PDF

Isotropic Compression with Modified Cam-Clay Material Model
Introduction
Isotropic compression is a common exercise in soil testing. In this example, the Modified Cam-Clay (MCC) soil model is examined, in particular the relation between the void ratio and the logarithm of the hydrostatic pressure or mean stress.
The Extended Barcelona Basic (BBMx) model with zero suction reduces to the Modified Cam-Clay model. While, setting initial structural strength and additional void ratio to zero, and plastic potential shape parameter to two, the Modified Structured Cam-Clay (MSCC) model reduces to the Modified Cam-Clay model. With these choice of material parameters, we verify that the Extended Barcelona Basic and Modified Structured Cam-Clay material models replicate the behavior shown by the Modified Cam-Clay material model.
Model Definition
In this example, a soil sample is placed inside a cylinder 10 cm in diameter and 10 cm in height, see Figure 1. Due to the symmetry, the model is solved in 2D axial symmetry. A boundary load produces isotropic compression conditions.
Figure 1: Dimensions, boundary conditions, and boundary load for the isotropic compression test.
Modified Cam-Clay Material Properties
ρ
κ
eref
pref
pc0
Extended Barcelona basic Material Properties
Common material properties are the same as for the MCC model. Properties that are specific to the Extended Barcelona Basic model are listed in Table 2.
σ
κs
λs
bs
sy0
Note that material parameters related to the suction are chosen arbitrarily and does not affect the results since the suction is set to zero.
Modified structured Cam-Clay Material Properties
Common material properties are same as for the MCC model. Properties that are specific to the Modified Structured Cam-Clay model are listed in Table 3.
pbi
ζ
Δei
dv
ds
εdcp
Note that material parameters related to the structuring are chosen arbitrarily and does not affect the results since the soil is not structured.
Constraints and Loads
The boundary load is applied in three steps: First the pressure increases from 0.5p0 to 3p0, then the sample is unloaded until the pressure reaches 1.5p0, and finally the pressure increases again until it reaches 4p0.
In order to reproduce the analytical results of Ref. 1, the load is controlled in a parametric analysis.
Results and Discussion
The produced void ratio versus pressure is shown in Figure 2. Note that the log operator is implemented in base “e” and not in base “10”.
Figure 2: Void ratio as a function of the logarithm of the pressure in an isotropic compression test.
For the parametric sweep between 0 and 0.2 (the boundary load ranges from 100 kPa to 300 kPa), the curve follows the slope defined by the swelling index κ.
Once the user-defined consolidation pressure is reached (pc0 = 300 kPa), the sample of soil behaves plastically, and the curve follows the slope defined by the compression index λ.
During the unloading and reloading of the soil (between the parameters 0.4 and 0.8), the curve in Figure 2 follows the elastic slope defined by the swelling index κ.
Finally, the soil is compressed between the parameters 0.8 and 1, and it undergoes plastic deformation until it reaches its final stage at a void ratio e0 = 0.630 at pressure p = 900 kPa.
Figure 2 reproduces characteristic curves showing the Normal Compression Line (NCL) and the Swelling Line (or Unloading/Reloading Line URL). The NCL has a slope defined by the compression index λ, and at p = pref on the normal compression line the void ratio is e = eref.
Figure 3: Void ratio versus pressure in the isotropic compression test.
Figure 3 shows the variation of the void ratio versus pressure for Modified Cam-Clay model, the Extended Barcelona Basic model, and Modified Structured Cam-Clay model. The predicted behavior is the same for all soil models. This verifies the correctness of the BBMx model for saturated soils and MSCC model for destructured soil, where it portraits similar curves in the void ratio versus pressure space as shown by the MCC model.
As expected, once the stress level reaches the modified Cam-Clay ellipse in the stress space, (p = pc0, parameter 0.2), the soil sample starts deforming plastically. Isotropic hardening expands the major semi-axis of the ellipse, with the expansion given by the increase in consolidation pressure, see Figure 4. During the unloading-reloading steps (between parameter values 0.4 and 0.8), the consolidation pressure is kept constant.
The changes in consolidation pressure with respect to the boundary load is identical for all material models.
Figure 4: Increase in consolidation pressure due to isotropic hardening.
Reference
1. W.F. Chen and E. Mizuno, Nonlinear Analysis in Soil Mechanics, Elsevier, 1990.
Application Library path: Geomechanics_Module/Verification_Examples/isotropic_compression
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D Axisymmetric.
2
In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Definitions
Boundary Load
1
In the Home toolbar, click  Functions and choose Local>Interpolation.
2
In the Settings window for Interpolation, locate the Definition section.
3
In the Function name text field, type Pressure.
4
In the Label text field, type Boundary Load.
5
Locate the Definition section. In the table, enter the following settings:
6
Locate the Units section. In the Arguments text field, type 1.
7
In the Function text field, type Pa.
8
The interpolation function is used to define the boundary load. The boundary load first compresses the soil sample, then it relaxes, and finally it compresses the sample again.
Geometry 1
Rectangle 1 (r1)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 5[cm].
4
In the Height text field, type 10[cm].
5
Click  Build All Objects.
Definitions
Integration 1 (intop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Point.
4
5
Locate the Advanced section. From the Method list, choose Summation over nodes.
Solid Mechanics (solid)
Modified Cam-Clay Model (MCC)
1
In the Model Builder window, under Component 1 (comp1) right-click Solid Mechanics (solid) and choose Material Models>Elastoplastic Soil Material.
2
In the Settings window for Elastoplastic Soil Material, type Modified Cam-Clay Model (MCC) in the Label text field.
3
4
Locate the Elastoplastic Soil Material section. From the Specify list, choose Shear modulus.
5
From the M list, choose Match to Mohr-Coulomb criterion.
6
In the pc0 text field, type 300[kPa].
Roller 1
1
In the Physics toolbar, click  Boundaries and choose Roller.
2
Boundary Load 1
1
In the Physics toolbar, click  Boundaries and choose Boundary Load.
2
3
In the Settings window for Boundary Load, locate the Force section.
4
From the Load type list, choose Pressure.
5
In the p text field, type Pressure(para).
The load function goes from 0 to 4*p0 with an unloading/reloading loop.
Materials
Soil Material
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Soil Material in the Label text field.
3
Locate the Material Contents section. In the table, enter the following settings:
Mesh 1
Mapped 1
In the Mesh toolbar, click  Mapped.
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Extremely coarse.
4
Click  Build All.
Study: MCC
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study: MCC in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Stationary
Set up an auxiliary continuation sweep for the para parameter.
1
In the Model Builder window, under Study: MCC click Step 1: Stationary.
2
In the Settings window for Stationary, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
In the Home toolbar, click  Compute.
Results
Void Ratio (MCC)
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Void Ratio (MCC) in the Label text field.
3
Click to expand the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Void Ratio vs. Pressure during the Isotropic Compression Test.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Axis section. Select the Manual axis limits check box.
10
In the x minimum text field, type 95.
11
In the x maximum text field, type 1300.
12
In the y minimum text field, type 0.62.
13
In the y maximum text field, type 0.706.
14
In order to plot the e vs. ln (p) characteristic plot, use a log scale for the x-axis.
15
Select the x-axis log scale check box.
Point Graph 1
1
Right-click Void Ratio (MCC) and choose Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Cam-Clay>solid.epsm1.evoid - Void ratio.
4
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>solid.pm - Pressure - N/m².
5
Locate the x-Axis Data section. From the Unit list, choose kPa.
6
In the Void Ratio (MCC) toolbar, click  Plot.
Annotation 1
1
In the Model Builder window, right-click Void Ratio (MCC) and choose Annotation.
2
In the Settings window for Annotation, locate the Data section.
3
From the Dataset list, choose Study: MCC/Solution 1 (sol1).
4
From the Parameter value (para) list, choose 0.
5
Locate the Annotation section. Select the Allow evaluation of expressions check box.
6
In the Text text field, type p=eval(intop1(solid.pm), kPa) kPa.
7
From the Geometry level list, choose Global.
8
Locate the Position section. In the R text field, type intop1(solid.pm)/1000.
9
In the Z text field, type intop1(solid.epsm1.evoid).
10
Click to expand the Advanced section. In the Expression precision text field, type 3.
11
Locate the Coloring and Style section. From the Anchor point list, choose Lower left.
Annotation 2
1
Right-click Annotation 1 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (para) list, choose 0.2.
Annotation 3
1
Right-click Annotation 2 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (para) list, choose 0.4.
Annotation 4
1
Right-click Annotation 3 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (para) list, choose 0.6.
4
Locate the Coloring and Style section. From the Anchor point list, choose Lower right.
Annotation 5
1
Right-click Annotation 4 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (para) list, choose 1.
4
Locate the Coloring and Style section. From the Anchor point list, choose Lower left.
Point Graph 2
1
In the Model Builder window, under Results>Void Ratio (MCC) right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type solid.epsm1.evoidref-solid.epsm1.lambdaComp*log(solid.epsm1.p/solid.epsm1.pref).
4
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
Void Ratio (MCC)
In the Model Builder window, click Void Ratio (MCC).
Table Annotation 1
1
In the Void Ratio (MCC) toolbar, click  More Plots and choose Table Annotation.
2
In the Settings window for Table Annotation, locate the Data section.
3
From the Source list, choose Local table.
4
5
Locate the Coloring and Style section. Clear the Show point check box.
6
Select the Show frame check box.
7
In the Void Ratio (MCC) toolbar, click  Plot.
Void Ratio (MCC), Numerical Vs. Analytical
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Void Ratio (MCC), Numerical Vs. Analytical in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Void Ratio vs. Pressure during the Isotropic Compression Test.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
Locate the Axis section. Select the x-axis log scale check box.
Point Graph 1
1
Right-click Void Ratio (MCC), Numerical Vs. Analytical and choose Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Cam-Clay>solid.epsm1.evoid - Void ratio.
4
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>solid.pm - Pressure - N/m².
5
Locate the x-Axis Data section. From the Unit list, choose kPa.
6
Click to expand the Legends section. Select the Show legends check box.
7
From the Legends list, choose Manual.
8
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type solid.epsm1.evoidref-(solid.epsm1.lambdaComp-solid.epsm1.kappaSwelling)*log(solid.epsm1.pc/solid.epsm1.pref)-solid.epsm1.kappaSwelling*log(solid.epsm1.p/solid.epsm1.pref).
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
5
Locate the Legends section. In the table, enter the following settings:
6
In the Void Ratio (MCC), Numerical Vs. Analytical toolbar, click  Plot.
Add an Extended Barcelona Basic Material Model with zero suction in order to replicate the behavior shown by the Modified Cam-Clay Model.
Solid Mechanics (solid)
Extended Barcelona Basic Model (BBMx)
1
In the Model Builder window, right-click Modified Cam-Clay Model (MCC) and choose Duplicate.
2
In the Settings window for Elastoplastic Soil Material, type Extended Barcelona Basic Model (BBMx) in the Label text field.
3
Locate the Elastoplastic Soil Material section. From the Material model list, choose Extended Barcelona Basic.
4
In the s text field, type 0.
The common material parameters should be kept the same. The additional material parameters in the BBMx model related to the suction are chosen randomly since the suction will be kept zero throughout the analysis.
Materials
Soil Material (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Soil Material (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Study: MCC
Step 1: Stationary
Disable the BBMx model in the first study.
1
In the Model Builder window, under Study: MCC click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Solid Mechanics (solid)>Extended Barcelona Basic Model (BBMx).
5
Click  Disable.
Add a second study for the BBMx model and disable the MCC model in this study.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study: BBMx
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, type Study: BBMx in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Stationary
1
In the Model Builder window, click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Solid Mechanics (solid)>Modified Cam-Clay Model (MCC).
5
Click  Disable.
6
Locate the Study Extensions section. Select the Auxiliary sweep check box.
7
8
9
In the Home toolbar, click  Compute.
In order to replicate the results of the Modified Cam-Clay model with the Modified Structured Cam-Clay Material Model, set the initial structural strength and the additional void ratio to zero. Also set the plastic potential shape parameter to 2.
Solid Mechanics (solid)
Modified Structured Cam-Clay Model (MSCC)
1
In the Model Builder window, right-click Modified Cam-Clay Model (MCC) and choose Duplicate.
2
In the Settings window for Elastoplastic Soil Material, type Modified Structured Cam-Clay Model (MSCC) in the Label text field.
3
Locate the Elastoplastic Soil Material section. From the Material model list, choose Modified Structured Cam-Clay.
4
From the M list, choose Match to Mohr-Coulomb criterion.
5
From the pbi list, choose User defined. From the ζ list, choose User defined. In the associated text field, type 2.
6
From the Δei list, choose User defined.
The common material parameters should be kept the same as the MCC model. The additional material parameters in the MSCC model are chosen randomly as they will not affect the analysis.
Materials
Soil Material (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Soil Material (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Study: MCC
Step 1: Stationary
Disable the MSCC model in the first and second studies.
1
In the Model Builder window, under Study: MCC click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
In the Physics and variables selection tree, select Component 1 (comp1)>Solid Mechanics (solid)>Modified Structured Cam-Clay Model (MSCC).
4
Click  Disable.
Study: BBMx
Step 1: Stationary
1
In the Model Builder window, under Study: BBMx click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
In the Physics and variables selection tree, select Component 1 (comp1)>Solid Mechanics (solid)>Modified Structured Cam-Clay Model (MSCC).
4
Click  Disable.
Add a third study for the MSCC model and disable the MCC and BBMx models in this study.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study: MSCC
1
In the Model Builder window, click Study 3.
2
In the Settings window for Study, type Study: MSCC in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Stationary
1
In the Model Builder window, click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Solid Mechanics (solid)>Modified Cam-Clay Model (MCC) and Component 1 (comp1)>Solid Mechanics (solid)>Extended Barcelona Basic Model (BBMx).
5
Click  Disable.
6
Locate the Study Extensions section. Select the Auxiliary sweep check box.
7
8
9
In the Home toolbar, click  Compute.
Results
Void Ratio, MCC vs. BBMx vs. MSCC
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Void Ratio, MCC vs. BBMx vs. MSCC in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Void Ratio vs. Pressure during the Isotropic Compression Test.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
9
In order to plot the e vs. ln (p) characteristic plot, use a log scale for the x-axis.
10
Locate the Axis section. Select the x-axis log scale check box.
Point Graph 1
1
Right-click Void Ratio, MCC vs. BBMx vs. MSCC and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: MCC/Solution 1 (sol1).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Cam-Clay>solid.epsm1.evoid - Void ratio.
6
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>solid.pm - Pressure - N/m².
7
Locate the x-Axis Data section. From the Unit list, choose kPa.
8
Locate the Coloring and Style section. From the Color list, choose Red.
9
Find the Line markers subsection. From the Marker list, choose Asterisk.
10
Locate the Legends section. Select the Show legends check box.
11
From the Legends list, choose Manual.
12
Point Graph 2
1
In the Model Builder window, right-click Void Ratio, MCC vs. BBMx vs. MSCC and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: BBMx/Solution 2 (sol2).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Extended Barcelona Basic>solid.epsm2.evoid - Void ratio.
6
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>solid.pm - Pressure - N/m².
7
Locate the x-Axis Data section. From the Unit list, choose kPa.
8
Click to collapse the Coloring and Style section. Click to expand the Coloring and Style section. From the Color list, choose Green.
9
Find the Line markers subsection. From the Marker list, choose Circle.
10
In the Number text field, type 10.
11
Locate the Legends section. Select the Show legends check box.
12
From the Legends list, choose Manual.
13
Point Graph 3
1
Right-click Void Ratio, MCC vs. BBMx vs. MSCC and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: MSCC/Solution 3 (sol3).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Structured Cam-Clay>solid.epsm3.evoid - Void ratio.
6
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>solid.pm - Pressure - N/m².
7
Locate the x-Axis Data section. From the Unit list, choose kPa.
8
Click to collapse the Coloring and Style section. Click to expand the Coloring and Style section. From the Color list, choose Blue.
9
Find the Line markers subsection. From the Marker list, choose Diamond.
10
In the Number text field, type 12.
11
Locate the Legends section. Select the Show legends check box.
12
From the Legends list, choose Manual.
13
14
In the Void Ratio, MCC vs. BBMx vs. MSCC toolbar, click  Plot.
Consolidation Pressure vs. Boundary Load
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Consolidation Pressure vs. Boundary Load in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Consolidation Pressure vs. Boundary Load during the Isotropic Compression Test.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
7
Select the y-axis label check box.
8
In the associated text field, type Consolidation Pressure (kPa).
Point Graph 1
1
Right-click Consolidation Pressure vs. Boundary Load and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: MCC/Solution 1 (sol1).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Cam-Clay>solid.epsm1.pc - Consolidation pressure - Pa.
6
Locate the y-Axis Data section. From the Unit list, choose kPa.
7
Locate the x-Axis Data section. From the Parameter list, choose Expression.
8
In the Expression text field, type Pressure(para).
9
From the Unit list, choose kPa.
10
Locate the Coloring and Style section. From the Color list, choose Red.
11
Find the Line markers subsection. From the Marker list, choose Asterisk.
12
Locate the Legends section. Select the Show legends check box.
13
From the Legends list, choose Manual.
14
Point Graph 2
1
In the Model Builder window, right-click Consolidation Pressure vs. Boundary Load and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: BBMx/Solution 2 (sol2).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Extended Barcelona Basic>solid.epsm2.pcs - Consolidation pressure at current suction - Pa.
6
Locate the y-Axis Data section. From the Unit list, choose kPa.
7
Locate the x-Axis Data section. From the Parameter list, choose Expression.
8
In the Expression text field, type Pressure(para).
9
From the Unit list, choose kPa.
10
Locate the Coloring and Style section. From the Color list, choose Green.
11
Find the Line markers subsection. From the Marker list, choose Circle.
12
In the Number text field, type 10.
13
Locate the Legends section. Select the Show legends check box.
14
From the Legends list, choose Manual.
15
Point Graph 3
1
Right-click Consolidation Pressure vs. Boundary Load and choose Point Graph.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study: MSCC/Solution 3 (sol3).
4
5
Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Structured Cam-Clay>solid.epsm3.pc - Consolidation pressure - Pa.
6
Locate the y-Axis Data section. From the Unit list, choose kPa.
7
Locate the x-Axis Data section. From the Parameter list, choose Expression.
8
In the Expression text field, type Pressure(para).
9
From the Unit list, choose kPa.
10
Locate the Coloring and Style section. From the Color list, choose Blue.
11
Find the Line markers subsection. From the Marker list, choose Diamond.
12
In the Number text field, type 12.
13
Locate the Legends section. Select the Show legends check box.
14
From the Legends list, choose Manual.
15
Consolidation Pressure vs. Boundary Load
1
In the Model Builder window, click Consolidation Pressure vs. Boundary Load.
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
From the Position list, choose Upper left.
4
In the Consolidation Pressure vs. Boundary Load toolbar, click  Plot.
Evaluate the void ratio at the final state for all three soil models.
Final Void Ratio
1
In the Results toolbar, click  Evaluation Group.
2
In the Settings window for Evaluation Group, type Final Void Ratio in the Label text field.
3
Locate the Data section. From the Parameter selection (para) list, choose Last.
Point Evaluation 1
1
In the Final Void Ratio toolbar, click  Point Evaluation.
2
3
In the Settings window for Point Evaluation, click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Soil material properties>Modified Cam-Clay>solid.epsm1.evoid - Void ratio.
4
Locate the Expressions section. In the table, enter the following settings:
Point Evaluation 2
1
Right-click Point Evaluation 1 and choose Duplicate.
2
In the Settings window for Point Evaluation, locate the Data section.
3
From the Dataset list, choose Study: BBMx/Solution 2 (sol2).
4
From the Parameter selection (para) list, choose Last.
5
Locate the Expressions section. In the table, enter the following settings:
Point Evaluation 3
1
Right-click Point Evaluation 2 and choose Duplicate.
2
In the Settings window for Point Evaluation, locate the Data section.
3
From the Dataset list, choose Study: MSCC/Solution 3 (sol3).
4
Locate the Expressions section. In the table, enter the following settings:
5
In the Final Void Ratio toolbar, click  Evaluate.