References
1. G.A. Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons, 2000.
2. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed., Edwards, 2005.
3. J.M. Powers, “On the Necessity of Positive Semi-Definite Conductivity and Onsager Reciprocity in Modeling Heat Conduction in Anisotropic Media,” ASME J. Heat Transfer, vol. 126, pp. 670–675, 2004.
4. G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction, World Scientific, 1999.
5. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, 2007.
6. Harry H. Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology, Vol. 1 no. 2, pp. 93-122, 1 August 1948.
7. S. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, Nonlinear Finite-element Analysis The Role of Dynamic Changes in Blood Perfusion and Optical Properties in Laser Coagulation of Tissue, IEEE J. Selected Topics in Quantum Electronics, vol. 2, issue 4, pp. 922–933, 1996.
8. S. Bhowmick, J.E. Coad, D.J. Swanlund, J.C. Bischof, “In vitro thermal therapy of AT-1 Dunning prostate tumors” Int. J. Hyperthermia, vol. 20, no. 1, pp. 73–92, 2004.
9. F. Xu, K.A. Seffen and T.J. Lu, “Temperature-Dependent Mechanical Behaviors of Skin Tissue,” IAENG Int. J. Computer Science, vol. 35, no 1, 2008.
10. M. Pop, A. Molckovsky, L. Chin, M.C. Kolios, M.A. Jewett, M.D. Sherar, “Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy”, Phys. Med. Biol., vol. 48, 2003 (http://www.ncbi.nlm.nih.gov/pubmed/12953912/).
11. P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M.C. Gosselin, D. Payne, A. Klingenböck, N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0, 2015. www.itis.ethz.ch/database
12. C. Rossmann and D. Haemmerich, Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures, Critical Reviews in Biomedical Engineering, Vol. 42, pp. 467-492, 2014.
13. D.A. Nield and A. Bejan, Convection in Porous Media, in Convection Heat Transfer, Fourth Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013.
14. N. Wakao, S. Kaguei, and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Chem. Engng Sci. 34, pp. 325-336, 1979.
15. EN 15026, Hygrothermal performance of building components and building elements - Assessment of moisture transfer by numerical simulation, CEN, 2007.
16. J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publisher, 1990.
17. H. Lee, Thermal Design, Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, John Wiley & Sons, 2006.
18. G. Fraisse, J. Ramousse, D. Sgorlon, C. Goupil, Comparison of different modeling approaches for thermoelectric elements, Energy Conversion and Management, Vol. 65, pp. 351-356, 2013.
19. R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed., Taylor & Francis, New York, 2002.
20. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, 2006.
21. http://www.esrl.noaa.gov/gmd/grad/solcalc
22. M.F. Modest, Radiative Heat Transfer, 2nd ed., Academic Press, San Diego, California, 2003.
23. W.A. Fiveland, “The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering,” Fundamentals of Radiation Transfer, HTD, vol. 160, ASME, 1991.
24. A. Bejan et al., Heat Transfer Handbook, John Wiley & Sons, 2003.
25. F. Charron, Partage de la chaleur entre deux corps frottants, Publication Scientifique et Technique du Ministère de l’Air, no. 182, 1943. (In French)
26. D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, 1998.
27. J. Larsson, Numerical Simulation of Turbulent Flows for Turbine Blade Heat Transfer, Doctoral Thesis for the Degree of Doctor of Philosophy, Chalmers University of Technology, Sweden, 1998.
28. W.M. Kays, “Turbulent Prandtl Number — Where Are We?”, ASME J. Heat Transfer, vol. 116, pp. 284–295, 1994.
29. B. Weigand, J.R. Ferguson, and M.E. Crawford, “An Extended Kays and Crawford Turbulent Prandtl Number Model,” Int. J. Heat and Mass Transfer, vol. 40, no. 17, pp. 4191–4196, 1997.
30. D. Lacasse, È. Turgeon, and D. Pelletier, “On the Judicious Use of the k-ε Model, Wall Functions and Adaptivity,” Int. J. Thermal Sciences, vol. 43, pp. 925–938, 2004.
31. D.A. Nield, “Effects of local thermal non-equilibrium in steady convective processes in a saturated porous medium: forced convection in a channel,” J. Porous Media, vol. 1, 1998, pp. 181–186.
32. W.J. Minkowycz et al., “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number,” Int. J. Heat Mass Transfer, vol. 42, 1999, pp. 3373–3385.
33. A. Amiri and K. Vafai, “Transient analysis of incompressible flow through a packed bed,” Int. J. Heat Mass Transfer, vol 41, 1998, pp. 4259–4279.
34. R.G. Carbonell and S. Whitaker, “Heat and Mass Transfer in Porous Media,” Fundamentals of Transport Phenomena in Porous Media, J. Bear and M.Y. Corapcioglu, eds., Springer, 1984, pp. 121–198.
35. J.L. Monteith and M.H. Unsworth, Principles of Environmental Physics, Edward Arnold, London, 290 pp., 1990.
36. P.T. Tsilingiris, “Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100°C,” Energy Conversion and Management, vol. 49, no. 5, pp. 1098–1110, 2008.
37. J. Zhang, A. Gupta, and J. Bakera, “Effect of Relative Humidity on the Prediction of Natural Convection Heat Transfer Coefficients,” Heat Transfer Engineering, vol. 28, no. 4, pp. 335–342, 2007.
38. W. Wagner and H-J Kretzschmar, International Steam Tables, 2nd ed., Springer, 2008.
39. M. Kaviany, Principles of Convective Heat Transfer, 2nd ed., Springer, 2001.
40. A. Bejan, Heat Transfer, John Wiley & Sons, 1993.
41. Tables of Physical & Chemical Constants (16th edition 1995). 2.2.5 Surface tension. Kaye & Laby Online. Version 1.0 (2005), www.kayelaby.npl.co.uk
42. J.J. Jasper, “The Surface Tension of Pure Liquid Compounds”, J. Phys. Chem. Ref. Data, vol. 1, pp. 841–1010, 1972.
43. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2000.
44. C. P. Thurgood, A. Pollard and H. A. Becker, “The TN quadrature set for the discrete ordinates method,” J. Heat Transfer, vol. 117, pp. 1068–1070, 1995.
45. M. A. Badri, P. Jolivet, B. Rousseau, S. Le Corre, H. Digonnet and Y. Favennec, “Vectorial finite elements for solving the radiative transfer equation,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 212, pp. 59–74, 2018.