3.
H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kubota, and T. Makita, “Thermal Conductivity and Density of Toluene in the Temperature Range 273–373K at Pressures up to 250 MPa”, Int. J. Thermophys., vol. 3, no. 3, pp. 201–215, 1982.
4.
C.A. Nieto de Castro, S.F.Y. Li, A. Nagashima, R.D. Trengove, and W.A. Wakeham, “Standard Reference Data for the Thermal Conductivity of Liquids”, J. Phys. Chem. Ref. Data, vol. 15, no. 3, pp. 1073–1086, 1986.
7.
N.B.Vargnaftik, Tables of Thermophysical Properties of Liquids and Gases, 2nd ed., Hemisphere Publishing, 1975.
8.
R.C.Weast (ed.), CRC Handbook of Chemistry and Physics, 69th ed., CRC Press, 1988.
2.
D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 84th edition, CRC Press, 2003.
7.
J.E. Mark, The Polymer Data Handbook, 2nd edition, Oxford University Press, 2009.
1.
M. Shur, Physics of Semiconductor Devices, Prentice Hall, 1990.
2.
S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, 1984.
6.
C. Canali, G. Majni, R. Minder, and G. Ottaviani “Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature”, IEEE Transactions on Electron Devices, vol. 22, no. 11, pp. 1045– 1047, 1975. Note the correction in: G. Ottaviani, “Correction to ‘Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperatures’”,
IEEE Transactions on Electron Devices, vol. 23, no. 9, pp. 1113, 1976.
9.
M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Volume 1: Si, Ge, C (Diamond), GaAs, GaP, InAs, InP, InSb, World Scientific, 2000.
5.
P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M.C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0, 2015.
www.itis.ethz.ch/database.
6.
C. Rossmann and D. Haemmerich, Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures, Critical Reviews in Biomedical Engineering, Vol. 42, pp. 467–492, 2014.
1.
J. Vinha, Hygrothermal Performance of Timber-Framed External Walls in Finnish Climatic Conditions: A Method for Determining the Sufficient Water Vapour Resistance of the Interior Lining of a Wall Assembly, PhD Thesis, Tempere University of Technology, 2007.
2.
I. Valovirta and J. Vinha, Water Vapor Permeability and Thermal Conductivity as a Function of Temperature and Relative Humidity, Performance of Exterior Envelopes of Whole Buildings, IX International Conference, Florida, USA, December 5-10, 2004.
3.
H.M. Künzel, Simultaneous Heat and Moisture Transport in Building Components, One- and two-dimensional calculation using simple parameters, PhD Thesis, Fraunhofer Institute of Building Physics,1995.
4.
C. Abelé et al., Transferts d'humidité à travers les parois, Guide technique, CSTB Editions, 2009 (In French).