go to the Table window.

To compare these results with the reference values, import the data as interpolation function.

GLOBAL DEFINITIONS

Interpolation 1 (int1)

I In the Home toolbar, click f(X) Functions and choose Global>Interpolation.

- 2 In the Settings window for Interpolation, locate the Definition section.
- 3 From the Data source list, choose File.
- 4 Click Browse.
- 5 Browse to the model's Application Libraries folder and double-click the file fire_effects_thermal_elongation_dlref.txt.
- 6 Find the Functions subsection. In the table, enter the following settings:

Function name	Position in file	
dl_ref	1	

7 Locate the Units section. In the Arguments text field, type degC.

8 Locate the **Definition** section. Click **Import**.

It is not necessary to compute the whole study again. To make the data available for postprocessing, just update the solution.

STUDY I

In the **Study** toolbar, click *C* **Update Solution**.

RESULTS

Surface Average 1

I In the Model Builder window, under Results>Derived Values click Surface Average I.

2 In the Settings window for Surface Average, locate the Expressions section.

3 In the table, enter the following settings:

Expression	Unit	Description
W	mm	Displacement field, Z component
dl_ref(T_in)		Interpolation 1

4 In the **Results** toolbar, click **= Evaluate** and choose **Clear and Evaluate All**.

TABLE

I Go to the Table window.

The computed and reference values match exactly. Compare with Table 1.

 \mid action on structures exposed to fire — thermal elongation