PDF

Triaxial Test with Hardening Soil Material Model
Introduction
In this example a triaxial soil test is simulated using a Hardening Soil material model. The test consists of two main stages: an initial isotropic compression followed by an axial compression or extension. The analysis can be simplified by considering the axial symmetry of the specimen.
The expected hyperbolic stress-strain relation is recovered by the simulation. It is also verified that the asymptotic value of the axial stress is equal to the analytical value of the failure stress, both in extension and in compression.
Model Definition
In this triaxial test, a cylindrical soil specimen of 10 cm in diameter and height is loaded. Initially, a confinement pressure is applied to create a state of isotropic compression, and later the soil sample is compressed and extended axially to simulate either axial compression or extension.
Figure 1: Dimensions, boundary conditions, and boundary loads for the triaxial test.
Soil Properties
The soil properties for the Hardening Soil material model are
Density ρ = 2400 kg/m3, reference stiffness for primary loading, E50ref = 25 MPa, reference stiffness for unloading and reloading Eurref = 75 MPa, bulk modulus in compression Kc = 20 MPa, stress exponent m = 0.5, and Poisson’s ratio ν = 0.2.
Cohesion c = 1 kPa, angle of internal friction , and dilatation angle .
Void ratio at reference pressure eref = 0.8, reference pressure pref = 100 kPa, and initial consolidation pressure pc0 = 1 MPa.
Constraints and Loads
The stresses from the isotropic compression stage are considered as in-situ stresses, hence there is no need to model this stage explicitly. Instead a confinement pressure of 100 kPa is applied using the in-situ stress option in the External Stress node. Note that no boundary load is applied in this example.
Results and Discussion
The analytical solution to the axial failure stress for the soil specimen is given by the Mohr-Coulomb criterion
(1)
The axial failure stress in compression is given by
Similarly, the axial failure stress in the extension is given by
The values of the axial failure stress in compression and extension are shown in Table 1.
Note that for the sake of consistency with geomechanical convention, the compressive axial stress and strain are plotted along the positive axis, while the tensile stress and strain are plotted along the negative axis in all the figures.
The variation of axial stress versus axial strain in compression and extension can be seen in Figure 2. The stress-strain curve is hyperbolic, which is a characteristic of the Hardening Soil material model; as the axial displacement increases, the axial stress increases hyperbolically, and then asymptotically matches the corresponding failure stress given in the Table 1. The same behavior is observed for the von Mises stress in axial compression and extension; it asymptotically matches the ultimate deviatoric stress computed internally based on the Mohr-Coulomb criterion, see Figure 3.
Figure 2: Axial stress versus axial strain.
.
Figure 3: von Mises stress versus axial strain.
The variations of equivalent plastic strain and volumetric plastic strain are shown in Figure 4 and Figure 5, respectively. The equivalent plastic strain increases monotonically with the axial strain in the case of axial compression and extension, while the volumetric plastic strain first gradually decreases and then shows an increasing trend in both cases.
Figure 4: Equivalent plastic strain versus axial strain.
Figure 5: Volumetric plastic strain versus axial strain.
The dilatancy characteristics of soil describes its volumetric response to shearing. In the Hardening Soil model, Rowe’s stress dilatancy theory is used, where the mobilized dilatancy angle is related to the critical state friction angle and the mobilized friction angle :
(2)
Many implementations of the Hardening Soil model use Equation 2 with a lower cutoff, but such an approach gives a bilinear function, see Ref. 1. In COMSOL Multiphysics, a scaled approach is used that provides a single nonlinear function instead:
(3)
When the mobilized dilatancy angle is plotted against the mobilized friction angle it gives a parabolic distribution in both cases; this result, shown in Figure 6, matches results shown in Ref. 1.
Figure 6: Mobilized dilatancy angle versus mobilized friction angle.
Figure 7 shows the variation of the Lode angle versus the axial strain. For axial compression the Lode angle is π/3, while for axial extension it is zero radians. This result verifies the established convention in COMSOL Multiphysics, stating that the Lode angle is π/3 when the stress state is on the compressive meridian and zero radians when the stress state is on the tensile meridian.
Figure 7: Lode angle versus axial strain.
Notes About the COMSOL Implementation
The in-situ stresses are the stresses in the soil sample in strain-free configuration. There are two methods to account for in-situ stresses in COMSOL Multiphysics. One method is to create two stationary study steps or studies, with combination of Initial Stress and Strain and External Stress nodes. The second method is to use the in-situ stress option in the External Stress node with single study, which gives initial stresses in the soil sample without any strain. In this example, the second method is used to model the initial/in-situ stresses in the soil sample.
A Prescribed Displacement node is used to apply axial displacement on the top boundary in order to compress or extend the soil specimen. The axial compression and extension analysis does not converge for axial displacement values greater than 0.0425 m and 0.0235 m, respectively. These are the values at which the simulation fails as the axial stress approaches the failure stress.
Reference
1. T. Bower, Constitutive modelling of soils and fibre-reinforced soils, PhD Thesis, Cardiff University, 2017.
Application Library path: Geomechanics_Module/Verification_Examples/triaxial_test_hardening_soil
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D Axisymmetric.
2
In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Define variables for the failure stress in axial compression and extension based on the Mohr-Coulomb criterion.
Definitions
Variables 1
1
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Geometry 1
Rectangle 1 (r1)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 5[cm].
4
In the Height text field, type 10[cm].
5
Click  Build Selected.
Solid Mechanics (solid)
Elastoplastic Soil Material 1
1
In the Model Builder window, under Component 1 (comp1) right-click Solid Mechanics (solid) and choose Material Models>Elastoplastic Soil Material.
2
3
In the Settings window for Elastoplastic Soil Material, locate the Elastoplastic Soil Material section.
4
From the Material model list, choose Hardening Soil.
5
From the K0nc list, choose From angle of internal friction.
6
In the pc0 text field, type 1000[kPa].
Apply a confinement pressure of 100 kPa using an External Stress node.
External Stress 1
1
In the Physics toolbar, click  Attributes and choose External Stress.
2
In the Settings window for External Stress, locate the External Stress section.
3
From the Stress input list, choose In-situ stress.
4
In the σins text field, type -p0.
Roller 1
1
In the Physics toolbar, click  Boundaries and choose Roller.
2
Prescribed Displacement 1
1
In the Physics toolbar, click  Boundaries and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in z direction check box.
5
In the u0z text field, type disp.
Materials
Soil Material
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Soil Material in the Label text field.
3
Locate the Material Contents section. In the table, enter the following settings:
One mesh element is sufficient for this analysis.
Mesh 1
Mapped 1
In the Mesh toolbar, click  Mapped.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Distribution section. In the Number of elements text field, type 1.
5
Click  Build Selected.
Study: Axial Compression
Disable the default plots for this study.
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study: Axial Compression in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Stationary
1
In the Model Builder window, under Study: Axial Compression click Step 1: Stationary.
2
In the Settings window for Stationary, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
In the Home toolbar, click  Compute.
Add a second study for the axial compression case.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study: Axial Extension
Disable the default plots for this study.
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, type Study: Axial Extension in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Stationary
1
In the Model Builder window, click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
In the Home toolbar, click  Compute.
Results
Axial Stress vs. Axial Strain
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Axial Stress vs. Axial Strain in the Label text field.
3
Click to expand the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Axial Stress vs. Axial Strain.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
Right-click Axial Stress vs. Axial Strain and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type -solid.SZZ.
5
From the Unit list, choose kPa.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type -solid.eZZ.
8
Click to expand the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. In the table, enter the following settings:
Point Graph 3
1
In the Model Builder window, under Results>Axial Stress vs. Axial Strain right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type -sigmafc.
4
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
5
From the Color list, choose Magenta.
6
Locate the Legends section. In the table, enter the following settings:
Point Graph 4
1
Right-click Point Graph 3 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the y-Axis Data section. In the Expression text field, type -sigmafe.
5
Locate the Legends section. Clear the Show legends check box.
Annotation 1
1
In the Model Builder window, right-click Axial Stress vs. Axial Strain and choose Annotation.
2
In the Settings window for Annotation, locate the Position section.
3
In the R text field, type 0.
4
In the Z text field, type 100.
5
Locate the Coloring and Style section. From the Color list, choose Red.
6
In the Axial Stress vs. Axial Strain toolbar, click  Plot.
von Mises Stress vs. Axial Strain
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type von Mises Stress vs. Axial Strain in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type von Mises Stress vs. Axial Strain.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
Right-click von Mises Stress vs. Axial Strain and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type solid.mises.
5
From the Unit list, choose kPa.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type -solid.eZZ.
8
Click to expand the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. In the table, enter the following settings:
Point Graph 3
1
In the Model Builder window, under Results>von Mises Stress vs. Axial Strain right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Hardening Soil>solid.epsm1.qf - Ultimate deviatoric stress - Pa.
3
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
4
From the Color list, choose Magenta.
5
Click to expand the Legends section. In the table, enter the following settings:
Point Graph 4
1
Right-click Point Graph 3 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. Clear the Show legends check box.
Annotation 1
1
In the Model Builder window, right-click von Mises Stress vs. Axial Strain and choose Annotation.
2
In the Settings window for Annotation, locate the Position section.
3
In the R text field, type 0.
4
In the Z text field, type 0.
5
Locate the Coloring and Style section. From the Color list, choose Red.
6
In the von Mises Stress vs. Axial Strain toolbar, click  Plot.
Equivalent Plastic Strain vs. Axial Strain
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Equivalent Plastic Strain vs. Axial Strain in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Equivalent Plastic Strain vs. Axial Strain.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
In the associated text field, type Equivalent Plastic Strain (1).
9
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
Right-click Equivalent Plastic Strain vs. Axial Strain and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type solid.epe.
5
Locate the x-Axis Data section. From the Parameter list, choose Expression.
6
In the Expression text field, type -solid.eZZ.
7
Click to expand the Legends section. Select the Show legends check box.
8
From the Legends list, choose Manual.
9
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. In the table, enter the following settings:
Annotation 1
1
In the Model Builder window, right-click Equivalent Plastic Strain vs. Axial Strain and choose Annotation.
2
In the Settings window for Annotation, locate the Position section.
3
In the R text field, type 0.
4
In the Z text field, type 0.
5
Locate the Coloring and Style section. From the Color list, choose Red.
6
In the Equivalent Plastic Strain vs. Axial Strain toolbar, click  Plot.
Volumetric Plastic Strain vs. Axial Strain
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Volumetric Plastic Strain vs. Axial Strain in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Volumetric Plastic Strain vs. Axial Strain.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
In the associated text field, type Volumetric Plastic Strain (1).
Point Graph 1
1
In the Model Builder window, right-click Volumetric Plastic Strain vs. Axial Strain and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type -solid.epvol.
5
Locate the x-Axis Data section. From the Parameter list, choose Expression.
6
In the Expression text field, type -solid.eZZ.
7
Click to expand the Legends section. Select the Show legends check box.
8
From the Legends list, choose Manual.
9
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. In the table, enter the following settings:
Annotation 1
1
In the Model Builder window, right-click Volumetric Plastic Strain vs. Axial Strain and choose Annotation.
2
In the Settings window for Annotation, locate the Position section.
3
In the R text field, type 0.
4
In the Z text field, type 0.
5
Locate the Coloring and Style section. From the Color list, choose Red.
6
In the Volumetric Plastic Strain vs. Axial Strain toolbar, click  Plot.
Mobilised Dilatancy Angle vs. Mobilised Friction Angle
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Mobilised Dilatancy Angle vs. Mobilised Friction Angle in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Mobilised Dilatancy Angle vs. Mobilised Friction Angle.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
In the associated text field, type Mobilised Friction Angle (deg).
7
Select the y-axis label check box.
8
In the associated text field, type Mobilised Dilatancy Angle (deg).
9
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
In the Model Builder window, right-click Mobilised Dilatancy Angle vs. Mobilised Friction Angle and choose Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Hardening Soil>solid.epsm1.psim - Mobilized dilatancy angle.
4
Locate the y-Axis Data section. In the Expression text field, type solid.epsm1.psim*180/pi.
5
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Hardening Soil>solid.epsm1.phim - Mobilized friction angle.
6
Locate the x-Axis Data section. In the Expression text field, type solid.epsm1.phim*180/pi.
7
Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Asterisk.
8
Click to expand the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Circle.
5
Locate the Legends section. In the table, enter the following settings:
6
In the Mobilised Dilatancy Angle vs. Mobilised Friction Angle toolbar, click  Plot.
Lode Angle vs. Axial Strain
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Lode Angle vs. Axial Strain in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Lode Angle vs. Axial Strain.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
In the Model Builder window, right-click Lode Angle vs. Axial Strain and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type solid.thetaL.
5
From the Unit list, choose °.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type -solid.eZZ.
8
Click to expand the Legends section. Select the Show legends check box.
9
From the Legends list, choose Manual.
10
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: Axial Extension/Solution 2 (sol2).
4
Locate the Legends section. In the table, enter the following settings:
Annotation 1
1
In the Model Builder window, right-click Lode Angle vs. Axial Strain and choose Annotation.
2
In the Settings window for Annotation, locate the Position section.
3
In the R text field, type 0.
4
In the Z text field, type 30.
5
Locate the Coloring and Style section. From the Color list, choose Red.
6
In the Lode Angle vs. Axial Strain toolbar, click  Plot.