References for the Materials Databases
References for the Liquids and Gases Materials Database
1. ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating and Air Conditioning Engineers, 1993.
2. E.R.G. Eckert and M. Drake, Jr., Analysis of Heat and Mass Transfer, Hemisphere Publishing, 1987.
3. H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kubota, and T. Makita, “Thermal Conductivity and Density of Toluene in the Temperature Range 273–373K at Pressures up to 250 MPa”, Int. J. Thermophys., vol. 3, no. 3, pp. 201–215, 1982.
4. C.A. Nieto de Castro, S.F.Y. Li, A. Nagashima, R.D. Trengove, and W.A. Wakeham, “Standard Reference Data for the Thermal Conductivity of Liquids”, J. Phys. Chem. Ref. Data, vol. 15, no. 3, pp. 1073–1086, 1986.
5. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, 2001.
6. C.F. Spencer and B.A. Adler, “A Critical Review of Equations for Predicting Saturated Liquid Density,” J. Chem. Eng. Data, vol. 23, no. 1, pp. 82–88, 1978.
7. N.B.Vargnaftik, Tables of Thermophysical Properties of Liquids and Gases, 2nd ed., Hemisphere Publishing, 1975.
8. R.C.Weast (ed.), CRC Handbook of Chemistry and Physics, 69th ed., CRC Press, 1988.
9. M. Zabransky and V. Ruzicka, Jr., “Heat Capacity of Liquid n-Heptane Converted to the International Temperature Scale of 1990”, Phys. Chem. Ref. Data, vol. 23, no. 1, pp. 55–61, 1994.
10. M. Zabransky; V. Ruzicka, Jr.; and E.S. Domalski, “Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement I”, J. Phys. Chem. Ref. Data, vol. 30, no. 5, pp. 1199–1397, 2002.
11. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, 2006.
References for the MEMS Materials Database
1. J.W. Gardner, V.K. Varadan, and O.O. Awadelkarim, Microsensors, MEMS, and Smart Devices, John Wiley & Sons, 2001.
2. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 84th edition, CRC Press, 2003.
3. A.M. James and M.P. Lord, MacMillan’s Chemical and Physical Data, MacMillan’s Press, 1992.
4. M. Gad-el-Hak (ed.), The MEMS Handbook, CRC Press, 2002.
5. New Semiconductor Materials. Characteristics and Properties, www.ioffe.ru/SVA/NSM, 2003.
6. Ceramics WebBook, https://www.nist.gov/mml/mmsd/webbook, 2003.
7. J.E. Mark, The Polymer Data Handbook, 2nd edition, Oxford University Press, 2009.
8. Lotters et. al, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications”, J. Micromech Microeng, vol. 7 145–147, 1997.
References for the Piezoresistivity Materials Database
1. C.S. Smith, “Piezoresistance Effect in Germanium and Silicon”, Physical Review, vol. 94, no. 1, pp. 42–49, 1957.
2. C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A Review of Some Charge Transport Properties of Silicon”, Solid-State Electronics, vol. 20, pp. 77–89, 1977.
3. O.N. Tufte and E.L. Stelzer, “Piezoresistance Properties of Heavily Doped n-Type Silicon”, Physical Review, vol. 133, no. 6A, pp. A1705–A1716, 1964.
4. O.N. Tufte and E.L Stelzer, “Piezoresistive Properties of Silicon Diffused Layers”, J. Applied Physics, vol. 34, no. 2, pp. 313–318, 1963.
Reference For the Ray Optics Materials Database
1. RefractiveIndex.INFO Refractive index database, refractiveindex.info.
References for the Semiconductor Materials Database
1. M. Shur, Physics of Semiconductor Devices, Prentice Hall, 1990.
2. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, 1984.
3. Y. Okuto and C. R. Crowell, “Threshold energy effect on avalanche breakdown voltage in semiconductor junctions”, Solid State Electronics, vol. 18, pp. 161–168, 1975.
4. Approximate values are given, based loosely on Ref. 2. In practice these values should depend on the local doping, as discussed in Ref. 2. Use the user-defined option to implement this functionality.
5. N.D. Arora, J.R. Hauser, and D.J. Roulston, “Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature”, IEEE Transactions on Electron Devices, vol. 29, no. 2, pp. 292–295, 1982.
6. C. Canali, G. Majni, R. Minder, and G. Ottaviani “Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature”, IEEE Transactions on Electron Devices, vol. 22, no. 11, pp. 1045– 1047, 1975. Note the correction in: G. Ottaviani, “Correction to ‘Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperatures’”, IEEE Transactions on Electron Devices, vol. 23, no. 9, pp. 1113, 1976.
7. J.M. Dorkel and Ph. Leturcq, “Carrier Mobilities in Silicon Semi-empirically Related to Temperature, Doping and Injection Level”, Solid-State Electronics, vol. 24, no. 9, pp. 821–825, 1981.
8. C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices”, IEEE Transactions on Computer-Aided Design, vol. 7, no. 11, 1988.
9. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Volume 1: Si, Ge, C (Diamond), GaAs, GaP, InAs, InP, InSb, World Scientific, 2000.
10. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Volume II: Ternary and Quaternary III-V compounds, World Scientific, 2000.
11. D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- and p-type silicon”, Solid State Electron. vol. 35, no. 2, pp. 125–129, 1992.
12. S.C. Jain and D.J. Roulston, “A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers”, Solid-State Electronics, vol. 34, no. 5, pp. 453–465, 1991.
References for the Bioheat Materials Database
1. S. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, “Nonlinear Finite-element Analysis The Role of Dynamic Changes in Blood Perfusion and Optical Properties in Laser Coagulation of Tissue”, IEEE J. Selected Topics in Quantum Electronics, vol. 2, no. 4, pp. 922–933, 1996.
2. S. Bhowmick, J.E. Coad, D.J. Swanlund, and J.C. Bischof, “In vitro thermal therapy of AT-1 Dunning prostate tumors”, Int. J. Hyperthermia, vol. 20, no. 1, pp. 73–92, 2004.
3. F. Xu, K.A. Seffen, and T.J. Lu, “Temperature-Dependent Mechanical Behaviors of Skin Tissue”, IAENG Int. J. Computer Science, vol. 35, no 1, 2008.
4. M. Pop, A. Molckovsky, L. Chin, M.C. Kolios, M.A. Jewett, and M.D. Sherar, “Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy”, Phys. Med. Biol., vol. 48, 2003 (http://www.ncbi.nlm.nih.gov/pubmed/12953912/).
5. P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M.C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0, 2015. www.itis.ethz.ch/database.
6. C. Rossmann and D. Haemmerich, Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures, Critical Reviews in Biomedical Engineering, Vol. 42, pp. 467–492, 2014.
References for the Building Materials Database
1. J. Vinha, Hygrothermal Performance of Timber-Framed External Walls in Finnish Climatic Conditions: A Method for Determining the Sufficient Water Vapour Resistance of the Interior Lining of a Wall Assembly, PhD Thesis, Tempere University of Technology, 2007.
2. I. Valovirta and J. Vinha, Water Vapor Permeability and Thermal Conductivity as a Function of Temperature and Relative Humidity, Performance of Exterior Envelopes of Whole Buildings, IX International Conference, Florida, USA, December 5-10, 2004.
3. H.M. Künzel, Simultaneous Heat and Moisture Transport in Building Components, One- and two-dimensional calculation using simple parameters, PhD Thesis, Fraunhofer Institute of Building Physics,1995.
4. C. Abelé et al., Transferts d'humidité à travers les parois, Guide technique, CSTB Editions, 2009 (In French).