References for the Pressure Acoustics Branch
1. D. Givoli and B. Neta, “High-order Non-reflecting Boundary Scheme for Time-dependent Waves,” J. Comput. Phys., vol. 186, pp. 24–46, 2004.
2. A. Bayliss, M. Gunzburger, and E. Turkel, “Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions,” SIAM J. Appl. Math., vol. 42, no. 2, pp. 430–451, 1982.
3. A.B. Bauer, “Impedance Theory and Measurements on Porous Acoustic Liners,” J. Aircr., vol. 14, pp. 720–728, 1977.
4. S. Temkin, Elements of Acoustics, Acoustical Society of America, 2001.
5. A.D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, Acoustical Society of America (second print), 1991.
6. D.T. Blackstock, Fundamentals of Physical Acoustics, John Wiley & Sons, 2000.
7. P.M. Morse and K.U. Ignard, Theoretical Acoustics, Princeton University Press, 1986.
8. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Volume 6, Butterworth-Heinemann, 2003.
9. J.F. Allard and N. Atalla, Propagation of Sound in Porous Media, Modeling Sound Absorbing Materials, 2nd Edition, John Wiley & Sons, 2009.
10. R. Panneton, “Comment on the Limp Frame Equivalent Fluid Model for Porous Media,” J. Acoust. Soc. Am., vol. 122, no. 6, pp. EL217–EL222, 2007.
11. M. Sadouki, M. Fellah, Z.E. Fellah, E. Ogam, N. Sebaa, F.G. Mitri, and C. Depollier, “Measuring static thermal permeability and inertial factor of rigid porous materials,” J. Acoust. Soc. Am., vol. 130, p. 2627, 2011.
12. X. Olny and R. Panneton, “Acoustical determination of the parameters governing thermal dissipation in porous media,” J. Acoust. Soc. Am., vol. 123, 814–824, 2008.
13. D. Lafarge, P. Lemarinier, J.-F. Allard, and V. Tarnow, “Dynamic compressibility of air in porous structures at audible frequencies,” J. Acoust. Soc. Am., vol. 102, no. 4, pp. 1994–2006, 1997.
14. S.R. Pride, F.D. Morgan, and A.F. Gangi, “Drag forces of porous-medium acoustics,” Phys. Rev. B, vol. 47, pp. 4964–4978, 1993.
15. C. Zwikker and C. W. Kosten, Sound Absorbing Materials, Elsevier Publishing, New York, 1949.
16. K. Attenborough, “On the acoustic slow wave in air filled granular media,” J. Acoust. Soc. Am., vol. 81, no. 1, pp. 93–102, 1987.
17. K. Wilson, “Relaxation-matched modeling of propagation through porous media, including fractal pore structure,” J. Acoust. Soc. Am., vol. 94, no. 2, pp. 1136–1145, 1993.
18. T.J. Cox and P. D’Antonio, Acoustic Absorbers and Diffusers, Taylor and Francis, 2nd ed., 2009. http://apmr.matelys.com/index.html.
19. R. Kampinga, Viscothermal Acoustics Using Finite Elements, Analysis Tools for Engineers, PhD thesis, University of Tweente, The Netherlands, 2010.
20. M.R. Stinson, “The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shapes,” J. Acoust. Soc. Am., vol. 89, pp. 550, 1990.
21. H. Tijdeman, “On the propagation of sound waves in cylindrical tubes,” J. Sound Vib., vol. 39, pp 1, 1975.
22. Y. Miki, “Acoustical properties of porous materials - modifications of Delany-Bazley models,” J. Acoust. Soc. Jpn (E), vol. 11, no. 1, 1990.
23. D. Oliva and V. Hongisto, “Sound absorption of porous materials – Accuracy of prediction methods,” Appl. Acoust., vol. 74, issue 12, pp. 1473–1479, 2013.
24. K. L Williams, “An effective density fluid model for acoustic propagation in sediments derived from Biot theory,” J. Acoust. Soc. Am., vol. 110, pp. 2276, 2001.
25. A. B. Wood, A Textbook of Sound, The Macmillan company, New York, 1941.
26. W. M. Leach, Jr, Electroacoustics & Audio Amplifier Design, Kendall Hunt publishing company, 2010.
27. B. Håkansson, P. Carlsson, and A. Tjellström, “The mechanical point impedance of the human head, with and without skin penetration”, J. Acoust. Soc. Am., vol. 80, issue 4, pp.1065–1075 (1986).
28. H. Hudde and A. Engel, “Measuring and modeling basic properties of the human middle ear and ear canal. Part I: Model structure and measure techniques”, ACOUSTICA acta acoustica, vol. 84, pp. 720–738 (1998).
29. H. Hudde and A. Engel, “Measuring and modeling basic properties of the human middle ear and ear canal. Part II: Ear canal, middle ear cavities, eardrum, and ossicles”, ACOUSTICA acta acoustica, vol 84, pp. 894–913 (1998).
30. H. Hudde and A. Engel, “Measuring and modeling basic properties of the human middle ear and ear canal. Part III: Eardrum impedances, transfer functions and model calculations”, ACOUSTICA acta acoustica, vol. 84, pp. 1091–1109 (1998).
31. D.H. Keefe, “Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions”, J. Acoust. Soc. Am., vol. 75, issue 1, pp. 58–62 (1984).
32. H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular pipe”, Phys. Rev., vol. 73, no. 4, pp. 383–406 (1948).
33. R. Courant, K.O. Friedrichs, and H. Lewy, “On the Partial Difference Equations of Mathematical Physics,” IBM Journal, vol. 11, pp. 215–234, 1956.
34. Y. Saad, “A Flexible Inner-outer Preconditioned GMRES Algorithm,” SIAM J. Sci. Statist. Comput., vol. 14, pp. 461–469, 1993.
35. M.R. Stinson and E.A.G. Shaw, “Acoustic impedance of small, circular orifices in thin plates,” J. Acoust. Soc. Am., vol. 77, issue 6, pp. 2039–2042, 1985.
36. M.A. Temiz, J. Tournadre, and I.L. Arteaga, “Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices,” J. Sound and Vibration, vol. 366, pp. 418–428, 2016.
37. T. Elnady, “Modelling and characterization of perforates in lined ducts and mufflers,” PhD Thesis, The Royal Institute of Technology (KTH), 2004.
38. J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys., vol. 114, issue 2, pp. 185–200, 1994.
39. B. Kaltenbacher, M. Kaltenbacher, and I. Sim, “A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics,” J. Comp. Phys., vol. 235, pp. 407–422, 2013.
40. F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM J. Sci. Comput., vol. 19, number 6, pp. 2061–2090, 1998.
41. M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, 3rd edn., Springer: Berlin, 2015.
42. M.F. Hamilton and D.T. Blackstock, eds., Nonlinear Acoustics, Academic Press, San Diego, CA, 1998.
43. H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, and D.M. Hester, “Atmospheric absorption of sound: Further developments,” J. Acoust. Soc. Am., vol. 97, pp. 680-683, 1995; “Erratum,” J. Acoust. Soc. Am., vol. 99, p. 1259. 1996.
44. ANSI S1.26-2014 (supersedes ANSI S1.26-1995) “American National Standard method for calculation of the absorption of sound by the atmosphere” (Acoustical Society of America, New York, 2014).
45. National Physics Lab (NPL), “NPL Acoustics: Calculation of absorption of sound by the atmosphere,” http://resource.npl.co.uk/acoustics/techguides/absorption/
46. R.E. Francois and G.R. Garrison, “Sound absorption based on ocean measurements: Part I: Pure water and magnesium sulfate contributions,” J. Acoust. Soc. Am., vol. 72, pp. 896–907, 1982.
47. R.E. Francois and G.R. Garrison, “Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption,” J. Acoust. Soc. Am., vol. 72, pp. 1879–1890, 1982.
48. M.A. Ainslie and J.G. McColm, “A simplified formula for viscous and chemical absorption in sea water,” J. Acoust. Soc. Am., vol. 103, pp. 1671–1672, 1998.
49. F. H. Fisher and V.P. Simmons, “Sound absorption in seawater,” J. Acoust. Soc. Am., vol. 62, pp. 558–564, 1977.
50. National Physics Lab (NPL), “Calculation of absorption of sound in seawater,” http://resource.npl.co.uk/acoustics/techguides/seaabsorption/
51. M.F. Hamilton and D.T. Blackstock, “On the coefficient of nonlinearity in nonlinear acoustics”, J. Acoust. Soc. Am., vol. 83, pp. 74–77, 1988.
52. V. Nikolic, On Certain Mathematical Aspects of Nonlinear Acoustics: Well-Posedness, Interface Coupling, and Shape Optimization, PhD thesis, University of Klagenfurt (2015).
53. M. Berggren, A. Bernland, and D. Noreland, “Acoustic Boundary Layers as Boundary Condition,” J. Comp. Phys., vol. 371, pp. 633-650, 2018.
54. J. S. Bach and H. Bruus, “Theory for Acoustics with Viscous Boundary Layers and Streaming in Curved Elastic Cavities,” J. Acoust. Soc. Am., vol. 144, pp. 766-784 2018.
55. IOC, SCOR and IAPSO, 2010: The international thermodynamics equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp.
56. Horoshenkov, Hurrell, and Groby, “A three-parameter analytical model for the acoustical properties of porous media,” J. Acoust. Soc. Am., vol. 145 (4), pp. 2512-2517, 2019
57. Horoshenkov, Groby, and Dazel, “Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths,” J. Acoust. Soc. Am., vol. 139 (5), pp. 2463-2474, 2016.
58. Horoshenkov, Attenborough, and Chandler-Wilde, “Padé approximants for the acoustical properties of rigid frame porous media with pore size distributions,” J. Acoust. Soc. Am., vol. 104, pp. 1198-1209, 1998.
59. Horoshenkov, Hurrell, and Groby, “Erratum: A three-parameter analytical model for the acoustical properties of porous media [J. Acoust. Soc. Am. 145(4), 2512–2517 (2019)]”, J. Acoust. Soc. Am., vol 147 (1), p. 146, 2020
60. Horoshenkov, Groby, and Dazel, “Erratum: Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths [J. Acoust. Soc. Am. 139(5), 2463–2474 (2016)]”, J. Acoust. Soc. Am., vol 147 (1), p. 205, 2020