
INTRODUCTION TO

LiveLink™ for MATLAB®

C o n t a c t I n f o r m a t i o n
Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact

Technical Support, or search for an address and phone number. You can also visit the Worldwide

Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access page at

www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/community

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/video

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020010

I n t r o d u c t i o n t o L i v e L i n k™ f o r M A T L A B ®

© 2009–2019 COMSOL

Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932;
8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; and 10,019,544. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the
license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server,
and LiveLink are either registered trademarks or trademarks of COMSOL AB. MATLAB is a registered trademark of
The MathWorks, Inc.. All other trademarks are the property of their respective owners, and COMSOL AB and its
subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those or the above
non-COMSOL trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 5.5

www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/trademarks/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

Contents

Introduction . 5

Starting COMSOL with MATLAB® .7

A Thorough Example: The Busbar . 9

Sharing Applications with the COMSOL Desktop®27

Extracting Results at the MATLAB® Command Line 32

Automating with MATLAB® Scripts . 39

Using External MATLAB® Functions . 49
 | 3

4 |

Introduction

LiveLink™ for MATLAB® connects COMSOL Multiphysics® to the MATLAB
scripting environment. Using this functionality, you can do the following:
• Set up models from a script. LiveLink™ for MATLAB® includes the

COMSOL® API, which has all the necessary functions and methods to
implement models from scratch. For each operation performed in the
COMSOL Desktop® there is a corresponding command that is entered at
the MATLAB prompt. It is a simplified syntax based on Java® and does not
require any Java knowledge.

• Use MATLAB functions in model settings. Use LiveLink™ to set model
properties with a MATLAB function. For example, define material
properties or boundary conditions as a MATLAB routine that is evaluated
while the model is solved.

• Interactive modeling between the COMSOL Desktop and MATLAB
sharing the same model. Every modification performed at the MATLAB
prompt is simultaneously updated in the COMSOL Desktop.

• Leverage MATLAB functionality for program flow. Use the API syntax
together with MATLAB functionality to control the flow of your programs.
For example, implement nested loops using for or while commands,
implement conditional model settings with if or switch statements, or
handle exceptions using try and catch.

• Analyze results in MATLAB. The API wrapper functions included make it
easy to extract data at the command line. Functions are available to access
results at node points or arbitrary locations. You can also get low-level
information about the extended mesh, such as finite element mesh
coordinates, and connection information between the elements and nodes.
Extracted data are available as MATLAB variables ready to be used with any
MATLAB function.

• Create custom interfaces for models. Use the MATLAB Guide or the App
Designer functionality to create a user-defined graphical interface that is
combined with a COMSOL model. Make your models available to others by
creating graphical user interfaces tailored to expose the settings and
parameters of your choice.

• LiveLink™ for MATLAB® has the ability to connect to COMSOL Server™ as
well as COMSOL Multiphysics Server. This means that MATLAB scripts
and GUIs that utilize COMSOL functionality can be distributed to and used
by any user that have access to COMSOL Server™.
 | 5

The examples in this guide take you through the process of setting up a COMSOL
model and explain how to use COMSOL Multiphysics within the MATLAB
scripting environment.
6 |

Starting COMSOL with MATLAB®

Starting on Windows®

To start COMSOL Multiphysics with MATLAB, double-click on the COMSOL
with MATLAB icon available on the desktop.

This opens the MATLAB desktop together with the COMSOL Multiphysics
Server, which is represented by the command window appearing in the
background.

Starting on Mac OS X

Navigate to Applications>COMSOL 5.5>COMSOL 5.5 with MATLAB.

Starting on Linux®

Start a terminal prompt and run the comsol command, which is located inside the
bin folder in the COMSOL installation directory:

comsol mphserver matlab

The COMSOL Client Server Connection

LiveLink™ for MATLAB® provides an interface between COMSOL and MATLAB
based on the COMSOL client/server architecture. A COMSOL thin client is
running inside MATLAB and has access to the COMSOL API through the
MATLAB Java interface. Model information is stored in a model object available
on the COMSOL Multiphysics Server. The thin client communicates with the
 | 7

COMSOL Multiphysics Server, enabling you to generate, modify, and solve
COMSOL model objects at the MATLAB prompt.
When starting COMSOL with MATLAB, you open both a COMSOL
Multiphysics Server and the MATLAB desktop. The first time you start a
COMSOL Multiphysics Server you are required to enter a username and
password. Once this information is entered, the client/server communication is
established. The information is stored in the user preferences, so that subsequent
starts do not require you to enter it again.
Both the COMSOL Multiphysics Server and the MATLAB desktop run on the
same computer. For computations requiring more memory, you can connect to a
remote COMSOL Multiphysics Server, but this configuration requires a floating
network license.
Note that the COMSOL Desktop is not necessary when running COMSOL
Multiphysics with MATLAB. However, you can connect a COMSOL Desktop to
the COMSOL Multiphysics Server and import the model available in the latter.
This way the model is updated simultaneously at the MATLAB prompt and in the
COMSOL Desktop. See Sharing Applications with the COMSOL Desktop® for more
information.
8 |

A Thorough Example: The Busbar

This example familiarizes you with the COMSOL model object and the
COMSOL API syntax. In this section, learn how to:
• Create a geometry
• Set up a mesh and apply physics properties
• Solve the problem
• Generate results for analysis
• Exchange the model between the scripting interface of MATLAB and the

COMSOL desktop.

The model you are building at the MATLAB command line is the same model
described in the Introduction to COMSOL Multiphysics. The difference is that,
in this guide, you will use a COMSOL model object instead of the COMSOL
Desktop.
This multiphysics example describes electrical heating in a busbar. The busbar is
used to conduct direct current from a transformer to an electrical device and is
made of copper with titanium bolts, as shown in the figure below.

Note: The step-by-step instructions below are designed to be carried out in a
sequence. Skipping any of the sections might result in data being unavailable for
the following sections. Start with About The Model Object and work through the
sections until reaching the last section, Saving the Model.

Titanium Bolt 2a

Titanium Bolt Titanium Bolt 2b
 | 9

About Compact Notation

This example uses compact notation to shorten the commands that are entered at
the MATLAB command line. The compact notation uses MATLAB variables as
links to provide direct access to COMSOL model object features.
For example, to create a block using the compact notation, enter:

blk = geom.feature.create('blk1', 'Block');
blk.setIndex('size', '2', 0);
blk.setIndex('size', '3', 1);

This creates a block, then changes its width to 2 and its depth to 3.
Compared to above, the commands using a full notation are:

geom.feature.create('blk1', 'Block');
geom.feature('blk1').setIndex('size', '2', 0);
geom.feature('blk1').setIndex('size', '3', 1);

When a model object is saved in the M-file format, the full notation is always used.
Note: 'blk1' the block geometry tag defined inside the COMSOL model
object. The variable blk, defined only in MATLAB, is the link to the block
feature. By linking MATLAB variables to features, you can directly access and
modify features of a COMSOL model object in an efficient manner.

About The Model Object

The model object contains all the information about a model, from the geometry
to the results. The model object is defined on the COMSOL Multiphysics Server
and can be accessed at the MATLAB command line using a link in MATLAB.
1 Start COMSOL with MATLAB, as in the section, Starting COMSOL with

MATLAB®.
2 Start modeling by creating a model object on the COMSOL Multiphysics

Server. This is done by entering the following command on the MATLAB
command line:

model = ModelUtil.create('Model');

The model object on the COMSOL Multiphysics Server has the tag Model, while
the variable model is its link in MATLAB.
To access and modify the model object, use the COMSOL API syntax. You can
get the documentation of a specific API command with the function mphdoc.
3 To get the documentation of the node model from the COMSOL

Programming Reference Manual enter:
10 |

mphdoc(model)

4 To get the documentation of the geometry feature WorkPlane enter:
mphdoc(model.geom,'WorkPlane')

Connecting the Model in the COMSOL Desktop®

It is possible to connect the model you are working with from the MATLAB
prompt to a COMSOL Desktop. This is a convenient way to follow the
modification of the model object while typing at the prompt. See the section,
Sharing Applications with the COMSOL Desktop® for more information.
1 At the MATLAB prompt enter:

mphlaunch

The model is now accessible from both the MATLAB prompt and the COMSOL
Desktop. Every command entered at the prompt updates the model on the
COMSOL Multiphysics Server and in the COMSOL Desktop.
mphlaunch works without arguments if there is only one model loaded on the
server. If there is more than one model loaded on the server you need to specify
the tag of the model when using mphlaunch and the command will write a list of
loaded models to choose from. You can use the command mphtags -show to get
a list of loaded models before using mphlaunch.

About Global Parameters

If you plan to solve your model for several different parameter values, it is
convenient to define them in the Parameters node and to take advantage of the
COMSOL parametric sweep functionality. Global parameters can be used in
expressions during all stages of model setup, for example, when creating
geometry, applying physics, or defining the mesh.
1 Define the parameters for the busbar model:

model.param.set('L', '9[cm]', 'Length of the busbar');
model.param.set('rad_1', '6[mm]', 'Radius of the fillet');
model.param.set('tbb', '5[mm]', 'Thickness');
model.param.set('wbb', '5[cm]', 'Width');
model.param.set('mh', '6[mm]', 'Maximum element size');
model.param.set('htc', '5[W/m^2/K]', 'Heat transfer coefficient');
model.param.set('Vtot', '20[mV]', 'Applied electric potential');
 | 11

Geometry

2 You need first to create a component for this model:
comp1 = model.component.create('comp1', true);

3 In this component, create a 3D geometry node:
geom1 = comp1.geom.create('geom1', 3);

The create method of the geometry node requires, as input, a tag for the geometry
name ('geom1') and the geometry space dimension (3 for 3D).
4 The initial geometry is obtained by extruding a 2D drawing. Create a work

plane tagged 'wp1', and set it as the xz-plane of the 3D geometry:
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickplane', 'xz');

5 In this work plane, create a rectangle and set the width to L+2*tbb and the
height to 0.1:
r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size', {'L+2*tbb' '0.1'});

Note: When the size properties of the rectangle are enclosed within single
quotes ' ', it indicates that the variables L and tbb are defined within the model
object. In this case, they are defined in the Parameters node.

6 Create a second rectangle and set the width to L+tbb and the height to
0.1-tbb. Then change the rectangle position to (0;tbb):
r2 = wp1.geom.feature.create('r2', 'Rectangle');
r2.set('size', {'L+tbb' '0.1-tbb'});
r2.set('pos', {'0' 'tbb'});

7 Subtract rectangle r2 from rectangle r1, by creating a Difference feature with
the 'input' property set to r1 and the 'input2' property set to r2:
dif = wp1.geom.feature.create('dif', 'Difference');
dif.selection('input').set({'r1'});
dif.selection('input2').set({'r2'});

To display the current geometry in the COMSOL Desktop, you need to build the
geometry node. Enter at the MATLAB prompt:

geom1.run;
12 |

In the COMSOL Desktop, you can visualize the current geometry built at the
MATLAB prompt.

8 Round the inner corner by creating a Fillet feature and set point 3 in the
selection property. Then set the radius to tbb:
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
fil1.selection('point').set('dif(1)', 3);
fil1.set('radius', 'tbb');

9 Round the outer corner by creating a new Fillet feature, then select point 6
and set the radius to 2*tbb:
fil2 = wp1.geom.feature.create('fil2', 'Fillet');
fil2.selection('point').set('fil1(1)', 6);
fil2.set('radius', '2*tbb');

For geometry operations, the names of the resulting geometry objects are formed
by appending a numeral in parenthesis to the tag of the geometry operation.
Above, 'fil1(1)' is the result of the 'fil1' operation.

10Extrude the geometry objects in the work plane. Create an Extrude feature, set
the work plane wp1 as input and the distance to wbb:
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
ext1.set('distance', {'wbb'});

You can plot the current geometry in a MATLAB figure by entering the following
command at the MATLAB prompt:
 | 13

mphgeom(model)

Note that mphgeom automatically builds the geometry node and also updates the
COMSOL Desktop.
The busbar shape is now generated. Next, create the cylinders that represent the
bolts connecting the busbar to the external frame (not represented in the model).
11Create a new work plane and set the planetype property to faceparallel.

Then set the selection to boundary 8:
wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'faceparallel');
wp2.selection('face').set('ext1(1)', 8);

12Create a circle and set the radius to rad_1:
c1 = wp2.geom.feature.create('c1', 'Circle');
c1.set('r', 'rad_1');

13Create an Extrude node, select the second work plane wp2 as input, and then
set the extrusion distance to -2*tbb:
ext2 = geom1.feature.create('ext2', 'Extrude');
ext2.selection('input').set({'wp2'});
ext2.set('distance', {'-2*tbb'});

14Create a new workplane, set planetype to faceparallel, then set the
selection to boundary 4:
wp3 = geom1.feature.create('wp3', 'WorkPlane');
wp3.set('planetype', 'faceparallel');
wp3.selection('face').set('ext1(1)', 4);
14 |

15Create a circle, then set the radius to rad_1 and set the position of the center
to (-L/2+1.5e-2;-wbb/4):
c2 = wp3.geom.feature.create('c2', 'Circle');
c2.set('r', 'rad_1');
c2.set('pos', {'-L/2+1.5e-2' '-wbb/4'});

16Create a second circle in the work plane by copying the previous circle and
displacing it a distance wbb/2 in the y direction:
copy = wp3.geom.feature.create('copy', 'Copy');
copy.selection('input').set({'c2'});
copy.set('disply', 'wbb/2');

17Extrude the circles c2 and copy1 from the work plane wp3 a distance -2*tbb:
ext3 = geom1.feature.create('ext3', 'Extrude');
ext3.selection('input').set({'wp3.c2' 'wp3.copy'});
ext3.set('distance', {'-2*tbb'});

18Build the entire geometry sequence, including the finalize node using the run
method:

geom1.run;

Note: The run method only builds features which need rebuilding or have not yet
been built, including the finalize node.

This ends the geometry building. In the COMSOL Desktop, you can now see the
final model geometry.

Selections

You can create selections of geometric entities such as domains, boundaries, edges,
or points. These selections can be accessed during the modeling process with the
advantage of not having to select the same entities several times.
1 To create a domain selection corresponding to the titanium bolts, named Ti
bolts enter:
sel1 = comp1.selection.create('sel1');
sel1.set([2 3 4 5 6 7]);
sel1.label('Ti bolts');

2 To visualize the selection in a MATLAB figure enter:
mphviewselection(model,'sel1');
 | 15

Material Properties

The Material node of the model object stores the material properties. In this
example, the Joule Heating interface is used to include both an electric current
and a heat balance. Thus, the electrical conductivity, heat capacity, relative
permittivity, density, and thermal conductivity of the materials all need to be
defined.
The busbar is made of copper and the bolts are made of titanium. The properties
you need for these two materials are listed in the table below:

1 Create the first material, copper:

PROPERTY COPPER TITANIUM

Electrical
conductivity

5.998e7[S/m] 7.407e5[S/m]

Heat capacity 385[J/(kg*K)] 710[J/(kg*K)]

Relative
permittivity

1 1

Density 8700[kg/m^3] 4940[kg/m^3]

Thermal conductivity 400[W/(m*K)] 7.5[W/(m*K)]
16 |

mat1 = comp1.material.create('mat1');

2 Set the properties for the 'electricconductivity', 'heatcapacity',
'relpermittivity', 'density' and 'thermalconductivity' according to
the table above:
mat1.materialModel('def').set('electricconductivity', {'5.998e7[S/m]'});
mat1.materialModel('def').set('heatcapacity', '385[J/(kg*K)]');
mat1.materialModel('def').set('relpermittivity', {'1'});
mat1.materialModel('def').set('density', '8700[kg/m^3]');
mat1.materialModel('def').set('thermalconductivity', {'400[W/(m*K)]'});

3 Set the name of the material to 'Copper'. By default the first material is assigned
to all domains:
mat1.label('Copper');

4 Create a second material using the material properties for titanium, and set its
name to 'Titanium':
mat2 = comp1.material.create('mat2');
mat2.materialModel('def').set('electricconductivity', {'7.407e5[S/m]'});
mat2.materialModel('def').set('heatcapacity', '710[J/(kg*K)]');
mat2.materialModel('def').set('relpermittivity', {'1'});
mat2.materialModel('def').set('density', '4940[kg/m^3]');
mat2.materialModel('def').set('thermalconductivity', {'7.5[W/(m*K)]'});
mat2.label('Titanium');

5 Assign the material to the selection 'sel1' (corresponding to the bolt domains)
created previously:
mat2.selection.named('sel1');

Only one material per domain can be assigned. This means that the last operation
automatically removes the bolts from the selection of the copper material.

Physics Interface

The Physics node contains the settings of the physics interfaces, including the
domain and the boundary settings. Settings are grouped together according to the
physics interface they belong to. To model the electrothermal interaction of this
example, add the ConductiveMedia and HeatTransfer interfaces to the model.
Apply a fixed electric potential to the upper bolt and ground the two lower bolts.
In addition, assume that the device is cooled by convection, approximated by a
heat flux with a defined heat transfer coefficient on all outer faces, except where
the bolts are connected.
1 Create the Heat Transfer interface on the geom1 geometry:

ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
 | 17

2 Add to the physics interface a heat flux boundary condition and set the type to
InwardHeatFlux:
hf1 = ht.feature.create('hf1', 'HeatFluxBoundary', 2);

Note: The third argument of the create method, the space dimension sdim,
indicates at which geometry level (domain, boundary, edge, or point) the feature
should be applied to. In the above commands 'HeatFluxBoundary' feature
applies to boundaries, which have the space dimension 2.

3 Now apply cooling to all exterior boundaries 1 to 43 except the bolt connection
boundaries 8, 15, and 43. An InwardHeatFlux boundary condition requires a
heat transfer coefficient. Set its value to the previously defined parameter htc:
hf1.set('HeatFluxType', 'InwardHeatFlux');
hf1.selection.set([1:7 9:14 16:42]);
hf1.set('h', 'htc');

4 As you may have noticed, defining selections requires you to know the entity
indices. To view the boundary indices, display the geometry with the face labels:
mphgeom(model,'geom1','facemode','off','facelabels','on')

You can use the controls in the window to zoom and
pan to read off the indices.
Note: Alternative methods for obtaining entity
indices are described in the LiveLink™ for
MATLAB® User’s Guide. These include the use of
point coordinates, selection boxes, or adjacency
information.

5 Create the Conductive Media interface on the
geom1 geometry:
ec = comp1.physics.create('ec', 'ConductiveMedia', 'geom1');

6 Now create an electric potential boundary condition and set the selection to
boundary 43; then set the electric potential to Vtot:
pot1 = ec.feature.create('pot1', 'ElectricPotential', 2);
pot1.selection.set(43);
pot1.set('V0', 'Vtot');

7 Apply a ground boundary condition to boundaries 8 and 15:
gnd1 = ec.feature.create('gnd1', 'Ground', 2);
gnd1.selection.set([8 15]);

The model object includes default properties so you do not need to set properties
for all boundaries. For example, the Conductive Media interface uses a current
insulation as a default boundary condition for the current balance.
18 |

Multiphysics Interface

The Multiphysics Couplings node contains the possible couplings between the
physics interfaces used in the model. To model the electrothermal interaction in
this example, add the Electromagnetic Heating coupling to the model. This
node is included by default when modeling Electromagnetic heating in the
COMSOL Desktop.
1 Create the ElectromagneticHeating coupling on the comp1 component and

set the selection to all domains:
comp1.multiphysics.create('emh','ElectromagneticHeating');

The Heat Transfer and the Conductive Media interfaces are automatically
included in the coupling.

Mesh

The mesh sequence is stored in the Mesh node. Several mesh sequences, also
called mesh cases, can be created in the same model object.
1 Create a new mesh case for comp1:

mesh = comp1.mesh.create('mesh');

2 By default, the mesh sequence contains at least a size feature, which applies to
all the subsequent meshing operations. First create a link to the existing size
feature. Then set the maximum element size hmax to mh and the minimum
element size hmin to mh-mh/3. Set the curvature factor hcurve to 0.2:
size = mesh.feature('size');
size.set('hmax', 'mh');
size.set('hmin', 'mh-mh/3');
size.set('hcurve', '0.2');

3 Create a free tetrahedron mesh:
mesh.feature.create('ftet', 'FreeTet');

4 Build the mesh:
mesh.run;

Now look in the COMSOL Desktop to see the resulting mesh in the graphics
window.
5 To visualize the mesh in a MATLAB figure, use the command mphmesh:
 | 19

mphmesh(model)

Study

In order to solve the model, you need to create a Study node where the analysis
type is set for the solver.
1 Create a study node and add a stationary study step:

std = model.study.create('std');
stat = std.feature.create('stat', 'Stationary');

2 By default, the progress bar for the solve and mesh operations is not displayed.
To activate the progress bar enter:
ModelUtil.showProgress(true);

Once activated, the progress bar is displayed in a separate window during mesh
or solver operations. The Progress window also contains log information.

Note: The progress bar is not available on Mac OS X.

3 Solve the model with the command:
20 |

std.run;

During the computation, a window opens to display the progress information
and solver log.

Note: In this example, no solver related settings were necessary since the study
node automatically built the solver sequence based on the study type, physics
interface, and the space dimension of the model.

Plotting The Results

Analyze the results by defining plot groups in the results node. To display the
generated plots in a MATLAB figure, use the mphplot command.
1 Create a 3D plot group:

pg = model.result.create('pg', 'PlotGroup3D');

2 In the plot group, create a surface plot to display the busbar temperature:
surf = pg.feature.create('surf', 'Surface');
surf.set('expr', 'T');
 | 21

You can switch to the COMSOL Desktop. In the Model Builder, select the 3D
Plot Group 1 node to visualize the results.

You may notice that the maximum temperature region is located in the bolt. To
get a better rendering of the temperature distribution within the busbar, you need
to change the color range.
3 Activate a manual color range; set the minimum color value to 322.9 and set

the maximum color value to 323.5:
surf.set('rangecoloractive', 'on');
surf.set('rangecolormin', '322.9');
surf.set('rangecolormax', '323.5');

4 To display the plot group, including a color bar, in a MATLAB figure:
mphplot(model,'pg','rangenum',1)
22 |

Note: If several plot types are available in the same plot group, you can define
which color bar to display. The value of the rangenum property corresponds to
the plot type number in the plot group sequence.

Exporting Results

Using LiveLink for MATLAB, you can export the data either to a text file using
the Export feature available in the model, or you can export data directly to the
MATLAB workspace using the COMSOL function suite available in MATLAB.
See the section Extracting Results at the MATLAB® Command Line for more
information on exporting data in MATLAB.
Using the Export node, results can be easily exported to a text file.
1 By entering the commands below, create a data export node to export the

temperature variable T. Set the filename to <filepath>\Temperature.txt
where <filepath> is replaced with the path to the directory where the file
should be saved.
data = model.result.export.create('data', 'Data');
data.setIndex('expr', 'T', 0);
data.set('filename','<filepath>\Temperature.txt');
 | 23

data.run;

The above steps extract the temperature at each computational node of the
geometry and store the data in a text file in the following format:
% Model:
% Version: COMSOL 5.5.0
% Date: Sep 1 2019, 11:53
% Dimension: 3
% Nodes: 1353
% Expressions: 1
% Description: Temperature
% Length unit: m
% x y z T (K)
0.1000000002 -0.0220000 0.06019146 323.59819334
0.0982019663 -0.0220000 0.06019615 323.51259068
0.0999999999 -0.0183319 0.06199784 323.44009989
0.1000000000 -0.0198038 0.05799999 323.59151802

Saving the Model

1 To save the model using the save method enter:
mphsave(model,'<path>/busbar');

In the above command, replace <path> with the directory where you would like
to save your model. If a path is not defined, the model is saved in MATLAB’s
currect directory. You can use the command pwd to get the current directory in
MATLAB.
The default save format is the COMSOL binary format with the mph extension.
To save the model as an M-file use the command:

mphsave(model,'<path>/busbar.m');

Code for use with MATLAB®

model = ModelUtil.create('Model');
model.param.set('L','9[cm]','Length of the busbar');
model.param.set('rad_1','6[mm]','Radius of the fillet');
model.param.set('tbb','5[mm]','Thickness');
model.param.set('wbb', '5[cm]','Width');
model.param.set('mh','6[mm]','Maximum element size');
model.param.set('htc','5[W/m^2/K]','Heat transfer coefficient');
model.param.set('Vtot','20[mV]','Applied electric potential');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickplane', 'xz');
r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size', {'L+2*tbb' '0.1'});
r2 = wp1.geom.feature.create('r2', 'Rectangle');
24 |

r2.set('size', {'L+tbb' '0.1-tbb'});
r2.set('pos', {'0' 'tbb'});
dif = wp1.geom.feature.create('dif', 'Difference');
dif.selection('input').set({'r1'});
dif.selection('input2').set({'r2'});
geom1.run;
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
fil1.selection('point').set('dif(1)', 3);
fil1.set('radius', 'tbb');
fil2 = wp1.geom.feature.create('fil2', 'Fillet');
fil2.selection('point').set('fil1(1)', 6);
fil2.set('radius', '2*tbb');
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
ext1.set('distance', {'wbb'});
mphgeom(model)
wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'faceparallel');
wp2.selection('face').set('ext1(1)', 8);
c1 = wp2.geom.feature.create('c1', 'Circle');
c1.set('r', 'rad_1');
ext2 = geom1.feature.create('ext2', 'Extrude');
ext2.selection('input').set({'wp2'});
ext2.set('distance', {'-2*tbb'});
wp3 = geom1.feature.create('wp3', 'WorkPlane');
wp3.set('planetype', 'faceparallel');
wp3.selection('face').set('ext1(1)', 4);
c2 = wp3.geom.feature.create('c2', 'Circle');
c2.set('r', 'rad_1');
c2.set('pos', {'-L/2+1.5e-2' '-wbb/4'});
copy = wp3.geom.feature.create('copy', 'Copy');
copy.selection('input').set({'c2'});
copy.set('disply', 'wbb/2');
ext3 = geom1.feature.create('ext3', 'Extrude');
ext3.selection('input').set({'wp3.c2' 'wp3.copy'});
ext3.set('distance', {'-2*tbb'});
geom1.run;
sel1 = comp1.selection.create('sel1');
sel1.set([2 3 4 5 6 7]);
sel1.label('Ti bolts');
mphviewselection(model,'sel1');
mat1 = comp1.material.create('mat1');
mat1Def = mat1.materialModel('def');
mat1.materialModel('def').set('electricconductivity', {'5.998e7[S/m]'});
mat1.materialModel('def').set('heatcapacity','385[J/(kg*K)]');
mat1.materialModel('def').set('relpermittivity', {'1'});
mat1.materialModel('def').set('density','8700[kg/m^3]');
mat1.materialModel('def').set('thermalconductivity',{'400[W/(m*K)]'});
mat1.label('Copper');
mat2 = comp1.material.create('mat2');
mat2.materialModel('def').set('electricconductivity',{'7.407e5[S/m]'});
mat2.materialModel('def').set('heatcapacity','710[J/(kg*K)]');
mat2.materialModel('def').set('relpermittivity',{'1'});
 | 25

mat2.materialModel('def').set('density','4940[kg/m^3]');
mat2.materialModel('def').set('thermalconductivity',{'7.5[W/(m*K)]'});
mat2.label('Titanium');
mat2.selection.named('sel1');
ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
hf1 = ht.feature.create('hf1', 'HeatFluxBoundary', 2);
hf1.set('HeatFluxType', 'InwardHeatFlux');
hf1.selection.set([1:7 9:14 16:42]);
hf1.set('h', 'htc');
mphgeom(model,'geom1','facemode','off','facelabels','on')
ec = comp1.physics.create('ec','ConductiveMedia', 'geom1');
pot1 = ec.feature.create('pot1','ElectricPotential', 2);
pot1.selection.set(43);
pot1.set('V0', 'Vtot');
gnd1 = ec.feature.create('gnd1', 'Ground', 2);
gnd1.selection.set([8 15]);
comp1.multiphysics.create('emh','ElectromagneticHeatSource');
mesh = comp1.mesh.create('mesh', 'geom1');
size = mesh.feature('size');
size.set('hmax', 'mh');
size.set('hmin', 'mh-mh/3');
size.set('hcurve', '0.2');
mesh.feature.create('ftet', 'FreeTet');
mesh.run;
mphmesh(model)
std = model.study.create('std');
stat = std.feature.create('stat', 'Stationary');
ModelUtil.showProgress(true);
std.run;
pg = model.result.create('pg', 'PlotGroup3D');
surf = pg.feature.create('surf', 'Surface');
surf.set('expr', 'T');
surf.set('rangecoloractive', 'on');
surf.set('rangecolormin', '322.9');
surf.set('rangecolormax', '323.5');
mphplot(model,'pg','rangenum',1)
data = model.result.export.create('data', 'Data');
data.setIndex('expr', 'T', 0);
data.set('filename','<filepath>\Temperature.txt');
data.run;
mphsave(model,'<path>/busbar.m');
26 |

Sharing Applications with the COMSOL Desktop®

While building the busbar model in MATLAB you have learned how to save a
model as an MPH-file, which then can be opened from the COMSOL Desktop.
From the COMSOL Desktop you can also directly transfer applications to and
from MATLAB, this way you can access it from either the MATLAB prompt or
the COMSOL Desktop. For example see the modification of the model in the
COMSOL Desktop while you are typing at the MATLAB prompt.
Note: On Linux you need to run COMSOL with MATLAB and the COMSOL
desktop from the same terminal. Use the ampersand (&) command, for instance,
comsol & or comsol mphserver matlab &.

Transferring a Model to MATLAB®

As described in The COMSOL Client Server Connection, applications created in
MATLAB exist on the COMSOL Multiphysics Server, which can be either on a
local or remote machine. To transfer a model to MATLAB, export it from the
COMSOL Desktop to the COMSOL Multiphysics Server and then create a link
to the model in the MATLAB workspace.
1 If it is not already open, start a new COMSOL Desktop. From the Home

toolbar, select Application Libraries ().In the Application Libraries window,
choose COMSOL Multiphysics>Multiphysics>busbar and click Open.

2 Start COMSOL with MATLAB (see Starting COMSOL with MATLAB®).
3 In COMSOL Desktop, from the File menu (Windows users) or from the

Options menu (Mac and Linux users), select Client Server>Connect to
Server ().

4 Confirm that the correct export information is used:
- In the Server area, define the Server name and the Port number in the fields.

The default Server name is localhost, which indicates that the COMSOL
Multiphysics Server is on the same machine. Check the port number by
 | 27

looking at the first line of the text displayed in the COMSOL Multiphysics
Server window, the default value is 2036:

COMSOL Multiphysics server 5.5 started listening on port 2036

- The User area contains the user login information. The Username and
Password fields are set by default based on settings in the user preferences,
defined the first time a COMSOL Multiphysics Server is started.

5 Click OK.
Now that the model object is stored in the COMSOL Multiphysics Server, create
a link in MATLAB to gain access to it.
6 Once the Export model to server window has closed, you need to create a link

in MATLAB to the model exported to the COMSOL Multiphysics Server. At
the MATLAB prompt enter:
model = ModelUtil.model('Model2');

where 'Model2' is the model object tag in the COMSOL Multiphysics Server. An
alternative way to get the list of models available on the COMSOL Multiphysics
Server is to enter:

mphtags -show

7 All features of the model can now be accessed. For example, plot the mesh in a
MATLAB figure:
mphmesh(model)

8 The model can also be modified, for example, by removing the second plot
group from the results node:
model.result.remove('pg2');

You can see in the COMSOL Desktop that the model has been automatically
updated while typing at the MATLAB prompt.

Transferring a Model to the COMSOL Desktop®

In addition to transferring your model to MATLAB, a model edited at the
MATLAB command line can be accessed from the COMSOL Desktop. It only
requires loading the model object from the COMSOL Multiphysics Server to the
COMSOL Desktop.
28 |

1 Start COMSOL with MATLAB.
2 Create a model object, then create a 3D geometry and draw a block:
model = ModelUtil.create('ImportExample');
model.geom.create('geom1', 3);
model.geom('geom1').feature.create('blk1', 'Block');
model.geom('geom1').run;

3 To start a COMSOL Desktop, connect it with the COMSOL Multiphysics
Server and load the model automatically, enter the command:
mphlaunch

An alternative to the command mphlaunch, you can perform the same operation
manually. To connect the COMSOL Desktop, from the File menu (Windows
users) or from the Options menu (Mac and Linux users), select COMSOL
Multiphysics Server>Connect to Server ().

Now that the COMSOL Desktop is connected to the COMSOL Multiphysics
Server, you can import the model. From the File menu (Windows users) or from
the Options menu (Mac and Linux users), select COMSOL Multiphysics
Server>Import Application from Server (). In the Import Application from
Server window, select Untitled.mph {ImportExample} which corresponds to the
model created previously from the MATLAB prompt.

Saving and Running a Model M-File

The easiest way to learn the commands of the COMSOL API is to save a model
from the COMSOL Desktop as an M-file. The M-file contains the sequence of
commands that create the model. You can open the M-file in a text editor and
make modifications to it, as shown in the following example.
Note: By default, the M-file contains the entire command history of the model,
including settings that are no longer part of the model. In order to include only
settings that are part of the current model, you need to compact the model
history before saving the M-file.

1 Start COMSOL with MATLAB and a COMSOL Desktop.
 | 29

2 In the COMSOL Desktop go to the Application Libraries window.
3 In the Application Libraries window, expand the COMSOL Multiphysics folder

and then the Multiphysics folder. Select the busbar model and click Open.
4 A good practice includes compacting the model history in order to get only the

command corresponding to the current state of the model. In the COMSOL
Desktop, choose File>Compact History ().

5 Go to File>Save As. In the Save window, locate Save as type list and select Model
file for MATLAB (*.m). Name the file busbar and choose the directory to save
it to. Click OK.

6 Open the saved M-file with the MATLAB editor or any text editor and search
for the lines below:
model.result('pg4').feature('surf1').set('expr', 'ec.normJ');
model.result('pg4').feature('surf1').set('descr', 'Current density norm');
model.result('pg4').feature('surf1').set('rangecoloractive', true);
model.result('pg4').feature('surf1').set('rangecolormax', '1e6');

The commands above define the plot group pg4, it includes a surface plot of the
expression for ec.normJ and the maximum color range is set to 1e6.

7 Modify the plot group pg4 so that it displays the total heat jh.Qtot and set the
maximum color range to 1e4, append the following to the M-file:
model.result('pg4').feature('surf1').set('expr','ht.Qtot');
model.result('pg4').feature('surf1').set('descr', 'Total heat source');
model.result('pg4').feature('surf1').set('rangecoloractive', true);
model.result('pg4').feature('surf1').set('rangecolormax','1e4');

These commands modify plot group pg4 so that it displays the total heat
ht.Qtot with a new setting for the maximum value for the color range. You can
also directly modify the original lines corresponding to the plot settings to
achieve the same thing, but this way you can easily revert to the old version.

8 Save the modified M-file.
9 Run the model at the MATLAB prompt with the command:
30 |

model = busbar;

10Display the plot group pg4:
mphplot(model,'pg4','rangenum',1)

Another way to modify a model object in MATLAB is to load the model in
MATLAB, and then enter the commands in step 7 directly at the MATLAB
command line. The benefit of this latter approach is that it does not require
running the entire model. See An Example Using Nested Loops, where this
technique is applied.
 | 31

Extracting Results at the MATLAB® Command Line

LiveLink™ for MATLAB® packages several functions to make it easy to access
results directly from the MATLAB command line. The most commonly used
functions are:
• mphinterp, to evaluate expressions at arbitrary location.
• mpheval, to evaluate expressions on all node points of a given domain

selection.
• mphglobal, to evaluate global expressions.
• mphint2, to integrate the value of expressions on selected domains.
• mphmax, mphmin and mphmean, to evaluate the maximum, minimum and

average, respectively, of an expression.
• mphgetexpressions, to get the model variables and model parameters

expressions.
• mphevaluate, to evaluate parameter expressions (constants) in models.

Note: For a complete list of the available functions see the section Summary of
Commands in the LiveLink for MATLAB User’s Guide.

Load the busbar model from the application library directly at the MATLAB
command line.
1 Start COMSOL with MATLAB.
2 Load the busbar example model from the application library. Enter the

command:
model = mphopen('busbar');

The mphopen command automatically searches the MATLAB path as well as the
path for the application libraries to find the requested file. You can also specify
the path in the filename.

Evaluating Data at Arbitrary Points

If you want to get data at a specific location not necessarily defined by node points,
use the command mphinterp to interpolate the results. The interpolation method
uses the shape function of the elements.
1 To extract the total heat source at [5e-2;-2e-2;1e-3] enter:

Qtot = mphinterp(model,'ht.Qtot','coord',[5e-2;-2e-2;1e-3])

This returns:
32 |

Qtot =
6.9392e+003

2 You can specify the unit for evaluation, for instance extract the temperature in
Fahrenheit with the command:
[Temp, unit]= mphinterp(model,'T','coord',[5e-2;-2e-2;1e-3],'unit','degF')

This returns:
Temp =

120.6735

unit =
'degF'

3 A grid of points can also be evaluated. Enter the following lines:
x0=0:5e-2/4:5e-2;
y0=0:-2.5e-2/4:-2.5e-2;
z0=[0 5e-3];
[x,y,z]=meshgrid(x0,y0,z0);
xx=[x(:),y(:),z(:)]';
Qtot = mphinterp(model,'ht.Qtot','coord',xx);

4 Reshape the variable Qtot for a better visualization:
Qtot = reshape(Qtot,length(x0),length(y0),length(z0))

This results in:
Qtot(:,:,1) =
1.0e+05 *

0.0000 0.0279 0.0737 0.0696 0.0694
0.0007 0.3401 0.0734 0.0694 0.0694
0.0000 3.1432 0.0671 0.0691 0.0694
0.0007 0.2856 0.0734 0.0694 0.0694
0.0000 0.0278 0.0738 0.0697 0.0694

Qtot(:,:,2) =
1.0e+03 *

0.0000 2.8377 7.3415 6.9634 6.9393
0.0685 5.3128 6.9878 6.9360 6.9383
0.0000 8.9002 5.5493 6.9110 6.9373
0.0638 5.2741 7.0066 6.9376 6.9388
0.0000 2.8305 7.3452 6.9659 6.9404

Evaluating Data at Node Points

Use the mpheval function to evaluate the electric potential, which is one of the
dependent variables in the busbar model. mpheval returns the value of the
expression evaluated using the nodes of a simplex mesh. By default, the simplex
mesh corresponds to the active mesh in the model object.
 | 33

1 Enter at the command line:
data = mpheval(model,'V')

A MATLAB structure is returned according to:
data =
 expr: {'V'}
 d1: [1x7328 double]
 p: [3x7328 double]
 t: [4x30901 int32]
 ve: [7328x1 int32]
 unit: {'V'}

mpheval returns a MATLAB structure defined with the following fields:
- expr contains the list of the evaluated expression,
- d1 contains the data of the evaluated expression,
- p contains the coordinates of the evaluation points,
- t contains the indices to columns in the p field. Each column in the t field

corresponds to an element of the mesh used for the evaluation,
- ve contains the indices of the mesh elements at each evaluation point,
- unit contains the unit of the evaluated expression.

2 Multiple variables can be evaluated at once, for example, both the temperature
and the electric potential. Enter:
data2 = mpheval(model,{'T' 'V'})

This command returns this structure:
data2 =
 expr: {'T' 'V'}
 d1: [1x7328 double]
 d2: [1x7328 double]
 p: [3x7328 double]
 t: [4x30901 int32]
 ve: [7328x1 int32]
 unit: {'K' 'V'}

The fields data2.d1 and data2.d2 contain the values for the temperature and
electric potential, respectively.

3 Now evaluate the temperature T, including at the element midpoints as defined
by a quadratic shape function. Use the refine property and set the property
value to 2, which corresponds to the discretization order:
data3 = mpheval(model,'T','refine',2)

This command returns this structure:
data3 =
 expr: {'T'}
 d1: [1x49759 double]
34 |

 p: [3x49759 double]
 t: [4x247208 int32]
 ve: [49759x1 int32]
 unit: {'K'}

To visualize the evaluation location for both data and data3 together with the
mesh, enter the commands:
mphmesh(model)
hold on;
plot3(data3.p(1,:),data3.p(2,:),data3.p(3,:),'.');
plot3(data2.p(1,:),data2.p(2,:),data2.p(3,:),'.r');

4 This step tests how to use the edim property in combination with the
selection property. edim allows you to determine the space dimension of the
evaluation and selection allows you to set the entity number indicating where
to evaluate the expression.
Evaluate data on a specific domain, for example, the normal current density at
boundary number 43:
data4 = mpheval(model,'ec.normJ',...
 'edim','boundary','selection',43)

This command returns this structure:
data4 =
 expr: {'ec.normJ'}
 d1: [1x65 double]
 p: [3x65 double]
 t: [3x108 int32]
 ve: [65x1 int32]
 | 35

 unit: {'A/m^2'}

Global Evaluation and Integration

To get the value of an expression defined with a global scope, use the function
mphglobal.
1 Evaluate the total applied voltage, defined with the parameter Vtot:

Vtot = mphglobal(model,'Vtot')

Vtot =
0.0200

2 To calculate the total heat produced in the busbar, you can integrate the total
heat source using the command mphint2. Enter:
Q = mphint2(model,'ec.Qh','volume','selection',1)

The total heat is:
Q =
 0.2418

3 Evaluate the total current passing through boundary 43 and retrieve the unit of
the integral:
[I,unit] = mphint2(model,'ec.normJ','surface','selection',43)

I =
 161.4469

unit =
 'A'

4 Evaluate the maximum of the temperature in the busbar:
maxT = mphmax(model,'T','volume','selection',1)

maxT =
323.0709

5 Evaluate the maximum of the temperature on boundary 43:
maxT = mphmax(model,'T','surface','selection',43)

maxT =
330.4038
36 |

Evaluating Expressions

If you want to evaluate the parameter, or variables, expressions in model use the
function mphgetexpressions.
1 Evaluate the expressions of the parameters defined in the model:

expr = mphgetexpressions(model.param)

expr =

{'L' } {'9[cm]' } {'Length' } {[0.0900]} {'m'}
{'rad_1'} {'6[mm]' } {'Bolt radius' } {[0.0060]} {'m'}
{'tbb' } {'5[mm]' } {'Thickness' } {[0.0050]} {'m'}
{'wbb' } {'5[cm]' } {'Width' } {[0.0500]} {'m'}
{'mh' } {'6[mm]' } {'Maximum eleme…'} {[0.0060]} {'m'}
{'htc' } {'5[W/m^2/K]'} {'Heat transfer…'} {[5]} {'W/(m^2*K)'}
{'Vtot' } {'20[mV]' } {'Applied volta…'} {[0.0200]} {'V'}

2 You can evaluate a specific parameter expression using the function
mphevaluate. To evaluate the length of the busbar, L, in inches:
L = mphevaluate(model,'L','in')

L =

3.5433

Note: The evaluation does not require an existing solution data set in the model.

Code for use with MATLAB®

model = mphopen('busbar');

% Evaluating Data at Arbitrary Points
Qtot = mphinterp(model,'ht.Qtot','coord',[5e-2;-2e-2;1e-3])
[Temp, unit]= mphinterp(model,'T','coord',[5e-2;-2e-2;1e-3],'unit','degF')
x0=0:5e-2/4:5e-2;
y0=0:-2.5e-2/4:-2.5e-2;
z0=[0 5e-3];
[x,y,z]=meshgrid(x0,y0,z0);
xx=[x(:),y(:),z(:)]';
Qtot = mphinterp(model,'ht.Qtot','coord',xx);
Qtot = reshape(Qtot,length(x0),length(y0),length(z0))

% Evaluating Data at Node Points
data = mpheval(model,'V')
data2 = mpheval(model,{'T' 'V'})
data3 = mpheval(model,'T','refine',2)
hold on;
plot3(data3.p(1,:),data3.p(2,:),data3.p(3,:),'.');
plot3(data2.p(1,:),data2.p(2,:),data2.p(3,:),'.r');
mphmesh(model)

data4 = mpheval(model,{'ec.normJ'},...
 'edim',2,'selection',43)

% Global Evaluation and Integration
 | 37

Vtot = mphglobal(model,'Vtot')
Q = mphint2(model,'ec.Qh','volume','selection',1)
[I unit] = mphint2(model,'ec.normJ','surface','selection',43)
maxT = mphmax(model,'T','volume','selection',1)
maxT = mphmax(model,'T','surface','selection',43)
38 |

Automating with MATLAB® Scripts

LiveLink™ for MATLAB® enables you to combine the MATLAB programming
tools with a COMSOL model object. A benefit of this integration is to access
results from the MATLAB workspace. Another benefit is that you can integrate
COMSOL modeling commands into MATLAB scripts, taking full advantage of
all available tools for controlling the flow of your code. This section explains how
to do this efficiently, by introducing MATLAB variables into your COMSOL
model and updating only the affected parts of your model object.

Obtaining Model Information

Modifying an existing model object requires you to know how the model is set up.
Some functions help you to access this information so that you can add or remove
a model feature, or modify the value of an existing property. The function
mphnavigator helps you to retrieve model object information. Calling
mphnavigator at the MATLAB prompt displays a summary of the features and
their properties for the model object available in the MATLAB workspace.
1 Start COMSOL with MATLAB.
2 Load the busbar example model:

model = mphopen('busbar');

or alternative use this simpler form that does the same thing:
mphopen busbar

3 To access the model information, enter the following command at the
MATLAB prompt:
mphnavigator

In the mphnavigator graphical user interface, the model features are listed under
the Model Tree section. The nodes can be expanded to access the subfeatures.
When selecting a feature from the Model Tree, its properties are listed under the
Properties section. The Methods section lists the methods available for the
selected feature. Just above the Methods section, you can see the COMSOL API
syntax that lead to the feature. You can copy the command to the clipboard and
easily paste it at the MATLAB prompt — just click the Copy button to copy the
syntax.
4 In the Model Tree, expand the model feature nodes down to

geom>geom1>wp1>r1 and select the node r1.
 | 39

5 In the Properties section, you can see the that the lx property of the geometry
feature r1 is set to L+2*tbb, this represents the length of the rectangle. The
width of the rectangle, represented with the property ly is set to 0.1.

Updating Model Settings

The COMSOL model object allows you to modify parameters, features, or feature
properties, using the set method. Once a property value is updated, you can run
the appropriate sequence, depending on where the changes were introduced into
the model — for example, in the geometry or the mesh sequence. Running the
solver sequence automatically runs all sequences where modified settings are
detected.
Starting with the busbar model described in A Thorough Example: The Busbar, this
section modifies a parameter value and resolves the model. For this purpose, the
geometry of the model is prepared using parameters such as L for the length of
the busbar, and tbb for the thickness of the busbar.
1 Start COMSOL with MATLAB (if you have not done so already).
2 Load the model from the COMSOL application library:
40 |

mphopen busbar

3 Plot the current solution with this command:
mphplot(model,'pg4','rangenum',1);

4 The first exercise changes the length parameter L (length of the busbar). Enter:
model.param.set('L','18[cm]');

5 To run the solver sequence and compute the solution enter:
model.sol('sol1').run;

Note: The solver node automatically detects all modifications in the model, and
runs the geometry or mesh sequences when needed. Here, the new value for the
parameter L induces a change in the geometry, and thus, a new mesh is also
needed. Full associativity is also ensured making sure that all physics settings
remain applied as in the original model.

6 Plot the updated solution, which results in the geometry change:
 | 41

mphplot(model,'pg4','rangenum',1);

Code for use with MATLAB®

model = mphload('busbar');
mphplot(model,'pg4','rangenum',1);
model.param.set('L','18[cm]');
model.sol('sol1').run;
mphplot(model,'pg4','rangenum',1);

Using MATLAB® Variables in the COMSOL Model

Use the set method described in the previous section to define the feature
properties using MATLAB variables. It is important to make sure that the value of
the MATLAB variable is consistent with the units used in the model. Before
beginning, make sure that the busbar model used in the previous section is loaded
into MATLAB.
First, change the length of the busbar, described by the parameter L.
1 Create a MATLAB variable L0 equal to 9e-2:

L0 = 9e-2;

2 Update the value of the parameter L with the variable L0:
model.param.set('L',L0);
42 |

Note: In contrast to this command, setting a value using an expression from
within the model object requires the second argument to be a string expression,
as shown in Updating Model Settings.

3 To display the new geometry enter:
mphgeom(model)

Working with parameters is convenient, since there is only one place where you
need to go to view or modify the current configuration of the model. The next
step uses a different method, where a feature node is edited to modify its
properties. For example, to modify the busbar geometry, the rectangles r1 and r2
generated in the work plane wp1 are edited.
4 Start to create links to the geometry feature r1 and r2 by entering the

commands:
r1 = model.geom('geom1').feature('wp1').geom.feature('r1');
r2 = model.geom('geom1').feature('wp1').geom.feature('r2');

5 Enter the following command to define MATLAB variables:
H1 = 0.2;
H2 = 0.195;

6 Set the height of rectangles r1 and r2 using the variables H1 and H2,
respectively.
r1.set('ly', H1);
r2.set('ly', H2);
 | 43

Note: The function mphgetproperties can be used to get a list of properties
and values for feature nodes of a model. See Obtaining Model Information for more
details.

7 Enter this command to plot the geometry:
mphgeom(model);

There is a third option when defining property values for features to combine
MATLAB variables with parameters or variables defined within the COMSOL
model object. To do this, the MATLAB variable needs to be converted to a string.
This last exercise demonstrates the method by changing the heights of rectangles
r1 and r2 to L0 and L0-tbb, respectively, where L0 is a MATLAB variable.
8 Define the variable L0:

L0 = 0.1;

9 Modify the ly property of rectangles r1 and r2:
r1.set('ly',L0);
r2.set('ly',[num2str(L0) '-tbb']);

10Update and plot the geometry:
44 |

mphgeom(model);

Code for use with MATLAB®

model = mphload('busbar');
L0 = 9e-2;
model.param.set('L',L0);
mphgeom(model)

r1 = model.geom('geom1').feature('wp1').geom.feature('r1');
r2 = model.geom('geom1').feature('wp1').geom.feature('r2');
H1 = 0.2;
H2 = 0.195;
r1.set('ly', H1);
r2.set('ly', H2);
mphgeom(model);

L0 = 0.1;
r1.set('ly',L0);
r2.set('ly',[num2str(L0) '-tbb']);
mphgeom(model);

An Example Using Nested Loops

In this example, a MATLAB function is created that solves the busbar model for
different values of the length and thickness of the busbar in addition to the input
electric potential. The function evaluates and returns the maximum temperature
in the busbar, the generated heat, and the current through the busbar. For each
 | 45

variation of the model, the function stores these results in a file and saves the
model object in an MPH-file. To make it easy to identify the name of the
MPH-file, it contains the values of the different parameters used to set up the
model.
The input argument of the M-function is the busbar model object and the path to
the directory where the data and models are saved.
1 Open a text editor, for example, the MATLAB text editor.
2 At the first line of a new M-file, enter the following function header:

function modelParam(model,filepath)

The function first creates a file and then sets the header of the output file format.
3 In the text editor, continue to enter the following lines:

filename = fullfile(filepath,'results.txt');
fid=fopen(filename,'wt');
fprintf(fid,'*** run parametric study ***\n');
fprintf(fid,'L[m] | tbb[m] | Vtot[V] | ');
fprintf(fid,'MaxT[K] | TotQ[W] | Current[A]\n');

4 When running a large number of iterations, the model history can be disabled
to prevent the memory usage from increasing with each iteration due to the
model history stored in the model. Enter the lines:
model.hist.disable;

5 Now start a for loop to parameterize the parameter L and set the corresponding
parameter in the model object. Enter the commands:
for L = [9e-2 15e-2]
model.param.set('L',L);

6 Continue by creating a second for loop, this time to parameterize the
parameter tbb and to modify its value in the model object:
for tbb = [5e-3 10e-3]
model.param.set('tbb',tbb);

7 Define the last for loop to parameterize the applied potential Vtot:
for Vtot = [20e-3 40e-3]
model.param.set('Vtot',Vtot);

8 For each version of the model, write the parameter values to the output file:
fprintf(fid,[num2str(L),' | ',num2str(tbb),...
' | ',num2str(Vtot),' | ']);

9 To solve the model, add the line below:
model.sol('sol1').run;

10The following lines evaluate the results:
MaxT = mphmax(model,'T',3,'selection',1);
TotQ = mphint2(model,'ht.Qtot',3,'selection',1);
46 |

Current = mphint2(model,'ec.normJ',’surface’,'selection',43);
11Save the results to the output text file:

fprintf(fid,[num2str(MaxT),' | ',num2str(TotQ),...
' | ',num2str(Current),' \n']);

12Name and save the model:
modelName = fullfile(filepath,['busbar_L=',num2str(L),...
'_tbb=',num2str(tbb),...
'_Vtot=',num2str(Vtot),'.mph']);
mphsave(model,modelName);

13Terminate the for loops:
end
end
end

14Close the output text file:
fclose(fid);

The script in the text editor should now look like this text:
function modelParam(model,filepath)
filename = fullfile(filepath,'results.txt');
fid=fopen(filename,'wt');
fprintf(fid,'*** run parametric study ***\n');
fprintf(fid,'L[m] | tbb[m] | Vtot[V] | ');
fprintf(fid,'MaxT[K] | TotQ[W] | Current[A]\n');
model.hist.disable;
for L = [9e-2 15e-2]

model.param.set('L',L);
for tbb = [5e-3 10e-3]
model.param.set('tbb',tbb);
for Vtot = [20e-3 40e-3]
model.param.set('Vtot',Vtot);
fprintf(fid,[num2str(L),' | ',...

num2str(tbb),' | ',...
num2str(Vtot),' | ']);

model.sol('sol1').run;
MaxT = mphmax(model,'T',3,'selection',1);
TotQ = mphint2(model,'ht.Qtot',3,'selection',1);
Current = mphint2(model,'ec.normJ','surface',...

'selection',43);
fprintf(fid,[num2str(MaxT),' | ',...

num2str(TotQ), ' | ',...
num2str(Current),' \n']);

modelName = fullfile(filepath,...
['busbar_L=',num2str(L),...
'_tbb=',num2str(tbb),...
'_Vtot=',num2str(Vtot),'.mph']);

mphsave(model,modelName);
end

end
end
 | 47

fclose(fid);

15Save the M-file as modelParam.m in a directory known by MATLAB.
16If COMSOL with MATLAB is not already running, start it now and load the

busbar model from the application library:
model = mphload('busbar');

17Run the function and substitute 'filepath' with the directory of your choice:
modelParam(model,'filepath')

18Open the file results.txt in a text editor to look at a summary of the results:
*** run parametric study ***
L[m] | tbb[m] | Vtot[V] | MaxT[K] | TotQ[W] | Current[A]
0.09 | 0.005 | 0.02 | 323.0709 | 0.24181 | 161.4469
0.09 | 0.005 | 0.04 | 412.987 | 0.96723 | 322.8938
0.09 | 0.01 | 0.02 | 308.5276 | 0.04716 | 95.7507
0.09 | 0.01 | 0.04 | 354.7394 | 0.18864 | 191.5013
0.15 | 0.005 | 0.02 | 315.7281 | 0.32493 | 156.4155
0.15 | 0.005 | 0.04 | 383.5783 | 1.2997 | 312.8309
0.15 | 0.01 | 0.02 | 305.1033 | 0.064327 | 94.8634
0.15 | 0.01 | 0.04 | 340.9634 | 0.25731 | 189.7267

Although this example duplicates functionality that is readily accessible in the
COMSOL Desktop®, you can use a similar technique to couple a COMSOL
model to your customized optimization script.
48 |

Using External MATLAB® Functions

Another advantage of using LiveLink™ for MATLAB® is the ability to call a
MATLAB function directly from within the COMSOL Desktop®. You can use a
function to define, within a COMSOL® model object, properties such as material
definitions or physics settings. COMSOL automatically detects the external
function and starts the MATLAB engine to evaluate it. The function output is
then applied to the corresponding property.
To use this functionality, just start the COMSOL Desktop and MATLAB
automatically starts in the background when needed.
Note: To run MATLAB function with the model object, you need first to enable
external function calls in COMSOL’s security settings. To proceed, go to the
Preferences > Security and select Allow external processes and libraries.

Note: On Linux operating systems, specify the MATLAB root directory path
MLROOT and load the gcc library when starting the COMSOL Desktop: comsol
-mlroot MLROOT -forcegcc.

The example in this section illustrates how to use external MATLAB functions in
a COMSOL model. The model computes the temperature distribution in a
material subjected to an external heat flux. Both the thermal conductivity of the
material and the applied heat flux are defined by MATLAB functions.

Creating the MATLAB® Functions

Assume that the material in the example is characterized by a random thermal
conductivity. To define the thermal conductivity, create a MATLAB function with
the x-axis position as an input argument and let the conductivity vary randomly
within 200 W/(m·K) around a constant value of 400 W/(m·K).
Define a MATLAB function for the external heat flux to be a function of the
following arguments:
• x and y, the location coordinates.
• x0 and y0, the origin of the heat source.
• Q0, the maximum heat source.
• scale, a parameter that scales the period of the heat flux.

x and y are dependent variables of the model. x0, y0, Q0, and scale are defined
with constant value in this exercise.
 | 49

The functions must adhere to a certain structure. In order for the calls from
COMSOL to MATLAB to be as efficient as possible the arguments are transferred
to MATLAB in blocks. This means that for both functions, all the input
arguments are vectors, and the functions needs to return vectors with the same
length as the input arguments. It is highly recommended to test the functions on
the MATLAB command line with some vectors arguments having reasonable
values for the arguments in question.
1 Open a text editor, for example the MATLAB text editor.
2 In a new file enter:

function out = conductivity(x)
out = 400+5*randn(size(x));

3 Save the file as conductivity.m.
4 Create a new file and enter:

function out = heatflux(x,y,x0,y0,Q0,scale)
radius = sqrt((x-x0).^2+(y-y0).^2);
out = Q0/5+Q0/2.*sin(scale*pi.*radius)./(scale*pi.*radius);

5 Save the file in the user Documents folder under MATLAB as heatflux.m.
Saving the file in this location (/Documents/MATLAB) ensures that MATLAB
can find the function when COMSOL calls it for evaluation.

Model Wizard

Note: These instructions are for the user interface on Windows, but apply with
minor differences also to Linux and Mac.

1 Double-click the COMSOL Multiphysics icon on the desktop.
2 Select Create a model guided by the Model Wizard .
3 In the space dimension, click 3D .
4 In the Select Physics tree under Heat Transfer , select Heat Transfer in

Solids(ht) .
5 Click Add, then click Study .
6 In the Select Study window under General Studies, select Stationary .
7 Click Done .
50 |

Defining External MATLAB® Functions in a Model

Start by defining a MATLAB function in a model so that COMSOL can recognize
it as an external function to be evaluated in the MATLAB engine.
1 On the Home toolbar, click Functions . Under the Global section, select

MATLAB On Linux and Mac, the Home toolbar refers to the specific set
of controls near the top of the Desktop.

2 On the Settings page, under the Functions section in the Function name field
enter conductivity, and under the Arguments field enter x.

By defining the function here, COMSOL knows that conductivity is a MATLAB
function. COMSOL automatically starts a MATLAB engine to evaluate the
function when necessary.
Note: Saving the COMSOL model at the same location as the external MATLAB
functions ensures that the function path is known by MATLAB. Other
alternatives include setting the function path directly in MATLAB before
running the model or setting the environmental variable
COMSOL_MATLAB_PATH with the directory path of the functions.

3 In the COMSOL Desktop, from the File menu (Windows users) or from the
Options menu (Mac and Linux users), click Save As . Select
Save as MPH-File and browse to the directory where the files
conductivity.m and heatflux.m are stored.

You can display the value of the defined function by first defining the plot limit for
the input arguments.
4 Expand the Plot parameters section. In the associated table enter 0 as the Lower

limit and 1 as the Upper limit.
5 Click the Plot button .
 | 51

You can now define a second MATLAB function that returns the heat flux
condition.
6 Repeating the above procedure, enter heatflux in the Function name field and

set the Arguments field with x,y,x0,y0,Q0,scale.

7 To display the function, enter the following in the Plot parameters table:

LOWER LIMIT UPPER LIMIT

0 1

0 1

0 0
52 |

8 Click the Plot button .

Before you continue with the model settings, you need to manually specify the
function derivative with respect to all function arguments otherwise you will get a
warning message returned by the solver. For this model, the function arguments
are not defined using the temperature (the dependent variable) and the numerical
problem can be considered linear. For this reason, you can set the derivative to be
0 for all input arguments.
9 Expand the Derivatives section and complete the table as shown below:

0 0

1e4 1e4

5 5

FUNCTION NAME ARGUMENT PARTIAL DERIVATIVE

conductivity x 0

heatflux x 0

heatflux y 0

heatflux x0 0

heatflux y0 0

heatflux Q0 0

heatflux scale 0

LOWER LIMIT UPPER LIMIT
 | 53

Note: For nonlinear problems, it is necessary to specify the partial derivatives.
The Partial Derivative column can be set with an expression or another MATLAB
function.

Geometry and Material Definit ion

1 On the Geometry toolbar, click Block .
2 In the Settings window for Block click Build All Objects .
3 On the Material toolbar, click Blank Material .
4 In the Settings window for Material

under Material Contents, in the Value
column, set the expression of the
Thermal conductivity to
conductivity(x), the expression of
Density to 8e3 and the expression of Heat Capacity at Constant Pressure to
2e3.

Note: The expression conductivity(x) displays in orange as the MATLAB
function is dimensionless.

Heat Transfer in Solids

1 In the Model Builder under Component 1, click
Heat Transfer in Solids .

2 On the Physics toolbar, click Boundaries and
choose Temperature .

3 On the Settings window for Temperature select
boundaries 3, 5, and 6 (You can also use the Paste
Selection button to enter directly the
selection).

4 To add a boundary heat flux, on the Physics toolbar, click Boundaries and select
Heat Flux .
54 |

5 On the Settings window for Heat Flux select
boundary 4 and set the General inward heat
flux expression to
heatflux(x,y,0,0,1e4,5).

Computing and Plotting the Results

Once the model is set up, the solution can be computed. A default mesh is
automatically generated.
1 On the Study toolbar, click Compute .
2 Click the Temperature (ht) node to display the temperature field at the

geometry surface.

1 Visualize the material thermal conductivity on the geometry by adding a new
3D Plot group. In the Results tab, select 3D Plot Group . An additional
toolbar containing Plot Tools for the 3D Plot Group appears when the 3D Plot
Group is selected in the Model Builder.
 | 55

2 On the 3D Plot Group 3 toolbar, click Isosurface .

3 In the Model Builder under the 3D Plot group 3 node, select the Isosurface 1
node.

4 On the associated Settings page, under the Expression section, enter
conductivity(x) in the Expression field.

5 Under the Levels section, change the Total levels to 15.
6 Click the Plot button .

Note: The function conductivity has been evaluated again in MATLAB to
generate the above plot. As the function is using a random distribution, the
above plot does not exactly represent the distribution of the thermal conductivity
when the solution has been computed.
56 |

	Introduction
	Starting COMSOL with MATLAB®
	Starting on Windows®
	Starting on Mac OS X
	Starting on Linux®
	The COMSOL Client Server Connection

	A Thorough Example: The Busbar
	About Compact Notation
	About The Model Object
	Connecting the Model in the COMSOL Desktop®
	About Global Parameters
	Geometry
	Selections
	Material Properties
	Physics Interface
	Multiphysics Interface
	Mesh
	Study
	Plotting The Results
	Exporting Results
	Saving the Model

	Sharing Applications with the COMSOL Desktop®
	Transferring a Model to MATLAB®
	Transferring a Model to the COMSOL Desktop®
	Saving and Running a Model M-File

	Extracting Results at the MATLAB® Command Line
	Evaluating Data at Arbitrary Points
	Evaluating Data at Node Points
	Global Evaluation and Integration
	Evaluating Expressions

	Automating with MATLAB® Scripts
	Obtaining Model Information
	Updating Model Settings
	Using MATLAB® Variables in the COMSOL Model
	An Example Using Nested Loops

	Using External MATLAB® Functions
	Creating the MATLAB® Functions
	Model Wizard
	Defining External MATLAB® Functions in a Model
	Geometry and Material Definition
	Heat Transfer in Solids
	Computing and Plotting the Results

