References
3. A. Akerberg, CFD analyses of the gas flow inside the vessel of a hot isostatic press, Master of Science Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2012.
4. M.A. Trebble and P.R. Bishnoi, “Accuracy and consistency comparisons of ten cubic equations of state for polar and non-polar compounds”, Fluid Phase Equilibria, vol. 29, pp. 465–474, 1986.
5. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill, international edition, 2007.
6. M.C. Clapeyron, “Mémoire sur la puissance motrice de la chaleur,” Journal de l’École polytechnique, vol. 23, pp. 153–190, 1834 (in French).
7. D.Y. Peng and D. Robinson, “A new two-constant equation of state,” Industrial and Engineering Chemistry: Fundamentals, vol. 15, pp. 59–64, 1976.
8. C.H. Twu, J.E. Coon, and J.R. Cunningham, “A new generalized alpha function for a cubic equation of state, Part 1, Peng-Robinson equation,” Fluid Phase Equilibria, vol. 105, pp. 49–59, 1995.
9. O. Redlich and J.N.S. Kwong, “On the thermodynamics of solutions an equation of state, fugacities of gaseous solutions,” Chemical Reviews, vol. 44, no. 1, pp. 233–244, 1949.
10. G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chemical Engineering Science, vol. 27, no. 6, pp. 1197–1203, 1972.
11. M.S. Graboski and T.E. Daubert, “A modified Soave equation of state for phase equilibrium calculations, 3, systems containing hydrogen,” Industrial & Engineering Chemistry Process Design and Development, vol. 18, no. 2, pp. 300–306, 1979.
12. J. R. Cooper, “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam”, The International Association for the Properties of Water and Steam, IAPWS R7-97, 2012.
13. K. Watanabe, “Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam”, The International Association for the Properties of Water and Steam, Kyoto, Japan, Sep. 2004.
14. F. Marsik, “Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamics Properties of Water and Steam”, The International Association for the Properties of Water and Steam, Santorini, Greece, July 2005.
15. K.C. Chao and J.D. Seader, “A general correlation of vapor-liquid equilibria in hydrocarbon mixtures,” AIChE Journal, vol. 7, no. 4, pp. 598–605, 1961.
16. J.H. Hildebrand and R.L. Scott, “The solubility of non-electrolytes,” Journal of Physical Chemistry, vol. 55, no. 4, pp. 619–620, 1951.
17. H.G. Grayson and C.W. Streed, “Vapor-liquid equilibria for high temperature, high pressure hydrogen-hydrocarbon systems,” 6th World Petroleum Congress, 19–26 June, Frankfurt am Main, Germany, IV, pp. 169–180, 1963.
18. J.H. Hildebrand, J.M. Prausnitz, and R.L. Scott. Regular and Related Solutions, Van Nostrand Reinhold Co., 1970.
19. G.M. Wilson, “Vapor-liquid equilibrium. xi. a new expression for the excess free energy of mixing,” Journal of the American Chemical Society, 86:127–130, 1964.
20. H. Renon and J.M. Prausnitz, “Local compositions in thermodynamic excess functions for liquid mixtures,” AIChE Journal, vol. 14, no. 1, pp. 135–144, 1968.
21. D.S. Abrams and J.M. Prausnitz, “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems,” AIChE Journal, vol. 21, no. 1, pp. 116–128, 1975.
22. A. Fredenslund, R.L. Jones, and J.M. Prausnitz, “Group-contribution estimation of activity coefficients in nonideal liquid mixtures,” AIChE Journal, vol. 21, no. 6, pp. 1086–1099, 1975.
23. S. Skjold-Joergensen, B. Kolbe, J. Gmehling, and P. Rasmussen, “Vapor-liquid equilibria by unifac group contribution. revision and extension,” Industrial & Engineering Chemistry Process Design and Development, vol. 18, no. 4, pp. 714–722, 1979.
24. J. Gmehling, P. Rasmussen, and A. Fredenslund, “Vapor-liquid equilibria by unifac group contribution. revision and extension. 2,” Industrial & Engineering Chemistry Process Design and Development, vol. 21, no. 1, pp. 118–127, 1982.
25. E.A. Macedo, U. Weidlich, J. Gmehling, and P. Rasmussen, “Vapor-liquid equilibria by unifac groupcontribution. revision and extension. 3,” Industrial & Engineering Chemistry Process Design and Development, vol. 22, no. 4, pp. 676–678, 1983.
26. D. Tiegs, J. Gmehling, P. Rasmussen P, and A. Fredenslund, “Vapor-liquid equilibria by unifac group contribution. 4. revision and extension,” Industrial & Engineering Chemistry Process Design and Development, vol. 26, no. 1, pp. 159–161, 1987.
27. H.K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller, and J. Gmehling, “Vapor-liquid equilibria by unifac group-contribution. 5. revision and extension,” Industrial & Engineering Chemistry Process Design and Development, vol. 30, no. 10, pp. 2352–2355, 1991.
28. R. Wittig, J. Lohmann, and J. Gmehling, “Vapor-liquid equilibria by unifac group contribution. 6. revision and extension,” Industrial & Engineering Chemistry Process Design and Development, vol. 42, no. 1, pp. 183–188, 2003.
29. K. Balslev and J. Abildskov, “Unifac parameters for four new groups,” Industrial & Engineering Chemistry Research, vol. 41, pp. 2047–2057, 2002.
30. R.W. Hankinson and G.H. Thomson, “A new correlation for saturated densities of liquid and their mixtures,” AIChE Journal, vol. 25, no. 4, pp. 653–663, 1979.
31. H.G. Rackett, “Equation of state for saturated liquids,” Journal of Chemical and Engineering Data, vol. 15, no. 4, pp. 514–517, 1970.
32. L.I. Stiel and G. Thodos, “The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions,” AIChE Journal, vol. 10, no. 1, pp. 26–30, 1964.
33. M. Yorizane, S. Yoshimura, H. Masuoka, and H. Yoshida, “Thermal conductivities of binary gas mixtures at high pressures: nitrogen-oxygen, nitrogen-argon, carbon dioxide-argon, and carbon dioxide-methane,” Industrial & Engineering Chemistry Fundamentals, vol. 22, no. 4, pp. 458–463, 1983.
34. A.L. Lindsay and L.A. Bromley, “Thermal conductivity of gas mixtures,” Industrial and Engineering Chemistry, vol. 42, no. 8, pp. 1508–1511, 1950.
35. A. Wassiljewa, “Heat conduction in gas mixtures,” Physikalische Zeitschrift, vol. 5, no. 22, pp. 737–742, 1904.
36. J.R. Cooper, “Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance”, The International Association for the Properties of Water and Steam, Berlin, Germany, Sep. 2008.
37. C.R. Wilke, “A viscosity equation for gas mixtures,” The Journal of Chemical Physics, vol. 18, no. 4, pp. 517– 520, 1950.
38. R.S. Brokaw, “Approximate formulas for the viscosity and thermal conductivity of gas mixtures. ii,” The Journal of Chemical Physics, vol. 42, no. 4), pp. 1140–1147, 1965.
39. J.E. Lennard-Jones, “On the determination of molecular fields 1. from the variation of the viscosity of a gas with temperature,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 441–462, 1924.
40. W.H. Stockmayer, “Second virial coefficients of polar gases,” The Journal of Chemical Physics, vol. 9, pp. 398–402, 1941.
41. F.M. Mourits and F.H.A. Rummens, “A critical evaluation of Lennard-Jones and Stockmayer potential parameters and of some correlation methods,” Canadian Journal of Chemical Engineering, vol. 55, pp. 3007–3020, 1977.
42. J.A. Jossi, L.I. Stiel, and G. Thodos, “The viscosity of pure substances in the dense gaseous and liquid phases,” AIChE Journal, vol. 8, no. 1, pp. 59–63, 1962.
43. K.S. Pedersen and P.L. Christensen, “Phase Behavior of Petroleum Reservoir Fluids,” CRC Press/Taylor & Francis Group, 2007.
44. K.S. Pedersen, A. Fredenslund, P.L. Christensen, and P. Thomassen, “Viscosity of crude oils,” Chemical Engineering Science, vol. 39, no. 6, pp. 1011–1016, 1984.
45. H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, “The viscosity and thermal conductivity coefficients for dense gaseous and liquid methane,” Journal of Physical Chemistry, vol. 6, no. 2, pp. 597–609, 1977.
46. K.S. Pedersen and A. Fredenslund, “An improved corresponding states model for the prediction of oil and gas viscosities and thermal conductivities,” Chemical Engineering Science, vol. 42, no. 1, pp. 182–186, 1987.
47. R.D. McCarty, “A modified Benedict-Webb-Rubin equation of state for methane using recent experimental data,” Cryogenics, pp. 276–280, May 1974.
48. S. Murad and K.E. Gubbins, “Corresponding states correlation for thermal conductivity of dense fluids,” Chemical Engineering Science, 32(5):499–505, 1977.
49. J.R. Cooper, “Revised Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance”, The International Association for the Properties of Water and Steam, Berlin, Germany, Sep. 2008.
50. K. Daucik, “Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance”, The International Association for the Properties of Water and Steam, Plzen, Czech Republic, Sep. 2011.
51. J. Gabitto and M. Barrufet, “Experimental and theoretical determination of heavy oil viscosity under reservoir conditions.”, Technical reports, Office of Fossile Energy. USDOE Office of Fossil Energy, United States, 2002.
52. A. Missenard, “Conductivité thermique des liquides organiques d’une serie ou d’un ‘groupe de liquides’,” Revue Générale de Thermique, vol. 101, no. 5, pp. 649–660, 1970 (in French).
53. R.L. Rowley, G.L. White, and M. Chiu, “Ternary liquid mixture thermal conductivities,” Chemical Engineering Science, vol. 43, no. 2, pp. 361–371, 1988.
54. R.L. Rowley, “A local composition model for multicomponent liquid mixture thermal conductivities,” Chemical Engineering Science, vol. 37, no. 6, pp. 897–904, 1982.
55. W.D. Niven, “The Scientific Papers of James Clerk Maxwell”, Cambridge University Press, 1890.
56. J.C. Maxwell, “On the dynamical theory of gases,” Philosophical Transactions of the Royal Society of London, vol. 157, pp. 49–88, 1867.
57. J. Stefan, “Uber das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasgemengen,” Sitzungsbrichte der Kaiserlichen Akademie der Wissenschaften Wien, 2te Abteilung a, vol. 63, pp. 63–124, 1871.
58. R. Taylor and R. Krishna, “Multicomponent Mass Transfer,” Wiley-Interscience, 1993.
59. E.N. Fuller, P.D. Schettler and J.C. Giddings, “A new method for prediction of binary gas-phase diffusion coefficients,” Industrial and Engineering Chemistry, vol. 5, pp. 19–27, 1966.
60. E.N. Fuller, K. Ensley and J.C. Giddings, “Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections,” The Journal of Physical Chemistry, vol. 73, no. 11, pp. 3679–3685, 1969.
61. C.R. Wilke and C.Y. Lee, “Estimation of diffusion coefficients for gases and vapors,” Industrial and Engineering Chemistry, vol. 47, no. 6, pp. 1253–1257, 1955.
62. P.D. Neufeld, A.R. Janzen and R.A. Aziz, “Empirical equations to calculate 16 of the transport collision integrals for the Lennard-Jones (12-6) potential,” The Journal of Chemical Physics, vol. 57, pp. 1100–1102, 1972.
63. C.R. Wilke and P. Chang, “Correlation of diffusion coefficients in dilute solutions,” AICHE Journal, vol. 1, no. 2, pp. 264–270, 1972.
64. W. Hayduk and H. Laudie, “Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions,” AICHE Journal, vol. 20, no. 3, pp. 611–615, 1974.
65. H.A. Kooijman, “A modification of the Stokes-Einstein equation for diffusivities in dilute binary mixture,” Industrial and Engineering Chemistry Research, vol. 41, pp. 3326–3328, 2002.
66. M.T.Tyn and W.F Calus. Diffusion Coefficients in dilute binary mixtures. Journal of Chemical and Engineering Data, vol. 20, no. 1, pp. 106–109, 1975.
67. W.Hayduk and B.S.Minhas, “Correlation for prediction of molecular diffusivities in liquids,” Canadian Journal of Chemical Engineering, vol. 60, no. 2), pp. 295–299, 1983.
68. M.A. Siddiqi and K. Lucas, “Correlations for prediction of diffusion in liquids”, The Canadian Journal of Chemical Engineering, vol. 64, pp. 839–843, 1986.
69. C. Erkey, J.B. Rodden and A. Akgerman, “A correlation for predicting diffusion coefficients in alkanes”, The Canadian Journal of Chemical Engineering, vol. 68, pp. 661–665, 1990.
70. A. Bondi, “Van der waals volumes and radii”, Journal of Physical Chemistry, vol. 68, no. 3, pp. 441-451, 1964.
71. J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, “The Molecular Theory of Gases and Liquids”, Wiley-Interscience, 1964.
72. A. Vignes, “Diffusion in Binary Solutions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, pp. 189–199, 1966.
73. J.A. Wesselingh and R. Krishna, “Mass Transfer”, Ellis Horwood Ltd, 1990, ISBN: 0-13-553165-9.
74. H.A. Kooijman and R. Taylor, “Estimation of diffusion coefficients in multicomponent liquid systems”, Industrial and Engineering Chemistry Research, vol. 30, pp. 1217–1222, 1991.
75. J.A. Wesselingh and A.M. Bollen, “Multicomponent diffusivities from the free volume theory”, Chemical Engineering Research and Design, 75(6):590–602, 1997.
76. R. Krishna and J.M. van Baten, “The Darken relation for multicomponent diffusion in liquid mixtures of linear alkanes: An investigation using molecular dynamics (MD) simulations,” Industrial and Engineering Chemistry Research, vol. 44, pp. 6939–6947, 2005.
77. P.H. Winterfield, L.E. Scriven, and H.T. Davis, “An approximate theory of interfacial tension of multicomponent systems: Applications binary liquid-vapor tensions,” AIChE Journal, vol. 24, no. 6, pp. 1010–1014, 1978.
78. Selection of a thermodynamic model, Available online at http://people.clarkson.edu/~wwilcox/Design/thermodl.htm.
79. E.C. Carlson, “Don’t Gamble With Physical Properties For Simulation”, Chemical Engineering Progress, vol. 92, no. 10, pp. 35–46, 1996.