

Electric Shielding Comparison

Introduction

The electric shielding boundary condition is meant to approximate a thin layer of highly conductive material that provides an additional current path tangential to a boundary. This example compares the electric shielding boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Figure 1: A square 2D domain of conductive material, with a circular inclusion. The wall of the inclusion are made of a material with higher conductivity.

Model Definition

The situation being modeled is shown in Figure 1. A 1 m square two-dimensional domain of conductive material has a DC voltage difference applied to it. Within the square domain, there is a circular inclusion of radius 0.25 m. The 0.01 m thick walls of this inclusion are modeled two ways, first using a full fidelity model that includes the thickness of the walls, and also using the electric shielding boundary condition. The inside of the inclusion has the same properties as the bulk.

The location of the electric shielding condition is at the centerline, midway between the inner and outer radii of the full fidelity model. Note that, when using the electric shielding condition, the total volume of the surrounding material is slightly larger, since the thickness of the wall is not being explicitly modeled. The conductivity of the wall of the inclusion is varied.

Results and Discussion

The voltage distribution and the electric field strength is plotted in Figure 2 for the case where the electric conductivity is one thousand times greater in the wall of the inclusion than in the bulk. This represents a thin walled object that allows significant current flow along its surface, that is, it shields whatever is inside the inclusion from the electric fields and current flow. The current can be observed to flow toward the inclusion, and then along the surface. The solutions for the full fidelity and electric shielding model agree well for the cases where the conductivity is greater than the surrounding medium.

Figure 2: Isolines of the voltage field, arrow plot of the current flow, and a grayscale plot of the electric field for the case of a thin layer of material that has high conductivity. The full fidelity (left) and electric shielding (right) solutions are almost identical.

Figure 3 shows the case where the electric conductivity in the wall of the inclusion is only ten times greater than the surroundings. The electric shielding condition still agrees well with the full fidelity model.

Figure 3: For the case of a thin layer of material that has conductivity ten times greater than the surrounding material.

Figure 4 shows the case where the electric conductivity in the wall of the inclusion is ten times less than the surroundings. The electric shielding condition no longer agrees with the full fidelity model. Although an additional conduction path has been added tangential to the boundary, the magnitude of this conduction path is less than in the surrounding material, thus it does not noticeably alter the current flow. The electric shielding boundary condition also does not impede the current flow normal to the boundary, which is the case, as can be seen in the full fidelity model. The Contact Impedance boundary condition would be more appropriate for this case.

The electric shielding boundary condition can be used in cases where the thickness of the boundary being approximated is much smaller than the characteristic size of the model domain, and when the conductivity of the layer is greater than the surrounding medium.

When this boundary condition can be used, the resulting mesh size is much smaller, saving solution time and memory.

sigma_2(1)=0.1 S/m Surface: Electric field norm (V/m) Contour: Electric potential (V)

Figure 4: For the case of a thin layer of material that has conductivity ten times less than the surrounding material. The solutions do not agree for this case.

Application Library path: ACDC Module/Resistive Devices/ electric_shielding_comparison

Modeling Instructions

From the File menu, choose New.

NEW

In the **New** window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **9** 2D.
- 2 In the Select Physics tree, select AC/DC>Electric Fields and Currents>Electric Currents (ec).

- 3 Click Add.
- 4 Click 🔿 Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click 🗹 Done.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
sigma_1	1[S/m]	I S/m	Conductivity, material 1
sigma_2	1[S/m]	I S/m	Conductivity, material 2

GEOMETRY I

Square 1 (sq1)

- I In the **Geometry** toolbar, click **Square**.
- 2 In the Settings window for Square, locate the Position section.
- **3** In the **x** text field, type **0.05**.

Square 2 (sq2)

- I In the **Geometry** toolbar, click **Square**.
- 2 In the Settings window for Square, locate the Position section.
- 3 In the x text field, type -1.05.

Circle 1 (c1)

- I In the **Geometry** toolbar, click 🕑 **Circle**.
- 2 In the Settings window for Circle, locate the Size and Shape section.
- 3 In the Radius text field, type 0.245.
- 4 Locate the **Position** section. In the **x** text field, type 0.55.
- **5** In the **y** text field, type **0.5**.

Circle 2 (c2)

I In the **Geometry** toolbar, click \bigcirc **Circle**.

- 2 In the Settings window for Circle, locate the Size and Shape section.
- 3 In the Radius text field, type 0.25.
- 4 Locate the **Position** section. In the **x** text field, type -0.55.
- **5** In the **y** text field, type 0.5.
- 6 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)		
Layer 1	0.01		

Form Union (fin)

I In the Geometry toolbar, click 🟢 Build All.

The geometry on the left side describes the full fidelity model. The geometry on the right side replaces the thin layer with a boundary in order to use the **Electric Shielding** feature.

Create a set of selections for use before setting up the physics. First, create a selection for the wall of the inclusion.

DEFINITIONS

Full fidelity

I In the Definitions toolbar, click 🖣 Explicit.

2 Select Domains 2–5 only.

3 In the Settings window for Explicit, type Full fidelity in the Label text field.

Next, add a selection for the electric shielding boundaries.

Electric shielding

- I In the Definitions toolbar, click 🐂 Explicit.
- 2 In the Settings window for Explicit, locate the Input Entities section.
- **3** From the **Geometric entity level** list, choose **Boundary**.
- **4** Select Boundaries 21–24 only.

5 In the **Label** text field, type Electric shielding.

Bulk

I In the **Definitions** toolbar, click **here Complement**.

2 In the Settings window for Complement, locate the Input Entities section.

3 Under Selections to invert, click + Add.

4 In the Add dialog box, select Full fidelity in the Selections to invert list.

5 Click OK.

6 In the Settings window for Complement, type Bulk in the Label text field.

ELECTRIC CURRENTS (EC)

Ground I

I In the Model Builder window, under Component I (compl) right-click Electric Currents (ec) and choose Ground.

2 Select Boundary 2 only.

Terminal I

- I In the Physics toolbar, click Boundaries and choose Terminal.
- 2 Select Boundary 11 only.

- 3 In the Settings window for Terminal, locate the Terminal section.
- 4 From the Terminal type list, choose Voltage.

Terminal 2

I In the **Physics** toolbar, click — **Boundaries** and choose **Terminal**.

2 Select Boundary 3 only.

- 3 In the Settings window for Terminal, locate the Terminal section.
- 4 From the Terminal type list, choose Voltage.

Electric Shielding 1

- I In the Physics toolbar, click Boundaries and choose Electric Shielding.
- 2 In the Settings window for Electric Shielding, locate the Boundary Selection section.
- **3** From the Selection list, choose Electric shielding.

MATERIALS

Material I (mat1)

- I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Geometric Entity Selection section.
- **3** From the **Selection** list, choose **Bulk**.

4 Locate the **Material Contents** section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	sigma_1	S/m	Basic
Relative permittivity	epsilonr_iso ; epsilonrii = epsilonr_iso, epsilonrij = 0	1	I	Basic

Material 2 (mat2)

- I Right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Geometric Entity Selection section.
- **3** From the **Selection** list, choose **Full fidelity**.
- **4** Locate the **Material Contents** section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	sigma_2	S/m	Basic
Relative permittivity	epsilonr_iso ; epsilonrii = epsilonr_iso, epsilonrij = 0	1	I	Basic

Material 3 (mat3)

- I Right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Geometric Entity Selection section.
- **3** From the **Geometric entity level** list, choose **Boundary**.
- 4 From the Selection list, choose Electric shielding.

5 Locate the **Material Contents** section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Relative permittivity	epsilonr_iso ; epsilonrii = epsilonr_iso, epsilonrij = 0	1	I	Basic
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	sigma_2	S/m	Basic

MESH I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Build All.

STUDY I

Parametric Sweep

- I In the Study toolbar, click **Parametric Sweep**.
- 2 In the Settings window for Parametric Sweep, locate the Study Settings section.

3 Click + Add.

4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
sigma_2 (Conductivity, material 2)	1e-1 1e1 1e3	S/m

5 In the **Study** toolbar, click **= Compute**.

RESULTS

Study I/Solution I (soll)

Begin the result analysis by excluding the interior of the wall from the selection. The walls interior is not of interest in this comparison.

I In the Model Builder window, expand the Results>Datasets node, then click Study I/ Solution I (soll).

Selection

- I In the **Results** toolbar, click 🐐 **Attributes** and choose **Selection**.
- 2 In the Settings window for Selection, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Domain.
- 4 From the Selection list, choose Bulk.

The default plot shows the surface plot of the electric potential. Change the expression to show the norm of the electric field.

Surface 1

- I In the Model Builder window, expand the Results>Electric Potential (ec) node, then click Surface I.
- 2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)>Electric Currents> Electric>ec.normE - Electric field norm - V/m.
- 3 Locate the Coloring and Style section. From the Color table list, choose GrayPrint.
- 4 Clear the **Color legend** check box.
- **5** Select the **Reverse color table** check box.

Electric Potential (ec)

Next, add a contour plot showing the electric potential.

Contour I

In the Model Builder window, right-click Electric Potential (ec) and choose Contour.

Color Expression 1

- I In the Model Builder window, right-click Contour I and choose Color Expression.
- In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Electric Currents >Currents and charge>ec.normJ Current density norm A/m².
- **3** Locate the **Coloring and Style** section. From the **Color table** list, choose **ThermalEquidistant**.

Electric Potential (ec)

Then, add an arrow plot of the electric field.

Arrow Surface 1

- I In the Model Builder window, right-click Electric Potential (ec) and choose Arrow Surface.
- 2 In the Settings window for Arrow Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Electric Currents>Electric>ec.Ex,ec.Ey Electric field.

Color Expression 1

- I Right-click Arrow Surface I and choose Color Expression.
- In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Electric Currents >Currents and charge>ec.normJ Current density norm A/m².
- **3** Locate the **Coloring and Style** section. From the **Color table** list, choose **ThermalEquidistant**.
- 4 Clear the **Color legend** check box.
- 5 In the Electric Potential (ec) toolbar, click 🗿 Plot.
- 6 Click the 200m Extents button in the Graphics toolbar.
 Compare the resulting plot with Figure 2.

Electric Potential (ec)

- I In the Model Builder window, click Electric Potential (ec).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Parameter value (sigma_2 (S/m)) list, choose 10.

4 In the **Electric Potential (ec)** toolbar, click **O** Plot.

This should look like Figure 3.

Finish by reproducing Figure 4.

- 5 From the Parameter value (sigma_2 (S/m)) list, choose 0.1.
- 6 In the Electric Potential (ec) toolbar, click 💽 Plot.