

Action on Structures Exposed to Fire — Heating Process

This model is licensed under the COMSOL Software License Agreement 5.6. All trademarks are the property of their respective owners. See www.comsol.com/trademarks.

Introduction

This is the second verification example from Ref. 1 which is part of the European Standard EN-1991-1-2:2010-12, Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. It describes a heating process using a temperature dependent thermal conductivity. Verify that the numerical results obtained with COMSOL Multiphysics are within the validity ranges specified in the norm.

Model Definition

The modeled geometry is a square with a side length of 0.2 m (Figure 1).

Figure 1: Model geometry and set-up

The initial temperature is 0°C. A heat flux condition is applied to all boundaries according to

$$q_0 = h(T_{\text{ext}} - T)$$

with the heat transfer coefficient $h = 10 \text{ W/(m}^2 \cdot \text{K})$ and $T_{\text{ext}} = 1000^{\circ}\text{C}$. In addition, flux due to radiation is considered:

$$q_r = \varepsilon \sigma (T_{\text{ext}}^4 - T^4)$$

The surface emissivity ϵ is 0.8 and σ is the Stefan-Boltzmann constant.

The material properties are listed below (Table 1).

TABLE T. TIATERIAL TROTERTIES	TABLE	I:	MATERIAL	PROPERTIES
-------------------------------	-------	----	----------	------------

Property	Name	Value
Density	ρ	2400 kg/m ³
Heat Capacity	C_p	1000 J/(kg·K)

The thermal conductivity is a linear function of the temperature (Figure 2).

Figure 2: Thermal conductivity function

Results and Discussion

The temperature distribution after 180 min is shown in Figure 3.

Figure 3: Temperature distribution after 180 min.

The reference and computed temperatures are compared in Figure 4. The numerical values match the norm values very well.

Figure 4: Reference (blue) and calculated temperature (green).

TABLE 2: RESULTS.

The exact values, and the absolute and relative errors for each time are listed in Table 2.

Time (min)	Reference temperature(°C)	Calculated temperature(°C)	Absolute error	Relative error
30	36.9	33.4	3.5	9.4
60	137.4	133.9	3.5	2.5
90	244.6	242.9	1.7	0.7
120	361.1	363.0	1.9	0.5
150	466.2	471.1	4.9	1.1
180	554.8	562.0	7.2	1.3

To fulfill the norm, the maximum deviation from the reference values must not exceed 5 K for $t \le 60$ min and 3% for t > 60 min.

Reference

1. DIN EN 1991-1-2/NA, National Annex - Nationally determined parameters -Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire

Application Library path: Heat_Transfer_Module/Verification_Examples/ fire_effects_heating

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🙅 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **2D**.
- 2 In the Select Physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
- 3 Click Add.
- 4 Click 🔿 Study.
- 5 In the Select Study tree, select General Studies>Time Dependent.
- 6 Click 🗹 Done.

GEOMETRY I

Start with creating an interpolation function for the norm values. It will be used later for comparison with the numerical results.

GLOBAL DEFINITIONS

Reference temperature

- I In the Home toolbar, click f(x) Functions and choose Global>Interpolation.
- 2 In the Settings window for Interpolation, locate the Definition section.
- 3 From the Data source list, choose File.
- 4 Click Browse.

- 5 Browse to the model's Application Libraries folder and double-click the file fire_effects_heating_Tref.txt.
- 6 Click Import.
- 7 In the Label text field, type Reference temperature.
- 8 Locate the Definition section. In the Function name text field, type Tref.
- 9 Locate the Units section. In the Arguments text field, type min.

IO In the **Function** text field, type degC.

Create another interpolation function for the thermal conductivity.

Thermal conductivity

- I In the Home toolbar, click f(X) Functions and choose Global>Interpolation.
- **2** In the **Settings** window for **Interpolation**, type Thermal conductivity in the **Label** text field.
- **3** Locate the **Definition** section. In the **Function name** text field, type k_lin.
- **4** In the table, enter the following settings:

t	f(t)
0	1.5
200	0.7
1000	0.5

- 5 Locate the Units section. In the Arguments text field, type degC.
- **6** In the **Function** text field, type W/(m*K).
- 7 Click 💽 Plot.

GEOMETRY I

Square 1 (sq1)

- I In the **Geometry** toolbar, click Square.
- 2 In the Settings window for Square, locate the Size section.
- 3 In the Side length text field, type 0.2.

Point I (ptl)

- I In the **Geometry** toolbar, click **Point**.
- 2 In the Settings window for Point, locate the Point section.
- **3** In the **x** text field, type **0.1**.

4 In the y text field, type .1.

MATERIALS

Material I (mat1)

- I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Material Contents section.
- **3** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	k_lin(T)	W/(m·K)	Basic
Density	rho	2400	kg/m³	Basic
Heat capacity at constant pressure	Ср	1000	J/(kg·K)	Basic

Note, that for the thermal conductivity, you use the interpolation function defined before with the expression $k_lin(T)$.

DEFINITIONS

Ambient Properties 1 (ampr1)

- I In the Physics toolbar, click **=** Shared Properties and choose Ambient Properties.
- 2 In the Settings window for Ambient Properties, locate the Ambient Conditions section.
- 3 In the T_{amb} text field, type 1000[degC].

HEAT TRANSFER IN SOLIDS (HT)

Initial Values 1

- I In the Model Builder window, under Component I (compl)>Heat Transfer in Solids (ht) click Initial Values I.
- 2 In the Settings window for Initial Values, locate the Initial Values section.
- **3** In the *T* text field, type Tref(0).

Heat Flux 1

- I In the Physics toolbar, click Boundaries and choose Heat Flux.
- 2 In the Settings window for Heat Flux, locate the Boundary Selection section.

- 3 From the Selection list, choose All boundaries.
- 4 Locate the Heat Flux section. Click the Convective heat flux button.
- **5** In the h text field, type 10.
- **6** From the T_{ext} list, choose **Ambient temperature (amprl)**.

Surface-to-Ambient Radiation 1

- I In the Physics toolbar, click Boundaries and choose Surface-to-Ambient Radiation.
- 2 In the Settings window for Surface-to-Ambient Radiation, locate the Boundary Selection section.
- 3 From the Selection list, choose All boundaries.
- 4 Locate the Surface-to-Ambient Radiation section. From the $T_{\rm amb}$ list, choose Ambient temperature (amprl).
- **5** From the ε list, choose **User defined**. In the associated text field, type **0.8**.

STUDY I

- Step 1: Time Dependent
- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 From the Time unit list, choose min.
- 4 In the **Output times** text field, type 0 30 60 90 120 150 180.
- **5** In the **Home** toolbar, click **= Compute**.

RESULTS

Reference temperature

- I In the Results toolbar, click (8.5) Global Evaluation.
- 2 In the Settings window for Global Evaluation, locate the Expressions section.
- 3 In the table, enter the following settings:

Expression	Unit	Description
Tref(t)	degC	Reference temperature

- 4 In the Label text field, type Reference temperature.
- 5 Click **= Evaluate**.

Temperature

I In the **Results** toolbar, click ^{8.85}_{e-12} **Point Evaluation**.

- **2** Select Point 3 only.
- 3 In the Settings window for Point Evaluation, locate the Expressions section.
- **4** In the table, enter the following settings:

Expression	Unit	Description
т	degC	Temperature

5 In the Label text field, type Temperature.

Instead of creating a new table, evaluate the results in the same table as before.

- 6 Right-click on the Point Evaluation: Temperature node.
- 7 Go to Evaluate and click Table I Global Evaluation: Reference temperature (Tref(t)).

TABLE

- I Go to the Table window.
- 2 Click Table Graph in the window toolbar.

RESULTS

Temperature

- I In the Model Builder window, under Results click ID Plot Group 3.
- 2 In the Settings window for ID Plot Group, type Temperature in the Label text field.

Compare with Figure 4.

Finally, evaluate the absolute and relative errors.

Absolute and relative error

- I In the **Results** toolbar, click ^{8.85}_{e-12} **Point Evaluation**.
- 2 In the Settings window for Point Evaluation, locate the Data section.
- **3** From the **Time selection** list, choose **Manual**.
- 4 In the Time indices (1-7) text field, type 2 3 4 5 6 7.
- **5** Select Point 3 only.
- 6 In the Label text field, type Absolute and relative error.
- 7 Locate the **Expressions** section. In the table, enter the following settings:

Expression	Unit	Description
abs(T-Tref(t))	К	Absolute error
abs(T-Tref(t))/(Tref(t)-273.15[K])	90 10	Relative error

8 Click **=** Evaluate.

TABLE

I Go to the **Table** window.

The absolute and relative errors are within the allowed range. Compare with Table 2.