The legendre(l,x) function evaluates a Legendre polynomial
Pl(x) of integer degree
l:
The legendre(l,m,x) function evaluates an associated Legendre polynomial
of integer degree
l and order
m:
The degree l must be a nonnegative constant integer, and the order
m must be a constant integer. For
,
legendre(l,m,x) returns zero.
The sphericaly(l,m,theta,phi) function evaluates the spherical harmonic function
:
where Pl is the Legendre polynomial of degree
l. The degree
l must be a nonnegative constant integer, and the order
m must be a constant integer. For
,
sphericaly(l,m,theta,phi) returns zero.
The sphericalyr(l,m,theta,phi) function evaluates the real spherical harmonic function
:
The degree l must be a nonnegative constant integer, and the order
m must be a constant integer. For
,
sphericalyr(l,m,theta,phi) returns zero. The arguments
θ and
must be real.
The zernike(m,n,r,phi) function evaluates a Zernike polynomial
defined in the following way:
and is the normalization factor. The n argument is required to be a nonnegative constant integer, and the
m argument is required to be a constant integer satisfying
. The
r and
arguments are required to be real.