
COMSOL Multiphysics
Application Builder Reference Manual

C o n t a c t I n f o r m a t i o n

Visit the Contact COMSOL page at www.comsol.com/contact to submit general
inquiries, contact Technical Support, or search for an address and phone number. You can
also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for
address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access
page at www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/community

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/video

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020010

A p p l i c a t i o n B u i l d e r R e f e r e n c e M a n u a l
© 1998–2019 COMSOL

Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474;
7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; and
10,019,544. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms
of the license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler,
COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other
trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products
are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such
trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 5.5

www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/trademarks/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

C o n t e n t s

C h a p t e r 1 : I n t r o d u c t i o n

About the Application Builder 8

What Can You Do with the Application Builder? 8

Accessing the Documentation 8

Overview of the Manual 10

C h a p t e r 2 : A p p l i c a t i o n B u i l d e r T o o l s

Introduction 13

Starting the Application Builder 14

Launching the Application Builder 14

Opening the Application Builder from the COMSOL Desktop 15

Application Examples in the Application Libraries 15

Overview of the Application Builder 16

The Application Builder and the Application Tree 16

The Home Toolbar . 16

Cutting, Copying, Duplicating, Deleting, and Pasting Components 18

Copying Application Components Between Applications 19

Compiling Applications 20

Compiling Applications Using the COMSOL Compiler. 20

Creating Add-ins 22

Overview. . 22

Add-in Definition . 22

Form Definition . 23

Method Definition . 23

The Inputs Branch 24

The Application Argument Node 24

The Main Window Branch 26

The Main Window Node . 26

The Menu Bar Node . 27

The Toolbar Node . 27

The Menu Node . 27

The File Menu Node . 28

The Ribbon Node . 28

The Ribbon Tab Node . 28

The Ribbon Section Node 28

The Item Node . 29

The Toggle Item Node. . 31

The Separator Node . 33
C O N T E N T S | 3

The Forms Branch 34

The Forms Node . 34

The Form Node . 34

The Events Branch 38

The Events Node . 38

The Event Node . 38

The Declarations Branch 41

Array Syntax . 42

The String Node . 42

The Boolean Node . 43

The Integer Node . 43

The Double Node . 44

The Array 1D String Node 44

The Array 1D Boolean Node 45

The Array 1D Integer Node 45

The Array 1D Double Node 46

The Array 2D String Node 46

The Array 2D Boolean Node 47

The Array 2D Integer Node 47

The Array 2D Double Node 48

The Choice List Node . 48

Activation Condition . 49

The File Node . 50

The Unit Set Node . 50

The Graphics Data Node. 51

Adding Shortcuts . 51

Editing Initial Values and Arguments in Declarations and Command Sequences 52

The Methods Branch 55

The Methods Branch . 55

The Method Node . 55

The Libraries Branch 56

Images . 56

Sounds. . 56

Files . 57

Add-in . 57

Form . 57

Method . 57

Planning and Preparing an Application 58

Preparing an Application . 58

Creating Applications from Models 59

Copy as Code to Clipboard 59

Testing the Application . 60
4 | C O N T E N T S

Keyboard Shortcuts 61

C h a p t e r 3 : W o r k i n g w i t h F o r m s

Introduction 64

Overview of the Forms and Tools for Creating Forms. 64

Working with a Form and Using the New Form Wizard 64

Data Access . 67

The Form Toolbar . 67

The Form Window Layout Modes 69

The Sketch Mode. . 69

The Grid Mode . 70

Previewing and Testing the Form 74

Running Local Methods in Form Objects 74

The Form Objects 75

Overview of the Form Objects 75

Input Field . 76

Button . 80

Toggle Button . 83

Check Box . 87

Combo Box . 89

Text Label . 92

Unit . 93

Equation . 94

Line . 96

Data Display . 97

Graphics . 99

Web Page . 103

Image . 104

Video . 105

Progress Bar . 107

Log . 108

Message Log . 110

Results Table . 111

Form . 113

Form Collection . 114

Card Stack . 116

Card . 118

File Import . 120

Information Card Stack 122

Array Input . 124

Radio Button . 127

Selection Input . 130

Text. 132

List Box . 135

Table . 138

The Edit Custom Toolbar Item Dialog Box 141

Slider . 143

Hyperlink. 146

Toolbar . 147

Spacer . 149
C O N T E N T S | 5

C h a p t e r 4 : W o r k i n g w i t h M e t h o d s

Overview 152

Opening a Method Editor Window 152

Coding and Methods Overview 152

The Application Builder Window. 153

The Method Windows. 153

The Method Toolbar . 153

The Method Nodes and Method Editor Windows 155

The Utility Class Node 156

The External Java Library Node 157

The External C Library Node 157

Using External C Libraries 158

File Schemes and File Handling 161

Getting Files to and from the Client File System 162

Creating Methods 164

Syntax Highlighting and Comments 164

Code Completion and Tooltip Help. 165

Code Folding . 170

Adding Language Elements 171

Adding Model Expressions 171

Adding Model Code and Form Objects 172

Going to the Node to Which the Source Code Is Mapped 174

Recording Code . 174

Using Shortcuts . 175

Creating Local Variables and Their Type Declarations 176

Calling Other Methods Directly 177

Using Properties Defined in Declarations as Variables 177

Searching and Finding Text 177

Indentation and Whitespace Formatting 178

Brace Matching . 178

Debugging and Running Methods for Applications 179

Running Methods . 179

Indication of Compilation Errors 179

Debugging Tools . 179

The Errors and Warnings Window 180

Handling Runtime Errors in Methods 181

Stopping a Running Method 181
6 | C O N T E N T S

 1
I n t r o d u c t i o n
Read this guide to learn how to use the Application Builder, a set of tools for
creating custom applications based on multiphysics models. The Application
Builder is available directly in the COMSOL Desktop® and includes a
comprehensive set of user interface and programming tools. See the Introduction
to the Application Builder for an overview of the Application Builder and the
Application Libraries, where you will find many example applications.

In this chapter:

• About the Application Builder

• Overview of the Manual
 7

Abou t t h e App l i c a t i o n Bu i l d e r

In this section:

• What Can You Do with the Application Builder?

• Accessing the Documentation

What Can You Do with the Application Builder?

The Application Builder provides tools for creating custom applications from COMSOL Multiphysics® models.
You can use graphical tools and editors as well as built-in language elements and Java® code to tailor an application
with the user inputs, design, and results that you want to include. Simulation applications have a variety of uses,
such as:

• Efficiently testing various design parameters

• Streamlining the product development workflow

You, and other COMSOL users, can run applications in COMSOL Multiphysics. You can also make COMSOL
applications available for colleagues and customers who do not use COMSOL Multiphysics by compiling them into
standalone applications using the COMSOL Compiler™ or by letting them connect to a COMSOL Server™
installed in a central location on your network or in the cloud. Your colleagues and customers can then run
applications freely, if compiled, on a COMSOL Server through a web browser, or through a COMSOL Client.

You can also define methods and forms for use in the Model Builder when creating simulation models in the
COMSOL Desktop, as method calls and settings forms that can enhance the modeling process with additional
functionality. Even more powerful, you can create separate add-ins that you can reuse between COMSOL
Multiphysics modeling sessions and share with colleagues. Add-ins are special MPH-files, based on one or more
method calls and settings forms.

Accessing the Documentation

A number of Internet resources provide more information about COMSOL, including licensing and technical
information. The electronic documentation, topic-based (or context-based) help, and the Application Libraries are
all accessed through the COMSOL Desktop®.

C O N T A C T I N G C O M S O L B Y E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please contact your local COMSOL
representative or send your questions to support@comsol.com. An automatic notification and case number is sent
to you by email.

If you are reading the documentation as a PDF file on your computer, the blue links do not
work to open content referenced in a different guide. However, if you are using the Help
system in COMSOL Multiphysics, these links connect to other modules (as long as you have
a license), application examples, and documentation sets.
8 | C H A P T E R 1 : I N T R O D U C T I O N

C O M S O L W E B S I T E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Blog www.comsol.com/blogs

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
A B O U T T H E A P P L I C A T I O N B U I L D E R | 9

http://www.comsol.com
http://www.comsol.com/contact/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates
http://www.comsol.com/community
http://www.comsol.com/events/
http://www.comsol.com/blogs/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

Ove r v i ew o f t h e Manua l

The Application Builder Reference Manual contains comprehensive information about the tools and
functionality in the Application Builder. In addition to this introduction, you will find the following chapters:

• Application Builder Tools: An overview of the tools in the Application Builder as well as details about the nodes
in the Application Builder tree and the tools on the Home ribbon toolbar.

• Working with Forms: Information about the tools in the Application Builder for creating and designing forms
for an application.

• Working with Methods: Information about the tools in the Application Builder for creating and writing code for
methods and classes to extend the functionality of an application.

See also the following documentation:

• Introduction to the Application Builder, for an overview and introduction to the Application Builder.

• Application Programming Guide, for a guide to writing code for applications using the method editor.

• COMSOL Multiphysics Programming Reference Manual, for information about commands for the model
object, which are available for programming in methods that you can add to your applications.
10 | C H A P T E R 1 : I N T R O D U C T I O N

 2
A p p l i c a t i o n B u i l d e r T o o l s
This chapter provides an overview of the tools available in the Application Builder
to help you to create custom applications, compiling applications, and creating
ad-ins. The tools include editors and user interface components for designing forms
and windows, and method editors and coding and debugging tools for adding
application-specific actions and methods.

In this chapter:

• Introduction

• Starting the Application Builder

• Overview of the Application Builder

• Compiling Applications

• Creating Add-ins

• The Inputs Branch

• The Main Window Branch

• The Forms Branch

• The Events Branch

• The Declarations Branch
 11

• The Methods Branch

• The Libraries Branch

• Planning and Preparing an Application

• Creating Applications from Models

• Keyboard Shortcuts
12 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

I n t r o du c t i o n

The Application Builder includes a comprehensive set of tools for creating and deploying applications based on
COMSOL models. The main parts of the Application Builder that you use to create applications are the following:

• The COMSOL Desktop with the Application Builder window, which contains a tree with the nodes that define
the application, and ribbon toolbars with tools for creating applications. See The Application Builder and the
Application Tree and further sections in this chapter about the branches and nodes in the Application Builder
tree.

• The tools for creating and designing forms (user interfaces) with various form components (user interface
controls) that are adapted for the application. See the Working with Forms chapter for more information.

• The tools for creating and editing methods and classes for including custom code that can be connected to user
interface events, for example. See the Working with Methods chapter for more information.

To get started, you can explore and run applications that are included in COMSOL Multiphysics and in many of
the add-on products. In the Application Libraries window, the applications that appear under Applications are
runnable application examples that you can open and inspect to learn how to create forms (user interfaces) and
methods (code for added functionality in the application). See the COMSOL Multiphysics Reference Manual for
details about the Application Libraries window.
I N T R O D U C T I O N | 13

S t a r t i n g t h e App l i c a t i o n Bu i l d e r

Launching the Application Builder

To start the Application Builder, click the Application Builder button () on the Home toolbar. The COMSOL
Desktop then switches to display the toolbar for the Application Builder (or opens in a separate desktop window if
you select the Use separate desktop window for Application Builder check box on the Application Builder page in the
Preferences dialog box). When you have finished developing your application, you can run it by choosing Run

Application from the File menu and pointing to the MPH-file for the application. You can also browse and run
applications in The Main Window Branch. The figure below also shows how the applications can be accessed and
run in the COMSOL Desktop. To return from the Application Builder to the Model Builder, click Model Builder
on the Application Builder’s Home toolbar ().

The Application Builder window works analogously to the Model Builder with an application tree, context menus,
toolbars, and Settings windows for every application tree node. The nodes in the application tree represent forms,
events, methods, and other parts of the runnable application. You can add the graphical user interface (GUI)
components (form objects) from the Form contextual ribbon toolbar and then position them interactively using the
graphics tools in the Application Builder (see Working with Forms). You can also see a preview of what the form
or entire application will look like when the application is run. The Application Builder is available for Microsoft
Windows® operating system installations, but applications created using the Application Builder can be deployed
and used on all operating systems, including running in a web browser together with COMSOL Server.

Figure 2-1: The Application Builder adapts the COMSOL Desktop for the design of applications.

COMSOL Desktop Application Builder home ribbonForm window for graphical
positioning of user interface
components

Application Builder
window containing the
application tree

Settings window for
application nodes
14 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

Opening the Application Builder from the COMSOL Desktop

When you are in the COMSOL Desktop, you can toggle between the Application Builder and COMSOL
Multiphysics. On the Home toolbar, click Application Builder to open the Application Editor, where you can
modify the user interface of the application as well as create and edit code for the application. You can also press
Ctrl+Shift+A.

Conversely, when you are in the Application Builder, you can click Model Builder on the Home toolbar to return
to COMSOL Multiphysics. You can also press Ctrl+Shift+M.

Application Examples in the Application Libraries

In the Application Libraries window, you can browse the application libraries for each COMSOL product. Most of
them include an Applications folder, which contains runnable application examples that you can open in the
Application Builder and run. You can use these applications as inspiration, for example, to see how to use form
objects in a user interface design or create methods for extending the functionality of your application.
S T A R T I N G T H E A P P L I C A T I O N B U I L D E R | 15

Ove r v i ew o f t h e App l i c a t i o n Bu i l d e r

The Application Builder and the Application Tree

The Application Builder window on the COMSOL Desktop contains the application tree. This tree displays nodes
from the Application Builder’s data structure and nodes from the embedded model. All nodes from the embedded
model behave exactly like the nodes in the model tree when working with the Model Builder. The application tree
also includes a root node of the application and the following branches under the root node:

• A Compiler node () for creating standalone executable simulation applications if added from the Home ribbon
(requires COMSOL Compiler™). See Compiling Applications.

• An Add-in Definitions node () can be added for creating add-ins. See Creating Add-ins.

• The Inputs Branch

• The Main Window Branch

• The Forms Branch

• The Events Branch

• The Declarations Branch

• The Methods Branch

• The Libraries Branch

The root node () in the Application Builder is similar to the root node in the Model Builder, but it also contains
an Application section with settings specific to applications (see The Root Settings and Properties Windows in the
COMSOL Multiphysics Reference Manual for more information).

The Home Toolbar

The Home toolbar is always available and contains buttons for accessing the most common functionality in the
Application Builder.

T H E M A I N S E C T I O N

This section contains the following buttons for moving to various windows and creating new forms and methods:

• The Model Builder button (), to switch from the Application Builder to the Model Builder windows and the
standard COMSOL Desktop.

• The New Form button (), to create a new form using the New Form wizard. See Working with a Form and
Using the New Form Wizard.

• The New Method button (), to create a new Global Method or Form Method node open its code in a new editor
tab. See The Method Nodes and Method Editor Windows.

• The Data Access button (), to add model-dependent data and properties, as well as application-specific
properties that can be modified from a running application through the data access functionality. See Data
Access.

• The Record Method button (), to create a new method by starting a recording session of operations on the
embedded model that you can later use as code in that method. When the recording starts, the button changes
to the Stop Recording button (), which you click to end the recording. See Recording Code.

• The Compiler button (), to compile an application created using the Application Builder into a standalone,
runnable application (with a license for COMSOL Compiler™). See Compiling Applications Using the
COMSOL Compiler.
16 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

• The Settings button (), to move, open, or close the Settings window.

• The Preview button (), to show or hide the Preview window for a live preview of the forms and methods in
the application. In the Preview window, you can scroll to get a preview of the forms and methods in the
application, which can be useful, for example, if you are working on a method that interacts with a form. To show
a preview of a form in the Preview window, select a form or method node in the Application Builder window, if
the Link with Editor button () is not selected; if it is selected, instead click the Preview tab.

• The Editor Tools button (), to show or hide the Editor Tools window, where you can choose common
COMSOL Multiphysics model operations and insert them into a method or generate form objects based on
them. See Adding Model Code and Form Objects.

The

T H E I N P U T S S E C T I O N

This section contains a button for adding an application argument. See The Inputs Branch.

• Click the Application Argument button (), to add an Application Argument node for defining an input argument
for an application. See The Application Argument Node.

T H E E V E N T S S E C T I O N

This section contains a button for creating events. See The Events Branch.

• Click the Events button (), to add an Event node for defining an event. See The Event Node.

T H E D E C L A R A T I O N S S E C T I O N

This section contains buttons for creating variable, file, and choice list declarations. See The Declarations Branch.
The buttons include:

• The Scalar button (), to open a menu where you can choose to add a string, Boolean, integer, or double
scalar.

• The Array 1D button (), to open a menu where you can choose to add a string, Boolean, integer, or double
1D array.

• The Array 2D button (), to open a menu where you can choose to add a string, Boolean, integer, or double
2D array (matrix).

• Under More Declarations (), choose one of the following items:

- File (), to add a file declaration for accessing files.

- Choice List (), to add a choice list for defining a list of allowed values.

- Unit Set (), to add a unit set.

- Graphics Data (), to add a graphics data for accessing picked data from a graphics window.

T H E L I B R A R I E S S E C T I O N

This section contains the following buttons for opening the images, sounds, and file libraries and for adding
external code and utility classes:

• The Images button (), to open the Images library. See Images.

• The Sounds button (), to open the Sounds library. See Sounds.

• The Files button (), to open the Files library. See Files.

• The Utility Class button (), to add a Java utility class. See The Utility Class Node.
O V E R V I E W O F T H E A P P L I C A T I O N B U I L D E R | 17

• The External Java Library button (), to add an external Java library. See The External Java Library Node.

• The External C Library button (), to add a dynamically linked native code library. See The External C Library
Node.

T H E M A I N W I N D O W S E C T I O N

This section contains buttons for adding menus and toolbars to the application’s main window. The buttons are
only available when it is possible to add the respective menus or toolbars (depending on which menu type you use
and the current node under Main Window) and include:

• The Menu Bar button (), to add a menu bar. See The Menu Bar Node.

• The Toolbar button (), to add a toolbar. See The Toolbar Node.

• The File Menu button (), to add a file menu. See The File Menu Node.

• The Ribbon Tab button (), to add a ribbon tab to a ribbon. See The Ribbon Tab Node.

• The Ribbon Section button (), to add a ribbon section to a ribbon. See The Ribbon Section Node.

• The Menu button (), to add a menu. See The Menu Node.

• The Item button (), to add a menu item. See The Item Node.

• The Toggle Item button (), to add a toggle item. See The Toggle Item Node.

• The Separator button (), to add a separator to separate groups of related menu items in a menu. See The
Separator Node.

T H E T E S T S E C T I O N

This section contains the following tools for testing the application:

• The Test Application button (), to launch the application in a separate window so that you can test it. See
Testing the Application.

• The Apply Changes button (), to compile and apply code changes to the running application (a so-called hot
code swap). See Applying Changes to a Running Application.

• The Test in Web Browser button (), to test run the application in a web browser. See Testing the Application.

T H E C O M P A R E S E C T I O N

Click the Compare button () to open a Select Application window where you can select another application (as
an MPH-file) and compare it to the current application. The results of the comparison appear in a Comparison Result
window. See Comparing Models and Applications in the COMSOL Multiphysics Reference Manual for more
information.

T H E V I E W S E C T I O N

The View section contains the following buttons for rearranging the views in the Application Builder desktop
window:

• The Tile () and Move To () buttons, to rearrange the windows in the Application Builder.

• The Reset Desktop button (), to reset the desktop layout to the default state.

Cutting, Copying, Duplicating, Deleting, and Pasting Components

Nodes that you add to the Application Builder tree, such as forms, methods, and declarations, can be cut, copied,
duplicated, deleted, and pasted (see the section below for information about copying between applications). You
can use buttons on the Quick Access Toolbar, or right-click a node and choose one of the following options:

• Cut (Ctrl+X in cases where that shortcut is supported)
18 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

• Copy

• Duplicate Ctrl+Shift+D

• Delete Del

If you cut or copy a node, you can paste it using the context menu on the parent node, such as Paste Choice List on
the context menu for the Declarations node.

Copying Application Components Between Applications

You can copy and paste many parts of an application to another application. For example, when you have copied a
form or some form objects, it is possible to paste them between two running instances of COMSOL Multiphysics,
or in one running instance after opening a new application. You can also copy methods, utility methods, external
libraries, file declarations, choice list declarations, menu items, menu dividers, menus, ribbon sections, and ribbon
tabs. The copy operation can handle references to various objects in the application. When you copy and paste
between applications, the following information regarding references to methods and files can be useful:

• Local methods are included in the copy-paste operation. However, the code in the methods is unchanged.

• All image references are copied and added during paste if needed. If there is an existing image with the same
name, it will be used instead of the copied version.

• No files or sounds are copied.

If there are potential issues with the paste operation, a message window appears. You can then choose to cancel the
paste operation.
O V E R V I E W O F T H E A P P L I C A T I O N B U I L D E R | 19

Comp i l i n g App l i c a t i o n s

Compiling Applications Using the COMSOL Compiler

You can compile applications developed using the Application Builder, so that they become standalone, runnable
applications that can be deployed and run on any supported platform (Windows, Linux, and macOS) without a
COMSOL Multiphysics or COMSOL Server license.

To compile an application, click the Compiler button () in the Home toolbar’s Main section and specify the output
directory, the platforms to compile for, a splash screen, and possibly some additional settings (see below); then click
the Compile Application button () or press F8. You can also use the comsol compile command to compile an
application on any supported platform (see The COMSOL Commands in the COMSOL Multiphysics Reference
Manual).

When launching a compiled application for the first time, a COMSOL Runtime Installer appears. You need to run
the installer before the splash screen appears and the application becomes active. For subsequent launches of
applications, the splash screen appears directly. The complementary executable file used for the runtime
environment when you run a compiled application is a COMSOL Application process, comsolapplication.exe.

The Compiler node’s Settings window contains the following sections:

O U T P U T

In the Directory field, specify the output directory where the compiled application will be stored, or click the Browse
button to browse for a location.

Under Runtime, from the Runtime library list choose Download (the default) or Embed, to embed the runtime library
in the compiled application. If you choose Download, users can download and install the runtime library on demand,
By excluding the COMSOL Runtime, you can create much smaller executable files.

Under Platforms, select the Windows, Linux, and macOS check boxes as desired (depending on the platforms where
you want to users to be able to run the applications). By default, only the Windows check box is selected.

To compile the application into an executable application, click the Compile Application button () at the top of
the Settings window or press F8. The size of a created application is about 300 MB with an embedded runtime;
with a downloaded runtime, it is just a few MB in addition to the model’s size.

Executable File Formats
When compiling an application on multiple platforms, the extensions of the executables are the following:

• For the Windows platform: .exe. If the size of the application exceeds 4 GB, an auxiliary payload file with the
extension .dat is also created. When distributing such a large application, you must also distribute the .dat file.
The executable file and the corresponding payload file must reside in the same directory.

• For the Linux platform: .sh.

• For macOS, a .tar archive is created; unpack this archive on macOS to extract the application. If you create an
executable for macOS from the command line in macOS, a .dmg file (macOS disk image file) is created instead.

Compiling applications requires a license for COMSOL Compiler™.
20 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

A P P E A R A N C E

In this section, you can specify an icon to use for the compiled application and a splash screen to appear when
launching the application.

The Icon for Windows and Icon for macOS lists appear when the corresponding check boxes for each platform have
been selected under Platforms in the Executable section. From the lists you can select a number of available icons.
Click the Add Image to Library and Use Here button () to add another icon to use. The following formats are
supported:

• Windows: ICO, PNG, and BMP image files

• macOS: ICNS, PNG, and BMP image files

Click the Export button () to export the image used for the icon to a file.

From the Splash list, select an image to use as the splash-screen image when launching an application. The Default
splash screen is a generic default splash screen for compiled applications. Click the Add Image to Library and Use Here
button () to add any other BMP image to the list of splash-screen images and use it. Under Preview, you can
see what the currently selected splash-screen image looks like. Click the Export button () to export the image
used for the splash screen to a file.

P H Y S I C S B U I L D E R

Custom-made physics interfaces, created with the Physics Builder, can be embedded into the compiled application,
making it easy to share that type of applications. From the Physics interfaces list, choose the location of the
custom-made physics interface: None (the default, if no such physics interfaces exist or should be included);
Development files (physics interface files that you can add and test in a COMSOL Desktop session); External folder,
which you specify in the Folder field (for physics interface files in an archive folder that has not been converted into
a JAR archive); or External Java archive, which you specify in the File field (for physics interface files in JAR archives
resulting from a Physics Builder compilation). See the Physics Builder Manual for more information about these
file types.

This section only appears in you have enabled the Physics Builder in the Preferences dialog box.
C O M P I L I N G A P P L I C A T I O N S | 21

C r e a t i n g Add - i n s

Overview

To customize the workflow in the Model Builder you can use a Method Call or a Settings Form. However, these
are associated with a specific MPH-file and you may want to reuse them between sessions or share them with
colleagues. To make this possible, you can create an add-in, based on one or more method calls and settings forms
that together implement some custom functionality that can be useful when creating model in the Model Builder.
Such add-ins can then be stored in a user-defined Add-in Library. In addition, COMSOL Multiphysics comes with
a built-in Add-in Library, which includes some example add-ins that you can use and explore. For the add-ins in
the built-in library, you can review their Application Builder settings, including forms and methods, to quickly learn
how to build your own add-ins. In a typical Windows installation, the built-in add-in library is located at

C:\Program Files\COMSOL\COMSOL55\Multiphysics\addins

Creating an add-in is similar to creating an application, with a few differences:

• Add-ins do not have their own graphics window but instead use the main Graphics window in the Model Builder.

• An add-in should work, or give controlled error messages, for any type of model.

To create an add-in, starting from a form that you have created in the Application Builder, click Add-in Definition in
the Home ribbon or right-click the root node in the Application Builder and then select Add-in Definition to add an
Add-in Definition node. You can then right-click the Add-in Definition node and select Form Definition (and Method

Definition, if applicable) to add one or more corresponding subnodes for the definitions of the forms and methods
that the add-in should provide in the Model Builder. A minimum (and often sufficient) is to add a Form Definition
for the form that will be used as a settings window for the add-in. When you are done, click the Create Add-in button
() or press F8 in Add-in Definition node’s Settings window. You can also add such nodes from the Home ribbon.
See the following sections for details about the settings for the add-in definition nodes.

Add-in Definition

The Settings window for the Add-in Definition node () contains settings for defining the name, presentation,
production, and other fundamental properties of the add-in. When you are done and have defined the forms and
methods that the add-in contains, click the Create Add-in button (). A Create Add-in window then opens where
you can specify where the MPH-file that contains the add-in should be stored on the file system. It can be saved in
a shared drive for wider access.

To add an Add-in Definition node, right-click the root node in the Application Builder and then select Add-in

Definition or click Add-in Definition in the Home ribbon.

The Add-in Definition node’s Settings window contains the following sections:

A D D - I N

Specify the filename for the add-in in the Filename field. The filename is the location of the add-in MPH-file in the
user-defined add-in library. This location can be on a shared network drive if you want to share the add-in with your
colleagues.

Also, add a label for the add-in in the Label field. The label will be displayed in the user-defined Add-in Library.

The Unique identifier field contains an identifier text that identifies the add-in and should be unique for any
COMSOL Multiphysics session. It is recommended that it is on the format <company name>.<Add-in name> (for
example, my_company.my_add-in).
22 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

P R O T E C T I O N

The password that you enter in the Editing password field will be applied to the created add-in and is different from
the editing password that you can specify in the root node’s Settings window of the MPH-file used to create the
add-in.

P R E S E N T A T I O N

Here you can write a descriptive text for the add-in in the Description field. The description is displayed in the
Add-in Library and as a tooltip when choosing among add-ins in the Developer ribbon.

You can also select an available or custom thumbnail. Choose an available thumbnail from the list, or click the Add

Image to Library and Use Here button () to use a custom thumbnail image for the add-in. Click the Export button
() to save the thumbnail image to a file. The selected thumbnail image appears under Preview.

Form Definition

Right-click the Add-in Definition node and select Form Definition to add a Form Definition subnode () where you
can define a form that will be part of the add-in, typically as its main settings window. A Form Definition appears
for the add-in in the Add-In Libraries window and on the Add-ins menu in the Developer toolbar. Other form objects
used in the add-in do not need to be included using a form definition.

In the Label field, type a suitable label for the add-in form.

Select which form to use as a Form Definition for the add-in from the Form list.

From the Show as list, you can select whether the form should be displayed as a Settings form (the default) in the
model tree or as a Dialog box.

Select the Allow multiple settings forms check box to allow for more than one instance of the settings form in the
model tree.

The Form Definition node’s Settings window contains the following section:

D E S C R I P T I O N

Here you can write a descriptive text for the form in the Description field. The Description appears in the Add-in

Library window and as a tooltip when choosing among add-ins from the Add-ins menu in the Developer toolbar.

Method Definition

Right-click the Add-in Definition node and select Method Definition to add a Method Definition subnode () where
you can define a method that will be part of the add-in as a method that you can run from the Developer toolbar or
as a Method Call that you can add to the model tree. A Method Definition appears for the add-in in the Add-In

Libraries window and on the Add-ins menu in the Developer toolbar. Other methods used in the add-in do not need
to be included using a method definition.

In the Label field, type a suitable label for the add-in method.

Select which method to use for the add-in from the Method list.

From the Use as list, choose Method (the default) to use it as a method that you can run directly, or choose
Method call to make it possible to add it as a Method Call node in the model tree.

The Method Definition node’s Settings window contains the following section:

D E S C R I P T I O N

Here you can write a descriptive text for the method in the Description field. The Description appears in the Add-in

Library window and as a tooltip when choosing among add-ins from the Add-ins menu in the Developer toolbar.
C R E A T I N G A D D - I N S | 23

Th e I n pu t s B r an c h

Under the Inputs branch node (), you can add Application Argument nodes () for adding inputs to
applications.

The Application Argument Node

To add an Application Argument node (), right-click the Inputs node () and choose Application Argument, or
click the Application Argument button () on the Home toolbar. Use an Application Argument node to define an
input argument for an application. You can add several Application Argument nodes to support multiple input
arguments to the application. The order is not important because it is the name that is used to map the
command-line arguments

About Command-Line Arguments
To specify command-line arguments when running an application, you specify the names using appargnames and
the corresponding values using appargvalues. This syntax makes it possible to mix both general built-in
arguments supported for all applications and custom arguments supported for a specific application. The following
example shows a command line where the renderer is set to DirectX and the custom application arguments width
and height are also specified:

comsol -run myapp.mph -3drend dx9 -appargnames width,height -appargvalues 12.3,7.4

For specifying values that are arrays, the same syntax as when specifying the initial values for the corresponding
declarations is supported. That is, use { and } to specify the start and end of arrays or rows in 2D arrays and then
commas to separate the individual values.

In addition to specifying arguments individually on the command line, you can also specify them in a file using the
-appargsfile argument. The format of the file must use Java property file syntax as in the following example:

width = 1.7
height = 4.3
voltages = {4,6.7,11.2}
intmatrix = {{1,5,6},{7,9,1}}

Setting arguments from a file can also be combined with setting some arguments explicitly from the command line
as shown in the following example:

comsol -run myapp.mph -appargsfile myfile.txt -appargnames width,height -appargvalues
12.3,7.4

If an argument appears both in the file and explicitly using -appargvalues, the value given using -appargvalues
overrides the value given in the file.

To use several files with values, use the command-line parameters -appargvarlist and -appargfilelist. You
can use them in a similar way as -appargnames and -appargvalues. The only difference is that -appargfilelist
is a comma-separated list of files. In this case, the file only contains the values and does not need to contain the
name of the input parameter to assign the values to. This approach has the advantage that files exported on the
spreadsheet format from COMSOL Multiphysics can be directly be passed as input. The following command line
shows an example of this:

comsol -run myapp.mph -appargvarlist temperature,voltage -appargfilelist
<path to file with temperature data>,<path to file with voltage data>

Command-line arguments for applications can also use a file declaration as the target. The argument value has to
be a file on the client file system. For example, consider an application file_argument.mph, which has an
argument interpfile that points to a file declaration file1. Such an application can include an interpolation
24 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

function that uses a file upload:///file1. You can then start the application using, for example, the following
command-line arguments, using a text file called simpleinterp.txt on the local file system:

comsol.exe -run file_arguments.mph -appargnames interpfile -appargvalues
'C:\data\functions\simpleinterp.txt'

About the Settings Window
In the Name field, specify a name for this node that also becomes the name of the input argument.

In addition, the Settings window includes the following sections:

S O U R C E

This section contains a tree with a filtered view of the trees in the Application Builder window. The nodes either
represent some sort of data or have children that do. For an Application Argument, the tree contains all the
declarations in the application (that is, all primitive declarations such as Boolean, integer, double, and string scalar
and array data types). The value for a command-line argument with the given name will end up in the declaration
that you select. The input data will also be automatically converted to the data type of the declaration. An error will
occur if the conversion fails, such as if the user of the application specifies 3.7 as the value for a command-line
argument where an integer is expected. When you select a node that represents data, the Use as Source toolbar
button below the tree becomes enabled. You can click it or, alternatively, press Enter, double-click, or right-click
the node and choose Use as Source to add it as the selected source. You can also click the Create New Declaration and

Use It as Source button () in the Source section header to create a new variable declaration for the application
argument and use it as the source. A Create and Use Declaration dialog box opens, so that you can select the data
type of the source (if applicable) and its name and initial value. The name cannot be in conflict with any existing
variable declaration. Click the Edit Node toolbar button () below the tree to move to the corresponding node.

After selecting a node as the source, the node appears as the selected source under Selected source.

H E L P T E X T

In the text field in this section you can add some text that will appear as a help text when a user calls the application
from the command line using the -help argument. For example, if the application’s name is myapp.mph, the
following command displays the help for the application’s input arguments:

comsol -help myapp.mph
T H E I N P U T S B R A N C H | 25

Th e Ma i n W indow B r an c h

From the Main Window node, you can add the following nodes:

• A Menu Bar and a Toolbar, if you have selected Menu bar from the Menu type list in the Settings window for the
Main Window node.

• A File Menu, if you have selected Ribbon from the Menu type list in the Settings window for the Main Window node.
A Ribbon node is always available, to which you can add Ribbon Tab and Ribbon Section nodes.

The Main Window Node

The Main Window node () represents the main window of an application and is the top-level node for the user
interface. It contains the window layout, the main menu specification, and an optional ribbon specification.

The Settings window for the Main Window contains the following sections.

G E N E R A L

The Title field contains the title of the application. The title is the text at the top of the main window. By default,
it is the same as the title for the model used to create the application. The Show filename in title check box is selected
by default. Clear it to exclude the application’s filename from the title.

To add an icon for the application other than the default COMSOL icon, specify an image file to use from the Icon
list, which includes all of the images in the Images library, or click the Add Image to Library and Use Here button
() to locate an image to use on the file system. This image then becomes a part of the Images library and is
selected as the icon in the main window of the application. The Default setting loads cube.png. Click the Export
button () to export the image to the file system (for use in another application, for example).

From the Menu type list, select the type of menu for the application.

• Select Menu bar (the default) to use a main menu at the top of the application. The Main Window branch then
includes a Menu Bar node and a Toolbar node, to which you can add menus and submenus with menu items,
actions, and separators.

• Select Ribbon to use a Windows-style ribbon toolbar at the top of the application. You can then, under Main

Window, add a File Menu node (for an Exit command, for example) and a Ribbon node, to which you can add
Ribbon Tab nodes. Under Ribbon Tab nodes, you can add Ribbon Section nodes to which you can add menus and
submenus with menu items, actions, and separators.

The Status bar list controls what to show in the status bar. Select Progress when running (the default, which adds a
COMSOL progress bar in the lower-right corner of the application; see Progress Bar for adding custom progress
bars) or None.

M A I N F O R M

This section contains a reference to the form that the main window displays. Select the form to display from the
Form list.

S I Z E

From the Initial size list, select how to set the initial size of the application window:

• Select Maximized to open the application window in a maximized state that fills the screen.
26 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

• Select Use main form’s size (the default) to adapt the application window size to the size of its main form, which
is the form selected in the Main Form section above.

• Select Manual to specify the application window’s initial size in the Width (default: 1280 pixels) and Height
(default: 800 pixels) fields that appear.

Select the Center on screen check box to make the application centered in the middle of the computer screen when
launched.

A B O U T D I A L O G

In this section, you can specify the contents of the About dialog box and the placement of the link to that dialog
box.

From the Placement list, choose one of the following options for the placement of the link:

• Automatic (the default), which puts the link to the About dialog box in the following place:

- The File menu, if the Menu type list is set to Ribbon and there is an added File Menu

- The toolbar, if the Menu type list is set to Menu bar and there is a toolbar but no menus

- Else, the lower-right corner

• File menu or Menu bar (depending on the setting in the Menu type list).

• Ribbon or Toolbar (depending on the setting in the Menu type list).

• Lower-right corner (an About hyperlink in the lower-right corner of the application’s main form). If there is no
form in the application, it uses the automatic placement instead.

Clear the Show COMSOL Information check box if you do not want to include the standard information (logotype,
version number, and information about products used).

In the Custom text field, add any text that you want to include in the About dialog box. The text appears above the
license, patent, and trademark information. If you include a web address, it will appear as a hyperlink in the About
dialog box. The web address must be a valid URL that starts with http:// or www.

The Menu Bar Node

The Menu Bar node () represents the top level of the main menu of the main window of an application, where
each Menu child node represents a menu on the title bar of the main window. Right-click the Menu Bar node to add
Menu nodes to the main menu. The leftmost menu includes a Close Application item by default.

The Toolbar Node

The Toolbar node () represents a toolbar at the top of the main window of an application (below the main
menu), where you can add Menu child nodes representing drop-down toolbar menus, Item nodes representing
toolbar buttons with an action connected to them, and Separator nodes to separate groups of related toolbar
buttons. Right-click this node to add other nodes to the toolbar.

The Menu Node

The Menu node () adds another menu level under the parent menu, which can be any other menu type. From
a Menu node, you can right-click to add another Menu node as a submenu. You can also right-click to add an Item
node for a menu item with an action or a Separator node to insert a menu separator (see The Item Node and The
Separator Node). You can add Menu nodes (and Item and Separator nodes) to additional levels to create additional
levels of submenus. Enter the name of the menu object in the Name field.

Specify the title of the new menu level in the Title field.
T H E M A I N W I N D O W B R A N C H | 27

For Menu nodes directly under a File Menu node, a Toolbar node, or a Ribbon Section node, you can add an icon to
the menu. To do so, specify an image file to use from the Icon list, which includes all images in the Images library,
or click the Add Image to Library and Use Here button () to locate an image to use on the file system. This image
then becomes a part of the Images library and is selected as the icon for this menu. If you do not want to use an
icon, select None from the Icon list. Click the Export button () to export the image to the file system (for use in
another application, for example).

For Menu nodes directly under a Ribbon Section, you can also select Large (the default) or Small from the Size list.
This size controls the size of the button in the ribbon.

The File Menu Node

The File Menu node () represents a File menu in the upper-left corner of an application with a ribbon toolbar.
From the File Menu node, you can right-click to add a Menu node as a submenu. You can also right-click to add an
Item node for a menu item with an action or a Separator to separate groups of related menu items. The File menu
should contain standard items such as saving or exiting the application.

The Ribbon Node

The Ribbon node () represents a ribbon toolbar at the top of the main window of an application, where you can
add Ribbon Tab child nodes representing ribbon tabs. For the ribbon tabs, you can add ribbon sections with
drop-down menus and buttons. Right-click this node to add Ribbon Tab nodes for the ribbon.

The Ribbon Tab Node

The Ribbon Tab node () adds a ribbon tab to a ribbon at the top of the application window. The ribbon tab can
have sections that contain the items from menus that you include by adding menus to Ribbon Section subnodes. You
can add such ribbon sections by right-clicking this node and selecting Ribbon Section. Enter the name of the ribbon
tab object in the Name field.

Specify a Title for the ribbon tab.

To add an icon to the ribbon tab, specify an image file to use from the Icon list, which includes all images in the
Images library, or click the Add Image to Library and Use Here button () to locate an image to use on the file
system. This image then becomes a part of the Images library and is selected as the icon for this ribbon tab. If you
do not want to use an icon, select None from the Icon list. Click the Export button () to export the image to the
file system (for use in another application, for example).

The Ribbon Section Node

The Ribbon Section node () adds a section to a ribbon. You can right-click Ribbon Section node to add Menu
nodes, Item nodes for buttons with a direct action, and Separator nodes that define the contents of the ribbon
section. Enter the name of the ribbon section object in the Name field.

Specify a Title for the ribbon section.

To add an icon to the ribbon section, specify an image file to use from the Icon list, which includes all of the images
in the Images library, or click the Add Image to Library and Use Here button () to locate an image to use on the

If you use submenus on ribbon menu buttons, they provide headers in the menu, which you can
use to group some items, instead of submenus, as in a standard menu bar. This approach works
best for ribbons if you do not add top-level menu items below the submenu.
28 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

file system. This image then becomes a part of the Images library and is selected as the icon for this ribbon section.
If you do not want to use an icon, select None from the Icon list. Click the Export button () to export the image
to the file system (for use in another application, for example).

The Item Node

The Item node () is a menu option that runs a method as a menu item in a parent menu or as a button on a
toolbar. You can add an Item node under a Menu node or to a Toolbar object in a form. Enter the name of the item
object in the Name field.

In the Text field, enter the text to display on the menu item. To add an icon to the menu item, specify an image file
to use from the Icon list, which includes all of the images in the Images library, or click the Add Image to Library and

Use Here button () to locate an image to use on the file system. This image then becomes a part of the Images
library and is selected as the icon for this menu item. If you do not want to use an icon, select None from the Icon
list. Click the Export button () to export the image to the file system (for use in another application, for
example).

For Item nodes directly under a Ribbon Section, you can select Large (the default) or Small from the Size list. This
size controls the size of the button in the ribbon.

For Item nodes directly under a Ribbon Section, you can also add a tooltip, a descriptive text that displays when the
user hovers the pointer over the ribbon button, in the Tooltip field.

You can define a shortcut for the item that you enter in the Keyboard shortcut field. To add a keyboard shortcut,
make the Keyboard shortcut field active, and then type a keyboard shortcut on the keyboard.

You must use a modifier in the keyboard shortcut, not just a plain letter (for example, CTRL+SHIFT+D). The
shortcut can include the Ctrl key (CTRL), Alt key (ALT), and Shift key (SHIFT). Note that the Ctrl key is
interpreted as Command on OS X. Avoid using the following keys in your shortcut:

• Backspace, as it can be used to clear a shortcut

• Delete, as it can be used to clear a shortcut

• Escape

• Alt on its own (to avoid conflicts with File menu shortcuts)

In addition, the Settings window contains the following section.

C H O O S E C O M M A N D S T O R U N

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either support a command or have children that do. When you select a node that supports one or more
commands, the corresponding command toolbar buttons become enabled in the toolbar below the tree. You can
also right-click a node to get a list of available commands for that particular node. Once you click a command with
a node selected (or press Enter to add a command with its default command such as Run, Plot, or Set Value), the
command and node appear in the last row of the table in the Choose Commands to Run section of the Settings
window. This table contains all of the nodes that run. You can delete and move commands using the toolbar below
the table.

In the Model branch, all of the nodes that represent some sort of data value, such as a parameter under the
Parameters node, support the Set Value command. Add a Set Value command to the table to enable the third

It is possible to override other keyboard shortcuts, so take care when choosing the shortcut key
combinations to use.
T H E M A I N W I N D O W B R A N C H | 29

column, Arguments. In this column you type the value to set. For data that represents arrays, use curly braces and
commas to enter the array elements. For example, enter {1,2,3} to set a three-element array with the values 1, 2,
and 3. See The Array 1D String Node for more details about how to enter arrays and matrices. For nodes that
represent a file import, such as a Filename node under an Interpolation function node, an Import File command is
available. You can also add a Plot command for all View nodes, providing the name of a Graphics object as the
argument.

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified
using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current View, Scene Light, Transparency,
Orthographic Projection, Print, Select All, Clear Selection, Show Selection Colors, and Show Material Color and

Texture. For all graphics commands, add the name of the Graphics object that you want to apply the command
to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the commands underneath the tree, the command appears under Command in the list below.
There is also a Symbol column and an Arguments column, where you can enter any applicable arguments that the
command uses. A tooltip appears, indicating what type of argument the command expects. For example, for the
downloadtoclient command, the argument is a file and its path, such as embedded:///myfile.txt, and there
is a separate dialog box that helps you define such an argument. See File Schemes and File Handling for more
information.

Click the Convert to Method toolbar button () and choose Convert to Method or Convert to Local Method to
convert the entire list of commands in the table to a global or local method that contains the equivalent code. After
this operation, the list of commands only contains a single Run operation on the created method. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
(), and Delete () toolbar buttons to organize and remove commands from the list (and the local method, if
deleted).
30 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

The Toggle Item Node

The Toggle Item node () is a menu option that toggles some state as a menu item in a parent menu or as a button
on a toolbar. A toggle item can be useful for switching between a tabbed and a tiled look for a form collection, for
example. You can add a Toggle Item node under a Menu node or to a Toolbar object in a form. Enter the name of
the toggle item object in the Name field.

In the Text field, enter the text to display on the toggle menu item. To add an icon to the toggle menu item, specify
an image file to use from the Icon list, which includes all of the images in the Images library, or click the Add Image

to Library and Use Here button () to locate an image to use on the file system. That image then becomes a part
of the Images library and is selected as the icon for this menu item. If you do not want to use an icon, select None
from the Icon list. Click the Export button () to export the image to the file system (for use in another
application, for example).

For Toggle Item nodes directly under a Ribbon Section, you can select Large (the default) or Small from the Size list.
This size controls the size of the button in the ribbon.

For Toggle Item nodes directly under a Ribbon Section, you can also add a tooltip, which is a descriptive text that
displays when the user hovers the pointer over the ribbon button, in the Tooltip field.

You can define a shortcut for the item that you enter in the Keyboard shortcut field. To add a keyboard shortcut,
make the Keyboard shortcut field active, and then type a keyboard shortcut on the keyboard.

You must use a modifier in the keyboard shortcut, not just a plain letter (for example, CTRL+SHIFT+D). The
shortcut can include the Ctrl key (CTRL), Alt key (ALT), and Shift key (SHIFT). Note that the Ctrl key is
interpreted as Command on OS X. Avoid using the following keys in your shortcut:

• Backspace, as it can be used to clear a shortcut

• Delete, as it can be used to clear a shortcut

• Escape

• Alt on its own (to avoid conflicts with File menu shortcuts)

In addition, the Settings window contains the following sections.

S O U R C E

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either represent some sort of data or have children that do. For a toggle item, strings and Boolean
variable declarations (representing on and off states for the toggle item) under Declarations are available as sources.
When you select a node that represents data, the Use as Source toolbar button below the tree becomes enabled. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
the selected source. You can also click the Create New Declaration and Use It as Source button () or the Create

New Form Declaration and Use It as Source button () in the Source section header to create a new global or local
(in the form) variable declaration for the toggle item and use it as the source. A Create and Use Variable dialog box
opens, so that you can select the data type of the source (if applicable) and its name. The name cannot be in conflict
with any existing variable declaration. Click the Edit Node toolbar button () below the tree to move to the
corresponding node.

It is possible to override other keyboard shortcuts, so take care when choosing the shortcut key
combinations to use.
T H E M A I N W I N D O W B R A N C H | 31

After selecting a node as the source, the node appears as the selected source under Selected source.

Typically, you only see the available parameters under the Parameters node, variables under a Variables node, and
the data nodes defined under the Declarations branch in the Application Builder part of the application tree
(underneath the Events branch). You can extend the list of available data nodes by clicking the Switch to Model

Builder and Activate Data Access button () in the Source for Data Change section header, which takes you
automatically to the Model Builder. Then, select a node in the Model Builder branch with data you want to access.
With this button active, the Settings window of the selected node displays a Select Data Source check box (a green
square) next to the settings that you can include. Select the check box to include this data as an available source
node for events.

Any restrictions on a data source are passed along to the user interface of the application. For example, a Load type

list in a Boundary Load node for structural mechanics only allows three values. Any form object using this data as its
source can only support a subset of these values.

For a Toggle Item object, you can also specify if the initial value should be selected (on) or cleared (off). From the
initial value list, select Custom value (the default) or From data source. For Custom value, choose Selected or Cleared
from the Initial state list.

C H O O S E C O M M A N D S T O R U N

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either support a command or have children that do. When you select a node that supports one or more
commands, the corresponding command toolbar buttons become enabled in the toolbar below the tree. You can
also right-click a node to get a list of available commands for that particular node. Once you click a command with
a node selected (or press Enter to add a command with its default command such as Run, Plot, or Set Value), the
command and node appear in the last row of the table in the Choose Commands to Run section of the Settings
window. This table contains all of the nodes that run. You can delete and move commands using the toolbar below
the table.

In the Model branch, all of the nodes that represent some sort of data value, such as a parameter under the
Parameters node, support the Set Value command. Add a Set Value command to the table to enable the third
column, Arguments. In this column, you type the value to set. For data that represents arrays, use curly braces and
commas to enter the array elements. For example, enter {1,2,3} to set a three-element array with the values 1, 2,
and 3. See The Array 1D String Node for more details about how to enter arrays and matrices. For nodes that
represent a file import, such as a Filename node under an Interpolation function node, an Import File command is
available. You can also add a Plot command for all View nodes, providing the name of a Graphics object as the
argument.

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The default value for the source may not be what you expect. You may also experience
serious errors if the default value of one form object is invalid for one of the other form objects.
32 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current View, Scene Light, Transparency,
Orthographic Projection, Print, Select All, Clear Selection, Show Selection Colors, and Show Material Color and

Texture. For all graphics commands, add the name of the graphics object that you want to apply the command
to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Form Declarations branch: This branch contains any variable declarations you have added under a Declarations
branch under the current Form node. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Form Methods branch: Method nodes under the current Form node support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the commands underneath the tree, the command appears under Command in the list below.
There is also a Symbol column and an Arguments column, where you can enter any applicable arguments that the
command uses. A tooltip appears indicating what type of argument the command expects. For example, for the
downloadtoclient command, the argument is a file and its path, such as embedded:///myfile.txt, and there
is a separate dialog box that helps you define such an argument. See File Schemes and File Handling for more
information.

Click the Convert to Method toolbar button () and choose Convert to Method or Convert to Form Method to
convert the entire list of commands in the table to a global or form method that contains the equivalent code. After
this operation, the list of commands only contains a single Run operation on the created method. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
(), and Delete () toolbar buttons to organize and remove commands from the list (and the local method, if
deleted).

The Separator Node

Add a Separator node () under a Menu node to add a separator (horizontal line or divider) to the parent menu
to separate groups of related menu items. You can also add a separator to a toolbar object in a form.
T H E M A I N W I N D O W B R A N C H | 33

Th e Fo rm s B r an c h

Under the Forms branch () you find all forms that define the application’s user interface. You can include a form
in the user interface by running a command that shows the form as a dialog. You can do this from a Button, Item,
Event, or Method node. See Working with Forms for more information about forms and form objects and the tools
available for creating forms.

The Forms Node

The Forms node () is a placeholder for all Form nodes that you add as subnodes. In its Settings window, you find
the following settings for the appearance of forms.

A P P E A R A N C E

The settings in this section define the text used in the forms that you add, but you can also choose not to inherit
the settings to specify a specific style in a form.

From the Text color list, select System (the default, as defined by the operating system); one of the predefined colors;
or select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the forms: System (the default, as defined
by the operating system); one of the predefined colors; or Custom, which make it possible to select a custom
background color from the color palette.

From the Font list, choose a text font: System (the default, as defined by the operating system) or another font in
the list. You may need to choose a font that supports the characters in you local language. If needed, choose or
enter a font size (in points) in the Font size combo box. The default is to use the System size for the font. By default,
form objects inherit the font and font size from these settings.

Under Applies to new form objects, select any of the Bold, Italic, or Underline check boxes to make the text appear in
any combination of a boldface font, italics, or underlined by default in form objects that you add to the form.

The Form Node

Add a Form node () to create a form, which is a general user interface area for an application. It can, for example,
represent the content of a desktop window, a dialog window, or a tabbed pane. A form has to be referenced by
another node to be part of the user interface, but you can choose to show a form as a dialog after the user has clicked
a button. To edit or test the form, use the following options on the Form node’s context menu:

• Right-click the Form node and choose Edit () to open the form window, where you can interactively create
and design the form (see Working with Forms).

• Right-click the Form node and choose Preview Form () to test the form by opening it as a preview in a separate
window that you can inspect.

You can right-click the Form node and choose New Method to add a form method that is local to the form. You can
also add form declarations such as scalar and array strings, Booleans, integers, and doubles that are available as local
declarations within the form object.

Enter the name of the form object in the Name field.

Specify a Title for the form. The default title is Form 1, for the first form in the application.

From the Icon list, select an icon image to use as the icon for the form when used as a settings form in the Model

Builder. The Default icon is the standard icon for a Form object. Click the Add Image to Library and Use Here button
34 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

() to add any other image to the list of icons and use it. Click the Export button () to export the image used
as the Form object’s icon to a file.

The Show in Model Builder check box is selected by default. The Form object then appears in the Settings Form list
in the Developer ribbon in the Model Builder mode and can be added as a settings form in the Model Builder (see
Creating and Using Settings Forms and Dialogs in the COMSOL Multiphysics Reference Manual).

S I Z E

The size properties are applicable when the form appears in a dialog box. By default, the Application Builder
automatically determines the initial size based on the form contents. From the Initial size list, choose Automatic (the
default) or Manual to specify the initial size in the Width and Height fields (default: 40 pixels).

M A R G I N S

In this section, you can adjust the form’s Horizontal and Vertical margins if desired (default: 20 pixels).

D I A L O G S E T T I N G S

From the Store changes list, select On request (the default) to store data changes when the user clicks, for example,
an OK or Apply button (and where a Cancel button can discard any pending changes); or select Immediately to
store data immediately when a change is made. This setting applies when the form appears as a dialog. Use the
Immediately setting to create dynamic dialogs where you, for example, have a direct connection between a slider
and an input field.

Select the Resizable check box to make it possible for users to resize the dialog if desired.

S E C T I O N S E T T I N G S

The Expandable check box is selected by default. Clear it if you do not want users to be able to expand and collapse
the section. With this setting selected, you also have the option to make the section’s state initially collapsed by
selecting the Initially collapsed check box.

S K E T C H G R I D

In this section, you find settings for the grid that you can display in the sketch mode (see Showing Grid Lines and
Snapping to the Grid) and for the snapping of form objects to that grid.

You specify the grid size by entering values in the Column width (default: 100 pixels) and Row height (default: 20
pixels) fields.

Select the Align grid to margin check box to make the grid lines align with the left and top margins.

The Snap zone slider controls how exact you need to be when resizing a form object to make it snap to the grid. By
default, the snap zone is set to its maximum value so that the object quickly resizes to snap to the grid. Move the
slider from Large to Small to make the snap zone smaller if desired.

Select the Snap only to grid check box to make the resizing of form objects snap only to the grid and not to the
borders of other form objects, for example.

For Settings Forms in the Model Builder, Graphics form objects are not supported.

The Sketch Grid section is only available when you have selected the sketch mode for the form.
T H E F O R M S B R A N C H | 35

G R I D L A Y O U T F O R C O N T A I N E D F O R M O B J E C T S

There are two tables in this section of the Settings window: one for the columns and one for the rows in the grid.
In the Column and Row columns, you find the column and row numbers, respectively, each starting at 1 from the
left and from the top. You can control how each row and column fills up the space in the form. Each table has a
Width (columns) or Height (rows) column with lists that contain the following options: Fit (the default), Grow, and
Fixed.

• The Fit option makes the column or row use the space needed for the contained object to fit. Columns and rows
with this setting will not grow in size.

• The Grow option makes it possible for the column or row in the grid to expand by using available space in the
form when a user of the application increases the size of the form by dragging the corner of the application
window, for example.

• The Fixed option specifies that the grid layout has a certain width or height for its column or row, specified in
the third Size column of the table. For the other options, the Size column is not applicable and displays N/A. The
added width or height in pixels appears in the column or row header in the form’s editing window. Columns and
rows with this setting will not grow in size.

From the Inherit columns list, select a form object from which to inherit its column settings. The default is None;
that is, the columns settings are not inherited.

A P P E A R A N C E

In this section, you can control the appearance of the text and background for the form:

From the Text color list, select System (the default, as defined by the operating system); one of the predefined colors;
or select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the forms: System (the default, as defined
by the operating system); one of the predefined colors; or Custom, which make it possible to select a custom
background color from the color palette.

From the Background image list, choose a background image if you want to use such an image in the form. The
default is None for no background image. To add an image to the image library and use it as a background image,
click the Add Image to Library and Use Here button (). Click the Export button () to save the background
image to a PNG file.

If you choose to use a background image, you can also specify the following alignment settings under Image position

and size:

• From the Horizontal alignment list, choose Left, Center, Right, Fill, or Repeat.

• From the Vertical alignment list, choose Top, Middle, Bottom, Fill, or Repeat.

Choose Fill to automatically stretch the background image to fill the form window in the horizontal or vertical
direction (or in both directions). Choose Repeat to repeat (tile) the images horizontally, vertically, or in both
directions.

E V E N T S

In this section, you can connect local methods to events that are triggered when loading and closing the form and
when a form is referenced in a Form Reference, Form Collection, or Card Stack. The methods can perform some
initialization or clean up, for example, when loading and closing the form.

The Sketch Grid section is only available when you have selected the grid mode for the form.
36 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

The default in the lists for On load and On close is None, which means that no method runs when an event is triggered
for loading or closing the form. Click the Create Local Method button () to create a local method for On load or
On close. The corresponding list selection then changes to Local method. Click the Go to Source button () to
open the method editor window, where you can create or modify the code for the On load or On close method. Click
the Remove Local Method button () to delete the local method.
T H E F O R M S B R A N C H | 37

Th e E v en t s B r an c h

An event is any activity (for example, clicking a button, typing a keyboard shortcut, loading a form, or changing
the value of a variable) that signals a need for the application to perform one or more actions. Each action can be
a sequence of commands of the type described earlier and can also include running methods. The Events branch
() contains all events that listen to changes on various data entities, such as global parameters or string data.
Right-click the Events node and choose Event () to add events to the application. The main Events node contains
options for events connected to starting and closing an application.

The Events Node

The Events node () is the top node under which you can add Event nodes to define events. In the Settings
window for this node, you can add the following events.

E V E N T S

From the On startup list, select a method that runs before the application window opens. It is therefore not possible
to call a plot, for example, or other user-interface-related code (for such methods, you can use an On load event for
forms). A possible use is to set up some special settings for the application. To add a local method for this event,
click the Create Local Method button ().

From the About to shutdown list, select a method that runs before the application closes. You can use it to clear or
remove some files, for example. To add a local method for this event, click the Create Local Method button ().
The method you refer to can return a Boolean value. When it does, and the return value is false, the shutdown will
be canceled.

The Event Node

The Event node () adds an event that listens to a change in the runtime model. If a change occurs, it runs an
action. It can listen to data field changes, the creation of features, and the removal of features. Enter the name of
the event object in the Name field.

The Settings window contains the following sections.

S O U R C E F O R D A T A C H A N G E E V E N T

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either represent some sort of data or have children that do. For an event, variable declarations under
Declarations are available as sources. In addition, under Model, global parameters, variables under Definitions in a
component, and explicit selection nodes are available as sources. With an explicit selection as the source, you can
have some method that runs whenever that explicit selection changes (the change can be triggered by code in some
method or from user interaction with a selection input or a form object). For example, the application can run a
method when the user clicks boundaries in the graphics.

When you select a node that represents data, the Use as Source toolbar button below the tree becomes enabled. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
the selected source. You can also click the Create New Declaration and Use It as Source button () in the Source
section header to create a new variable declaration for the event and use it as the source. A Create and Use Variable
dialog box opens, so that you can select the data type of the source (if applicable) and its name. The name cannot
be in conflict with any existing variable declaration. Click the Edit Node toolbar button () below the tree to move
to the corresponding node.
38 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

After selecting a node as the source, the node appears as the selected source under Selected source.

Typically, you only see the available parameters under the Parameters node, variables under a Variables node, and
the data nodes defined under the Declarations branch in Application Builder part of the application tree (underneath
the Events branch). You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate

Data Access button () in the Source for Data Change section header, which takes you automatically to the Model
Builder. Then, select a node in the Model Builder branch with data you want to access. With this button active, the
Settings window of the selected node displays a Select Data Source check box (a green square) next to the settings
that you can include. Select the check box to include that data as an available source node for events.

Any restrictions on a data source are passed along to the user interface of the application. For example, a Load type

list in a Boundary Load node for structural mechanics only allows three values. Any form object using this data as its
source can only support a subset of those values.

C H O O S E C O M M A N D S T O R U N

In this section, you choose the commands to run for the event. The section contains a tree with a filtered view of
the trees in the Application Builder and Model Builder windows. The nodes either support a command or have
children that do. When you select a node that supports one or more commands, the corresponding command
toolbar buttons become enabled in the toolbar below the tree. You can also right-click a node to get a list of
available commands for that particular node. Once you click a command with a node selected (or press Enter to
add a command with its default command such as Run, Plot, or Set Value), the command and node appear in the
last row of the table below the tree. This table contains all nodes that run, and you can delete and move commands
using the toolbar below the table.

In the Model branch, all nodes that represent some sort of data value, such as a parameter under the Parameters
node, support the Set Value command. When adding a Set Value command to the table, the third column,
Arguments, becomes enabled. In this column, you type the value to set. For data that represents arrays, use curly
braces and commas to enter the array elements. For example, enter {1,2,3} to set a three-element array with the
values 1, 2, and 3. See The Array 1D String Node for more details on how to enter arrays and matrices. For nodes
that represent a file import, such as a Filename node under an Interpolation function node, an Import File command
is available.

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified
using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current View, Scene Light, Transparency,
Orthographic Projection, Print, Select All, Clear Selection, Show Selection Colors, and Show Material Color and

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The default value for the source may not be what you expect. You may also experience
serious errors if the default value of one form object is invalid for one of the other form objects.
T H E E V E N T S B R A N C H | 39

Texture. For all graphics commands, add the name of the Graphics object that you want to apply the command
to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the commands underneath the tree, the command appears under Command in the list below.
There is also a Symbol column and an Arguments column, where you can enter any applicable arguments that the
command uses. A tooltip appears, indicating what type of argument the command expects. For example, for the
downloadtoclient command, the argument is both a filename and its path, such as embedded:///myfile.txt,
and there is a separate dialog box that helps you define such an argument. See File Schemes and File Handling for
more information.

Click the Convert to Method toolbar button () and choose Convert to Method or Convert to Local Method to
convert the entire list of commands in the table to a global or local method that contains the equivalent code. After
this operation, the list of commands only contains a single Run operation on the created method. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
(), and Delete () toolbar buttons to organize and remove commands from the list (and also remove the local
method, if deleted).

You can extend the list of available nodes by clicking the Switch to Model Builder and Activate Data Access button
() in the Choose Commands to Run section header, which takes you automatically to the Model Builder, and then
selecting a node in the Model Builder branch that you want to access. With this button active, the Settings window
of the selected node displays a Select Data Source check box (a green square) next to the settings that you can
include. Select the check box to include that data as an available source node for events.
40 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

Th e De c l a r a t i o n s B r an c h

All nodes under the Declarations branch () specify some sort of declaration, typically new data fields that you
can bind to various form objects. The String node, for example, declares one or more data fields that stores a string
value. In that sense, it is equivalent to a global parameter, but for global parameters, the string value has to be a
valid expression and the string data field has no such restriction. See below for details about the following
declaration nodes, which you add by right-clicking the Declarations node and selecting the desired declaration.

• Under Scalar:

- The String Node

- The Boolean Node

- The Integer Node

- The Double Node

• Under Array 1D:

- The Array 1D String Node

- The Array 1D Boolean Node

- The Array 1D Integer Node

- The Array 1D Double Node

• Under Array 2D:

- The Array 2D String Node

- The Array 2D Boolean Node

- The Array 2D Integer Node

- The Array 2D Double Node

• The Choice List Node

• The File Node

• The Unit Set Node

• The Graphics Data Node

In addition, a Shortcuts node () appears if you have added shortcuts to form objects or menu items. See Adding
Shortcuts.

See Editing Initial Values and Arguments in Declarations and Command Sequences for information about tools for
editing the initial values in the scalar and array nodes using the window that opens when you click under the
lists of variables.

For all lists of variables in the nodes under Scalar, Array 1D, and Array 2D, click the Save to File button () and
enter a File name in the Save to File dialog box, including the extension .txt. Click Save to save the text file. The
information is saved in space-separated columns in the same order as displayed on screen. Use the Load from File
button () and Load from File dialog box to import data in text files, generated by, for example, a spreadsheet

You can only add one of each data type declaration under Scalar, Array 1D, and Array 2D, so after
adding such declarations, they disappear from the context menu.
T H E D E C L A R A T I O N S B R A N C H | 41

program. Data must be separated by spaces or tabs (or be in a Microsoft® Excel® workbook spreadsheet if the
license includes LiveLink™ for Excel®).

Array Syntax

The default value for arrays can be an array of arbitrary length that you type using a special syntax. An array
definition must start and end with curly braces ({ and }), and each element is separated with a comma. To indicate
a string, it is good practice to surround it with single quotes ('). When you need a special character inside of an
array element (including spaces and commas), you must surround the element with single quotes ('). If the string
itself includes an apostrophe ('), use two single quotes (''). See the following examples:

Nonrectangular arrays are possible but are seldom useful in an application context.

The parsing returns a single-level string array when there is one level of curly braces, and a double array (or string
matrix) when there are two nested levels of curly braces.

The String Node

The String node () declares one or more named strings that you can access from form objects and methods. You
can use a string as a source in many of the form objects, such as input fields, combo boxes, and check boxes. The
Settings window contains the following section:

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one string stored per row. Specify the name in the Name
column and the initial value for the string in the Initial value column. You can also add an optional description of
the string in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a string named string1 as if it were a normal Java String variable:

String s = string1;
string1 = "newValue";

Most declaration nodes can also be added as form declarations under Form nodes for local use in
forms.

ARRAY SYNTAX RESULTING ARRAY

{1, 2, 3} A 3-element array with the elements 1, 2, and 3.

{} An empty array.

{'one, two', 'three by four'} A 2-element array with elements containing special syntax.

{{1, 2, 3}, {4, 5, 6}} A 2-element array containing two 3-element arrays (a
2-by-3 matrix).

{{1, 2},{'one, two', 'Poisson''s ratio'}} A 2-element array containing two 2-element arrays (a
2-by-2 matrix).

Although you can specify the initial value for a string, that value may be overwritten if you use the
string as a source to a form object that specifies a different value.
42 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

The Boolean Node

The Boolean node () declares one or more named scalar Boolean variables that you can access from form objects
and methods. You can use a Boolean variable as a source in check boxes, for example. The Settings window contains
the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one Boolean variable stored per row. Specify the name in the
Name column and the initial value in the Initial value column (either true or false; the default is false). You can
also add an optional description of the Boolean variable in the Description column.

As a string, you can use on or off, true or false, or yes or no (all case insensitive) as Boolean values.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a Boolean variable named bool1 as if it were a normal Java boolean variable:

boolean b = bool1;
bool1 = newValue;

The Integer Node

The Integer node () declares one or more named scalar integers that you can access from form objects and
methods. You can use an integer as a source in an input for some values that must be an integer. The Settings
window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one integer stored per row. Specify the name in the Name
column and the initial value in the Initial value column (the default is 0). You can also add an optional description
of the integer in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access an integer named int1 as if it were a normal Java int variable:

int i = int1;
int1 = newValue;

Although you can specify the initial value for a Boolean variable, that value may be overwritten if
you use the Boolean variable as a source to a form object that specifies a different value.

Although you can specify the initial value for an integer, that value may be overwritten if you use
the integer as a source to a form object that specifies a different value.
T H E D E C L A R A T I O N S B R A N C H | 43

The Double Node

The Double node () declares one or more named scalar double floating-point values that you can access from
form objects and methods. You can use a double as a source in some input that is a floating-point number (some
scalar value). The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one double stored per row. Specify the name in the Name
column and the initial value in the Initial value column (the default is 0.0). You can also add an optional description
of the double in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a double named dbl1 as if it were a normal Java double variable:

double d = dbl1;
dbl1 = newValue;

The Array 1D String Node

The Array 1D String node () declares one or more named string arrays that you can access from form objects and
methods. The number of elements in the string array is not restricted in any way, and you typically use a string array
to store a column in a table. The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one string array stored per row. Specify the name in the Name
column, the initial values in the array in the Initial values column, and the new element value for each element in
the New element value column. The new element value specifies the value that a new element of the string array gets
in certain add operations (for example, in a table). You can also add an optional description of the string array in
the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a string array named array1 as if it were a normal Java String[] variable:

String[] sa = array1;
array1 = new String[]{"element1", "element2"};

Although you can specify the initial value for a double, that value may be overwritten if you use
the double as a source to a form object that specifies a different value.

Although you can specify the initial values for a string array, those values may be overwritten if you
use the array as a source to a form object that specifies different values.
44 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

The Array 1D Boolean Node

The Array 1D Boolean node () declares one or more named Boolean arrays that you can access from form objects
and methods. The number of elements in the Boolean array is not restricted in any way, and you typically use a
Boolean array to specify some list of Boolean values. The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one Boolean array stored per row. Specify the name in the
Name column; the initial values in the Initial values column; and the new element value for each element (the default,
false, represents the first value) in the New element value column. The new element value specifies the value that
a new element of the Boolean array gets in certain add operations (for example, in a table). You can also add an
optional description of the Boolean array in the Description column.

When the Boolean array is declared as a string, you can use on or off; true or false; or yes or no (all case
insensitive) as Boolean values.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a Boolean array named boolarray1 as if it were a normal Java boolean[]
variable:

boolean[] ba = boolarray1;
boolarray1 = new boolean[]{value1, value2};

The Array 1D Integer Node

The Array 1D Integer node () declares one or more named integer arrays that you can access from form objects
and methods. The number of elements in the integer array is not restricted in any way, and you typically use an
integer array to specify an array of values that can only be integers. The Settings window contains the following
section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one integer array stored per row. Specify the name in the
Name column; the initial values in the Initial values column; and the new element value for each element (the default,
0, represents the first value) in the New element value column. The new element value specifies the value that a new
element of the integer array gets in certain add operations (for example, in a table). You can also add an optional
description of the integer array in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access an integer array named intarray1 as if it were a normal Java int[] variable:

Although you can specify the initial values for a Boolean array, those values may be overwritten if
you use the array as a source to a form object that specifies different values.

Although you can specify the initial values for an integer array, those values may be overwritten if
you use the array as a source to a form object that specifies different values.
T H E D E C L A R A T I O N S B R A N C H | 45

int[] ia = intarray1;
intarray1 = new int[]{value1, value2};

The Array 1D Double Node

The Array 1D Double node () declares one or more named double floating-point arrays that you can access from
form objects and methods. The number of elements in the double array is not restricted in any way, and you
typically use a double array to specify some array input with floating-point values. The Settings window contains the
following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one double array stored per row. Specify the name in the
Name column; the initial values in the Initial values column; and the new element value for each element (the default,
0.0, represents the first value) in the New element value column. The new element value specifies the value that a
new element of the double floating-point array gets in certain add operations (for example, in a table). You can also
add an optional description of the double array in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a double array named dblarray1 as if it were a normal Java double[] variable:

double[] da = dblarray1;
dblarray1 = new double[]{value1, value2};

The Array 2D String Node

The Array 2D String node () declares one or more named 2D string arrays (matrices) that you can access from
form objects and methods. The number of elements in the 2D string array is not restricted in any way, but you can
specify the number of columns. The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one 2D string array stored per row.

Specify the name in the Name column, the number of columns in the 2D string array from the list in the Number of

columns column (use Undefined if you do not know how many columns the array contains), the initial values in the
Initial values column, and the new element value in the New element value column. The new element value specifies
the value that a new element of the 2D string array gets in certain add operations. You can also add an optional
description of the 2D string array in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Although you can specify the initial values for a double array, those values may be overwritten if
you use the array as a source to a form object that specifies different values.

Although you can specify the initial values for a 2D string array, those values may be overwritten
if you use the array as a source to a form object that specifies different values.
46 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

Code Access
In the code of a method, you access a 2D string array named matrix1 as if it were a normal Java String[][] variable:

String[][] sm = matrix1;
matrix1 = new String[][]{{"element11", "element12"}, {"element21", "element22"}};

The Array 2D Boolean Node

The Array 2D Boolean node () declares one or more named 2D Boolean arrays (matrices) that you can access
from form objects and methods. The number of elements in the 2D Boolean arrays is not restricted in any way, but
you can specify the number of columns. The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one 2D Boolean array stored per row.

Specify the name in the Name column, the number of columns in the 2D Boolean array from the list in the Number

of columns column (use Undefined if you do not know how many columns the array contains), the initial values in
the Initial values column, and the new element value in the New element value column. The new element value
specifies the value that a new element of the 2D Boolean array gets in certain add operations. You can also add an
optional description of the 2D Boolean array in the Description column.

As a string, you can use on or off; true or false; or yes or no (all case insensitive) as Boolean values.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a 2D Boolean array named boolmatrix1 as if it were a normal Java boolean[][]
variable:

boolean[][] bm = boolmatrix1;
boolmatrix1 = new boolean[][]{{value11, value12}, {value21, value22}};

The Array 2D Integer Node

The Array 2D Integer node () declares one or more named 2D integer arrays (matrices) that you can access from
form objects and methods. The number of elements in the 2D integer array is not restricted in any way, but you
can specify the number of columns. The Settings window contains the following section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one 2D integer array stored per row.

Specify the name in the Name column, the number of columns in the 2D integer array from the list in the Number

of columns column (use Undefined if you do not know how many columns the array contains), the initial values in
the Initial values column, and the new element value in the New element value column. The new element value

Although you can specify the initial values for a 2D Boolean array, those values may be overwritten
if you use the array as a source to a form object that specifies different values.
T H E D E C L A R A T I O N S B R A N C H | 47

specifies the value that a new element of the 2D integer array gets in certain add operations. You can also add an
optional description of the 2D integer array in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a 2D integer array named intmatrix1 as if it were a normal Java int[][]
variable:

int[][] im = intmatrix1;
intmatrix1 = new int[][]{{value11, value12}, {value21, value22}};

The Array 2D Double Node

The Array 2D Double node () declares one or more named 2D arrays (matrices) of double floating-point values
that you can access from form objects and methods. The number of elements in the 2D double array is not
restricted in any way, but you can specify the number of columns. The Settings window contains the following
section.

L I S T O F V A R I A B L E S

This section contains a single table, where you specify one 2D double array stored per row.

Specify the name in the Name column, the number of columns in the 2D double array from the list in the Number

of columns column (use Undefined if you do not know how many columns the matrix contains), the initial values in
the Initial values column, and the new element value in the New element value column (default: 0.0). The new
element value specifies the value that a new element of the 2D double array gets in certain add operations. You can
also add an optional description of the 2D double array in the Description column.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

Code Access
In the code of a method, you access a 2D double array named dblmatrix1 as if it were a normal Java double[][]
variable:

double[][] dm = dblmatrix1;
dblmatrix1 = new double[][]{{value11, value12}, {value21, value22}};

The Choice List Node

The Choice List node () contains a list of choices for combo boxes, lists, and radio buttons that refer to this node
as part of their allowed values. You can specify a label to display in the Label field and the name of the choice list
object in the Name field. The Settings window contains the following section.

Although you can specify the initial values for a 2D integer array, those values may be overwritten
if you use the array as a source to a form object that specifies different values.

Although you can specify the initial values for a 2D double array, those values may be overwritten
if you use the array as a source to a form object that specifies different values.
48 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

L I S T C O N T E N T S

This section includes a table with a Value column and a Display name column. Enter the property values that the
user can choose from in the first column and the corresponding text to show in the combo box list in the second
column. Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices
from the list. Click the Clear Table button () to remove all table contents. Click the Save to File button () and
enter a File name in the Save to File dialog box. Click Save to save the file. Use the Load from File button () and
Load from File dialog box to import data in text files, generated by a spreadsheet program, for example.

Internally, a choice list is an N-by-2 double string array, where N is the number of rows in the table. When running
an application, you can change the content of this list by setting a new double string array to the property with the
name you specified in the Name field.

You can right-click the Choice List node to add an Activation Condition subnode.

Activation Condition

The Activation Condition node () is a condition that can evaluate to true or false, which decides if the parent node
is active or inactive. For example, if the parent is a Choice List node, a false activation condition for a choice list
excludes the list from the combo box that uses it. You can specify a label to display in the Label field and the name
of the activation condition object in the Name field.

The Settings window of the activation condition contains the following sections.

S O U R C E

This section contains a tree with a filtered view of the tree in the Application Builder window. The nodes either
represent some sort of data or have children that do. For an activation condition, variable declarations under
Declarations are available as sources. When you select a node that represents data, the Use as Source toolbar button
below the tree becomes enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node
and choose Use as Source to add it as the selected source. You can also click the Create button () in the Source
section header to create a new variable declaration for the form object and use it as the source. A Create and Use

Variable dialog box opens, so that you can select the data type of the source (if applicable) and its name. The name
cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar button () below the tree
to move to the corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source in the Selected source label.

Typically, you only see the available parameters under the Parameters node, variables under a Variables node, and
the data nodes defined under the Declarations branch. You can extend the list of available data nodes by clicking the
Switch to Model Builder and Activate Data Access button () in the Source section header, which automatically takes
you to the Model Builder. Then, select a node in the Model Builder branch whose data you want to access. With this
button active, the Settings window of the selected node displays a green check box next to the settings that you can
include by selecting that check box (for example, in a Boundary Load node in a solid mechanics model). The data

If the data source of the choice list is a global parameter or variable, it is recommended that you
use plain numbers as values. Otherwise, you have to make sure that values can be evaluated as a
valid expression. An invalid expression for a global parameter generates an error.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The default value for the source may not be what you expect. You may also experience
serious errors if the default value of one form object is invalid for one of the other form objects.
T H E D E C L A R A T I O N S B R A N C H | 49

from that node then appears as nodes with the icon in the tree under Source. Any restrictions on a data source
are passed along to the application’s user interface. The Load type list in a Boundary Load node, for example, only
allows three values (Load defined as force per unit area, Total force, and Pressure), and any form object using this
data as its source can only support a subset of those three values.

C O N D I T I O N

In the table under Condition, enter the values to check against the value of the data field. A matching value normally
causes the condition to be true, but select the Invert condition on input values check box to invert the condition.
Click Delete () to remove an activating value from the table.

The File Node

The File node () makes it possible to refer to files when developing an application. You can declare an external
file that can be imported into the application or uploaded from the client at runtime. The File declaration uploads
the file to the application at runtime. It is possible to access it using, for example, the file scheme embedded:///
file1, if the name of the File declaration is file1 (you enter the name in the Name field of the Settings window).
For more information about the file schemes, see File Schemes and File Handling. To make it possible for a user to
browse and select a file, use a File Import object and select the File node as the source. You can also enter a label
to display in the Label field.

The Settings window for the file declaration contains the following section.

F I L E L O C A T I O N

From the Target directory list, choose one of the following directories, depending on the type and use of a file:

• Select User to store it in the user’s directory for the application.

• Select Temporary (the default) to store it in a temporary file only as long as the application is active.

The Unit Set Node

The Unit Set node () provides a way of defining sets of units with a list of units for applicable physical quantities.
Defining unit sets makes it possible for the user of an application to select the unit to use for some input. Input
Field and Slider form objects can use a specific unit list of a unit set to specify the display unit of the form object.
Typically, you can use a combo box object to specify the unit set to use (by making it the source). You can also use
a unit set as the source in radio button, list box, and combo box form objects.

The Settings window contains the following sections.

U N I T G R O U P S

In this table, add the units that you want to use in the application, either for multiple quantities in a centralized
unit set or for a single quantity using multiple Unit Set nodes, one for each quantity. In the Value column, type the
value that you want to use for the unit, and in the Display name column, type the name of the unit that will appear
when it is used in a combo box object, for example. The value and display name can be the same (SI or inch, for
example). Each unit row that you add in this section adds a corresponding column in the table under Unit Lists.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove choices from
the list.

From the Initial value list, choose the unit set that will be used when launching the application.

U N I T L I S T S

This section contains a table, where you add physical properties as rows and their corresponding units for all defined
unit groups in the columns. Specify the name in the Name column (mass or length, for example) and then the
50 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

corresponding units in the following columns; for example, kg and m in an SI column for SI units and lb and ft in
an Imperial column for imperial units. Or, if using a separate Unit Set node for a length, for example, the columns
could be cm, m, and in for centimeters, meters, and inches, respectively).

Click the Add button () to add another physical property as a new row to the list. Use the Move Up (), Move

Down (), and Delete () toolbar buttons to organize and remove rows from the list.

The Graphics Data Node

The Graphics Data node () contains options for all properties used for data picking in the Graphics windows.

The Settings window contains the following sections.

I N I T I A L V A L U E S

Enter the initial coordinates for the data as comma-separated values in the Coordinate field.

Enter the initial value for the results evaluation in plots in the Results evaluation field.

I N I T I A L V A L U E S F O R 3 D G E O M E T R Y S O U R C E

In this section you define the 3D geometry source for 3D probes.

From the Geometric entity level list, choose Domain (the default) or Boundary.

Under Domain settings, choose a Line entry method: Point and surface normal, Point and direction, Two points, or
None. For the Depth along line, enter a value between 0 and 1, and for the Point being modified, choose First point
or Second point.

The values defined here for the results evaluation, geometric entity level, depth along line, and point being modified
are available as sources in, for example, input field objects. They are also available with Set Value commands in the
Choose Commands to Run section for buttons, for example.

Adding Shortcuts

You can create shortcuts to form objects, to toolbars, menu items, and ribbons, and to most model nodes in the
Model Builder. Shortcuts are available in application method code as Java variables, like other declarations, but the
variables for shortcuts are read-only variables.

In the Settings window for such objects and model nodes, there is a Create Shortcut button () to the right of the
Name field (Label field in the Model Builder). When you click that button, a Create Shortcut window opens, where
you can edit the Name of the shortcut (by default, it is the same as the name of the object for which you create the
shortcut). You can also create a shortcut using Ctrl+K. Created shortcuts appear in the Shortcuts node () under
Declarations. You can only create one shortcut for each object. If you try to create another shortcut when one exists
already, click the Rename Shortcut () button. The Rename Shortcut window then opens, where you can edit the
name of the shortcut.

Shortcuts are automatically updated when you rename, move, copy, or duplicate objects.

The Shortcuts node’s Settings window contains the following section.

L I S T O F S H O R T C U T S

In the Name column, you can edit the names of the shortcuts, if needed. The Target column lists the full names of
the target objects. In the Description column, you can edit the descriptions of the shortcuts.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove shortcuts from
the list. Click the Go to Source button () to move to the object to which the selected shortcut refers.
T H E D E C L A R A T I O N S B R A N C H | 51

Editing Initial Values and Arguments in Declarations and Command Sequences

The Edit Initial Value, Edit Initial Values, or Edit Argument button () is available under the tables in declarations
and command sequences. You find the Edit Initial Value or Edit Initial Values button under the tables in scalar, array
1D, and array 2D declaration nodes. The same button, but as Edit Argument, is available in the Settings window for
the following nodes that support a command sequence: Button, Event, and Item nodes. It is enabled for commands
that use arguments. The Edit Argument is also available for defining inputs to methods.

Figure 2-2: The Edit Initial Values button in the Settings window of an Array 2D Boolean node.

When you click the Edit Initial Values button, you can edit the selected row of the Initial values column in the
window that opens. For example, the following image shows how you can edit the rows and columns of the Boolean
2D array.

Figure 2-3: The Edit Initial Values window for an Array 2D Boolean node.

When you are done and click OK, the initial values are pasted into the Initial values column with proper array syntax.
For example, the edits above produce the following array:

{{true,false},{false,true},{false,false}}

You can also use the Load () and Save () buttons to load the initial values from a text file or save them to a
text file.

For command sequences, the toolbar button works in a similar manner. The difference is that this table supports
more types of data to enter in the Arguments column. The Set Value command on data sources shows identical
52 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

windows as the nodes under Declarations. Other commands, like plotting a plot group or evaluating data into a
result table, use their own Edit Argument windows.

Figure 2-4: A command sequence with a plot command and its Edit Argument window.

For some command sequence commands, you can use declarations in the arguments. Such declarations are possible
to use for commands to plot graphics, view built-in commands, run numerical features, set declarations, and run
methods. For the commands to plot graphics, view built-in commands, and run numerical features, you can use
this functionality in the Edit Arguments dialog box. You can also enter the arguments manually. To access a scalar,
an array as an array, or a matrix as a matrix (as opposed to accessing individual array or matrix elements), use the
name of the declaration itself (output, for example). Using an array as a scalar or a matrix as an array is done by
adding an index (output(1), for example). A matrix element can be retrieved as a scalar by adding two indices
(output(1,3), for example). You can use other variable declarations when specifying the indices (output(n), for
example, where n is a scalar integer declaration).

For the Plot graphics command and the View built-in commands, you can only use string-type declarations (with
appropriate indices if necessary) containing a path to a graphics object. For the other cases, all types of declarations,
with or without indices, can be used as long as there is a reasonable interpretation of the source declaration
dimension in the target declaration (or method argument) dimension. If, in a plot command, there is a graphics
object named graphics1 and a string declaration named graphics1, for example, the content of the declaration
will be used, unless single quotes like 'graphics1'are used, in which case the graphics object is used. You can add
a declaration (integer, double, or string) as an argument to the run numerical feature command. In that case, the
table data, stripped of the initial parameter columns, which is produced by evaluating the numerical feature, will be
T H E D E C L A R A T I O N S B R A N C H | 53

put in that declaration when the command is run. The command checks that the dimensions agree. When
converting a command sequence into a method, those checks are generated into code.

In th windows used for editing the default value or setting values of a 2D array that has an
undefined number of columns (such as the Edit Argument window), you can enter values
incrementally by clicking the Add Row () and Add Column () buttons as required to create a
2D array with some combination of rows and columns.
54 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

Th e Me t hod s B r an c h

The Methods Branch

The Methods branch () contains references to any user-defined methods that you have added to the application.
Right-click the Methods node and choose New Method to add a new method. From forms and form objects that
support methods that run in response to commands, you can add local methods that are defined in the New Method
window that opens when you right-click a Form node, for example, and choose New Method. Enter a method name
in the Name field and then click OK. A new Method node () with that name is then added, and an editor window
for the method opens, where you can define the code for the new method (see Working with Methods).

The Method Node

A Method node () represents a method — a small program that runs when called from other nodes, such as Event
nodes, Item nodes, Buttons nodes, and other Method nodes. The name of the Method node is the name of the
method, which you can enter in the Name field. Right-click and choose Edit () to open an editor window where
you can edit the method. For local methods, click the Go to Source button () to move to the form object from
which the local methods is created. See Creating Methods and The Method Nodes and Method Editor Windows
for information about creating methods.

Methods can also be used to run code in connection with a model defined in the Model Builder window. The Show

in Model Builder check box is selected by default. The method then appears in the Run Method list in the Developer
ribbon.

The Settings window for a Method node contains the following section.

I N P U T S A N D O U T P U T

In the table under Inputs, you can add one or more inputs to the method. Click the Add button () to add an
argument to the list.

In the Name column, you can edit the name of the argument (default: arg1, and so on). In the Type column, choose
a data type (String, Boolean, Integer, Double, or a 1D or 2D array type). You can assign a default value in the Default
column, and enter a description of the input in the Description column. The descriptions can be used to annotate
the method parameters and as a label for inputs in Method Call features.

For method inputs of the double types, there is an optional unit definition that you define in the Unit column The
unit definition is used by Method Call features to append a label to the input text field and to convert values to the
desired unit when running the method call.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove commands
from the list.

From the Output list, select an output data type: None (the default, for no output); String; Boolean; Integer; Double;
or a 1D or 2D array type. For all output data types, you can enter a name for the method’s output in the Name field
(default: out). The value of the output variable is what the method returns. If it is unassigned, the method returns
the default value for the type (0, null, or false).

The Show in Model Builder check box is only active for global methods. Form methods and local
methods are not possible to show in the Model Builder. Furthermore, for local methods, no
settings are editable in the Methods node’s Settings window.
T H E M E T H O D S B R A N C H | 55

Th e L i b r a r i e s B r an c h

The Libraries branch () contains libraries of images, sounds, files, and add-ins that you have added to the
application. Some libraries also have some predefined examples available for you to use. You can also right-click the
Libraries node and choose any of the following library components or choose then from the More Libraries menu
() on the Home toolbar:

• Utility classes. See The Utility Class Node.

• External Java libraries. See The External Java Library Node.

• External native code libraries based on, for example, C code. See The External C Library Node.

• Add-ins. See Add-in.

Images

The Images node () contains a library of images (as .bmp, .gif, or .jpg files, for example) that you can use in an
application. The Settings window contains the following section.

L I S T O F I M A G E S

The list contains all images available for use in an application in the Name column. You can add an optional
description in the Description column. A few sample images are always included. To add an image file, click the Add

File to Library button, which opens a file browser where you can select and add an image to the list. Click any
of the column headers to sort the list based on that column. There are three sorting modes: alphabetical, reverse
alphabetical, and the original list order.

Use the Move Up (), Move Down (), and Delete () buttons to edit and arrange the list of images. Click the
Export Selected Image File button () to save the selected image file in the image library to the file system.

You can use an image as an icon on a button, for example. Then select an image, such as plot.png, from the Icon
list in the Settings window for a Button or Toggle Button object.

P R E V I E W

This area shows a preview of the selected image in the list of images above.

Sounds

The Sounds node () contains a library of sound files (.wav files) that you can use in an application. The Settings
window contains the following section.

L I S T O F S O U N D S

The list contains all sound files available for use in an application in the Name column. You can add an optional
description in the Description column. A few sample sounds are always included. To add a sound file, click the
button, which opens a file browser where you can select and add a sound to the list. Click any of the column headers
to sort the list based on that column. There are three sorting modes: alphabetical, reverse alphabetical, and the
original list order.

Use the Move Up (), Move Down (), and Delete () buttons to edit and arrange the list of sounds. Click the
Preview button () to listen to the sound. Click the Export Selected Sound File button () to save the selected
sound file in the sound library to the file system.

You can use a sound to indicate some action connected to a button, for example. To play a sound when the
application user clicks a button, connect the button to a method where you add a line of code. The method should
56 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

call on the name of the sound file. For example, to play a sound from the file named success.wav, add the
following line to the method: playSound("success");.

Files

The Files node () contains a library of data files that you can use in an application. There are no file type
restrictions for the files that you can add to this library. The Settings window contains the following section.

L I S T O F F I L E S

The list contains all files available for use in an application in the Name column. The Copied from column contains
the full path and name of the file that the application copies. You can add an optional description in the Description
column. To add a file, click the Add File to Library button, which opens a file browser where you can select and
add a file to the list. Click any of the column headers to sort the list based on that column. There are three sorting
modes: alphabetical, reverse alphabetical, and the original list order.

Use the Move Up (), Move Down (), and Delete () buttons to edit and arrange the list of files. Click the
Export Selected File button () to save the selected file in the library to the file system.

In the application, you can refer to a file that you have added using embedded:///data.txt, for example (to refer
to the file data.txt). See File Schemes and File Handling for more information about the embedded file scheme.

Add-in

You can add an Add-in node () from the context menu or the Home toolbar as an alternative to adding it via the
Add-in Libraries (in the Model Builder). You can then import and test different versions of an add-in without adding
some add-ins that are work in progress to the Add-in Libraries. Add-ins that you import from the Add-in Libraries
and add to the Model Builder tree also appear as Add-in nodes. From this node, you can find information about the
add-in and also reload it if needed. If the add-in contains any form definitions or method definitions, Form and
Method subnodes appear under the Add-in node.

I M P O R T A D D - I N

Click the Reload button to update the add-in by reloading it. Click the Browse button to browse for an add-in to
import in the Import Library window that opens.

Under Add-in imported into application you find information about the filename, date, description, and identifier
for the imported add-in, when available.

Form

Form nodes () appear under the Add-in node if the add-in contains one or more form definitions (see Form
Definition). You get the same information here as you get for such nodes in the Add-in Libraries: The name and
description of the form definition, when available.

Method

Method nodes () appear under the Add-in node if the add-in contains one or more method definitions (see
Method Definition). You get the same information here as you get for such nodes in the Add-in Libraries: The name
and description of the method definition, when available.
T H E L I B R A R I E S B R A N C H | 57

P l a nn i n g and P r e p a r i n g an App l i c a t i o n

The following section provides some tips on what to think about when you plan and prepare an application.
Typically, you have a COMSOL Multiphysics model or set of COMSOL Multiphysics models that provide a
starting point for the development of an application.

Preparing an Application

If you want to get the most out of the Application Builder, consider these steps and guidelines while creating your
application.

Consider what the application should include. What parameters are of interest? What are the outputs that a user
would like to see? Plots are useful, but usually some specific numerical results are important, such as a maximum
stress, displacement, or temperature.

Make a sketch of the user interface and its controls and objects, outlining what types of inputs, menus, buttons,
plots, and so on the application should include. Make a layout of the form or forms in the application.

Create a COMSOL Multiphysics model of the application, including the parameters that you want to use as inputs
in the applications and the derived values and plots that you want to use as the outputs and results. To differentiate
the derived values and plots, rename the nodes so that they have descriptive names.

Use descriptions for all of the parameters that you want to include in the application. You can then select them as
inputs in the New Form wizard, which uses the descriptions as labels for the corresponding text fields.

Solve the COMSOL Multiphysics model and consider what studies you want to include in the application to
produce the output that is of interest to the users.

Save the COMSOL Multiphysics model as an MPH-file that you can use as a starting point for the application.

The Application Builder includes built-in tools for tailoring an application that suits most needs. Consider whether
there are some special aspects of the application that would require coding, and if so, prepare some information
about what objects and properties you need to use. The next step is to start the Application Builder.

When using several plots to show various aspects of the solution, consider whether all plot buttons should also
recompute the solution. Alternatively, you can use a separate button to compute the solution and just let the plot
buttons update the plots using the current solution data.
58 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

C r e a t i n g App l i c a t i o n s f r om Mode l s

The following sections contain information about tools that can help you extract code from a model and test the
application.

Copy as Code to Clipboard

To create custom methods for an application, you can copy the contents of a node in the embedded model as the
corresponding code. If you select a node in the embedded model and right-click, the context menu contains a
submenu called Copy as Code to Clipboard.

Figure 2-5: The options on the Copy as Code to Clipboard submenu.

The submenu contains up to four entries. All entries copy source code to the system clipboard. More specifically:

• Create (when applicable), to generate a code snippet to create the corresponding object.

• Get, to generate a code snippet to access the corresponding object.

• Set All, to generate a code snippet to set the nondefault properties in the corresponding object.

• Run, (when applicable) to generate a code snippet to run the corresponding sequence.

The Create and Run actions are only applicable for nodes that you can create and that you can run, respectively.

The Copy as Code to Clipboard actions are intended to make it easier to write code. It can sometimes be hard to
figure out what code to write to access a particular model entity, but by using Copy as Code to Clipboard>Get and
then pasting the result into a method editor window, you do not need to know the corresponding code. Similarly,
to figure out how to set a particular property in a model entity, you can change the property in the embedded
model, use Copy as Code to Clipboard>Set All, paste the result into a method editor window, and possibly edit the
inserted code. The Create and Run actions provide the same functionality but for the tasks of creating and running
the feature, respectively.

Copy as Code to Clipboard>Set All only considers properties that have been changed directly in the
feature’s settings. In particular, it does not consider properties set by inserting a geometry
sequence.
C R E A T I N G A P P L I C A T I O N S F R O M M O D E L S | 59

Testing the Application

On the Home ribbon tab, click Test Application () in the Test section. A second desktop window opens, and a
test run of your application starts. If you click the Test Application button again, the running application is replaced
by a fresh copy of your application, taking any recent changes you have made in the builder into account.

You can also test the application to see how it runs in a web browser. Click the Test in Web Browser button ()
to launch the application in a web browser using COMSOL Server. The application opens in a new browser window
in the default browser. Click the down arrow in the lower-right corner of the Test in Web Browser button () to
open a menu where you can choose to test the application in Google Chrome™, Firefox®, or Internet Explorer®
browsers, if you have installed those browsers.

A P P L Y I N G C H A N G E S T O A R U N N I N G A P P L I C A T I O N

Some changes that you make to your builder model can be applied to the running application without restarting
it. This can be convenient if you are developing methods that you need to test or if you want to try out layout
changes. A hot code swap mechanism is used to update the running application with new code and settings from
the builder application. If there is a conflict between the running application and the builder model, the hot code
swap can fail and you have to restart the application instead.

To apply changes, go to the Application ribbon tab and click Apply Changes (). You can add, edit, and remove
methods, events, declarations, forms, and widgets. This includes layout changes, editing command sequences, and
labels. You can also use this button to change the model — for example, the plot settings. Note that when you
change the model, there is a risk of conflicts with the model in the running application, preventing the hot code
swap. If this conflict is detected before any code has been swapped into the running application, you can choose to
continue running the application without applying the changes or to restart the application.

Figure 2-6: Error message when the hot code swap fails.

The conflicts can go undetected until some code has already been swapped into the running application. You can
continue running the application, but its state is generally undefined. You can also choose to continue running,
restart, or close the application.

If you work with your running application and then click Test Application again in the builder, any
unsaved work you have made to your application test run will be lost.
60 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

Ke yboa r d S ho r t c u t s

The following table lists the keyboard shortcuts generally available in the Application Builder or for use when
working with a form in a form window or with a method in a method editor window.

TABLE 2-1: KEYBOARD SHORTCUTS

SHORTCUT ACTION GENERAL FORM
WINDOWS

METHOD
EDITORS

Ctrl+A Select all √ √ √

Ctrl+D Deselect all √

Ctrl+C Copy √ √ √

Ctrl+V Paste √ √

Ctrl+X Cut √ √

Del Delete √ √ √

Ctrl+N Create a new application √ √ √

Ctrl+S Save an application √ √ √

Ctrl+F8 Test an application √ √ √

Ctrl+Shift+F8 Apply changes √ √ √

Ctrl+R Record code √

F1 Display help √ √ √

F2 Rename applicable nodes √

F3 Disable applicable nodes √

F4 Enable applicable nodes √

F11 Go to model node √

Ctrl+1 Create local variable declarations √

Ctrl+7 Toggle comment on and off √

Ctrl+up arrow Move applicable nodes up √

Ctrl+down arrow Move applicable nodes down √

Ctrl+Z Undo √ √ √

Ctrl+Y (Ctrl+Shift+Z on Mac) Redo √ √ √

F5 Continue (in debugger) √

F6 Step (in debugger) √

F7 Step into (in debugger) √

F8 Check syntax √

Ctrl+F Find search term in application, and
search and replace text in methods

√ √

Ctrl+K Create, use, or rename a shortcut to an
object or menu

√ √

Ctrl+space, Ctrl+/ Autocomplete method code √

Ctrl+M Move cursor between matching braces √

Ctrl+Shift+M Select text between matching braces √

Ctrl+U Make selected code lowercase √

Ctrl+Shift+U Make selected code uppercase √

Ctrl+B Toggle breakpoint on selected line √
K E Y B O A R D S H O R T C U T S | 61

Ctrl+scroll wheel up Zoom in, in method code window √

Ctrl+scroll wheel down Zoom out, in method code window √

Ctrl+all arrow keys Nudge position of form objects a little in
sketch mode

√

All arrow keys Nudge position of form objects more in
sketch mode; traverse and select cells in
grid mode

√

Shift+all arrow keys Select multiple cells in grid mode √

Ctrl+Shift+A Return to the Application Builder
window

√

Ctrl+Shift+M Return to the Model Builder window √

Ctrl+Alt+double-click Open the editor window for a method
called from another method

√

Alt+F4 Close window √ √ √

Ctrl+F4 Close a form or method window √ √

Ctrl+Shift+F4 Close all form and method windows √ √

Ctrl+Pause (Command+. on
Mac)

Stop running a method when testing
running applications.

√

TABLE 2-1: KEYBOARD SHORTCUTS

SHORTCUT ACTION GENERAL FORM
WINDOWS

METHOD
EDITORS
62 | C H A P T E R 2 : A P P L I C A T I O N B U I L D E R T O O L S

 3
W o r k i n g w i t h F o r m s
In this chapter, you will learn about the tools for creating forms, which are custom
user interfaces for applications. Forms can have various form objects, such as input
fields, graphics, and buttons. The Application Builder provides interactive tools for
sketching and arranging form objects to create forms for your application.

In this chapter:

• Introduction

• The Form Objects
 63

I n t r o du c t i o n

Overview of the Forms and Tools for Creating Forms

The form tools in the Application Builder make it possible to interactively create and edit forms (also called panes
or windows) with graphics and various form objects such as lists, text input fields, check boxes, and buttons. Forms
can also be used a settings forms in the Model Builder (see Creating and Using Settings Forms and Dialogs in the
COMSOL Multiphysics Reference Manual).

The desktop environment in the Application Builder contains the following parts:

• A Form contextual ribbon toolbar with buttons for creating new forms, inserting form objects, and controlling
the grid and the layout.

• An Application Builder window, which contains the application tree without the Model branch.

• One or more form windows (editor windows), where you can insert graphics and other form objects and design
the form interactively. Each form in the application has its own form window. You can control the maximum
number of editor windows that can be open at the same time using the Maximum number of editors before closing
setting on the Application Builder page in the Preferences dialog box. To disable checking for the number of
editors, clear the associated check box.

• There is also a Settings window with settings for the selected form or form object. Use these settings for editing
properties of the forms and form objects. To open or close this window, click the Settings button () in the
Home ribbon toolbar. If you select multiple form objects, the Settings window for Multiple Objects includes
common settings for all selected form objects, typically in the Position and Size and Appearance sections.

• A separate Form 1 window (the name reflects the name of the form that you are previewing) displays a preview
of the form so that you can check its layout and design. To open and close it, click the Preview Form button ()
in the Form ribbon toolbar.

Working with a Form and Using the New Form Wizard

You can start working with a form and access the Form ribbon toolbar in the following ways:

• Click to select an existing form window.

• If the Link with Editor button () in the Application Builder window’s toolbar is selected: Click a Form node in
the application tree.

• Double-click a Form node, or right-click it in the application tree and select Edit ().

To create a new form, click the New Form button (). Then, use the wizard in the New Form window that opens.

The wizard takes you through the following steps.

1 In the New Form window, you can create a new form with basic form objects (components). For all added form
objects, the Preview section to the right displays what the form will look like. You can change the label for the
form in the Form title field (default: Form 1 for the first form) and its name in the Form name field (default: form1
for the first form). Select the Labels on top check box to put the labels for input fields and data display objects
above the input or display instead of to the left of it. You can make additional adjustments and modifications in
the form later.

2 Click the Inputs/outputs tab to add input fields where users can type in values of parameters used as inputs and
numerical data displays where you can present numerical results. Under Available, you can select applicable
variables defined for the application under Declarations, any parameter in the model under Global Definitions, and
any variable in the model under Component>Definitions to define an input field. You can also add other model
64 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

properties using Data Access. Depending on the property, the input becomes a label and a text field, check box,
or combo box. The default labels are the descriptions defined for the parameters and variables. If possible, the
wizard creates an input field with the setting Append unit to number.

You can also choose any evaluated value in the model under Results>Derived Values to display as numerical data
and Table and Evaluation Group nodes (with tabulated data from derived values). Press Enter, double-click the
selected input or output, or click the Add Selected button to add the input field or data display to the form
and the list under Selected. Press Enter, double-click, or click the Remove Selected button to remove an item
from the Selected list.

3 Click the Graphics tab to add any of the following Graphics windows (plots) to the form:

- Under Component>Definitions, add any available explicit selection node as the source for the initial graphics
content in the graphics object.

- Under Component, add Geometry to plot the geometry.

- Under Component, add Mesh for a plot of the mesh.

- Under Results, add any of the available plot groups and nodes under Export.

Double-click or click the Add Selected button to add the graphics to the form and the list under Selected.
Double-click or click the Remove Selected button to remove an item from the Selected list.
I N T R O D U C T I O N | 65

4 Click the Buttons tab to add buttons to the form. By default, the added buttons are large buttons. You can add
buttons for the following actions that the user can perform in the application for the Model branch:

- Under Component, add Plot Geometry to add a button for updating a plot of the geometry or Plot Mesh to add
a button for updating a plot of the mesh.

- Under Component, add Plot Mesh to add a button for updating a plot of the mesh.

- Add Compute Study to add a button for computing the study (running a simulation as defined by that study
and presenting a default plot of the solution).

- Under Results, add plot buttons for plotting each plot group defined in the model (Plot Stress, for example,
for a Stress plot group that plots stresses in a solid mechanics model). Such a button sends the plot to a
graphics window in the application. You can also add buttons for exporting data for nodes under Export.

Under Forms, add a Show form1 button (), for example, to create a button to show any of the existing forms
in the application.

Under GUI Commands>File Commands you can add the following buttons for file-related operations:

- Save Application button (), to save the application with the current name.

- Save Application As button (), to save the application (with extension .mph) with a new name.

- Save Application on Server button (), to save the application on the server with the current name.

- Save Application on Server As button (), to save the application (with extension .mph) on the server with a
new name.

If the application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current application as a new application in the COMSOL Server Application Library.

- Open File button (), to open a file in an application.

- Save File As button (), to make it possible to choose and download a file to the client application.

- Exit Application button (), to exit from the application.

Under GUI Commands>Graphics Commands, you can add these additional buttons for graphics-related properties
and operations:

- Zoom Extents button () to make it possible to zoom in to the extents of the plotted object or geometry.

- Reset Current View button (), to make it possible to reset the current view in the graphics window to the
view that you get when starting the application.

- Scene Light button (), to add scene light to a graphics window.

- Transparency button (), to make 3D graphics objects transparent.

- Print button (), to print the contents of a graphics object.

- Select All button (), to select all objects in the graphics window.

- Clear Selection button (), to clear the selection for all objects in the graphics window.

For all graphics commands, add the name of the Graphics object that you want to apply the command to as
an argument.

Under GUI Commands>Model Commands, you can add these buttons for model-related operations:

- Clear All Solutions button (), to clear all solutions in an application.

- Clear All Meshes button (), to clear all meshes in an application.

Double-click or click the Add Selected button to add the button to the form and the list under Selected.
Double-click or click the Remove Selected button to remove an item from the Selected list.

5 Click OK to exit the wizard and generate the form’s components that you have defined.
66 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Data Access

You can add model-dependent data and properties, as well as application-specific properties that can be modified
from a running application, by using the data access functionality in the Application Builder. This is in addition to
the predefined model data and model properties that you access in the New Form wizard. If data access is active,
applicable data and properties in the Settings windows for many nodes under a Component node, as well as the
Settings windows for some forms, form objects, and menu and toolbar items in the application, get a green check
box to the left of the settings. Select this check box to select it as a data source and add the corresponding property
to the tree under Available on the Inputs/outputs page in the New Form wizard and in the Source sections of applicable
form objects. Depending on the type of data, it can become a text label and an input field, check box, or combo
box.

To activate the data access:

• On the Home toolbar, click Model Builder (), click the Developer tab if needed, and then click Data Access ().

• In the Source section for applicable form objects, click the Switch to Model Builder and Activate Data Access button
() to move directly to the Model Builder window with the data access activated.

The Form Toolbar

The Form contextual ribbon toolbar provides access to functionality for creating and editing forms and form
objects. This toolbar is available when a form window is active. This section briefly describes the buttons on the
Form toolbar.

T H E M A I N S E C T I O N

This section contains the following buttons for moving to various windows and to create new forms and methods:

• The Model Builder button (), to switch from the Application Builder to the Model Builder windows and the
standard COMSOL Desktop.

• The New Form button (), to create a new form using the New Form wizard. See Working with a Form and
Using the New Form Wizard.

• The New Method buttons (), to create a new Global Method or Form Method node and open its code in a new
editor tab. See The Method Nodes and Method Editor Windows.

• The Settings button (), to open or close the Settings window.

• The Preview button (), to show or hide the Preview window for a live preview of the forms and methods in
the application. In the Preview window, you can scroll to get a preview of all forms and methods in the
application. This can be useful, for example, if you are working on a method that interacts with a form. To show
a preview of a form in the Preview window, select a form or method node in the Application Builder window.

T H E F O R M S S E C T I O N

This section contains the following buttons for creating a new form and inserting form objects into the current
form:

• The New Form button (), to create a new form using the New Form wizard. See Working with a Form and
Using the New Form Wizard.

• The Insert Object button (), to open a menu where you can choose from all types of form objects and add
them to the current form. See The Form Objects.
I N T R O D U C T I O N | 67

T H E L A Y O U T S E C T I O N

In this section, you can switch between the sketch layout and the grid layout.

• Click the Grid button () to switch to the grid mode. See The Grid Mode.

• Click the Sketch button () to switch to the sketch mode. See The Sketch Mode.

T H E S K E T C H S E C T I O N

This section contains buttons for tools available in the sketch mode. In the grid mode, these buttons are disabled.

• Click the Show Grid Lines button () to add or remove an overlaid grid in the form window.

• Click the Arrange button () to open a menu with tools to align the selected form objects.

T H E G R I D S E C T I O N

This section contains buttons for tools available in the grid mode. In the sketch mode, these buttons are disabled.
In addition, most buttons are disabled unless you have selected cells in the grid that make the corresponding action
possible. The buttons include:

• The Row Settings button (), to choose from a menu of settings for the row size for the selected rows. See Row
and Column Settings.

• The Column Settings button (), to choose from a menu of settings for the row size for the selected columns.
See Row and Column Settings.

• The Insert button (), to insert a row or a column next to the selected rows or columns. You can also open a
menu to choose if you want to insert a row above or below, or if you want to insert a column to the left or to
the right. See Inserting and Removing Rows and Columns.

• The Remove button (), to remove the current row or column. See Inserting and Removing Rows and
Columns.

• The Align button (), to open a menu with tools to align and fill the contents in rows and columns. See
Aligning Form Objects

• The Merge Cell button (), to merge the selected cells. See Merging and Splitting Cells.

• The Split Cell button (), to split the selected cell. See Merging and Splitting Cells.

• The Extract Subform button (), to extract the selected cells from the current form and insert them in a new
form. See Extracting a Subform.

• The Rows & Columns button (), to open a dialog box where you can specify the number of rows and columns
in the grid. See Changing the Grid Size.

T H E T E S T S E C T I O N

This section contains the following buttons for testing the application:

• The Test Application button (), to launch the application in a separate window so that you can test it. See
Testing the Application.

• The Apply Changes button (), to compile and apply code changes to the running application (so-called hot
code swap). See Applying Changes to a Running Application.

• The Preview Form button (), to open a window that contains a preview of the form. See Previewing and
Testing the Form.

• The Test in Web Browser button (), to test run the application in a web browser. See Testing the Application.
68 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

T H E V I E W S E C T I O N

The View section contains the following buttons for rearranging the views in the Application Builder desktop
window:

• The Tile () and Move To () buttons, to rearrange the windows in the Application Builder.

• The Reset Desktop button (), to reset the desktop layout to the default state.

The Form Window Layout Modes

There are two different layout modes that you can use when working in the Form windows (editor windows):

• The sketch mode, in which you can place the form objects freely and organize them easily by dragging them. The
sketch mode is useful as a starting point to quickly make a layout that is roughly want you want. However, what
you see in the sketch mode will not be exactly what you get when running the application.

• The grid mode, in which you can control in detail what the final layout of the form will look like.

The sketch mode computes the row and column layout from absolute coordinates, heights, and widths of each
contained form object. The grid mode lets you specify the row and column size of the contained form objects.

You select the mode by clicking the Sketch button () or the Grid button () in the Layout group of the Form
ribbon toolbar. See the following sections for more information about each mode.

You can specify which layout mode to use as the default on the Forms page in the Preferences dialog box.

O P E N I N G O T H E R F O R M W I N D O W S F R O M A F O R M W I N D O W

Some form objects are forms themselves, such as the grid panel, or contain forms, such as the card stack. To open
a new Form window for these forms, Alt-click them.

D R A G G I N G A N D C O P Y I N G F O R M O B J E C T S

In both layout modes, you can drag-and-drop form objects to move them. If you instead wants to make a copy of
a form object and drag-and-drop it in a new location, drag the original form object, press the Ctrl key, and then
release the copy in the desired location. You can cancel the drag operation by pressing Esc or by dropping the form
objects outside of the form editor.

The Sketch Mode

The sketch mode uses a canvas on which you can place form objects freely. However, the COMSOL Multiphysics
software places the objects in a grid when creating the user interface for the running application. This grid does not
allow for completely free positioning, which means that the layout you create in sketch mode will only be
approximately what you get when running the application. Use the sketch mode as a starting point to quickly create
a layout that is roughly what you want, then switch to the grid mode for the fine tuning. This creates a grid based
on where you have placed the form objects in the sketch mode.

A D D I N G A N D S E L E C T I N G F O R M O B J E C T S

To add a form object, select the object from the palette that opens when you click the Insert Object button on the
Form ribbon toolbar (see The Form Objects for details about the available form objects). The form object of the
selected type is then added to the canvas and you can drag it to where you want it.

When you add a form object, it becomes selected. To select another form object, click it. You can select multiple
form objects using Ctrl-click or by clicking and dragging a box to surround some form objects. Press the Shift key
while dragging to add the surrounded form objects to the current selection.
I N T R O D U C T I O N | 69

To delete form objects, select them and then press Delete or click the Delete button () on the Quick Access
Toolbar.

S H O W I N G G R I D L I N E S A N D S N A P P I N G T O T H E G R I D

To display the grid lines for the grid that divides the form and to which you can snap the form objects, click the
Show Grid Lines button () in the Sketch section of the Form ribbon toolbar. When you interactively resize a form
object using its handles, the form object snaps to the grid. Click the Show Grid Lines button () again to turn off
the display of the grid lines and the snap-to-grid behavior. You control the grid and snap settings in the Sketch Grid
section of the Form node’s Settings window.

A R R A N G I N G F O R M O B J E C T S

When dragging a form object, lines appear to help you align the objects relative to each other. There is also an
Arrange menu () in the Sketch section of the Form ribbon toolbar with the following tools to align the form
objects:

• Align Left (), to left align selected form objects to the leftmost object’s position.

• Align Center (), to horizontally center selected form objects.

• Align Right (), to right align selected form objects to the rightmost object’s position.

• Align Top (), to top align selected form objects to the topmost object’s position.

• Align Middle (), to vertically center selected form objects.

• Align Bottom (), to bottom align selected form objects to the bottommost object’s position.

The Grid Mode

COMSOL Multiphysics uses a grid when creating the user interface for the running application. In the grid mode,
you can edit the grid and place form objects in the positions you want within the grid to obtain the desired layout.

Figure 3-1: An example of a grid with form objects. The cells in the grid can span over multiple rows and columns. For
example, the cell in the last row with the list box spans over all three columns.

A D D I N G A N D S E L E C T I N G F O R M O B J E C T S

To add a new form object, first select an empty cell in the grid. Then select the object from the palette that opens
when you click the Insert Object button on the Form ribbon toolbar (see The Form Objects for details about the
available form objects). The new object is inserted in the cell, or if no cell is selected, in the first empty cell. If there
is no empty cell, the software adds a new row and places the form object in the first cell in that row.

When you add a form object, it becomes selected. To select another form object or empty cell, click it. You can
select multiple form objects and cells using Ctrl-click. You can also drag a box to select multiple form objects and
cells. Dragging a box to select cells works when you start dragging either in an empty cell or outside the grid.

C O P Y I N G , D U P L I C A T I N G , C U T T I N G , A N D D E L E T I N G F O R M O B J E C T S

For all form objects that you have added, you can right-click any form object’s cell, a group of cells, or an entire
column or row to open a context menu with the following actions:
70 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

• Cut (), to cut (remove) the form object from the form and store it so you can paste it. You can also use Ctrl+X.

• Copy (), to make a copy of the form objects. You can also use Ctrl+C.

• Duplicate (), to make a duplicate of the form objects, which appears directly in the form.

• Delete, to delete the form objects. You can also press Delete to remove form objects.

• Settings (), to open the Settings window for a form object, or a Settings window for common properties if you
have selected multiple objects.

• Help (), to open the Help window and display information about the form or form object, when applicable.

For form objects that support methods that run on a data change, for example, the context menu also contains
Create Local Method to create a local method, or Edit Local Method or Edit Method to open an existing local method
or other method in an editor window.

If you right-click on the Form window’s canvas, the context menu contains these additional actions:

• Preview Form (), to launch an application window to preview the contents of the form.

• Paste Button (), for example, to paste a form object (a button in this case) that you have copied or cut. You
can also use Ctrl+V.

Using the arrow keys, you can traverse the cells in the grid, selecting one object at a time. You can also select
multiple cells by pressing the Shift key while traversing with the arrow keys.

M O V I N G A F O R M O B J E C T

You can move form objects to another cell by dragging and dropping them. Click a cell to select the form object
in the cell. Then drag the object and drop it on the cell where you want to place it. If the cell where you drop the
form object is occupied by another object, that object will be moved to the cell vacated by the object you dragged.
This makes it easy to change places between two form objects.

R O W A N D C O L U M N S E T T I N G S

You can control the size of the rows and columns in three ways. To choose which way to control it for a row or
column, first select the row or column by clicking the header to the left of or above the grid. The image below
shows a selected column.

Figure 3-2: Selecting a column using the grid layout mode.

To change how to control the width of the column, use the Column Settings menu () in the Form ribbon toolbar.
The same menu is also available when you select a column in the form window and as a Column submenu when you
select one or several cells and then right-click. The following options are available:

• Fit Column (), to make the width equal to the widest object in the column.
I N T R O D U C T I O N | 71

• Grow Column (), to change the column width as the width of the grid’s container changes. The container can
be the window where the form is used or a column in a parent form. Letting one or more columns grow is a
good way of making a user interface that adjusts its size to fit the available space.

• Fixed Column (), to set the column width to an exact number. The width can be adjusted by dragging the
column separator in the column header. When using this option, make sure that everything in the column fits
the available space. Also consider that all objects will not have the same size on all clients on which the application
might run.

Similarly, to change how to control the height of a row, use the Row Settings menu () in the Form ribbon toolbar.
The same menu is also available when you select a row in the form window and as a Row submenu when you select
one or several cells and then right-click. The following options are available:

• Fit Row (), to make the height equal to the highest object in the row.

• Grow Row (), to change the row height as the height of the grid’s container changes. The container can be
the window where the form is used or a row in a parent form.

• Fixed Row (), to set the row height to an exact number. The height can be adjusted by dragging the row
separator in the row header. When using this option, make sure that everything in the row fits the available space.
Also consider that all objects will not have the same size on all clients on which the application might run.

The headers indicate the row and column setting: When you use Grow Row, the header has an arrow symbol like
the middle column in Figure 3-2. When you use Fixed Row, the size is shown in the header (shown in the right
column in Figure 3-2).

I N S E R T I N G A N D R E M O V I N G R O W S A N D C O L U M N S

When you have selected a row or column, you can use the Insert menu (), in the Grid section of the Form ribbon
toolbar or on the context menu when right-clicking a selected row or column, to insert rows or columns. Choose
from the following options:

• Insert Above (), to insert a new row above the selected row.

• Insert Below (), to insert a new row below the selected row.

• Insert Left (), to insert a new column to the left of the selected column.

• Insert Right (), to insert a new column to the right of the selected column.

You can also use the Remove menu () to remove rows or columns:

• Remove Row (), to remove the selected rows from the form.

• Remove Column (), to remove the selected columns from the form.

The applicable remove command is also available on the context menu when right-clicking a selected row or
column.

A L I G N I N G F O R M O B J E C T S

You can adjust the alignment of form objects within the cells using the tools on the Align menu () in the Grid
section of the Form ribbon toolbar. The same menu is also available as an Align submenu when you select one or
several cells and then right-click. To change the alignment, first select the cells with the form objects that you want
to align, then select one of the following alignment options:

• Fill Horizontally (), to make the form objects occupy all of the available space in the column. The assigned
width of the form object is not considered when filling; instead, the column gives the size.

• Align Left (), to left align selected form objects to the left ends of their cells.

• Align Center (), to horizontally center selected form objects in their cells.

• Align Right (), to right align selected form objects to the right ends of their cells.
72 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

• Fill Vertically (), to make the form objects occupy all of the available space in the row. The assigned height of
the form object is not considered when filling; instead, the row gives the size.

• Align Top (), to top align selected form objects to the top ends of their cells.

• Align Middle (), to vertically center selected form objects in their cells.

• Align Bottom (), to bottom align selected form objects to the bottom ends of their cells.

A D J U S T I N G T H E S I Z E O F A F O R M O B J E C T

Some form objects can be resized by dragging, but not all objects can be resized. One example is labels, where the
size is given by the label text.

To resize a form object, first select it by clicking the cell with the object. The image below shows a selected list box.

Figure 3-3: A selected list box can be dragged to change its width and height.

Once selected, you can adjust the size by dragging the handles in the right and bottom sides of the list box. If the
object has the horizontal alignment set to fill when dragging horizontally, the alignment is changed to left. Similarly,
when dragging vertically, the alignment is changed to top. A blue guideline appears to make it easier to align an
object with other objects in the same form.

M E R G I N G A N D S P L I T T I N G C E L L S

To make a form object span multiple rows or columns, you can merge cells. To merge cells, select them and then
click the Merge Cells button () in the Grid section of the Form ribbon toolbar. When merging, there must be at
most one form object in the cells to be merged because the new cell can only contain one form object.

The inverse of merging cells is to split a cell that spans more than one row or column. To split a cell, select it and
then click Split Cell () in the Grid section of the Form ribbon toolbar. If there was any form object in the original
cell, it is placed in the top left of the new cells.

E X T R A C T I N G A S U B F O R M

If you want to extract a rectangular area (a subgrid) from a form to a new form, select the part of the grid that you
want to extract, right-click, and choose Extract Subform (). You can also click the Extract Subform button in the
Grid section of the Form ribbon toolbar. The extracted subgrid, with the form objects in that part of the original
form, appears in a new form, and the corresponding form window opens. The cells in the original form change into
a Form reference object referring to the new form.

R E S I Z I N G T H E G R I D A N D T H E F O R M

If there is at least one row or column that is expandable, the whole grid in a form can be resized. As the growing
row or column adjusts its size to the available space given by its container, you can use the resizing to see how the
form looks when the available space changes.
I N T R O D U C T I O N | 73

Clicking in the top-left corner of the grid selects the whole grid and shows handles that indicate that you can resize
the grid. The image below shows a selected grid with a drag handle in the right border. You can grab and resize the
border anywhere along the borderline.

Figure 3-4: A grid handle to the right shows that you can resize the grid.

You can resize a form without first selecting it for resizable forms that use the grid mode and have rows or columns
that can grow. Resize the form by dragging its right or bottom border (a resize cursor appears when resizing is
available). The size to which you resize the form in the Form Editor is used as its initial size if the form’s Size setting
is set to Automatic.

C H A N G I N G T H E G R I D S I Z E

To change the number of rows and columns in the grid, click the Rows & Columns button () in the Grid section
of the Form ribbon toolbar. In the Rows & Columns dialog box that opens, specify the number of rows and columns
in the Rows and Columns fields, and then click OK. If the new size is smaller than the current grid size, rows and
columns are removed starting from the lower-right corner of the grid. Also, the resizing of the grid removes any
form objects that do not fit in the new grid.

Previewing and Testing the Form

To see what the form looks like and test if input fields and other form objects behave as specified, you can launch
the form in a separate window. To do so, click the Preview Form () button on the Form ribbon toolbar.

Running Local Methods in Form Objects

For some form objects, such as buttons, you can add commands to run when the user clicks the button. These
commands can be a number of predefined commands (such as plotting). For other form objects, such as input
fields, you can add local methods for events, which occur when the form object gains or loses focus. When you have
added a method to run in a form object, the display of the form object in the form window shows the method
connection.

Figure 3-5: A Compute button with an indication that it runs a method when the user clicks it.

If the method has a compilation error, the method connection indicator shows a red cross to indicate that it will
not be possible to test the button until the compilation error has been corrected.

Figure 3-6: A Compute button with an indication that the method has a compilation error.

Local methods in form objects can be converted to global methods or form methods.
74 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Th e Fo rm Ob j e c t s

Overview of the Form Objects

When you click the Insert Object button () on the Form ribbon toolbar, a palette (gallery) with the following
types of form objects appears.

• A set of Input form objects:

- An Input Field object for user inputs

- A Button object

- A Toggle Button object

- A Check Box object

- A Combo Box object

• A set of Labels:

- A Text Label object

- A Unit object

- An Equation object

- A Line object

• A set of Display objects:

- A Data Display object

- A Graphics object

- A Web Page object

- An Image object

- A Video object

- A Progress Bar object

- A Log object

- A Message Log object

- A Results Table object

• A set of Subforms:

- A Form object

- A Form Collection object

- A Card Stack object

- A Card object, which you can add and edit from a Card Stack object

• A set of Composite form objects:

- A File Import object

- An Information Card Stack object for displaying application information cards

- An Array Input object

- A Radio Button object

- A Selection Input object
T H E F O R M O B J E C T S | 75

• A set of Miscellaneous form objects:

- A Text object

- A List Box object

- A Table object

- A Slider object

- A Hyperlink object

- A Toolbar object

- A Spacer object

See the following sections for details about each type of form object. Select the form object that you want to insert.
A form object of that type is then inserted into the selected form’s editor window. For a selected form object, the
Settings window displays its properties, which you can edit to control the object’s appearance and behavior. If you
select multiple form objects, the Settings window displays common properties only.

Input Field

The Input Field () is a form object for entering single-lined text.

Enter the name of the input field object in the Name field.

By default, the Editable check box is selected, so that users of the application can change the value in the input field.
Clear the Editable check box to display the initial value as a read-only value.

In the Tooltip field, enter text that will appear as a tooltip when the user hovers the pointer over the input field. The
input field objects also have a built-in tooltip that shows the entered text if it does not fit into the input field, or
any error or warning.

In addition, the Settings window contains the following sections.

S O U R C E

In this section, you define the data source for the input field. The section contains a tree with a filtered view of the
tree in the Application Builder window. The nodes either represent some sort of data or have children that do. For
an input field, parameters and variables in the COMSOL Multiphysics model and scalar variables that you define
under Declarations are available as the data source. You can extend the list of available data nodes by clicking the
Switch to Model Builder and Activate Data Access button () in the Source section header, and then selecting a node
in the Model Builder with data you want to access. With this button active, the Settings window of the selected node
displays a Select Data Source check box (a green square) next to the settings that you can include. Click to select the
check box to include the data as an available source node for input fields.

If the Editable check box is cleared so that the field is read-only, you can choose to use one of the following
information nodes as the source. They are found under the main Model node and each Study node.

• The Expected Computation Time node () under Model>Information (): The expected computation time is
a value that you can enter in the Expected field in the Root node’s Settings window.

• The Last Computation Time node () under Model>Information: This node shows the last measured
computation time for the last computed study.

• The Last Computation Time node () under each Model>Study>Information: This node shows the last measured
computation time for the study.

When you start an application for the first time, the last measured times are reset, displaying Not available yet.

When you select a node that represents data, you enable the Use as Source toolbar button () below the tree. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
76 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

the selected source. You can also click the Create button () in the Source section header to create a new variable
declaration and use it as the source. A Create and Use Variable dialog box opens, so that you can select the data type
of the source (if applicable), its name, and its initial value (if applicable). The name cannot be in conflict with any
existing variable declaration. Click the Edit Node toolbar button () below the tree to move to the corresponding
node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

From the Initial value list, select From data source to link this input field to the data source defined in the Source
section and use the values specified by that source. From data source is the default setting for new input fields. Select
Custom value to enter the initial value for the input field in the Value field. This value overwrites any value you
specified for that string.

D A T A V A L I D A T I O N

Use the settings in this section to validate user inputs with respect to units and values.

From the Unit dimension check list, choose one of the following options:

• None (the default): No check is done of the unit or value.

• Compatible with physical quantity: A check is done to make sure that the input’s unit is compatible with the
physical quantity that you specify using the Physical quantity list underneath the Unit dimension check list. Click
the Select Quantity button () to open the Physical Quantity dialog box to browse to find a physical quantity
to use. You can also type a search string in the text field at the top of the dialog box and then click the Filter
button () to filter the list of physical quantities. For example, type potential and click the Filter button to
only list physical quantities that represent some kind of potential.

• If the value or expression that the user enters is incompatible, the value or expression is highlighted in orange as
a warning and a tooltip displays to describe the unit mismatch. If there is a unit mismatch, the application uses
the numerical value of the entered value or expression and adds the default unit as specified (for example, 9[kg]
is converted to 9[m] if the expected physical quantity is a length).

• Compatible with unit expression: A check is done to make sure that the input’s unit is compatible with the unit
expression that you specify in the Unit expression field underneath the Unit dimension check list. The user of the
application gets the same type of information and handling as in the previous case if there is a unit mismatch.

• Append unit to number: The application user can type in a number without appending a unit using the unit syntax
with square brackets. The application appends the unit expression that you specify in the Unit expression field
underneath the Unit dimension check list.

• Append unit from unit set: The input field appends a unit from a Unit Set node added under Declarations (see The
Unit Set Node). You specify the unit set to use from the Unit set list and the unit to use from Unit list, which lists
all defined properties and their units from the select unit tests. There is also a No unit option.

When applicable, click the Add Unit Label button () to add a unit label linked to the input field and place it to
the right of the input field.

For the options None, Append unit to number, and Append unit from unit set, you can also use a filter to validate the
numerical input. Under Numerical validation, choose a filter from the Filter list:

• None, for the None option only, where it is the default setting.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The value for the source may not be what you expect. You may also experience serious
errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 77

• Double (the default for the Append unit to number option), for checking that the entered value is a floating-point
number (double). Select the check boxes for Minimum and Maximum to specify a lower and upper limit,
respectively, in the corresponding text fields. The limits can be numerical values or expressions, including
parameters defined in the global Parameters node’s Settings window. The limits dynamically change when the
parameter values change. It is possible that, after a change in the minimum or maximum value, the value in an
input field becomes temporarily invalid. If the parameter or expression for the minimum or maximum value does
not have the same dimension as the unit entered in the Unit expression field, the parameter or expression appears
in yellow, and a tooltip describes the unit mismatch. If the parameter or expression has the same dimension but
another unit than the unit entered in the Unit expression field, a unit conversion to that unit occurs.

• Integer, for checking that the entered value is an integer. Select the check boxes for Minimum and Maximum to
specify a lower and upper limit (as integer values), respectively, in the corresponding text fields.

• Regular expression (for the None option only), to use a regular expression for matching the input string and issue
a custom error. Specify the expression to check against in the Regular expression field and the error message
(default: Invalid input) in the Error message field.

The regular expression consists of a pattern that is matched to the user input. The pattern can contain ordinary
characters and special characters. Special characters have a special meaning and do not represent themselves. The
special character \ is used for quoting special characters to have those characters represent themselves; for
example, \\ represents a backslash. When you use \ on ordinary characters, it makes them have a special
meaning. For example, \t means a tab character, and \n means a newline character. The special character . (a
dot) stands for any character. [abc] (characters in brackets) stands for any of the characters a, b, or c. [^abc]
stands for any characters except for a, b, or c. (abc) (characters in parentheses) represents the sequence of
characters abc. * (an asterisk) means repetition, including zero times. + (plus) means repetition, at least one time.

For a complete description of regular expressions, see the documentation of the java.util.regex class in Java.

Some examples:

- a.c means the letter a followed by any character followed by the letter c.

- [^ab]c means any character but a and b, followed by the letter c.

- a*b+ means any number of the letter a (including zero occurrences) followed by at least one b.

If you test the application using Test Application and a data validation error message occurs, the error message
contains extra information about the type of form object and its path to help you locate the origin of the error
message. The extra information does not appear when running an application through Run Application or COMSOL
Server.

P O S I T I O N A N D S I Z E

This section contains all layout settings for an input field in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the input field using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.
78 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

You can also specify the width of the input field. Enter a width (in points) in the Width field. If you have chosen Fill
from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height field is unavailable because the height of the input field is determined
by the software.

Additionally, in the sketch mode, you can specify the absolute position of the input field using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the input field:

From the Text color list, select Inherit (the default) to inherit the text color from the setting in the Form node, or
select one of the predefined colors, such as Black. Select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the input field: White (the default),
Transparent, any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a
color palette.

From the Text alignment list, select an alignment for the text in the input field: Left, Center, or Right.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

Select the Bold check box to use a boldface font and the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the input field when users run the application. By default, the input
field is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
input field is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

E V E N T S

For certain types of form objects, you can specify a method to run when an event such as data entry occurs. The
On data change list contains None (the default) and any available methods. To add a local method for an event, click
the Create Local Method button () to the right of the On data change list. The selected method in the On data

change list then changes to Local method. An empty onDataChange editor window opens, in which you can define
the local method. You can also Ctrl+Alt-click the input field object or right-click it to create a local method or (by
choosing Edit Method or Edit Local Method) to open the method associated with the command. To open the selected

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 79

method, click the Go to Source button (). Click the Remove Local Method button () to delete the local
method.

For events triggered by data change, the event is triggered after the new data value is stored in the data source.

Button

The Button () form object represents a push button. When a user presses the button, the program runs a list of
commands.

Enter the name of the Button object in the Name field.

In the Text field, enter the text that appears on the button.

To add an icon (image) to appear on the button, specify an image file to use from the Icon list, which includes all
images in the Images library, or click the Add Image to Library and Use Here button () to locate an image to use
on the file system. That image then becomes a part of the Images library and selected as the icon to use on the
button. The icon replaces the text on the button if the button’s size is normal. For large buttons, both the text and
the icon appear, unless they are empty. To display only the text, select None from the Icon list. Click the Export
button () to export the image to the file system (for use in another application, for example).

From the Size list, choose Large for a large square button or Small (the default).

If you have selected Large from the Size list, a Style list appears where you can choose Flat (the default) or Raised.
The Flat style has no border and, as the default, a transparent button background. This look appears on Windows
and in the web client. On macOS and Linux, the Flat and Raised styles look the same.

The text you enter in the Tooltip field becomes the tooltip of the button.

You can also define a shortcut for the button action that you enter in the Keyboard shortcut field. To add a keyboard
shortcut, make the Keyboard shortcut field active, and then type a keyboard shortcut on the keyboard:

You must use a modifier in the keyboard shortcut, not just a plain letter (for example, CTRL+SHIFT+D). The
shortcut can include the Ctrl key (CTRL), Alt key (ALT), and Shift key (SHIFT). Note that the Ctrl key is
interpreted as Command on OS X. Avoid using the following keys in your shortcut:

• Backspace, as it can be used to clear a shortcut

• Delete, as it can be used to clear a shortcut

• Escape

• Alt on its own (to avoid conflicts with File menu shortcuts)

In addition, the Settings window contains the following sections.

C H O O S E C O M M A N D S T O R U N

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either support a command or have children that do. When you select a node that supports one or more
commands, the corresponding command toolbar buttons become enabled in the toolbar below the tree. You can

If you select more than one form object and they all support the On data change event, you can
specify a method to, for example, make them inform users that plots and outputs are invalid.

It is possible to override other keyboard shortcuts, so take care when choosing the shortcut key
combinations to use.
80 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

also right-click a node to get a list of available commands for that particular node. Once you click a command with
a node selected (or press Enter or double-click to add a command with its default command such as Run, Plot, or
Set Value), the command and node appear in the last row of the table below the tree. This table contains all nodes
that run. You can delete and move commands using the toolbar below the table.

In the Model branch, all nodes that represent some sort of data value, such as a parameter under the Parameters
node, support the Set Value command. When adding a Set Value command to the table, the third column,
Arguments, becomes enabled. In this column, you type the value to set. For data that represents arrays, use curly
braces and commas to enter the array elements. For example, enter {1, 2, 3} to set a three-element array with
the values 1, 2, and 3. See The Array 1D String Node for more details on how to enter arrays and matrices. For
nodes that represent a file import, such as a Filename node under an Interpolation function node, an Import File
command is available. You can also add a Plot command for all View nodes and plots, providing the name of a
Graphics object as the argument. For nodes under Export, you can add a Run command. In the case of an Animation
node under Export, where the animation is done using a player as the target, you can provide the name of a Graphics
object as the argument.

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified
using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current View, Scene Light, Transparency,
Print, Select All, and Clear Selection. For all graphics commands, add the name of the Graphics object that you
want to apply the command to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Form Declarations branch: This branch contains any variable declarations you have added under a Declarations
branch under the current Form node. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Form Methods branch: Method nodes under the current Form node support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the buttons underneath the tree, the currently selected command appears in the Command
column in the table below. There is also an Icon column and an Arguments column, where you can enter any
applicable arguments that the command uses.

Click the Convert to Method toolbar button () and choose Convert to Method, Convert to Form Method, or Convert

to Local Method to convert the entire list of commands in the table to a global, form, or local method that contains
the equivalent code. After this operation, the list of commands only contains a single Run operation on the created
method. You can also Ctrl+Alt-click the button object or right-click it to create a local method or (by choosing Edit
T H E F O R M O B J E C T S | 81

Method, Edit Methods, or Edit Local Method) to open the methods associated with the commands. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
(), and Delete () toolbar buttons to organize and remove commands from the list (and also remove the local
method, if deleted).

D I A L O G A C T I O N S

When you use the button in a dialog window, the button can control the dialog. Select the Close dialog check box
to close the dialog window when the user clicks the button. All forms and form objects in a dialog window store
their values temporarily. This is because the user might want to cancel the dialog window and close it without
storing any data to the real data backing the forms and form objects. Select the Store changes check box to store
the data when the user clicks the button.

P O S I T I O N A N D S I Z E

This section contains all of the layout settings for a button in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the button using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

If you want to specify the width of the button, first select Manual from the Width list. Then enter the width (in
points) in the associated field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a
Minimum width. Choose Automatic to compute the minimum width automatically (typically, this means a minimum
size of 0), or choose Manual to specify a minimum width in the text field underneath.

If you want to specify the height of the button, first select Manual from the Height list. Then enter the height (in
points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can instead specify a
Minimum height. Choose Automatic to compute the minimum height automatically (typically this means a minimum
size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the button using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
82 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text on the button:

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background color for the button: Choose Default (the
platform then controls the background color), Transparent, any available color, or Custom, to choose the color from
a color palette.

The font and the font size for the button label use the font settings from the Forms node by default. Select a font
from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the
Font size combo box. The default is to use the Default size for the font.

Select the Bold check box to use a boldface font and the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the button when users run the application. By default, the button
is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the button
is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of
the form object is indicated by a change in its appearance. Objects that are hidden become visible when selected in
the form editor.

Toggle Button

The Toggle Button () form object represents a toggle button. A toggle button acts as two buttons in one, with
one action (command sequence) that runs when a user selects the button and another action that runs when a user
deselects the button.

Enter the name of the toggle button object in the Name field.

In the Text field, enter the text that appears on the button.

To add an icon (image) to appear on the button, specify an image file to use from the Icon list, which includes all
images in the Images library, or click the Add Image to Library and Use Here button () to locate an image to use
on the file system. That image then becomes a part of the Images library and selected as the icon to use on the
button. The icon replaces the text on the button if the button’s size is normal. For large buttons, both the text and
the icon appear, unless they are empty. To display only the text, select None from the Icon list. Click the Export
button () to export the image to the file system (for use in another application, for example).

From the Style list, choose Large for a large square button, Small (the default), or Flat. The Flat style is the same size
as Large but with no border and, as the default, a transparent button background. This look appears on Windows
and in the web client. On macOS and Linux, the Flat and Large styles look the same.

The text you enter in the Tooltip field becomes the tooltip of the button.

You can also define a shortcut for the button action that you enter in the Keyboard shortcut field. To add a keyboard
shortcut, make the Keyboard shortcut field active and then type a keyboard shortcut on the keyboard.

You must use a modifier in the keyboard shortcut, not just a plain letter (for example, CTRL+SHIFT+D). The
shortcut can include the Ctrl key (CTRL), Alt key (ALT), and Shift key (SHIFT). Note that the Ctrl key is
interpreted as Command on OS X. Avoid using the following keys in your shortcut:

• Backspace, as it can be used to clear a shortcut
T H E F O R M O B J E C T S | 83

• Delete, as it can be used to clear a shortcut

• Escape

• Alt on its own (to avoid conflicts with File menu shortcuts).

In addition, the Settings window contains the following sections.

S O U R C E

In this section you specify the data source for the toggle button. The section contains a tree with a filtered view of
the tree in the Application Builder window. The nodes either represent some sort of data or have children that do.
For a toggle button, the data source can be variables in the COMSOL Multiphysics model and scalar strings or
Boolean variables that you define under Declarations. You can extend the list of available data nodes by clicking the
Switch to Model Builder and Activate Data Access button () in the Source section header, which takes you to the
Model Builder, and then selecting a node in the Model Builder branch whose data you want to access. With this
button active, the Settings window of the selected node displays a Select Data Source check box (a green square) next
to the settings that you can include. Click to select the check box to include the data as an available source node
for check boxes.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () in
the Source section header to create a new variable declaration and use it as the source. A Create and Use Variable
dialog box opens, so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

From the Initial value list, select From data source to link this check box to a variable defined in the Source section
above and use the value specified by that data source. Select Custom value to specify the initial state from the Initial

state list: Selected (the default) or Cleared. The value for a selected toggle button is on and for a deselected toggle
button is off.

C H O O S E C O M M A N D S T O R U N

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either support a command or have children that do. When you select a node that supports one or more
commands, the corresponding command toolbar buttons become enabled in the toolbar below the tree. You can

It is possible to override other keyboard shortcuts, so take care when choosing the shortcut key
combinations to use.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.

If a global parameter is the data source of the check box, it is necessary to add two parameters, on
and off, with values 1 and 0, respectively. Otherwise, you get an error when the COMSOL
Multiphysics software looks for the parameters on and off.
84 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

also right-click a node to get a list of available commands for that particular node. Once you click a command with
a node selected (or press Enter or double-click to add a command with its default command such as Run, Plot, or
Set Value), the command and node appear in the last row of the table below the tree. This table contains all nodes
that run. You can delete and move commands using the toolbar below the table.

In the Model branch, all nodes that represent some sort of data value, such as a parameter under the Parameters
node, support the Set Value command. When adding a Set Value command to the table, the third column,
Arguments, becomes enabled. In this column, you type the value to set. For data that represents arrays, use curly
braces and commas to enter the array elements. For example, enter {1, 2, 3} to set a three-element array with
the values 1, 2, and 3. See The Array 1D String Node for more details on how to enter arrays and matrices. For
nodes that represent a file import, such as a Filename node under an Interpolation function node, an Import File
command is available. You can also add a Plot command for all View nodes, providing the name of a Graphics object
as the argument.

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified
using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current Views, Scene Light, Transparency,
Print, Select All, and Clear Selection. For all graphics command, add the name of the Graphics object that you
want to apply the command to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Form Declarations branch: This branch contains any variable declarations you have added under a Declarations
branch under the current Form node. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Form Methods branch: Method nodes under the current Form node support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the buttons underneath the tree, the currently selected command appears in the Command
column in the table below. There are also Icon and Arguments columns, where you can enter any applicable
arguments that the command uses.

Click the Convert to Method toolbar button () and choose Convert to Method or Convert to Form Method to
convert the entire list of commands in the table to a global or form method that contains the equivalent code. After
this operation, the list of commands only contains a single Run operation on the created method. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
T H E F O R M O B J E C T S | 85

(), and Delete () toolbar buttons to organize and remove commands from the list (and also remove the local
method, if deleted).

P O S I T I O N A N D S I Z E

This section contains all layout settings for a toggle button in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the toggle button using the following
lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode. Then, it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

If you want to specify the width of the toggle button, first select Manual from the Width list. Then enter the width
(in points) in the associated field. If you have chosen Fill from the Horizontal alignment list, you can instead specify
a Minimum width. Choose Automatic to compute the minimum width automatically (typically this means a minimum
size of 0) or choose Manual to specify a minimum width in the text field underneath.

If you want to specify the height of the toggle button, first select Manual from the Height list. Then enter the height
(in points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can instead specify a
Minimum height. Choose Automatic to compute the minimum height automatically (typically this means a minimum
size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the toggle button using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text on the toggle button:

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
86 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

From the Background color list, select a color to use as the background color for the toggle button: Choose Default
(the platform then controls the background color), Transparent, any available color, or Custom, to choose the color
from a color palette.

The font and the font size for the toggle button label use the font settings from the Forms node by default. Select
a font from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points)
in the Font size combo box. The default is to use the Default size for the font.

Select the Bold check box to use a boldface font and the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the toggle button when users run the application. By default, the
toggle button is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so
that the toggle button is hidden or unavailable. You can then make it visible or enable it using a method. In the
form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become
visible when selected in the form editor.

Check Box

The Check Box () form object represents a check box, which can be selected or cleared. A selected check box
sets the data source value to on, and a cleared check box sets the value to off.

Enter the name of the check box object in the Name field.

Enter the label next to the check box in the Text field.

In addition, the Settings window contains the following sections:

S O U R C E

In this section you specify the data source for the check box. The section contains a tree with a filtered view of the
tree in the Application Builder window. The nodes either represent some sort of data or have children that do. For
a check box, the data source can be variables in the COMSOL Multiphysics model and scalar strings and Boolean
variables that you define under Declarations. You can extend the list of available data nodes by clicking the Switch

to Model Builder and Activate Data Access button () in the Source section header, which takes you to the Model
Builder, and then selecting a node in the Model Builder branch whose data you want to access. With this button
active, the Settings window of the selected node displays a Select Data Source check box (a green square) next to the
settings that you can include. Click to select the check box to include the data as an available source node for check
boxes.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () or
the Create New Form Declaration and Use It as Source button () in the Source section header to create a new global
or local (in the form) variable declaration for the check box and use it as the source. A Create and Use Variable dialog
box opens, so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 87

From the Initial value list, select From data source to link this check box to a variable defined in the Source section
above and use the value specified by that data source. Select Custom value to specify the initial state from the Initial

state list: Selected (the default) or Cleared. The value for a selected check box is on and for a cleared check box off.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a check box in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the check box using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode. Then it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the check box are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the check box using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text on the check box label.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background in the check box: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

If a global parameter is the data source of the check box, it is necessary to add two parameters, on
and off, with values 1 and 0, respectively. Otherwise, you get an error when the COMSOL
Multiphysics software looks for the parameters on and off.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
88 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

The font and the font size for the button label use the font settings from the Forms node by default. Select a font
from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the
Font size combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font, the Italic check box to use italics (an italic font), or
the Underline check box to underline the text.

Under State, you can control the initial state of the check box when users run the application. By default, the check
box is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
check box is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

E V E N T S

You can add a code method that the application runs when the user changes the value of the check box. The event
is triggered after the new data value is stored in the data source. The On data change list contains None (the default)
and any available methods. To add a local method for this event, click the Create Local Method button (). The
selected method in the On data change list then changes to Local method. An empty onDataChange editor window
opens, where you can define the local method. You can also Ctrl+Alt-click the check box or right-click it to create
a local method or (by choosing Edit Method or Edit Local Method) to open the method associated with the command.
To open the selected method, click the Go to Source button (). Click the Remove Local Method button () to
delete the local method.

Combo Box

The Combo Box () form object represents a combo box, which can either work as a combination of a drop-down
list box and an editable text field or as an uneditable drop-down list box. The Settings window contains the
following sections.

S O U R C E

In this section, you define the data source for a combo box. The section contains a tree with a filtered view of the
tree in the Application Builder window. The nodes either represent some sort of data or have children that do. For
a combo box, you can use variables from the model or those defined under Declarations, including Unit Set nodes.
You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data Access button
() in the Source section header, which takes you to the Model Builder, and then selecting a node in the Model

Builder branch whose data you want to access. With this button active, the Settings window of the selected node
displays a Select Data Source check box (a green square) next to the settings that you can include. Click to select the
check box to include that data as an available source node for combo boxes.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () or
the Create New Form Declaration and Use It as Source button () in the Source section header to create a new global
or local (in the form) variable declaration for the combo box and use it as the source. A Create and Use Variable
dialog box opens, so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.
T H E F O R M O B J E C T S | 89

After selecting a node as the source, the node appears as the selected source under Selected source.

In the Initial value list, choose a method to define an initial value for the combo box. The options are First allowed

value; From data source (the default, to use the value specified by the selected data source); and Custom value. For
the Custom value option, a Value list shows the allowed values currently present for the form object and depends on
the selected available choice lists and their values. If the data source is a setting from the embedded model that has
a list of allowed values, those values are also included in the Value list. If a selected initial value becomes invalid
because it has been removed from the choice list, for instance, it is kept as an initial value with the text Invalid initial

value followed by the value.

C H O I C E L I S T

In the Selected list, add Choice List nodes that contribute allowed values to the combo box. If the selected data
source is a list with a set of allowed values, only a subset of those values can appear in the allowed values of the
combo box. All other values in the selected choice lists are ignored. Available Choice List nodes appear under
Available. Click the Add Selected button to add the selected Choice List node to the list under Selected. Click the
Remove Selected button to remove a selected Choice List node from the list under Selected. You can also
double-click a Choice List node to move it from Available to Selected and the other way around. Click the Add New

Choice List () or Add New Form Choice List () button in the Choice List section’s toolbar to open a Choice List
or Form Choice List window where you can define a new choice list under the global Declarations node or a local
Declarations node under the Form node, respectively. Add the allowed values in the Value column and their
corresponding names in the Display name column. Click OK to add the new choice list as a Choice List node ()
under Declarations and directly under Selected in the list under Choice List.

If you select a property that has a list of allowed values as the data source in the Source section, that property
becomes a node initially placed in the Selected list. You can move it to the Available list, thereby clearing the list of
allowed values. You can move it back again or add a custom choice list with values that also belong to the list of
values for the property. If the property list and a choice list node are both in the Selected list, they will be merged.
Identical values pick the description from the first item in the list under Selected, so in this way, you can rename one
of the items in the property list. If you decide to switch the source to another property in the embedded model that
also has a list of allowed values, the previous property list node is removed from both the Available and the Selected
lists, and the new node is added to the Selected list.

Select the Allow other values check box to get a combo box where you can type arbitrary values. Such combo boxes
can accept any value and are not restricted to the values defined by the choice lists.

P O S I T I O N A N D S I Z E

This section contains all of the layout settings for a combo box in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the combo box using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
90 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the combo box. Enter a width (in points) in the Width field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height field is unavailable because the height of the combo box is
determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the combo box using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, to use no margin around the form object.

• From parent form (the default), to use the margins set for the parent form.

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields.

A P P E A R A N C E

In this section, you can control the appearance of the combo box.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font and the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the combo box when users run the application. By default, the
combo box is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that
the combo box is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

E V E N T S

You can add a code method that the application runs when the data in the combo box changes. The event is
triggered after the new data value is stored in the data source. The On data change list contains None (the default)
and any available methods. To add a local method for this event, click the Create Local Method button () or
right-click the combo box object. The selected method in the On data change list then changes to Local method and
an editor window for the local method opens, where you can define its contents. You can also Ctrl+Alt-click the
combo box or right-click it to create a local method or (by choosing Edit Method or Edit Local Method) to open the

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 91

method associated with the command. Click the Go to Source button () to open an editor window for the
selected method. Click the Remove Local Method button () to delete the local method.

Text Label

The Text Label () form object represents static text that you can use to display some information in a form
window.

Enter the name of the text label object in the Name field.

If you want to display multiline text, select the Multiline text check box. By default, the label displays a single line
of text.

Type the text to display into the Text field.

In addition, the Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a text label in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the text label using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the text are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the text label using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, to use no margin around the form object.

• From parent form (the default), to use the margins set for the parent form.

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields.

A P P E A R A N C E

In this section, you can control the appearance of the background and the text.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
92 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background in the text label: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font, the Italic check box to use italics (an italic font), or
the Underline check box to underline the text.

Under State, you can control the initial state of the text label when users run the application. By default, the text
label is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
text label is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the
state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

Unit

The Unit () form object is a predefined label for displaying a unit. When linking to this node from an Input Field,
it also acts as a unit check for that field (see Input Field).

Enter the name of the unit object in the Name field.

From the Label list, select an option for how to display the unit: From reference, to display the unit as defined in the
referenced source, such as input field form object. You select the source from the tree in the Source for Label section.
Alternatively, select Fixed and type a unit expression into the Unit expression field that appears.

By default, the unit display uses Unicode rendering. If the unit display does not look as expected, consider using
LaTeX rendering instead by selecting the LaTeX markup check box. Then, the unit display does not rely on the
selected font. It can also be a matter of preference. The look and alignment of the unit display changes slightly
depending on whether this check box is selected or not.

In addition, the Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all of the layout settings for a unit in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the unit using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the unit label are determined by the software.
T H E F O R M O B J E C T S | 93

Additionally, in the sketch mode, you can specify the absolute position of the unit label using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, to use no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the unit label’s text and background.

From the Text color list, select a color to use for the unit label’s text: Inherit (the default; the form object then uses
the setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible
to select a custom color from a color palette that opens.

From the Background color list, select a color to use as the background in the unit display: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font and the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the unit when users run the application. By default, the unit is visible
and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the unit is hidden
or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of the form
object is indicated by a change in its appearance. Objects that are hidden become visible when selected in the form
editor.

Equation

The Equation () form object can display LaTeX-rendered symbols, such as equations.

Enter the name of the equation object in the Name field.

The Settings window contains the following sections.

E Q U A T I O N

Enter the equation or mathematical expression to show in the Enter equation in LaTeX syntax field. The program
displays a preview of the rendered LaTeX syntax after leaving the text field. Otherwise, preview it manually by
clicking the Refresh Equation Preview button (). The default expression is -\nabla \cdot (k \nabla u),
which displays as:

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.

∇ k∇u()⋅–
94 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

In the Equation section header, use the Insert Expression () and Replace Expression () buttons to select
predefined LaTeX expressions for vector operations, Greek letters, big operators, sets, logic, and text formatting
that you can insert into the equation or add as the start of a new equation.

For information about available LaTeX symbols and characters, see Mathematical Symbols and Special Characters
in the COMSOL Multiphysics Reference Manual.

P O S I T I O N A N D S I Z E

This section contains all layout settings for an equation in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the equation using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the equation are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the equation using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object. This setting can be useful when displaying an equation inside of a
sentence to avoid excessive whitespace margins.

• From parent form (the default), to use the margins set for the parent form.

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields.

A P P E A R A N C E

In this section, you can control the appearance of the equation.

From the Text color list, select Inherit (the default) to use the setting from the form it is located in. You can also
select one of the predefined colors or select Custom to choose a custom text color from the color palette.

The default font size for the equation text is Default size, which uses the font size from the Forms node. If needed,
choose or enter a font size (in points) in the Font size combo box.

Under State, you can control the initial state of the equation when users run the application. By default, the
equation is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state of the
equation hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 95

state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

Line

The Line () form object places a horizontal or vertical line in a form to separate groups of form objects.

Enter the name of the line object in the Name field.

Choose the orientation of the divider line in the Orientation list: Horizontal (the default) or Vertical. For the
Horizontal divider, you can also add text that appears within the horizontal line. To add such text, select the Include

divider text check box and enter text in the associated Text field.

In addition, the Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a line in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the line using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of a horizontal line, unless you have chosen Fill from the Horizontal alignment list.
Enter a width (in points) in the Width field. The Height field is unavailable because the height of the horizontal line
is determined by the software. For a vertical line, you can instead specify the height, unless you have chosen Fill
from the Vertical alignment list. Enter a height (in points) in the Height field. The Width field is then unavailable
because the width of the vertical line is determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the line using the Position x and Position y
fields. In the grid mode, you can position the object in the grid and see the grid position as the Row, Column, Row

span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, to use no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
96 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

A P P E A R A N C E

In this section, you can control the appearance of the line and its divider text.

From the Text color list, select a color to use for the divider text: Inherit (the default; the form object then uses the
setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to
select a custom color from a color palette.

The font and the font size for the divider text use the font settings from the Forms node by default. Select a font
from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the
Font size combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

To change the line thickness, enter another thickness value (as a positive integer) in the Line thickness field (default:
1). Choose a color for the line from the Line color list (the Default option is a gray line). Choose Custom to define
a custom color using a color palette.

Under State, you can control the initial state of the line when users run the application. By default, the line is visible
and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the line is hidden or
unavailable. You can then make it visible or enable it using a method. In the form editor, the state of the form object
is indicated by a change in its appearance. Objects that are hidden become visible when selected in the form editor.

Data Display

The Data Display () is a form object that represents a display of some property as numerical data.

Enter the name of the data display object in the Name field.

By default, the data display uses Unicode rendering. If the data display does not look as expected or the expression
to display contains LaTeX syntax, consider using LaTeX rendering instead by selecting the LaTeX markup check box.
Then the data display does not rely on the selected font. It can also be a matter of preference. The look and
alignment of the data display changes slightly depending on whether this check box is selected or not.

In the Tooltip field, enter text that will appear as a tooltip when the user hovers the pointer over the data display.

In addition, the Settings window contains the following sections.

S O U R C E

In this section, you specify the source for the data to display. The section contains a tree with a filtered view of the
trees in the Application Builder and Model Builder windows. The nodes either represent some sort of data or have
children that do. For a data display, the data source can be variables in the COMSOL Multiphysics model, scalar
strings, array and matrix settings from model data such as material properties, and numerical (double and integer)
variables and arrays or matrices that you define under Declarations. The data display can show arrays or matrices with
LaTeX syntax. You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate

Data Access button () in the Source section header, which takes you to the Model Builder, and then selecting a
node in the Model Builder branch whose data you want to access. With this button active, the Settings window of
the selected node displays a Select Data Source check box (a green square) next to the settings that you can include.
Click to select the check box to include that data as an available source node for data display objects.

In addition, you can choose to use one of the following information nodes, which you find under the main Model
node and under each Study node, as the source:

• The Expected Computation Time node () under Model>Information (): The expected computation time is
a value that the application developer can enter in the Expected field in the Root node’s Settings window.
T H E F O R M O B J E C T S | 97

• The Last Computation Time node () under Model>Information: This node shows the last measured
computation time for the last computed study.

• The Last Computation Time node () under each Model>Study>Information: This node shows the last measured
computation time for the study.

When you start an application for the first time, the last measured times are reset, displaying Not available yet.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () or
the Create New Form Declaration and Use It as Source button () in the Source section header to create a new global
or local (in the form) variable declaration for the data display and use it as the source. A Create and Use Variable
dialog box opens, so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

N U M B E R F O R M A T

In the Precision field, enter the number of significant digits to display in the output (default: 4). Choose the notation
to use for the data from the Notation list. The options are Automatic (the default), Scientific, and Decimal. If you use
Automatic, the program switches to scientific notation when the output is about 3 orders of magnitude larger than
or smaller than 1. For the Automatic and Scientific options, you can also choose the format of the exponent for
scientific notation from the Exponent list. The choices are Power of 10 (the default) and E-notation. Select the Display

all significant digits check box (available for the Scientific and Decimal options) to always add trailing zeros to match
the specified precision. Clear the Append unit to number check box if you do not want a unit appended after the
number representing the data displayed.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a data display in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the check box using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the Application
Builder. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the numerical data display are determined by
the software.
98 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Additionally, in the sketch mode, you can specify the absolute position of the data display using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object. This setting can be useful when displaying dynamical data inside a
sentence to avoid excessive whitespace margins.

• From parent form (the default), to use the margins set for the parent form.

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields.

A P P E A R A N C E

In this section, you can control the appearance of the text and background in the data display.

From the Text color list, select a color to use for the text in the data display: Inherit (the default; the form object
then uses the setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it
possible to select a custom color from a color palette.

From the Background color list, select a color to use as the background in the data display: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the data display when users run the application. By default, the data
display is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
data display is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

Graphics

The Graphics () form object can plot the same thing as you can plot in the Graphics window in the COMSOL
Desktop. Typically, you choose a plot group under the Results branch of the model to plot. You can also plot a
geometry or mesh, or dynamically let the plot type change. In addition, you can include the plot-while-solving
functionality (including probe plots) in runnable applications. To do so, enable it in the study step settings and then
ensure that the plot group you are plotting is set as the source to the Graphics form object.

The Graphics object includes a plot toolbar with buttons for zooming, transparency, lighting, printing, and more.
You can extend or replace the standard plot toolbar with custom buttons.

Enter the name of the Graphics object in the Name field.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 99

The Zoom to extents on first plot check box is selected by default. This setting makes the first plot that appears in
the graphics canvas zoom to its extents when the applications starts, if the graphics canvas is empty initially or when
something is plotted the first time. Clear this check box to disable the zoom to extents action.

Select the Data picking check box to activate data picking in the Graphics window. The data picking provides
functionality for processing user interaction with the Graphics form object.

The Settings window contains the following sections.

S O U R C E F O R I N I T I A L G R A P H I C S C O N T E N T

In this section, you specify a node that represents a plot that becomes the initial contents of the graphics window.
The section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes represent some sort of plot or have children that do. The filtered view also includes Explicit selection
nodes. You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data Access

button () in the Source for Initial Graphics Content section header, which takes you to the Model Builder, and
then selecting a node in the Model Builder branch whose data you want to access. With this button active, the
Settings window of the selected node displays a Select Data Source check box (a green square) next to the settings
that you can include. Click to select the check box to include the data as an available source node for graphics
objects.

When you select a node that represents data, the Use as source button () below the tree becomes enabled. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
the selected source. After selecting a node as the source, the node appears as the selected source under Selected

source. You can select from all plot groups and player animations under the Results branch and all geometry and
mesh nodes. You can also select Explicit selection nodes, which makes it possible for users to select geometric entities
to update that selection directly in the graphics. Alternatively, use a Selection Input object in the application for
activating selections of geometric entities. Click the Edit Node toolbar button () below the tree to move to the
corresponding node. If necessary, the program switches to the Model Builder. Click the Clear Source toolbar button
() to remove a source that you have selected.

You can also select a string under the Declarations branch. The value of this string controls the plot to show, where
the value represents a path to one of the nodes that you can select. For example, if the value is pg1, the plot shows
the plot group with this tag. If the value is /GeomList/geom1, it plots the geometry with the tag geom1, and /
MeshList/mesh1 plots the mesh with the tag mesh1. You can also use the value /Results/ResultFeatureList/
pg1 for the plot group, but that syntax is rather cumbersome.

T A R G E T F O R D A T A P I C K I N G

When you have selected the Data picking check box above, select a valid data picking target from the list in this
section. The target could be a declared double floating point variable, which then is used in a form to display some
quantity at the clicked location in the graphics window. The list also contains probes defined in the model and
Graphics Data nodes added under Declarations (see The Graphics Data Node). For a probe, you can, for example,
use a slider to let the user of the application determine the depth along a line in a 3D geometry. Using a Graphics

Data node, you can output both the clicked location and some evaluated result at that location. You can also click
the Create New Declaration and Use It as Source button () or the Create New Form Declaration and Use It as Source
button () in the Target for Data Picking section header to create a new global or local (in the form) variable
declaration for the data picking and use it as the selected target. A Create and Use Declaration dialog box opens so
that you can select the data type of the target (if applicable), its name, and its initial value (if applicable). You can
extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data Access button ().

Click the Use as Target button () to make the selected node the target for the data picking. That node then
appears under Selected target. Click the Edit Node button () to move to the Settings window for the selected
node in the tree.
100 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

A P P E A R A N C E

To add an icon to the upper-right corner (a logotype, for example), specify an image file to use from the Icon list,
which includes all images in the Images library, or click the Add Image to Library and Use Here button () to locate
an image to use on the file system. This image becomes a part of the Images library and is selected as the icon in
this Graphics object. If you do not want to use an icon, select None from the Icon list. Click the Export button ()
to export the image to the file system (for use in another application, for example).

This section also contains settings for the background color. Under Background for 2D plots, use the Color list to
select the background color for 2D plots and 1D graphs. The 3D background supports a gradient from top to
bottom. Under Background for 3D plots, choose the top and bottom color in the Top color and Bottom color lists.

For all plot background colors, Use default is the default setting. This setting is a white background for 2D plots
and 1D graphs, and a light blue gradient for 3D plots. In addition to a set of predefined colors, you can also choose
Transparent and Custom. For Custom, choose a color from the color palette that appears.

Under State, you can control the initial state of the graphics object when users run the application. By default, the
graphics object is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so
that the graphics object is hidden or unavailable. You can then make it visible or enable it using a method. In the
form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become
visible when selected in the form editor.

T O O L B A R

In this section, you can add items to a plot toolbar and activate the following table options.

From the Position list, choose where you want to position the toolbar relative to the table: Below, Above (the
default), Left, or Right.

You can choose from two icon sizes: From the Icon size list, choose Small (the default) or Large.

For the background color of the toolbar, choose a color from the Background color list. White is the default
background color. In addition to a set of predefined colors, you can also choose Transparent and Custom. For
Custom, choose a color from the color palette that appears.

Under Standard toolbar, you can control the layout of the standard toolbar groups and which of them to include.

From the Include standard toolbar items list, you can choose Default, None, or Custom:

• Select None if you do not want to display the standard plot toolbar buttons for zooming, changing the view,
showing legends, adding scene light and transparency, and for creating image snapshots and printing the plot.

• Select Custom to specify the contents and layout of the standard toolbar groups. You can choose Hidden,
Compact, Normal (the default), or Wide for the following sections: Zoom, Go to view, Rotate, Select box,
Deselect box, View, and Image.

- Choose Hidden to remove the group of toolbar items.

- Choose Compact to use one menu button for all actions in the group.

- Choose Normal to use the default group layout for the group.

- Choose Wide to display all menu items in the group, when applicable.

By default, the toolbar items that you add are placed before the standard toolbar. Clear the Place standard toolbar

before custom items check box to place the custom items after the standard toolbar items.

The graphics canvas shows a placeholder in the form windows and when you run a Preview Form,
so any changes to these settings are not reflected. You have to run a Test Application to see the effect
of changes to the graphics settings.
T H E F O R M O B J E C T S | 101

In the table under Custom toolbar items, you can add one or more buttons to form a custom plot toolbar:

• Click the Add Item button () to open the Edit Custom Toolbar Item dialog box (see The Edit Custom Toolbar
Item Dialog Box) and create and add a custom toolbar button to the plot toolbar.

• Click the Add Toggle Item button () to open the Edit Custom Toolbar Item dialog box (see The Edit Custom
Toolbar Item Dialog Box) and create and add a custom toolbar toggle button to the plot toolbar.

• Click the Add Separator button () to add a separator between groups of buttons in the toolbar.

Select a button in the table and click the Edit button () if you want to change the appearance or behavior of a
custom toolbar button in the Edit Custom Toolbar Item dialog box. Click the Move Up and Move Down buttons (
and) to move and rearrange the toolbar button order. Click the Delete button () to delete the selected
button.

The table contains a row for each added item, showing its name, icon, text, and tooltip in the Name, Icon, Text, and
Tooltip columns, respectively.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a graphics object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the check box using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the graphics object. Enter a width (in points) in the Width field and a
height (in points) in the Height field. If you have chosen Fill from the Horizontal alignment list, you can instead specify
a Minimum width. Choose Automatic to compute the minimum width automatically (typically this means a minimum
size of 0), or choose Manual to specify a minimum width in the text field underneath. If you have chosen Fill from
the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the minimum
height automatically (typically this means a minimum size of 0), or choose Manual to specify a minimum height in
the text field underneath.

Additionally, in the sketch mode, you can specify the form object’s absolute position using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
102 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

Web Page

The Web Page () form object can display the contents of a web page as part of the user interface. You can, for
example, use it to provide information about the application. Enter the name of the web page object in the Name
field.

The Settings window contains the following sections.

S O U R C E

You can specify the page source in three different ways from the Source list:

• Use the default option, Page, to enter HTML code in a text area below the list, enclosed by the <html> and
</html> start and stop tags.

• Use the URL option to point to an online web page, which you specify in the Page URL field.

• Use the File option to point to a local file resource containing HTML code. Type the name of the file in the File
field or click Browse to locate the file on the local file system.

• Under Browser preview, you can see a preview of what the display of the web page will look like.

A P P E A R A N C E

Under Appearance, you can control the initial state of the web page object when users run the application. By
default, the web page object is visible and enabled. Clear the Visible or Enabled check box if you want to make the
initial state so that the web page object is hidden or unavailable. You can then make it visible or enable it using a
method. In the form editor, the state of the form object is indicated by a change in its appearance. Objects that are
hidden become visible when selected in the form editor.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a web page in the grid of the parent form.

You can control the horizontal and vertical alignment of the web page object using the following lists:

• From the Horizontal alignment list, choose Left, Center, or Right.

• From the Vertical alignment list, choose Middle, Top, or Bottom.

In the grid mode, you can also choose Fill, which automatically expands the form object to fill the cell in the
horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object is useful in the sketch mode too. When running the
application in any client other than the Windows client, the form objects may not be positioned exactly as seen in

The file reference points to a file resource on the local system that may not be present when
running the application. When saving, all file references are embedded into the MPH-file, so you
do not have to distribute them along with the application. A running application always looks for
embedded resources first.

To display web pages, COMSOL Multiphysics and COMSOL Client use the Internet Explorer
version installed on your computer.
T H E F O R M O B J E C T S | 103

the form windows. This is because the form objects may have a different size in other clients, giving them a slightly
different positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in
all clients.

You can also specify the width and height of the web page object. Enter a width (in points) in the Width field and
a height (in points) in the Height field. If you have chosen Fill from the Horizontal alignment list, you can instead
specify a Minimum width. Choose Automatic to compute the minimum width automatically (typically, this means a
minimum size of 0), or choose Manual to specify a minimum width in the text field underneath. If you have chosen
Fill from the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the
minimum height automatically (typically this means a minimum size of 0), or choose Manual to specify a minimum
height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the web page using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

Image

The Image () form object makes it possible to add an image inside of a form. You can also add an image form
object by pasting an image that you have copied to the clipboard (from an image program or from another form,
for example) into a form using Ctrl+V.

Specify a name for the image in the Name field. The name must be unique among the form objects in the form.
Specify an image file to use from the Image list, which includes all images in the Images library, or click the Add Image

to Library and Use Here button () to locate an image to use on the file system. The image then becomes a part
of the Images library and selected as the image in this Image object. If you do not want to display an image, select
None from the Image list. Click the Export button () to export the image to the file system (for use in another
application, for example).

In addition, the Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all layout settings for an image in the grid of the parent form.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.

The file reference points to a file resource on the local system that may not be present when
running the application. When saving, all file references are embedded into the MPH-file, so you
do not have to distribute them along with the application. A running application always looks for
embedded resources first.
104 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

In the grid mode, you can control the horizontal and vertical alignment of the image using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the image are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the image using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

Under Appearance, you can control the initial state of the image when users run the application. By default, the
image is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
image is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the
state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

Video

The Video () form object makes it possible to add a video inside of a form. The Video form object embeds a
video file in a form. The video is a web page created in HTML5. The supported video file formats are .mp4 (MP4
format), .ogv (OGV format), and .webm (WebM format) files. However, not all video file formats are supported
on all platforms. When running an application by connecting to COMSOL Server from a web browser, which
formats are supported depend on the web browser and may vary with different versions of the same web browser.
Of these formats, MP4 works with most web browsers, whereas OGV and WebM work in Firefox and Google
Chrome (as web clients).

Specify a name for the image in the Name field. The name must be unique among the form objects in the form.
Specify a video file to use from the Video list, or click the Add File to Library and Use Here button () to locate a
video file to use on the file system. That video then becomes a part of the Files library and selected as the video in

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 105

the Video object. To not show a video, select None from the Video list. Click the Export button () to export the
video file to the file system (for use in another application, for example).

In the form editor, a placeholder image appears where the video will appear when running the application.

The Show video controls check box is selected by default. The user of the application can then control the video
using controls to pause and play the video and to mute and unmute the sound. Clear this check box to show the
video without any controls.

Select the Start automatically check box if you want the video to start directly when the user runs the application.

Select the Repeat check box if you want the video to keep running repeatedly.

Select the Initially muted check box if you want the video to be initially muted (no sound).

In addition, the Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a video in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the video using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the image are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the video using the Position x and Position

y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row, Column, Row

span, and Column span values.

The file reference points to a file resource on the local system that may not be present when
running the application. When saving, all file references are embedded into the MPH-file, so you
do not have to distribute them along with the application. A running application always looks for
embedded resources first.

To show a video when running an application with COMSOL Multiphysics and with the
COMSOL Client, the Internet Explorer version installed on your computer is used as a software
component for displaying the video object.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
106 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

Under Appearance, you can control the initial state of the video when users run the application. By default, the
image is visible. Clear the Visible check box if you want to make the initial state of the video hidden. You can then
make it visible using a method. Objects that are hidden become visible when selected in the form editor.

Progress Bar

The Progress Bar () form object adds a progress bar to a form in an application. The progress bar can show
progress based on a value that describes some progress in a running application using a method that updates the
progress bar. You control the update and display of the progress in the progress bar by referring to the name that
you enter in the Name field. For example, add the following two lines of code in a method editor window:

startProgress("progressbar1");
setProgress("progressbar1", 12);

The first line starts progress for the progress bar object with the name progressbar1. The second line updates its
progress to 12%. You can find a full listing of the available commands for controlling the progress under
User interface>Progress in the Language Elements window, accessible in the Code section of the Method ribbon
toolbar. You can also base the progress on the built-in model progress (the main progress in COMSOL
Multiphysics) by selecting the Include model progress check box. Optionally, it is then possible to use two levels of
progress. Select Two from the Progress levels list (default: One) to use two levels of progress (represented using two
progress bars).

Select the Cancel button check box to add a Cancel button underneath the progress bars to make it possible to cancel
some progress in the application.

If the Cancel button check box is selected, you can select or clear the Close dialog when canceled check box. If that
check box is selected, dialog forms are closed when a user clicks the Cancel button.

The Settings window contains the following sections.

A P P E A R A N C E

Under Appearance, you can control the initial state of the progress bar when users run the application. By default,
the progress bar is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state
of the progress bar hidden or unavailable. You can then make it visible or enable it using a method. In the form
editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible
when selected in the form editor.

You can also add a progress bar for the progress information from built-in actions, such as the
solvers, in the Settings window for the Main Window node.

A third option is to add a progress dialog for the application’s own progress using available
methods such as startProgress(progressBarname), setProgress(int workDone), and
closeProgress(). See the full list of Application Builder methods in the Introduction to the
Application Builder document.
T H E F O R M O B J E C T S | 107

P O S I T I O N A N D S I Z E

This section contains all layout settings for a progress bar in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the progress bar using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the progress bar. Enter a width (in points) in the Width field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height field is unavailable because the height of the progress bar is
determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the progress bar using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

Log

The Log () form object adds a log window that displays messages from the COMSOL Multiphysics software,
such as from the solver operations. Enter the name of the log object in the Name field.

The Include standard log toolbar check box is selected by default, which includes the toolbar in the Log window that
you see on the COMSOL Desktop. Clear the check box to remove it.

In addition, the Settings window has the following section.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a log in the grid of the parent form.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
108 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

In the grid mode, you can control the horizontal and vertical alignment of the log using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the log window. To adjust the width, enter a width (in points) in the
Width field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width.
Choose Automatic to compute the minimum width automatically (typically, this means a minimum size of 0) or
choose Manual to specify a minimum width in the text field underneath. To adjust the height, enter a height (in
points) in the Height field. If you have chosen Fill from the Vertical alignment list, you can instead specify a Minimum

height. Choose Automatic to compute the minimum height automatically (typically, this means a minimum size of
0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the log window using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text and background in the log.

From the Text color list, select a color to use for the text in the log: Inherit (the default; the form object then uses
the setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible
to select a custom color from a color palette.

From the Background color list, select a color to use as the background in the log: Transparent (the default), any of
the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

The form windows updates these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 109

Under State, you can control the initial state of the log when users run the application. By default, the log is visible
and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the log is hidden or
unavailable. You can then make it visible or enable it using a method. In the form editor, the state of the form object
is indicated by a change in its appearance. Objects that are hidden become visible when selected in the form editor.

Message Log

The Message Log () form object adds a Messages window where you can add messages to inform the user about
operations that the application carries out using the built-in message(String message) method. Enter the name
of the message log object in the Name field.

The Include standard message log toolbar check box is selected by default, which includes the toolbar in the Messages
window that you see on the COMSOL Desktop. Clear the check box to remove it. The Show COMSOL messages
check box is selected by default to include messages from the COMSOL Multiphysics software in the Messages
window. Clear the check box to only include messages from the application itself. Select the Add timestamps to

messages check box to start each message with a timestamp that provides the current date and time.

In addition, the Settings window has the following section.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a message log in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the message log using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the Messages window. To adjust the width, enter a width (in points) in
the Width field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width.
Choose Automatic to compute the minimum width automatically (typically, this means a minimum size of 0) or
choose Manual to specify a minimum width in the text field underneath. To adjust the height, enter a height (in
points) in the Height field. If you have chosen Fill from the Vertical alignment list, you can instead specify a Minimum

height. Choose Automatic to compute the minimum height automatically (typically, this means a minimum size of
0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the form object’s absolute position using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
110 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text and background in the message log.

From the Text color list, select a color to use for the text in the message log: Inherit (the default; the form object
then uses the setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it
possible to select a custom color from a color palette.

From the Background color list, select a color to use as the background in the message log: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the message log when users run the application. By default, the
message log is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that
the message log is hidden or unavailable. You can then make it visible or enable it using a method. In the form
editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible
when selected in the form editor.

Results Table

The Results Table () form object adds a results table that can display numerical results in a table. You typically
specify the source of the results data as a Global Evaluation in a COMSOL Multiphysics model. When you add an
Evaluate Global Evaluation command for a button, for example, you can provide the name of the results table
object that you want to update with the new results. You can also specify a Boolean value to specify if the results
table should be cleared (true; the default) or not cleared (false). Enter the result table object’s name in the Name
field.

The Include standard results table toolbar check box is selected by default, which includes the toolbar in a Table
window that you see on the COMSOL Desktop. Clear the check box to remove it. The toolbar includes buttons
for precision and notation of the table data, a button for copying the table and headers to the clipboard, and a
button for exporting the table data to a file. The file types that you can save table data to include text files (.txt);
CSV files (.csv); data files (.dat); and, if the license includes LiveLink™ for Excel®, Microsoft Excel® files (.xlsx).

In addition, the Settings window has the following sections.

S O U R C E

In this section, you specify the source of the results data. The section contains a tree with a filtered view of the trees
in the Application Builder and Model Builder windows. The nodes either represent some sort of output or have
children that do. When you select a node that represents an output, the Use as source toolbar button () below
the tree becomes enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and
choose Use as Source to add it as the selected source. After selecting a node as the source, the node appears as the
selected source underneath Selected source. All Evaluation Group nodes as well as all nodes in the Derived Values and
T H E F O R M O B J E C T S | 111

Tables branches under Model>Results and are valid output nodes. Click the Edit Node toolbar button () below
the tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a results table in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the results table using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the results table. To adjust the width, enter a width (in points) in the
Width field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width.
Choose Automatic to compute the minimum width automatically (typically, this means a minimum size of 0) or
choose Manual to specify a minimum width in the text field underneath. To adjust the height, enter a height (in
points) in the Height field. If you have chosen Fill from the Vertical alignment list, you can instead specify a Minimum

height. Choose Automatic to compute the minimum height automatically (typically, this means a minimum size of
0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the results table using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text in the results table:

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The font and the font size for the results table use the font settings from the Forms node by default. Select a font
from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the
Font size combo box. The default font size is Default size.

The form window update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
112 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the results table when users run the application. By default, the
results table is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that
the results table is hidden or unavailable. You can then make it visible or enable it using a method. In the form
editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible
when selected in the form editor.

Form

The Form () object is a subform that includes a link to a Form so that you can reuse a user interface in several
places. Enter the name of the form object in the Name field.

The Form list holds the reference to the form that this subform links to. Choose an existing form object other than
the form that you add the form object to, or choose None if you do not want to link to any form.

Select the Add border check box to surround the subform with a border. If cleared, the subform’s border is not
visible. If you add a border, it includes the title of the form that the subform links to.

In addition, the Settings window has the following section.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a form object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the form object using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the form. By default, they are determined automatically. To adjust the
width, select Manual from the Width list and then enter a width (in points) in the associated field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. To adjust the height, select Manual from the Height list and then enter a height
(in points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can instead specify a
Minimum height. Choose Automatic to compute the minimum height automatically (typically, this means a minimum
size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the form object using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 113

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

Form Collection

The Form Collection () form object is a collection of forms that displays as panes in a tabbed pane form object,
where each pane shows the form content. Each form can use a different set of layout options. You can also display
them with a list for selecting the panes or as separate sections. A tabbed pane needs a data source to hold the
currently selected pane and to enable pane switching from methods. Therefore, you also need to choose a data
source and initial value similar to how you do so for combo box form objects. Enter the name of the form collection
object in the Name field.

From the Type list, choose the type of layout for the form collection:

• The Tabs layout (the default) displays the forms using tabbed panes.

• The List layout displays a list to the left of the form panes, where you can select the form to display.

• The Sections layout displays each form in a separate section.

• The Tiled or tabbed layout has two different looks with the same forms and a Boolean source controlling which
one of the modes (the tiled mode or the tabbed mode) is shown. The tabbed mode is identical to a form
collection with the type set to Tabs. The tiled mode displays all of the forms simultaneously in a grid.

In addition, the Settings window contains the following sections.

T I L E D O R T A B B E D

This section is only available if you have chosen Tiled or tabbed from the Type list above.

From the tree view, choose a Boolean variable to use as the source for the switch between a tiled look and a tabbed
look. Click the Use as Source button (or right-click and choose Use as Source to make a selected Boolean variable
the source for switching the look of the form collection.

You can specify some settings for the tiled mode under by Tiled mode settings. By default, the Add borders in tiled

mode check box is selected to add borders around the form objects. From the Tiling strategy list, choose Columns

first (the default) or Rows first to control the order of the tiled form objects. You can specify the number of columns
for the tiled mode in the Number of columns field (default: 2 columns). The form objects in the two modes are
synchronized.

A C T I V E P A N E S E L E C T O R

In this section, you define the active pane selector that controls the visible pane for the form collection when the
Type list is set to Tabs or List. The section contains a tree with a filtered view of the tree in the Application Builder
window. The nodes either represent some sort of data or have children that do. For a form collection, string
variables that you define under Declarations are available as the active pane selector. When you select a node that

The onLoad and onClose event methods are active when opening and closing a form and when
you switch tabs in a form collection. The onClose method runs when switching to a tab using the
form, and the onLoad method runs when switching from a tag using the form. The events only
run for form collections with the layout types Tabs or List. For Sections, no events run.
114 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

represents the selector, the Use as Source toolbar button () below the tree becomes enabled. You can also
right-click the node and choose Use as Source. In addition, you can click the Create New Declaration and Use It as

Source button () or the Create New Form Declaration and Use It as Source button () in the Active Pane Selector

section header to create a new global or local (in the form) variable declaration for the form collection and use it
as the source. A Create and Use Declaration dialog box opens so that you can select the data type of the source (if
applicable), its name, and its initial value (if applicable). The name cannot be in conflict with any existing variable
declaration. You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data

Access button ().Click the Edit Node toolbar button () below the tree to move to the corresponding node.
If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source. A data source as
the active pane selector is not necessary, so you can click the Clear Source toolbar button () under the source
tree. You only need to select a source if you want to control the visible pane in a way other than clicking on the tab
to show it.

P A N E S

In the Use selected forms as panes list, add form objects from the list under Available to the list under Selected using
the button, where each form represents a pane in the order they appear in the list. From the Default pane list,
select one of the selected form objects to make it the default pane. When you have selected a data source, the Default

pane setting also initializes the data source, overriding any default specified in the data declaration. The allowed
values for a data source connected to a form collection are the names of the forms, such as form1 and form2. To
change the order in which the forms under Selected are displayed, use the Move Up () and Move Down ()
buttons.

Click the Add New Form () button in the Panes section’s toolbar to open the New Form dialog box from which
you can create a new form with a given name and title and use it in the Form Collection object.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a form collection in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the form collection using the following
lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the form collection. By default, they are determined automatically. To
adjust the width, select Manual from the Width list and then enter a width (in points) in the associated field. If you
have chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to
compute the minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify

The data source is only applicable to form collections of the tabs and list types. For form collections
that appear as sections, the data source setting has no effect and the source is not applicable.
T H E F O R M O B J E C T S | 115

a minimum width in the text field underneath. To adjust the height, select Manual from the Height list and then
enter a height (in points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can
instead specify a Minimum height. Choose Automatic to compute the minimum height automatically (typically, this
means a minimum size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the form collection using the Position x
and Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text in the form collection.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The font and the font size for the results table use the font settings from the Forms node by default. Select a font
from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the
Font size combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the form collection when users run the application. By default, the
form collection is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so
that the form collection is hidden or unavailable. You can then make it visible or enable it using a method. In the
form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become
visible when selected in the form editor.

Card Stack

The Card Stack () is another special type of form object that only contains cards. A card stack can flip between
cards in a stack to show one card at a time. For example, you can display a different image or text depending on an
event or results in the application. You associate a card stack with a data source that controls which card to show.
Each card specifies a value that it compares against the data source of the card stack. The card stack shows the first
card with the matching value. If no cards match, nothing shows. There are two types of cards: local cards and cards
that are references to an existing form object.

Enter the name of the card stack object in the Name field.

The Settings window contains the following sections.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
116 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

A C T I V E C A R D S E L E C T O R

In this section, you specify the data source for the active card selector. The section contains a tree with a filtered
view of the trees in the Application Builder and Model Builder windows. The nodes either represent some sort of data
or have children that do. For a card stack, you typically only see the available parameters under Parameters, variables
under Variables, and the data nodes defined under the Declarations branch. You can extend the list of available data
nodes by clicking the Switch to Model Builder and Activate Data Access button () in the Active Card Selector section
header, which takes you to the Model Builder, and then selecting a node in the Model Builder branch whose data
you want to access. With this button active, the Settings window of the selected node displays a Select Data Source
check box (a green square) next to the settings that you can include. Click to select the check box to include the
data as an available source node for card stacks.

When you select a node that represents the source for the active card selector, the Use as Source toolbar button ()
below the tree becomes enabled. You can also right-click the node and choose Use as Source. You can also click the
Create New Declaration and Use It as Source button () or the Create New Form Declaration and Use It as Source
button () in the Active Card Selector section header to create a new global or local (in the form) variable
declaration for the card stack and use it as the source. A Create and Use Declaration dialog box opens so that you can
select the data type of the source (if applicable), its name, and its initial value (if applicable). The name cannot be
in conflict with any existing variable declaration. You can extend the list of available data nodes by clicking the
Switch to Model Builder and Activate Data Access button (). Click the Edit Node toolbar button () below the
tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

In the form, the card stack object displays the card with an activating value that matches the default value of the
data source of the card stack.

C A R D S

The table in this section contains the cards (in the Card column) and their associated activating values (in the
Activating value column). The stack decides which card to display through the activating values, which you type into
this section. The values are checked against the value of the source. For all cards, you can enter their activating
values in the Activating value column. For local cards, you can also edit the name of the card in the Card column.

Click the Add Card button () to add a card to the table. An Add Card dialog box appears, where you can specify
the new card.

From the Card type list, choose Local (the default) to create a local card for the card stack, or choose Existing form
to use an existing form as a card. For a local card, enter a card name in the Name field. For a form, choose one of
the existing forms from the Form list. If desired, enter a unique value to act as an activating value in the Activating

value field.

Click the Delete button () (or right-click the card entry in the table) to remove a selected card.

Click the Edit button () to edit the individual card. You can also right-click a card entry in the table and select
Edit or right-click the card stack object in the form window and select Edit card1, for example.

Click the Duplicate button () to duplicate a card in the card stack. It is also possible to right-click in the Card
Stack object in the form window and select Duplicate card2, for example, to duplicate a card in the stack.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 117

A P P E A R A N C E

Under Appearance, you can control the initial state of the card stack when users run the application. By default, the
card stack is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that
the card stack is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a card stack in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the card stack using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the card stack. By default, they are determined automatically. To adjust
the width, select Manual from the Width list and then enter a width (in points) in the associated field. If you have
chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to
compute the minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify
a minimum width in the text field underneath. To adjust the height, select Manual from the Height list and then
enter a height (in points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can
instead specify a Minimum height. Choose Automatic to compute the minimum height automatically (typically, this
means a minimum size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the card stack using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

Card

The Card () is a special form object that is a child to a card stack. When you edit a local card object, it appears
in a new form window where you add form objects (such as images or text) that show up on the card. If you edit

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
118 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

a card that uses an existing form, that form window opens. The card has a condition. When the condition is true,
the card stack shows that card. A true condition stops the search for cards to show, so all other cards with a true
condition do not show. For a local card, enter the name of the card object in the Name field. To move to the card
stack that the card belongs to, click the Go to Card Stack button ().

The settings window for a local card contains the following sections.

C A R D A C T I V A T I O N

Enter the value to activate the card in the Activating value field. The card becomes visible when this value matches
the value of the data source selected in the parent Card Stack node (where you can also edit the activating value; this
value becomes the default in the Activating value field).

M A R G I N S

In this section, you can adjust the card’s Horizontal and Vertical margins if desired (default: 20 pixels).

S K E T C H G R I D

In this section, you find settings for the grid that you can display in the sketch mode (see Showing Grid Lines and
Snapping to the Grid) and for the snapping of form objects to that grid.

Specify the grid size by entering values in the Column width (default: 100 pixels) and Row height (default: 20 pixels)
fields.

Select the Align grid to margin check box to make the grid lines align with the left and top margins.

The Snap zone slider controls how exact you need to be when resizing a form object to make it snap to the grid. By
default, the snap zone is set to its maximum value so that the object quickly resizes to snap to the grid. Move the
slider from Large to Small to make the snap zone smaller, if desired.

Select the Snap only to grid check box to make the resizing of form objects snap only to the grid and not to the
borders of other form objects, for example.

G R I D L A Y O U T F O R C O N T A I N E D F O R M O B J E C T S

There are two tables in this section: one for the columns and one for the rows in the grid. In the Column and Row
columns, you find the column and row numbers, respectively, each starting at 1 from the left top. You can control
how each row and column fills up the space in the form. Each table has a Width (columns) or Height (rows) column
with lists that contain the following options: Fit (the default), Grow, and Fixed.

The Grow option makes it possible for the column or row in the grid to expand, taking up space in the form when
the user increases the size of the form. No columns or rows with the settings Fit or Fixed grow. The Fixed option
specifies that the grid layout has a certain width or height for its column or row, specified in the tables’ third Size
column. For the other options, the third column is ignored. The added width or height in pixels appears in the
column or row header.

The Sketch Grid section is only available when you have selected the sketch mode for the form.

The Grid Layout for Contained Form Objects section is only available when you have selected the grid
mode for the form.
T H E F O R M O B J E C T S | 119

From the Inherit columns list, select a form object from which to inherit column settings. The default is None; that
is, the column settings are not inherited.

A P P E A R A N C E

In this section, you can control the color of the text and the background color and image for the card.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background in the card: Transparent (the default), any of
the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

From the Background image list, choose a background image if you want to use such an image in the card. The
default is None; that is, no background image is used. To add an image to the image library and use it as a
background image, click the Add Image to Library and Use Here button (). Click the Export button () to save
the background image to a PNG file.

Under State, you can control the initial state of the card when users run the application. By default, the card is visible
and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the card is hidden
or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of the form
object is indicated by a change in its appearance. Objects that are hidden become visible when selected in the form
editor.

File Import

The File Import () is a special form object for browsing and choosing files to import that the application can use
for some purpose (providing data input, for example). You can also add files to a file library in the Application
Builder (see The Libraries Branch for more information). Enter the name of the file import object in the Name field.

Enter a text to appear on the button for browsing in the Button text field.

Enter a title for the file import dialog in the Dialog title field. The dialog title is also the tooltip of the button.

In the File types list, add the types of files that the file browser should display. Click the Add button () to open
a dialog box with a list of file types and their associated extensions, which you can add to filter the list of files to
display in the browser.

Use the Move Up (), Move Down (), and Delete () toolbar buttons to organize and remove commands
from the list.

By default, the Allow entering file name check box is selected so that users can type in a filename in the browser in
addition to selecting a file from the list of matching files.

In addition, the Settings window contains the following sections.

F I L E D E S T I N A T I O N

This section contains a tree with a filtered view of the trees in the Application Builder and Model Builder windows.
The nodes either represent some sort of file destination or have children that do. The list contains, under
Declaration, File nodes that you declare. It also contains settings under Model that support browsing for files. Such
a setting is typically a text field with a Browse button that you find in the Interpolation function and geometry Import
nodes, for example. In the tree, it appears as a Filename subnode (for example, under an Interpolation node). When
you select a node that represents a file destination, the Use as source toolbar button () below the tree becomes
enabled. You can also right-click the node and choose Use as source. After selecting a node as the source, the node
appears as the selected source underneath Selected source. The file scheme for accessing the file appears next to
120 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Access using. For an Interpolation node with the tag int1, for example, the scheme is upload:///int1/filename.
You can also click the Create New File and Use It as Source button () in the File Declaration section header to create
a new variable declaration and use it as the file destination. A Create and Use File dialog box opens, so that you can
specify the filename. The name cannot be in conflict with any existing filename. Click the Edit Node toolbar button
() below the tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a file import object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the file import object using the following
lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the file browser. Enter a width (in points) in the Width field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height value is determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the file browser using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the file import object:

From the Text color list, select a color to use for the file import object’s text: Inherit (the default; the form object
then uses the setting from the Form it is located in), any of the predefined basic colors, or Custom, which makes it
possible to select a custom color from a color palette.

From the Background color list, select a color to use as the background in the file import: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 121

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the file import object when users run the application. By default,
the file import object is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial
state so that the file import object is hidden or unavailable. You can then make it visible or enable it using a method.
In the form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden
become visible when selected in the form editor.

E V E N T S

For certain types of form objects, you can specify a method to run when an event such as data entry occurs. The
On data change list contains None (the default) and any available methods. To add a local method for the event, click
the Create Local Method button () to the right of the On data change list, or right-click the file import object.
The selected method in the On data change list then changes to Local method. To open the local method in a method
editor window, click the Go to Source button (). An empty onDataChange editor window then opens, where you
can define the local method. (This window opens automatically when you first create a local method this way.) Click
the Remove Local Method button () to delete the local method. Methods called from the file import object
support a string argument with the new client file name selected by the user. You can also right-click the file import
object to create a local method or (by choosing Edit Method or Edit Local Method) to open the method associated
with the command.

When you Ctrl+Alt-click the file import object:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

For events triggered by data change, the event is triggered after the new data value is stored in the data source.

Information Card Stack

The Information Card Stack () is a form object that displays a built-in card stack with cards that display
information about the application, such as the computation time for the last run (if a solution is not yet available)
or some other solution status information. The card stack can flip between cards in a card stack to show one at a
time. You associate a card stack with a data source that controls which card to show. Each card specifies a value that
it compares against the data source of the card stack. The card stack shows the first card with the matching value.
If no cards match, nothing shows. Enter the name of the information card stack object in the Name field.

The Settings window contains the following sections.

A C T I V E I N F O R M A T I O N C A R D S E L E C T O R

In this section, you specify the data source for the active card selector. The section contains a tree with a filtered
view of the trees in the Application Builder and Model Builder windows. The nodes either represent some sort of data
or have children that do. For a card stack, you typically only see the available parameters under Parameters, variables
under Variables, and the data nodes defined under the Declarations branch. You can extend the list of available data
nodes by clicking the Switch to Model Builder and Activate Data Access button () in the Active Card Selector section
header, which takes you to the Model Builder, and then selecting a node in the Model Builder branch whose data
you want to access. With this button active, the Settings window of the selected node displays a Select Data Source
check box (a green square) next to the settings that you can include. Click to select the check box to include that
data as an available source node for card stacks.
122 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

When you select a node that represents the source for the active card selector, the Use as Source toolbar button ()
below the tree becomes enabled. You can also right-click the node and choose Use as Source. In addition, you can
click the Create New Declaration and Use It as Source button () or the Create New Form Declaration and Use It as

Source button () in the Active Card Selector section header to create a new global or local (in the form) variable
declaration for the information card stack and use it as the source. A Create and Use Declaration dialog box opens
so that you can select the data type of the source (if applicable), its name, and its initial value (if applicable). The
name cannot be in conflict with any existing variable declaration. You can extend the list of available data nodes by
clicking the Switch to Model Builder and Activate Data Access button (). Click the Edit Node toolbar button ()
below the tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

I N F O R M A T I O N C A R D S

The table in this section contains the information cards’ associated activating values (in the Activating value column),
icon (in the Icon column), and the text to display on the card (in the Text column). The stack decides which card
to display through their activating values, which you type in this section. The values are then checked against the
value of the source.

Click the Add Information Card button () to add a card to the table. The Information Cards dialog box then opens,
where you can add some predefined cards. Click the Add>> and <<Remove buttons to add or remove information
cards, respectively. Click the Custom Card button to open the Edit Information Card dialog box, where you can define
the activating values, select an icon, define the text to display on the card, and select a text color (choose Inherit to
use the form’s text color) for the new card. Click OK to save the card’s settings and add it to the cards in the
information card stack.

Click the Delete button () or right-click the card entry in the table to remove a selected card.

Click the Edit Information Card button () to edit the individual card in the Edit Information Card dialog box that
opens. In that dialog box, you can define the activating values, select an icon or add an icon and use it, define the
text to display on the card, and select a text color (choose Inherit to use the form’s text color). Click OK to save the
card’s settings.

P O S I T I O N A N D S I Z E

This section contains all layout settings for an information card stack in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the information card stack using the
following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 123

You can also specify the width and height of the card stack. By default, they are determined automatically. To adjust
the width, select Manual from the Width list and then enter a width (in points) in the associated field. If you have
chosen Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to
compute the minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify
a minimum width in the text field underneath. To adjust the height, select Manual from the Height list and then
enter a height (in points) in the associated field. If you have chosen Fill from the Vertical alignment list, you can
instead specify a Minimum height. Choose Automatic to compute the minimum height automatically (typically, this
means a minimum size of 0) or choose Manual to specify a minimum height in the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the card stack using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the information card stack.

From the Background color list, select a color to use as the background in the information card stack: Transparent
(the default), any of the predefined basic colors, or Custom, which makes it possible to select a custom color from
a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font, the Italic check box to use italics (an italic font), and
the Underline check box to use underlined text.

Under State, you can control the initial state of the information card stack when users run the application. By
default, the information card stack is visible and enabled. Clear the Visible or Enabled check box if you want to make
the initial state so that the information card stack is hidden or unavailable. You can then make it visible or enable it
using a method. In the form editor, the state of the form object is indicated by a change in its appearance. Objects
that are hidden become visible when selected in the form editor.

Array Input

The Array Input () is a predefined form object with an input table to enter array inputs (vector inputs). The Array

Input supports arrays as data sources. You can also add an optional label, symbol, and unit. Enter the name of the
array input object in the Name field.

In the Length field, enter the length of the array as a positive integer (default: 3). The maximum length is 1000.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
124 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

From the Show vector as list, choose Table (the default) to show the array components as a table, or choose
Components to show each array component as a separate input field with a label.

In addition, the Settings window contains the following sections.

S O U R C E

In this section, you select the source for the array input. The section contains a tree with a filtered view of the tree
in the Application Builder window. The nodes either represent some sort of data or have children that do. For an
array input, the list contains array variables defined under Declarations, for example. When you select a node that
represents data, the Use as Source toolbar button () below the tree becomes enabled. You can click it or,
alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as the selected
source. The initial values from the data source appear in the array input object. You can also click the Create New

Declaration and Use It as Source button () or the Create New Form Declaration and Use It as Source button ()
in the Source section header to create a new global or local (in the form) variable declaration for the card stack and
use it as the source. A Create and Use Declaration dialog box opens so that you can select the data type of the source
(if applicable), its name, and its initial value (if applicable). The name cannot be in conflict with any existing variable
declaration. You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data

Access button (). Click the Edit Node toolbar button () below the tree to move to the corresponding node.
If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

From the Initial values list, select From data source (the default) to use the value specified by the selected data source,
or select Custom values. Then, in the associated table below, enter the initial values for the components in the array.

L A Y O U T O P T I O N S

This section provides settings for adding optional labels and units to the array input.

Use the Label position list to place a label. The options are Above (the default), Left, and No label. For the two first
options, you can enter the desired label in the Label text field.

When the label position is above the table, you can include a symbol to the left of the table by selecting the Include

symbol check box. You cannot see this setting when the label position is to the left of the table, as it overlaps with
the symbol position. Enter the symbol using LaTeX syntax in the Symbol (LaTeX encoded) field.

As a final option, select the Include unit check box to add a unit symbol to the right of the table. To add a unit, click
the Select Quantity button () to open the Physical Quantity dialog box to browse to find a physical quantity to
use. You can also type a search string in the text field at the top of the dialog box and then click the Filter button
() to filter the list of physical quantities. For example, type potential and click the Filter button to only list
physical quantities that represent some kind of potential. Alternatively, click the Custom Unit button () to enter
a unit (for example, m/s^2) in the text field (the physical quantity then becomes a Custom unit).

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.

If you choose to display the array input as components, the Label text field changes to a Component

labels table with one row for each of the component’s labels. Likewise, the Symbol (LaTeX encoded)
field changes to a Component symbols table with one row for each of the component’s symbols.
T H E F O R M O B J E C T S | 125

P O S I T I O N A N D S I Z E

This section contains all layout settings for an array input in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the array input using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the array input. Enter a width (in points) in the Width field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height field is unavailable because the height of the input field is determined
by the software.

Additionally, in the sketch mode, you can specify the absolute position of the array input using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the array input.

From the Text color list, select Inherit (the default) to inherit the text color from the setting in the Form node, or
select one of the predefined colors, such as Black. Select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the array input: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text in the array input fields use the font settings from the Forms node by default.
Select a font from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in
points) in the Font size combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
126 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Under State, you can control the initial state of the array input when users run the application. By default, the array
input is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
array input is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

E V E N T S

For certain types of form objects, you can specify a method to run when an event such as data entry occurs. The
On data change list contains None (the default) and any available methods. To add a local method for the event, click
the Create Local Method button () to the right of the On data change list, or right-click the file import object.
The selected method in the On data change list then changes to Local method. To open the local method in a method
editor window, click the Go to Source button (). An empty onDataChange editor window then opens, where you
can define the local method. (This window opens automatically when you first create a local method this way.) Click
the Remove Local Method button () to delete the local method. Methods called from the array input object
support a string argument with the new client file name selected by the user. You can also right-click the array input
object to create a local method or (by choosing Edit Method or Edit Local Method) to open the method associated
with the command.

When you Ctrl+Alt-click the array input object:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

After a data change, an event is triggered after the new data value is stored in the data source.

Radio Button

The Radio Button () form object represents a group of radio buttons (option buttons) that provide a fixed
number of options, from which you can choose one. It is typically useful when you have just a few options (with
many options, consider using a list box or combo box instead). Enter the name of the radio button object in the
Name field.

From the Orientation list, choose Vertical (the default) or Horizontal to have the radio buttons lined up vertically or
horizontally.

The Settings window contains the following sections.

S O U R C E

In this section, you select the data source for the radio button. The section contains a tree with a filtered view of
the trees in the Application Builder and Model Builder windows. The nodes either represent some sort of data or have
children that do. For radio buttons, you can select from variables in the model and variables under Declarations in
the Application Builder, including Unit Set nodes. You can extend the list of available data nodes by clicking the
Switch to Model Builder and Activate Data Access button () in the Source section header, which takes you to the
Model Builder, and then selecting a node in the Model Builder branch whose data you want to access. With this
button active, the Settings window of the selected node displays a Select Data Source check box (a green square) next
to the settings that you can include. Click to select the check box to include the data as an available source node
for radio buttons.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () or
the Create New Form Declaration and Use It as Source button () in the Source section header to create a new global
T H E F O R M O B J E C T S | 127

or local (in the form) variable declaration for the radio button and use it as the source. A Create and Use Declaration
dialog box opens so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.

After selecting a node as the source, it will appear as the selected source under Selected source.

In the Initial value list, choose a method to define an initial value for the combo box. The options are First allowed

value; From data source (the default, to use the value specified by the selected data source); and Custom value. For
the Custom value option, a Value list shows the allowed values currently present for the form object and depends on
the selected available choice lists and their values. If the data source is a setting from the embedded model that has
a list of allowed values, those values are also included in the Value list. If a selected initial value becomes invalid
because it has been removed from the choice list, for instance, it is kept as an initial value with the text Invalid initial

value followed by the value.

C H O I C E L I S T

In the Selected list, add Choice List nodes that contribute allowed values to the radio buttons, where each valid value
represents one radio button. If the selected data source is a list with a set of allowed values, only a subset of those
values may appear as a radio button. All other values in the selected choice lists are ignored. Available Choice List
nodes appear under Available. Click the Add Selected button to add the selected Choice List node to the list under
Selected. Click the Remove Selected button to remove a selected Choice List node from the list under Selected.
You can also double-click a Choice List node to move it from Available to Selected and the other way around. Click
the Add New Choice List () or Add New Form Choice List () button in the Choice List section’s toolbar to open
a Choice List or Form Choice List window where you can define a new choice list under the global Declarations node
or a local Declarations node under the Form node, respectively. Add the allowed values in the Value column and their
corresponding names in the Display name column. Click OK to add the new choice list as a Choice List node ()
under the Declarations node in the Application Builder tree and directly under Selected.

If you select a property that has a list of allowed values as the data source in the Source section, that property
becomes a node initially placed in the Selected list. You can move it to the Available list, thereby clearing the list of
allowed values. You can move it back again or add a custom choice list with values that also belong to the list of
values for the property. If the property list and a Choice List node are both in the Selected list, they will be merged.
Identical values pick the description from the first item in the list under Selected. In this way, you can rename one
of the items in the property list. If you decide to switch the source to another property in the embedded model that
also has a list of allowed values, the previous property list node is removed from both the Available and Selected lists,
and the new node is added to the Selected list.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a radio button in the grid of the parent form.

You can control the horizontal and vertical alignment of the radio buttons using the following lists:

• From the Horizontal alignment list, choose Left, Center, or Right.

• From the Vertical alignment list, choose Middle, Top, or Bottom.

In the grid mode, you can also choose Fill, which automatically expands the form object to fill the cell in the
horizontal or vertical direction (where applicable).

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
128 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object is useful in the sketch mode too. When running the
application in any client other than the Windows client, the form objects may not be positioned exactly as seen in
the form windows. This is because the form objects may have a different size in other clients, giving them a slightly
different positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in
all clients.

The Width and Height fields are unavailable because the dimensions of the radio buttons are determined by the
software.

Additionally, in the sketch mode, you can specify the absolute position of the radio button using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the radio button.

From the Text color list, select Inherit (the default) to inherit the text color from the setting in the Form node, or
select one of the predefined colors, such as Black. Select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the radio button: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text in the array input fields use the font settings from the Forms node by default.
Select a font from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in
points) in the Font size combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font, the Italic check box to use italics (an italic font), and
the Underline check box to use underlined text.

Under State, you can control the initial state of the radio button when users run the application. By default, the
radio button is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so
that the radio button is hidden or unavailable. You can then make it visible or enable it using a method. In the form
editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible
when selected in the form editor.

E V E N T S

You can add a code method that the application runs when the data in the radio button changes. The event is
triggered after the new data value is stored in the data source. The On data change list contains None (the default)
and any available methods. To add a local method for this event, click the Create Local Method button (). The
selected method in the On data change list then changes to Local method and an editor window for the local method
opens, where you can define its contents. You can also click the Go to Source button () to open the editor

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 129

window for the selected method. Click the Remove Local Method button () to delete the local method. You can
also right-click the radio button to create a local method or (by choosing Edit Method or Edit Local Method) to open
the method associated with the command.

When you Ctrl+Alt-click the radio button:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

Selection Input

The Selection Input () is a form object for a selection input of some geometric entities in an application. The
selection input object is similar to the selection settings in COMSOL Multiphysics models. Users can activate
selections, and you can copy and paste selections into the list of selected entities, for example.

Enter the name of the selection input object in the Name field.

The Settings window contains the following sections.

S O U R C E

In this section, you define the selection to use as the source. The section contains a tree with a filtered view of the
tree in the Model Builder window. The nodes either represent some sort of data or have children that do. For a
selection input, the tree contains Explicit selection nodes from the model, which you can choose as the source for
the selection. The selection is then available for the application to use and contains updated selections made by the
user. When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. Click the Edit Node toolbar button () below the tree to move to the
corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, it will appear as the selected source under Selected source.

G R A P H I C S T O U S E W H E N A C T I V E

When users of the application set the activation switch to ON, you can connect the selections to a Graphics object
where the selected geometric entities are highlighted. Select a Graphics object from the tree and click the Use

Graphics button to add it under Selected graphics. Users can also make selections directly in the Graphics object. If
the Graphics object is set up to include the standard plot toolbar, that toolbar also includes the Zoom to Selection

You can also add a selection as the source for a Graphics object so that users can select geometric
entities directly in that Graphics object without a selection input component. In that case, the
Graphics object should be used for input only, and users do not need to activate the selection.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
130 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

(), Select Box (in 3D), and Deselect Box () buttons. If multiple selection input objects are connected to
the same Graphics object, only one of the selections can be active at a time.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a selection input object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the selection input form object using
the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too. You can then use
the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in any
client other than the Windows client, the form objects may not be positioned exactly as seen in the form windows.
This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the selection input. Enter a width (in points) in the Width field. If you have chosen
Fill from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Height field is unavailable because the height of the input field is determined
by the software.

Additionally, in the sketch mode, you can specify the absolute position of the selection input using the Position x
and Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

Users cannot set the activation switch to OFF. The switch becomes switched off if another
selection input is activated or if the associated Graphics object gets a source other than the
selection.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 131

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the selection input.

From the Text color list, select Inherit (the default) to inherit the text color from the setting in the Form node, or
select one of the predefined colors, such as Black. Select Custom to choose a custom text color from the color palette.

From the Background color list, select a color to use as the background in the selection input: Transparent (the
default), any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color
palette.

The font and the font size for the text in the array input fields use the font settings from the Forms node by default.
Select a font from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in
points) in the Font size combo box. The default is to use the Default size for the font.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the selection input when users run the application. By default, the
selection input is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so
that the selection input is hidden or unavailable. You can then make it visible or enable it using a method. In the
form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden become
visible when selected in the form editor.

Text

The Text () form object is a predefined form for a text field with default text. It can either be static text that
provides some information or editable text so that users can add notes or comments, for example. Enter the name
of the text object in the Name field.

Select the Editable check box to make it possible for users to edit and add text. By default, the text is static.

The Wrap text check box is selected by default. Click it to disable wrapping of the text. A scroll bar appears if the
text does not fit in its defined dimensions.

The Settings window contains the following sections.

S O U R C E

In this section, you define a source for the text object. The section contains a tree with a filtered view of the trees
in the Application Builder and Model Builder windows. The nodes either represent some sort of data or have children
that do. You can extend the list of available data nodes by clicking the Switch to Model Builder and Activate Data

Access button () in the Source section header, which takes you to the Model Builder, and then selecting a node
in the Model Builder branch whose data you want to access. With this button active, the Settings window of the
selected node displays a Select Data Source check box (a green square) next to the settings that you can include.
Click to select the check box to include that data as an available source node for text objects.

Hover selection is not supported in the web client. Instead, a preselection appears, which shows
what will be selected when you click the mouse. This preselection disappears when you move the
mouse. To select underlying objects, use the mouse wheel. In contrast to hover selection, the top
layer is also included as the first layer. To make it easier to choose the closest object, the top layer
object under the mouse pointer is selected if there is no preselection, which means that an object
other than the preselected one might be selected if you move the mouse before you click.
132 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

If the Editable check box is cleared so that the text is read-only, you can choose to use one of the following
information nodes, which you find under the main Model node and under each Study node, as the source.

• The Expected Computation Time node () under Model>Information (): The expected computation time is
a value that the application developer can enter in the Expected field in the Root node’s Settings window.

• The Last Computation Time node () under Model>Information: This node shows the last measured
computation time for the last computed study.

• The Last Computation Time node () under each Model>Study>Information: This node shows the last measured
computation time for the study.

When you start an application for the first time, the last measured times are reset, displaying Not available yet.

When you select a node that represents data, the Use as Source toolbar button () below the tree is enabled. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
the selected source. You can also click the Create New Declaration and Use It as Source button () or the Create

New Form Declaration and Use It as Source button () in the Source section header to create a new global or local
(in the form) variable declaration for the text and use it as the source. A Create and Use Declaration dialog box opens
so that you can select the data type of the source (if applicable), its name, and its initial value (if applicable). The
name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar button () below
the tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

From the Initial value list, choose From data source (the default) to use the text from the source. Alternatively,
choose Custom value to add text to display in the Value text field below.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a text object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the text object using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the text input. Enter a width (in points) in the Width field and a height
(in points) in the Height field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a
Minimum width. Choose Automatic to compute the minimum width automatically (typically this means a minimum
size of 0), or choose Manual to specify a minimum width in the text field underneath. If you have chosen Fill from
the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the minimum

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 133

height automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum height in
the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the text input using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background for the text: Transparent (the default), any
of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

From the Text alignment list, select an alignment for the text: Left (the default), Center, or Right.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the text object when users run the application. By default, the text
object is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the
text object is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor,
the state of the form object is indicated by a change in its appearance. Objects that are hidden become visible when
selected in the form editor.

E V E N T S

You can add a code method that the application runs when the text changes. The event is triggered after the new
data value is stored in the data source. The On data change list contains None (the default) and any available methods.
To add a local method for this event, click the Create Local Method button (). The selected method in the On

data change list then changes to Local method. (The editor window opens automatically when you first create a
method this way.) To open the selected method in an editor window, click the Go to Source button (). An empty
onDataChange editor window then opens, where you can define the local method. Click the Remove Local Method
button () to delete the local method.

You can also right-click the text object to create a local method or (by choosing Edit Method or Edit Local Method)
to open the method associated with the command.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
134 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

When you Ctrl+Alt-click the text object:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

List Box

The List Box () form object represents a list box. If you use a list as the source, you can select more than one
item in the list using Shift-click or Ctrl-click. For other sources, you can only select one value from the list. Enter
the name of the list box object in the Name field.

The Settings window contains the following sections.

S O U R C E

In this section, you define the data source for the list box. The section contains a tree with a filtered view of the
trees in the Application Builder and Model Builder windows. The nodes either represent some sort of data or have
children that do. For a list box, the tree contains variables and parameters in the model and variables, such as a 1D
array that you have added under Declarations, including Unit Set nodes. You can extend the list of available data
nodes by clicking the Switch to Model Builder and Activate Data Access button () in the Source section header,
which takes you to the Model Builder, and then selecting a node in the Model Builder branch whose data you want
to access. With this button active, the Settings window of the selected node displays a Select Data Source check box
(a green square) next to the settings that you can include. Click to select the check box to include the data as an
available source node for list boxes.

When you select a node that represents data, the Use as Source toolbar button () below the tree becomes
enabled. You can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source
to add it as the selected source. You can also click the Create New Declaration and Use It as Source button () or
the Create New Form Declaration and Use It as Source button () in the Source section header to create a new global
or local (in the form) variable declaration for the list box and use it as the source. A Create and Use Declaration dialog
box opens so that you can select the data type of the source (if applicable), its name, and its initial value (if
applicable). The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar
button () below the tree to move to the corresponding node. If necessary, the program switches to the Model
Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

In the Initial value list, choose a method to define an initial value for the list box. The options are First allowed value;
From data source (the default, to use the value specified by the selected data source); and Custom value. For the
Custom value option, a Value list shows the allowed values currently present for the form object, which depends on
the selected available choice lists and their values. If the data source is a setting from the embedded model that has
a list of allowed values, those values are also included in the Value list. If a selected initial value becomes invalid
because it has been removed from the choice list, for instance, it is kept as an initial value with the text Invalid initial

value followed by the value.

When the data source is a string array, the Initial value list is there along with the Empty array option that sets an
empty array as the default for the selected source. There are also additional choices for how to select values. From
the Select values in list, select Dialog to use a dialog to display the list box and enter a Dialog title in the field below,

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
T H E F O R M O B J E C T S | 135

or select List box to use a multiselect list box. The Dialog option uses a list with buttons underneath, which users
can use to add, delete, and move items in the list of selected items. This is suitable for a list with many items where
you want to better control which items are selected (compared to a standard multiselect list box).

C H O I C E L I S T

In the Selected list, add Choice List nodes that contribute allowed values to the list box. If the selected data source
is a list with a set of allowed values, only a subset of the values can appear in the allowed values of the list box. All
other values in the selected choice lists are ignored. Available Choice List nodes appear under Available. Click the Add

Selected button to add the selected Choice List node to the list under Selected or click the Remove Selected
button to remove a selected Choice List node from the list under Selected. You can also double-click a Choice List
node to move it from Available to Selected and the other way around. Click the Add New Choice List () or Add

New Form Choice List () button in the Choice List section’s toolbar to open a Choice List or Form Choice List
window where you can define a new choice list under the global Declarations node or a local Declarations node under
the Form node, respectively. Add the allowed values in the Value column and their corresponding names in the
Display name column. Click OK to add the new choice list as a Choice List node () under Declarations and directly
under Selected.

If you select a property that has a list of allowed values as the data source in the Source section, that property
becomes a node initially placed in the Selected list. You can move it to the Available list, thereby clearing the list of
allowed values. You can move it back again or add a custom choice list with values that also belong to the list of
values for the property. If the property list and a choice list node are both in the Selected list, they will be merged.
Identical values pick the description from the first item in the list under Selected. In this way, you can rename one
of the items in the property list. If you decide to switch the source to another property in the embedded model that
also has a list of allowed values, the previous property list node is removed from both the Available and Selected lists,
and the new node is added to the Selected list.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a list box in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the list box using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too. You can then use
the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in any
client other than the Windows client, the form objects may not be positioned exactly as seen in the form windows.
This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the list box. Enter a width (in points) in the Width field and a height
(in points) in the Height field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a
Minimum width. Choose Automatic to compute the minimum width automatically (typically, this means a minimum
size of 0) or choose Manual to specify a minimum width in the text field underneath. If you have chosen Fill from
the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the minimum
height automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum height in
the text field underneath.
136 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

Additionally, in the sketch mode, you can specify the absolute position of the list box using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text in the list box.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the list box when users run the application. By default, the list box
is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the list box
is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of
the form object is indicated by a change in its appearance. Objects that are hidden become visible when selected in
the form editor.

E V E N T S

You can add a code method that the application runs when the data in the list box changes. The event is triggered
after the new data value is stored in the data source. The On data change list contains None (the default) and any
available methods. To add a local method for this event, click the Create Local Method button (). The selected
method in the On data change list then changes to Local method. To open the selected method in a method editor
window, click the Go to Source button (). An empty onDataChange editor window then opens, where you can
define the local method. Click the Remove Local Method button () to delete the local method. You can also
right-click the list box to create a local method or (by choosing Edit Method or Edit Local Method) to open the
method associated with the command.

When you Ctrl+Alt-click the list box:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 137

Table

The Table () form object represents a table with rows and columns. Enter the name of the table object in the
Name field. The table columns include headers. Clear the Show headers check box to remove the headers.

Select the Automatically add new rows check box to make the table add a new row when the user enters new values
in the same way as for tables containing global parameters and variables in the COMSOL Desktop.

To make the table rows sortable, select the Sortable check box. This way, users can sort the rows by clicking the
table column headers. The rows are sorted in the following sequence: ascending, descending, and then unsorted
(the original row order in the table).

In addition, the Settings window contains the following sections.

S O U R C E S

In this section, you add the sources for the table data. The section contains a tree with a filtered view of the tree in
the Application Builder window. The nodes either represent some sort of data or have children that do. For a table,
arrays that you have added under Declarations are available as the data source for a table. When you select a node
that represents data, the Add to Table toolbar button () below the tree becomes enabled. You can click it or,
alternatively, press Enter, double-click, or right-click the node and choose Add to Table. The data source you select
becomes the source of the data displayed in the table, and the initial values from the data source appear in the table
input object. You can also click the Create New Declaration and Use It as Source button () or the Create New Form

Declaration and Use It as Source button () in the Sources section header to create a new global or local (in the
form) variable declaration for the table and use it as the source. A Create and Use Declaration dialog box opens so
that you can select the data type of the source (if applicable), its name, and its initial value (if applicable). The name
cannot be in conflict with any existing variable declaration. You can extend the list of available data nodes by clicking
the Switch to Model Builder and Activate Data Access button (). Click the Edit Node toolbar button () below
the tree to move to the corresponding node.

In the table below, there is a row for each column, where you can edit the header text under Header, the width (in
pixels) under Width, and whether or not the table data is editable (the default) under Editable. The table columns
where you select the Grow check box can grow horizontally. To make it possible for table columns to grow, the form
in which you add the table must use the Grid mode and you must select Fill from the Horizontal alignment list under
Position and Size (see below). You can adjust the alignment of the column’s data presentation using the lists in the
Alignment column. Choose Left (the default), Center, or Right. The rightmost column, Data source, lists the sources
for the data in each column.

Click the Move Up and Move Down buttons (and) to move and rearrange the column order. Click the Delete
button () to delete the selected column.

Working with Data Sources
When you work with data sources for tables, the following rules apply when changing sources to a table from
methods, for example, but also if you perform a set command on a specific data source that is part of a table. In
the rules below, the first data source of a table is the source that controls the number of rows in the table. All other
sources used by the table will be padded with default element values or cropped to match the length of the first
data source. The first data source has a lock symbol on its tree node.

• Clearing data only requires the first data source to be cleared.

• Adding one row only requires that the first data source gets a new row.

• Removing the last row only requires removing the last row of the first data source.
138 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

• Inserting a row must be done by inserting the row in the first data source, then inserting it for the other
properties.

• Removing a row must be done by removing the row for all other sources first, and remove it for the first data
source last.

T O O L B A R

In this section, you can add items to a table toolbar and activate the following table options:

From the Position list, choose where you want to position the toolbar relative to the table: Below (the default),
Above, Left, or Right.

You can choose from two icon sizes: From the Icon size list, choose Small (the default) or Large.

In the table below, you can add one or more buttons to form a table toolbar.

Click the Add Toolbar Commands button () to open the Toolbar Buttons dialog box, where you can select and
add one or more of the following table commands as toolbar buttons.

Under Move (), double-click the Move Up () and Move Down () buttons to add corresponding buttons for
moving rows.

Under Modify ():

• Double-click the Add button () to add a button for adding rows.

• Double-click the Delete button () to add a button for deleting selected rows.

• Double-click the Clear Table button () to add a button for clearing the entire table of all its contents.

Under File (), double-click the Load from File (), Clear Table and Load from File (), and Save to File ()
buttons to add corresponding buttons for loading table data from a file, clearing the table first and then loading
new content from a file, and saving table data to a file, respectively. The file types that users can load and save table
data to and from include text files (.txt); CSV files (.csv); data files (.dat); and, if the license includes LiveLink™ for
Excel®, Microsoft Excel® files (,xlsx). Allowed data separators are comma, semicolon, and tab for CSV files, and
space and tab for other non-Excel® files.

Double-click the Move, Modify, and File buttons to add all buttons in those groups. Alternatively, click the Add and
Remove buttons to add and remove the selected buttons, respectively. Click the Custom Button button to open the
Edit Custom Toolbar Item dialog box (see The Edit Custom Toolbar Item Dialog Box).

Click OK to close the Toolbar Buttons dialog box and add the selected commands as buttons in the table’s toolbar.
If you open the Toolbar Buttons dialog box again, it’s left side contains only the table commands that you have not
added yet.

Click the Add Separator button () to add a separator between groups of buttons in the toolbar.

Select a button in the table and click the Edit button () if you want to change the appearance or behavior of a
custom toolbar button in the Edit Custom Toolbar Item dialog box. Click the Move Up and Move Down buttons (
and) to move and rearrange the toolbar button order. Click the Delete button () to delete the selected
button.

The table contains a row for each added item, showing its name, icon, text, and tooltip in the Name, Icon, Text, and
Tooltip columns, respectively.

P O S I T I O N A N D S I Z E

This section contains all of the layout settings for a table in the grid of the parent form.
T H E F O R M O B J E C T S | 139

In the grid mode, you can control the horizontal and vertical alignment of the table using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the height of the table. Enter a height (in points) in the Height field. If you have chosen Fill
from the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the
minimum width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum
width in the text field underneath. The Width field is unavailable because the width of the table is determined by
the software.

Additionally, in the sketch mode, you can specify the absolute position of the table using the Position x and Position

y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row, Column, Row

span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the text in the table.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

The font and the font size for the text in the table use the font settings from the Forms node by default. Select a
font from the Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points)
in the Font size combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the table when users run the application. By default, the table is
visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the table is
hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of the
form object is indicated by a change in its appearance. Objects that are hidden become visible when selected in the
form editor.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
140 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

E V E N T S

For certain types of form objects, you can specify a method to run when an event such as data entry occurs. The
On data change list contains None (the default) and any available methods. To add a local method for an event, click
the Create Local Method button () to the right of the On data change list. The selected method in the On data

change list then changes to Local method and opens the editor window for the new method. To open the selected
method in a method editor window, click the Go to Source button (). An empty onDataChange editor window
opens, where you can define the local method. Click the Remove Local Method button () to delete the local
method. You can also right-click the table object to create a local method or (by choosing Edit Method or Edit Local

Method) to open the method associated with the command,

When you Ctrl+Alt-click the table object:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

After a data change, an event is triggered after the new data value is stored in the data source.

The Edit Custom Toolbar Item Dialog Box

There are several ways to add a custom button or toggle button to a toolbar object, for a table, or for a graphics
object. To create a button item or toggle button item and open the Edit Custom Toolbar Item dialog box to define
it, use one of the steps below. The Edit Custom Toolbar Item dialog box provides settings and tools for creating a
custom button or toggle button with an associated command or method to run.

• For a Toolbar object, click the Add Item () or Add Toggle button () underneath the table of items in the
Toolbar Item section, or right-click the toolbar in the Form window and choose Add Item () or Add Toggle
button (). You can also open it by right-clicking a custom toolbar button or toggle button in the Toolbar
object’s Settings window and choosing Edit.

• For a Table object, click the Add Toolbar Item button () in the Toolbar section of the Settings window. Then,
in the Toolbar Items dialog box, click the Custom Item button or the Custom Toggle Item button to open the Edit

Custom Toolbar Item dialog box. You can also open it by right-clicking a custom toolbar button or toggle button
in the Table object’s Settings window and choosing Edit.

• For a Graphics object, click the Add Item () or Add Toggle button (at the bottom of the Toolbar section in
the Settings window. You can also open it by right-clicking a custom toolbar button or toggle button in the
Graphics object’s Settings window and choosing Edit.

The Edit Custom Toolbar Item dialog box includes the following pages:

G E N E R A L

In the Name field, type the name of the toolbar button that you use to refer to it.

In the Text field, type the text that appears as a label on the button.

From the Icon list, choose None for no icon or choose an icon from existing image files. Click the Add Image to

Library and Use Here button () to browse and select an image to use as the icon. Click the Export button ()
to save the icon as an image file. If you use an icon and a text label, the toolbar item includes both the icon and the
label.

In the Tooltip field, enter an explanatory text that will appear as the tooltip for the button or toggle button. In the
Toolbar Items dialog box, the added button appears with its tooltip, if the text label is empty.

To add a keyboard shortcut, make the Keyboard shortcut field active, and then type a keyboard shortcut on the
keyboard:
T H E F O R M O B J E C T S | 141

You must use a modifier in the keyboard shortcut, not just a plain letter (for example, CTRL+SHIFT+D). The
shortcut can include the Ctrl key (CTRL), Alt key (ALT), and Shift key (SHIFT). Note that the Ctrl key is
interpreted as Command on OS X. Avoid using the following keys in your shortcut:

• Backspace, as it can be used to clear a shortcut

• Delete, as it can be used to clear a shortcut

• Escape

• Alt on its own (to avoid conflicts with File menu shortcuts)

S O U R C E

Here you specify the source for the state of a toggle button in a toolbar. The source can be string or Boolean
variable that is created under Declarations, which you select from the tree and then click the Use as Source button
(). Alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as the
selected source. You can also click the Create New Declaration and Use It as Source button () or the Create New

Form Declaration and Use It as Source button () below the source list to create a new global or local (in the form)
variable declaration for the toolbar item and use it as the source. A Create and Use Declaration dialog box opens so
that you can select the data type of the source (if applicable), its name, and its initial value (if applicable). The name
cannot be in conflict with any existing variable declaration. When you have specified a source, use these settings to
define its initial state:

From the Initial value list, choose From data source (the default) to use the initial value from the data source, or
choose Custom value to define an initial state using the Initial state list: Choose Selected (the default) or Cleared (the
value for selected is on; for cleared, it is off).

C H O O S E C O M M A N D S T O R U N

This section contains a tree with a filtered view of the tree in the Application Builder window. The nodes either
support a command or have children that do. When you select a node that supports one or more commands, the
corresponding command toolbar buttons are enabled in the toolbar below the tree. You can also right-click a node
to get a list of available commands for that particular node. Once you click a command with a node selected (or
press Enter or double-click to add a command with its default command such as Run, Plot, or Set Value), the
command and node appear in the last row of the table below the tree. This table contains all nodes that run, and
you can delete and move commands using the toolbar below the table.

In the Model branch, all nodes that represent some sort of data value, such as a parameter under the Parameters
node, support the Set Value command. When adding a Set Value command to the table, the third column,
Arguments, becomes enabled. In this column you type the value to set. For data that represents arrays, use curly
braces and commas to enter the array elements. For example, enter {1, 2, 3} to set a three-element array with
the values 1, 2, and 3. See The Array 1D String Node for more details on how to enter arrays and matrices. For
nodes that represent a file import, such as a Filename node under an Interpolation function node, an Import File
command is available.

It is possible to override other keyboard shortcuts, so take care when choosing the shortcut key
combinations to use.

The Source page is only available for toolbar toggle buttons.
142 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

The tree includes a number of branches from the application tree in addition to the Model branch:

• The Forms branch: Form nodes support the commands Show, which sets the form as the main form of the
application (that is, the content of the application window will be this form), and Show as Dialog, which brings
up the form as a separate dialog window.

• The GUI Commands branch: The commands under this branch are grouped in three subcategories:

- File Commands: These include Save Application (to save the application under its current name); Save Application

As (to open a file browser dialog allowing the user to save the application in a suitable location); Save
Application on Server; Save Application on Server As; Open File (to open an application file resource specified
using a valid URI path in the Arguments column); Save File As (similarly, to allow the user to save the file under
a name specified in the Arguments column); and Exit Application (to close the running application). If the
application is run on COMSOL Server, the Save Application on Server and Save Application on Server As
commands save the current state as a new application in the COMSOL Server Application Library.

- Graphics Commands: Here you find the commands Zoom Extents, Reset Current View, Scene Light, Transparency,
Print, Select All, and Clear Selection. For all graphics commands, add the name of the Graphics object that you
want to apply the command to as an argument.

- Model Commands: Here you find the commands Clear All Solutions and Clear All Meshes.

Double-click or right-click any of the nodes above to add a Run command.

• The Declarations branch: This branch contains any variable declarations you have added under the Application

Builder window’s Declarations branch grouped by type. Like parameters, they support the Set Value command.

• The Form Declarations branch: This branch contains any variable declarations you have added under a Declarations
branch under the current Form node. Like parameters, they support the Set Value command.

• The Methods branch: Method nodes support the Run command.

• The Form Methods branch: Method nodes under the current Form node support the Run command.

• The Libraries branch: Under Sounds, you can choose between sound files to play in a command sequence.

When you click one of the buttons underneath the tree, the currently selected command appears in the Command
column in the table below. There are also Icon and Arguments columns, where you can enter any applicable
arguments that the command uses.

Click the Convert to Method toolbar button () and choose Convert to Method or Convert to Form Method to
convert the entire list of commands in the table to a global or form method that contains the equivalent code. After
this operation, the list of commands only contains a single Run operation on the created method. When you select
a method under Command, or there is exactly one method in the list, you can go to the editor window for that
method by clicking the Go to Method button (). For information about the Edit Argument button (), see
Editing Initial Values and Arguments in Declarations and Command Sequences. Use the Move Up (), Move Down
(), and Delete () toolbar buttons to organize and remove commands from the list (and to remove the local
method, if deleted).

Click OK to close the Edit Custom Toolbar Item dialog box and add the button to the toolbar.

Slider

The Slider () is a form object for choosing a numerical input using a slider control. Enter the name of the slider
object in the Name field.

From the Value type list, choose Integer or Real (the default), depending on the type of data in the data source for
the slider.

In the Minimum value (default: 0) and Maximum value (default: 1) fields, enter the minimum and maximum values
that define the range of the data covered by the slider.
T H E F O R M O B J E C T S | 143

Enter the number of steps (resolution) for the slider in the Number of steps field (default: 5).

From the Orientation list, choose Horizontal (the default) or Vertical to change the slider orientation from horizontal
to vertical or vice versa.

In the Tooltip field, enter text that will appear as a tooltip when the user hovers the pointer over the slider.

You can append a unit to the number for the slider’s value by selecting the Append unit to number check box and
typing a unit in the associated text field. Units are only applicable to sources that are string declarations and
parameters.

In addition, the Settings window contains the following sections.

S O U R C E

In this section, you define the variable to use as the data source for the slider. The section contains a tree with a
filtered view of the trees in the Application Builder and Model Builder windows. The nodes either represent some sort
of data or have children that do. For a slider, you can use a scalar value from a variable in the model or a variable
defined under Declarations. To extend the list of available data nodes, click the Switch to Model Builder and Activate

Data Access button () in the Source section header, which takes you to the Model Builder, and then select a node
in the Model Builder branch whose data you want to access. With this button active, the Settings window of the
selected node displays a Select Data Source check box (a green square) next to the settings that you can include.
Click to select the check box to include that data as an available source node for sliders.

When you select a node that represents data, the Use as Source toolbar button () below the tree is enabled. You
can click it or, alternatively, press Enter, double-click, or right-click the node and choose Use as Source to add it as
the selected source. You can also click the Create New Declaration and Use It as Source button () or the Create

New Form Declaration and Use It as Source button () in the Source section header to create a new global or local
(in the form) variable declaration for the slider and use it as the source. A Create and Use Declaration dialog box
opens so that you can select the data type of the source (if applicable), its name, and its initial value (if applicable).
The name cannot be in conflict with any existing variable declaration. Click the Edit Node toolbar button ()
below the tree to move to the corresponding node. If necessary, the program switches to the Model Builder.

After selecting a node as the source, the node appears as the selected source under Selected source.

From the Initial value list, select From data source to use the value specified by the selected data source, or select
Custom value to enter the initial value (starting value) for the slider (default: 0) in the Value field below. Typically,
the initial value and the minimum value are the same.

U N I T

From the Method list, select one of the following methods to specify the unit for the slider:

• No unit, the default option.

• Append unit to number: The unit that you type in the Unit expression field is appended to the number
corresponding to the slider’s position.

• Append unit from unit set: The slider appends a unit from a Unit Set node added under Declarations (see The Unit
Set Node). You specify the unit set to use from the Unit set list and the unit to use from Unit list, which lists all
defined properties and their units from the select unit tests. There is also a No unit option.

If you try to use the same data source in several form objects, you may encounter some strange
side effects. The initial value for the source may not be what you expect. You may also experience
serious errors if the initial value of one form object is invalid for one of the other form objects.
144 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

A P P E A R A N C E

Under Appearance, you can control the initial state of the slider when users run the application. By default, the slider
is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the slider
is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of
the form object is indicated by a change in its appearance. Objects that are hidden become visible when selected in
the form editor.

P O S I T I O N A N D S I Z E

This section contains all of the layout settings for a slider in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the slider using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width of the slider. Enter a width (in points) in the Width field. If you have chosen Fill from
the Horizontal alignment list, you can instead specify a Minimum width. Choose Automatic to compute the minimum
width automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum width in
the text field underneath. The Height field is unavailable because the height of the slider is determined by the
software.

Additionally, in the sketch mode, you can specify the absolute position of the slider using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the slider. By default, the margins are
taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the slider

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the slider in the Horizontal and Vertical text fields

E V E N T S

For certain types of form objects, you can specify a method to run when an event such as data entry occurs. The
On data change list contains None (the default) and any available methods. To add a local method for an event, click
the Create Local Method button () to the right of the On data change list, or right-click the slider object. The
selected method in the On data change list then changes to Local method and an empty onDataChange editor window
for the new method opens automatically. To open the local method in a method editor window later, click the Go

to Source button () and click the Remove Local Method button () to delete the local method. Methods called

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 145

from the slider support a double argument holding the new value of the data source. You can also right-click the
slider object to create a local method or (by choosing Edit Method or Edit Local Method) to open the method
associated with the command.

When you Ctrl+Alt-click the slider object:

• If the On data change list is set to a method, the method’s editor window opens.

• If the On data change list is set to None, it creates a local method (if needed), sets the list to Local method, and
opens the local method’s editor window.

After a data change, an event is triggered after the new data value is stored in the data source.

By default, the Trigger while dragging check box is selected. The event is then triggered while dragging the slider. If
the method that is connected to the event takes some time to run, the slider can appear to be sluggish. If you clear
the Trigger while dragging check box, the event is instead only triggered when you stop dragging and release the
slider.

Hyperlink

The Hyperlink () form object provides the possibility to add a hyperlink to a web page with additional or related
information.

Enter the name of the hyperlink object in the Name field.

In the Text field, enter the text that appears in the form as a clickable hyperlink.

In the URL field, enter either a valid web address or an email address.

A valid web address, such as www.comsol.com, does not normally need the http:// or https://prefix. The web
page will open in the user’s default browser.

For email addresses, use the mailto format, such as mailto:info@comsol.com, to provide a hyperlink for sending
an email. It can also include a specified subject and message body. The hyperlink will launch the user’s default email
application program and prepare a new message, where the To field is set to the specified address. Note that this
way of interactively sending an email from a COMSOL application differs from using the built-in email method.

The Settings window contains the following sections.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a hyperlink object in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the hyperlink object using the following
lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.
146 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

You can also specify the width and height of the hyperlink object. Enter a width (in points) in the Width field and
a height (in points) in the Height field. If you chose Fill from the Horizontal alignment list, you can instead specify a
Minimum width. Choose Automatic to compute the minimum width automatically (typically, this means a minimum
size of 0) or choose Manual to specify a minimum width in the text field underneath. If you have chosen Fill from
the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the minimum
height automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum height in
the text field underneath.

Additionally, in the sketch mode, you can specify the absolute position of the hyperlink object using the Position x
and Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the hyperlink object. By default, the
margins are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the hyperlink text.

From the Background color list, select a color to use as the background for the text: Transparent (the default), any
of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the hyperlink object when users run the application. By default, the
hyperlink object is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state
so that the hyperlink object is hidden or unavailable. You can then make it visible or enable it using a method. In
the form editor, the state of the form object is indicated by a change in its appearance. Objects that are hidden
become visible when selected in the form editor.

Toolbar

The Toolbar () contains the specifications of a toolbar placed as any other form object in a form. It shows a bar
of menu buttons below the title of the window. Clicking a menu button runs a sequence of commands. It works
like any other menu, except that it does not support submenus. Right-click the toolbar object in the form window
and choose Item to add an action item to the toolbar (see The Item Node) or choose Separator to add a separator
between groups of toolbar buttons (see The Separator Node). You can also add and edit the toolbar’s contents in
the Toolbar Items section. Enter the name of the toolbar object in the Name field.

You can choose from two icon sizes: From the Icon size list, choose Small (the default) or Large.

The Settings window contains the following sections.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 147

T O O L B A R I T E M S

The table in this section lists the current toolbar items and separators with their names, icons, and text. You can
edit the text directly in the Text column. Right-click an item to move it; delete it; or, for custom buttons, edit it in
the Edit Custom Toolbar Item window that opens. You can also use the Move Up (), Move Down (), Delete
(), and Edit () buttons underneath the table. Click the Item button () to add an item to the toolbar. Click
the Separator button () to add a separator.

The table contains a row for each added item, showing its name, icon, text, and tooltip in the Name, Icon, Text, and
Tooltip columns, respectively.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a toolbar in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the toolbar using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

The Width and Height fields are unavailable because the dimensions of the toolbar are determined by the software.

Additionally, in the sketch mode, you can specify the absolute position of the toolbar using the Position x and
Position y fields. In the grid mode, you can position the object in the grid and see the grid position as the Row,
Column, Row span, and Column span values.

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

A P P E A R A N C E

In this section, you can control the appearance of the background and the text in the toolbar.

From the Text color list, select a color to use for the text: Inherit (the default; the form object then uses the setting
from the Form it is located in), any of the predefined basic colors, or Custom, which makes it possible to select a
custom color from a color palette.

From the Background color list, select a color to use as the background for the toolbar text: Transparent (the default),
any of the predefined basic colors, or Custom, which makes it possible to select a custom color from a color palette.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
148 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

The font and the font size for the text use the font settings from the Forms node by default. Select a font from the
Font list: Default font or any of the available fonts. If needed, choose or enter a font size (in points) in the Font size
combo box. The default font size is Default size.

You can also select the Bold check box to use a boldface font or the Italic check box to use italics (an italic font).

Under State, you can control the initial state of the toolbar when users run the application. By default, the toolbar
is visible and enabled. Clear the Visible or Enabled check box if you want to make the initial state so that the toolbar
is hidden or unavailable. You can then make it visible or enable it using a method. In the form editor, the state of
the form object is indicated by a change in its appearance. Objects that are hidden become visible when selected in
the form editor.

Spacer

The Spacer () form object is invisible in the user interface. It defines a space of absolute size that you can use to
ensure that neighboring form objects have enough space to show their contents. Typically, you use a spacer next to
tables or plots to ensure that they display properly. If the user resizes the window so it becomes smaller than the
size of the spacer, the effective size of the window is maintained by displaying scroll bars. Enter the name of the
spacer object in the Name field.

The Settings window contains the following section.

P O S I T I O N A N D S I Z E

This section contains all layout settings for a spacer in the grid of the parent form.

In the grid mode, you can control the horizontal and vertical alignment of the spacer using the following lists:

• From the Horizontal alignment list, choose Left, Center, Right, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

• From the Vertical alignment list, choose Middle, Top, Bottom, or Fill, which automatically expands the form object
to fill the cell in the horizontal or vertical direction (where applicable).

The need to specify the alignment is most obvious when working in the grid mode, as it controls how the form
object is aligned in its grid cell. Aligning the form object can be useful in the sketch mode too, and you can then
use the alignment tools on the Arrange menu in the Form toolbar’s Sketch section. When running the application in
any client other than the Windows client, the form objects may not be positioned exactly as seen in the form
windows. This is because the form objects may have a different size in other clients, giving them a slightly different
positioning. Specifying the alignment ensures that the form objects are aligned as you want them to be in all clients.

You can also specify the width and height of the spacer. Enter a width (in points) in the Width field and a height (in
points) in the Height field. If you have chosen Fill from the Horizontal alignment list, you can instead specify a
Minimum width. Choose Automatic to compute the minimum width automatically (typically, this means a minimum
size of 0) or choose Manual to specify a minimum width in the text field underneath. If you have chosen Fill from
the Vertical alignment list, you can instead specify a Minimum height. Choose Automatic to compute the minimum
height automatically (typically, this means a minimum size of 0) or choose Manual to specify a minimum height in
the text field underneath.

Additionally, in the sketch mode, you can specify absolute position of the spacer using the Position x and Position y
fields. In the grid mode, you can position the object in the grid and see the grid position as the Row, Column, Row

span, and Column span values.

The form windows update these size and positioning settings through the draw operations
performed there, such as resizing and moving the object.
T H E F O R M O B J E C T S | 149

Cell Margin
Under Cell margin (in grid mode only), you can control the margins around the form object. By default, the margins
are taken from the parent form. From the Cell margin list, choose:

• None, for no margin around the form object

• From parent form (the default), to use the margins set for the parent form

• Custom, to specify the margins for the form object in the Horizontal and Vertical text fields

The Width and Height settings specify the area the spacer occupies. Usually, you set either the width
or height to a very small value and the other to the desired size in one direction. Use two fillers to
enforce a size in two directions.
150 | C H A P T E R 3 : W O R K I N G W I T H F O R M S

 4
W o r k i n g w i t h M e t h o d s
In this chapter, learn about the tools in the Application Builder that you can use to
create methods with code for your application or model. These tools provide
language elements, automatic code recording, syntax checking, search tools,
debugging tools, and other functionality for creating, editing, testing, and
debugging methods and utility classes. Also see the

In this chapter:

• Overview

• Creating Methods

• Debugging and Running Methods for Applications
 151

Ove r v i ew

The Application Builder provides tools and editor windows designed for writing code that the application uses to
perform tasks that extend its built-in functionality.

Opening a Method Editor Window

You activate the method editor tools from the Method ribbon toolbar. To open a method editor window, click the
tab, create a new method, double-click a Method node, or right-click a Method node and choose Edit. You can have
several method editor windows open. The tabs for method editor windows show (for application methods) or

 (for model methods) and the name of the method.

Coding and Methods Overview

In the Application Builder, custom code is represented by a Method node. To write code, you must first create a
Method node. To create a Method node, click the New Method button () in a ribbon toolbar or right-click the
Methods node () in the Application Builder window and select New Method.

L O C A L M E T H O D S V S . G L O B A L M E T H O D S

The new Method node appears under the Methods node in the Application Builder tree and contains an application
method. Such methods are available globally for use in all application methods and form objects. It is also possible
to create local methods in some of the form objects in a form. Local methods are not accessible or visible outside
of the objects where they are defined. Use local methods in forms for methods that are internal to that form. These
local methods connect to events in the form objects, such as when the setting (data) changes for a check box. The
Method node is used for referring to the method from a command sequence or a form object’s event. For use with
a model in the Model Builder, you can also create Model Method nodes for model methods, which work the same as
application methods but are used to run in the Model Builder to extend or customize some part of a COMSOL
Multiphysics model.

C O N T E N T O F M E T H O D S

A Method node contains COMSOL Multiphysics® code and Java® code, which you can inspect and edit by
double-clicking it in the Application Builder window or by right-clicking and selecting Edit. When a method is
opened, it appears in a method editor window.

The changes made to the code in an editor tab are stored in the Application Builder model when you close the tab
or after compiling the code. To compile and check the syntax of the code, click the Check Syntax button () in
the ribbon toolbar (or press F9).

The code defines an ApplicationMethod Java class. This class has a method called execute that the command
sequence calls when the application runs it. A typical use case is that you create a Method node, write some code in
the execute method, and link this code to a command sequence that a form object in the application’s user
interface can trigger. Methods that affect the state of form objects apply immediately.

The default setting is to only display the code contained inside the execute method. To display all code, enable
the View all code check box, which is a preference setting in the Methods section of the Preferences dialog box.

When the execute method is triggered while running the application, model is the model object of the application.
From this method, you can access features of the physics and change their parameters.
152 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

The Application Builder Window

The Application Builder window is a window that, by default, is placed at the left end of the desktop when you are
using the Application Builder. The tree contains nodes for all components (forms, methods, files, and so on) in the
application.

Figure 4-1: The Application Builder window.

Double-clicking a method node in the tree opens its code in an editor tab. If the editor tab associated with the node
is already open, the tab is given focus. Right-clicking a node in the tree opens a context menu. This menu contains
an Edit option, which also opens the editor. The context menu also contains the standard options for a Model
Builder tree node, such as Move Up, Move Down, Copy, and Duplicate.

If the Link with Editor button () in the Application Builder window’s toolbar is selected, then just click a Method
node in the application tree to move the focus to its associated editor tab, if it is open.

Selecting a method node in the tree gives focus to the editor tab that is associated with the node, if the editor tab
is open. In the same way, if you click an editor tab to give it focus, the corresponding node is selected in the
Application Builder window.

The Method Windows

For each method, a method window contains the code for the method. You can enter the code manually, record
code from modeling steps, or insert code from the Model Code, Model Expressions, and Language Elements
windows. The method editor window uses syntax highlighting, which you can configure in the Preferences dialog
box (see Syntax Highlighting and Comments). In the method editor window, you can use the standard keyboard
shortcuts and a context menu to select, copy, cut, paste, and delete parts of the code. Triple-click in a line of code
or click the line number at the left of the method editor window to select the entire line of code.

The Method Toolbar

The Method contextual ribbon toolbar provides access to most of the functionality for creating, editing, and
debugging methods. It is available when a method editor window is active. This section briefly describes the
buttons in the Method toolbar.

T H E M A I N S E C T I O N

This section contains the following buttons for moving to various windows and creating new forms and methods:

• The Model Builder button (), to switch from the Application Builder to the Model Builder windows and the
standard COMSOL Desktop.

• The New Form button (), to create a new form using the New Form wizard. See Working with a Form and
Using the New Form Wizard.
O V E R V I E W | 153

• The New Method button (), to create a new Method node in the model and open its code in a new editor tab.
See The Method Nodes and Method Editor Windows.

• The Data Access button (), to add model-dependent data and properties, as well as application-specific
properties that can be modified from a running application through the data access functionality. See Data
Access.

• The Record Method button (), to create a new method by starting a recording session of operations on the
embedded model that you can later use as code in that method. When the recording starts, the button changes
to the Stop Recording button (), which you click to end the recording. See Recording Code.

• The Settings button (), to open or close the Settings window.

• The Preview button (), to show or hide the Preview window for a live preview of the forms and methods in
the application. In the Preview window, you can scroll to get a preview of all forms and methods in the
application, which can be useful, for example, if you are working on a method that interacts with a form. To show
a preview of a form in the Preview window, select a form or method node in the Application Builder window.

• The Editor Tools button (), to show or hide the Editor Tools window, where you can choose common
COMSOL Multiphysics model operations and insert them into a method or generate form objects based on
them. See Adding Model Code and Form Objects.

T H E L I B R A R I E S S E C T I O N

This section contains the following buttons for including external code and utility classes:

• The Utility Class button (), to create a new Utility Class node in the model and open its code in a new editor
tab. See The Utility Class Node.

• The External Java Library button (), to create a new External Java Library node in the model. See The External
Java Library Node.

• The External C Library button (), to create a new External C Library node in the model. See The External C
Library Node.

T H E E D I T S E C T I O N

The Edit section contains the following button:

• The Revert to Saved button (), to discard the changes made since the method was last saved and revert to the
saved version.

T H E C O D E S E C T I O N

This section contains the following buttons, which deal with the code more directly:

• The Language Elements button (), to show or hide the Language Elements window, where you can choose and
insert language elements into a method. See Adding Language Elements.

• The Model Expressions button (), to show or hide the Model Expression window, where you can choose and
insert COMSOL Multiphysics model expressions into a method. See Adding Model Expressions.

• The Check Syntax button (), to check the syntax for all of the methods that you have created. Syntax errors
and warnings in the methods appear in the Errors and Warnings window. See The Errors and Warnings Window.

• The Go to Node button (), to move to the node in the embedded model that corresponds to a model entity
in the selected source code. See Going to the Node to Which the Source Code Is Mapped.

• The Record Code button (), to start a recording session of operations on the embedded model that you can
later use as code in a method. When the recording starts, the button changes to the Stop Recording button (),
which you click to end the recording. See Recording Code.
154 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

• The Use Shortcut button (), to create a local member field variable to use as a shortcut in an expression of a
certain form. See Using Shortcuts.

• The Create Local Variable button (), to add a local variable and its type declaration in the method editor. See
Creating Local Variables and Their Type Declarations.

T H E D E B U G S E C T I O N

This section contains buttons for debugging methods. See Debugging and Running Methods for Applications. The
buttons include:

• The Continue button (), to continue debugging a method after stopping at a breakpoint

• The Step button (), to step forward in a method

• The Step Into button (), to step into another method or utility method

• The Stop button (), to force the current method to stop

• The Debug Log button (), to open the Debug Log window

T H E B R E A K P O I N T S S E C T I O N

This section contains the following buttons for removing and disabling all breakpoints:

• The Remove All button (), to remove all breakpoints in all methods

• The Disable All button (), to disable or enable all breakpoints in all methods

T H E T E S T S E C T I O N

This section contains the following tools for testing the application:

• The Test Application button (), to launch the application in a separate window so that you can test it. See
Testing the Application.

• The Apply Changes button (), to compile and apply code changes to the running application (so-called hot
code swap). See Applying Changes to a Running Application.

• The Test in Web Browser button (), to test the application in a web browser. See Testing the Application.

T H E V I E W S E C T I O N

The View section contains the following buttons for rearranging the views in the Application Builder desktop
window:

• The Tile () and Move To () buttons, to rearrange the windows in the Application Builder. Select Tile
Vertically (), Tile Horizontally (), or Stack () from the Tile list to arrange the windows. You can also
choose a window () from the Move To list that is not in focus and move the current window to the same pane
(when you have several tiled window panes).

• The Reset Desktop button (), to reset the desktop layout to the default state.

The Method Nodes and Method Editor Windows

The Method nodes () contain user-defined methods. There are three types of methods:

• Global methods, which are available globally within an application and, by default, also as methods in the Model
Builder.

• Form methods, which are available within a form only and cannot be used in the Model Builder.

• Local methods for events, for example. Such local methods cannot be used in the Model Builder and their inputs
and outputs cannot be changed.
O V E R V I E W | 155

To add a new Method node, right-click the main Methods node, for a global method, or the Methods node under a
Form node, for a form method, and choose New Method. You can also choose Global Method or Form Method from
the New Method button in the Method toolbar (Form Method is only active if there is an active form editor). In the
New Method dialog box that opens, type a label for the method in the Name field.

Also, commands to be run, such as for buttons, can be converted to a global method, form method, or, in most
cases, local method.

Methods within an application provide functionality connected to buttons, windows, and other components
created using the Application Builder.

Methods used in the Model Builder can directly modify the model object represented by the Model Builder in the
current session. Such methods can be used, for example, to automate modeling tasks that consist of several manual
steps, possibly in connection with settings forms. Methods used in the Model Builder are global methods.

To edit the method, double-click the method node, or right-click it and choose Edit (). An editor window
opens, where you can edit the code for the method. Depending on the View all code preference setting, you see just
the method declarations or the full class. In the editor, you can highlight part of the code and right-click to cut,
copy, paste, and delete it. You can also use the standard keyboard shortcuts such as Ctrl+C to copy, Ctrl+A to select
all code in the editor window, and the Delete button. The code extends a Java class called ApplicationMethod
that only requires one method with the following signature:

public void execute() {
model.physics("es").feature("ccn1").set("ConstitutiveRelationD", 1,

model.modelData().getString("dielectricModel"));
}

This method can perform any operations available to the COMSOL Multiphysics API. There are a number of
methods and members available through the extended class, the most important of which is the model object
accessible as the member model. The code example above reads a data field named dielectricModel from the
application’s own data (in an Electrostatics interface) and sets it to a parameter of a physics feature in the embedded
model.

See The Method Node for information about the inputs and outputs that you can add in the Settings window for
method nodes (not local methods).

The Utility Class Node

The Utility Class node () contains a utility class with methods that you can call from other methods. To add a
new Utility Class node, right-click the Libraries node () and choose Utility Class or click the Utility Class button
in the ribbon toolbar. Enter the name of the utility class in the Name field.

A utility class makes it possible to share Java code between methods in your applications and to copy
implementations between applications. You can call methods declared in your utility class from any other method
in your application. To edit the utility class code, double-click the Utility Class node, or right-click it and choose
Edit (). An editor window opens, where you can edit the code for the utility class. Depending on the View all

code preference setting, you see just method declarations or the full class.

As an example, consider the following method, which builds all geometries in the application:

public static void runAllGeom() {
model.geom().run();

}

156 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

The name of the utility class must be the same as the tag of the utility class node. Suppose that the Utility Class node
is named util1. You would call the method above by typing util1.runAllGeom(); in any other method.

If you enable the View all code preference setting, the code editor shows that the utility class extends an abstract
base class called ApplicationLanguageBase. This inheritance makes it possible to access the model object (as
exemplified above) and use other convenience methods. You can also remove this inheritance to make classes that
you can instantiate and even extend another utility class or other accessible class. The package of the utility class is
builder, and you are advised to keep this name.

The External Java Library Node

Use the External Java Library node () to import compiled Java libraries that you want to include in a method.
The Java libraries (JAR files) can be created with any third-party Java development tool. To add a new External Java

Library node, right-click the Libraries node () and choose External Java Library or click the External Java Library
button in the ribbon toolbar. Enter a label to display in the Label field.

The Settings window for an External Java Library node contains the following section:

I M P O R T L I B R A R Y

In the Filename field, enter the name of the Java library file that you want to import, or click Browse to locate and
choose a Java library file (JAR file). Then click Import to import the library into the application. During the import,
the JAR file is copied into the application. When you save the application, it contains a copy of the entire JAR file.
Also, import statements for packages declared in the JAR file are added to the source code of all existing and future
methods and utility classes in the application, and all Java code in the application is recompiled, with the added JAR
file on the class path.

When compiling code in the future, the JAR file is on the class path.

If you delete the External Java Library node, the program updates all Java source code to exclude imports defined
by the JAR file and recompiles all Java code in the application.

The External C Library Node

Use the External C Library node () to import a compiled native code library based on, for example, C code that
you want to include in a method. To add a new External C Library node, right-click the Libraries node () and
choose External C Library or click the External C Library button in the ribbon toolbar. Enter a label to display in the
Label field and a name for the external C library in the Name field.

You can import native libraries that are written in any programming language and compiled for the target platform
of your application. This can be useful, for example, to access specific hardware (such as measurement devices)
attached to the computer or to speed up heavy calculations. The methods you want to call must follow the C
language calling convention for the specific platform. Many programming languages can produce methods that
fulfill this requirement.

If you change the name of the utility class, you need to update the source code so that the name of the
utility class matches the tag. Otherwise, the code does not compile.

To use an updated version of the library, click the Import button again. Because the application contains
a copy of the library, it is not sufficient to update only the original JAR file.
O V E R V I E W | 157

In the Settings window, expand the sections corresponding to the platforms you intend to support, and then browse
and select the shared libraries you want to import. On the Windows® operating system, the file extension of a
shared library is typically DLL, on Linux® the extension is typically so, and on macOS it is typically dylib. Click
the Reload button if you have changed the file in the file system and want to import the new version into the
application. Click the Edit button to select a different file to import into the application.

The Settings window for an External C Library node contains the following sections.

I M P O R T L I B R A R Y F O R W I N D O W S , 6 4 - B I T

This section is expanded by default. Click Browse to locate and choose a compiled native code library file (DLL file)
for 64-bit Windows®.

I M P O R T L I B R A R Y F O R L I N U X , 6 4 - B I T

Click Browse to locate and choose a compiled native code library file (.so file) for 64-bit Linux®.

I M P O R T L I B R A R Y F O R M A C O S , 6 4 - B I T

Click Browse to locate and choose a compiled native code library file (dylib file) for 64-bit macOS.

L O A D I N G

By default, the Allow loading on unsupported platform check box is selected so that it is possible to load the shared
libraries on platforms that they do not support. On such a platform, an error occurs when you try to access the
library from a method. If you clear the check box, you get an error message directly if you try to start the application
on an unsupported platform, and the application does not start.

Using External C Libraries

To use a library in your application, you need to call it from a method or utility class. Use the
External external(String libraryTag) method available in the ApplicationMethod class or the
ApplicationLanguageBase class to return an object of type External with the following methods.

The syntax could be:

length = external("native1").invoke("stringLength", "MyObject");

which assumes a C function declared as int stringLength(char *str). Alternatively, you could use the
following code:

External library = external("native");
seven = library.invoke("sum", 3, 4);
two = library.invoke("sum", 3, -1);
library.close();

which assumes a C function declared as int sum(int a, int b). The latter syntax is more efficient if you need
to make several calls to the same library.

TABLE 4-1: METHODS FOR THE EXTERNAL OBJECT

METHOD DESCRIPTION

long invoke(String method, Object...
arguments)

Invokes the named native method in the library with the
supplied arguments. Strings are converted to char *. Returns
the value returned by the method.

long invokeWideString(String method,
Object... arguments)

Invokes the named native method in the library with the
supplied arguments. Strings are converted to wchar_t *.
Returns the value returned by the method.

void close() Releases the library and frees resources. If you do not call this
method, it is automatically invoked when the external library is
not needed any longer.
158 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

S U P P O R T E D A R G U M E N T T Y P E S

Methods can have up to six arguments and may (optionally) return an integer (or native pointer) value, which is a
64-bit value on 64-bit platforms. In Java, the return value is always a long.

Not all argument types are supported, and some restrictions apply. In particular, float arguments are converted to
double arguments. The native function must not be declared with float arguments. If you need to transfer data of
the float type, you can instead use a float array, which is supported.

For array types, the external function can modify the values in the supplied array. The updated values are transferred
back to the Java program. Note that it is not possible for the callee to change the size of a transferred array. The
caller and callee are responsible for communicating the size, by using an extra argument or by a convention. If the
callee writes or reads memory outside the allocated buffer, the program behavior is undefined but may include an
abrupt program exit. Note that for the double array types, only values may be modified, not any pointers.

For arguments of type String[], the program can modify a pointer in the array of pointers to point to a new
null-terminated string, which is transferred back to Java. The maximal allowed length of a string is 65,535
characters. Use a byte array to transfer larger amounts of data. It is possible to return a null value to Java by setting
the corresponding element in the string array to 0.

More complex types need to be serialized on the Java side to a byte array, which can be deserialized by the callee.

The external function can return an integer (int) or a pointer to some internal object (void *). In Java, this value
is returned as a long value, which is sufficiently wide to hold a 64-bit memory address. If you need a String or a

TABLE 4-2: SUPPORTED ARGUMENT TYPES

JAVA TYPE C/C++ TYPE REMARKS

boolean bool

byte char

char wchar_t System dependent. 32 bits on Linux and macOS, 16 bits on Windows.

short short

int int

long long long

String const char * or
const whcar_t *

The version you get on the C side depends on which version of the invoke
interface you use. The string is null terminated and must not be modified.
Compare the remark for wchar_t above.

float double The argument is automatically extended to double precision.

double double

boolean[] bool *

byte[] char *

short[] short *

int[] int *

int[][] int **

long[] long long * No restriction on any platform.

String[] char ** or
wchar_t **

String[] arguments can be used to transfer strings back to Java. Compare the
remarks for String above.

float[] float *

double[] double *

double[][] double **
O V E R V I E W | 159

double as the return value, you must instead pass an array of length one and the right type, which can be filled in
by the external function.

Debugging
It may be possible to use a native code debugger (like Microsoft® Visual Studio®) when working with applications.
First, you need to build the library with debug symbols. Then, import this library into the application, and attach
the debugger to the COMSOL Multiphysics process. Put a break point in the native function that you want to
debug. Run or test run the application in COMSOL Multiphysics. When the software loads the external library,
the debugger should be able to match the source code where you put your breakpoint with the loaded library and
to break when the function is called. Refer to the documentation of your native debugging system for further
details.

Notes and Tips For Using External Libraries
• Be very careful when accessing memory from your native code. You can easily corrupt the memory of the entire

application, which causes undefined behavior or crashes.

• You need to provide separate libraries for each platform you intend to support with the application, but it is not
necessary for a specific application to support all platforms supported by COMSOL Server. Currently, the
supported platforms are Windows 64-bit, Linux 64-bit, and macOS 64-bit, in all cases using the AMD64
architectures.

• Most compilers create shared libraries that depend on a runtime environment provided by other shared libraries
that are distributed with the compiler. You must make sure that the appropriate runtime environment is installed
on the intended target computers.

• If the native code library you want to use is too complex to fit inside a single shared library (DLL, so, or dylib),
you need to deploy the library separately on the target computer (using a custom installer). Then, the application
will contain a small wrapper library that calls the complex library. Technically, it may be possible to include the
entire installer of the complex library inside a large but simple library with a method that installs the complex
library, provided no system administrator rights are required.

E X A M P L E O F A N E X T E R N A L F U N C T I O N

The following steps show an example of how to create and import a library and then call it in methods.

1 Create the library.

The source code below defines a trivial external function written in C++, which you want to call. The #ifdef
statement is intended to make the source code cross-platform compatible, but writing a shared library typically
involves compiler-specific settings, so you may need to consult the documentation of your compiler. The header
file, test.h, is as follows:

// test.h : Declares the exported function
#ifdef _MSC_VER
#define TESTDLL_API __declspec(dllexport)

#else
#define TESTDLL_API __attribute__((__visibility__("default")))

#endif
extern "C" {
TESTDLL_API int testSum(int a, int b);

As the application creator, you need to ensure that the right type of arguments are given in the right
order. There are no checks and making a mistake can easily crash the program or cause undefined
behavior. In particular, when working with integer and floating-point arguments, you need to take
extra care. A function declared as sum(int a, int b) must be invoked by invoke("sum", 1, 2),
whereas a function declared as sum(double a, double b) must be invoked by invoke("sum", 1.0,
2.0).
160 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

}

The function definition, test.cpp, looks like:

// test.cpp : Defines the exported function for the library
#include "test.h"

// This is an example of an exported function.
TESTDLL_API int testSum(int a, int b) {
return a + b;

}

Using the gcc compiler, type something like this in the command shell:

gcc -shared -o test.so -fPIC test.cpp

If you are using a graphical C++ build environment, like Microsoft Visual Studio, it is probably easiest to insert
the code above into a DLL project.

2 Import the library.

Add an External C Library node, with tag native1, and import the library created in Step 1 for the right platform.

3 Calling methods:

Add a Method node and insert the following code into the Execute Method body:

long sum = external("native1").invoke("testSum", 1, 2);
alert("1 + 2 = " + sum);

Add a button to the form, and choose the method added above as the command to execute. If you are building
the application on the same platform the library is built for, you can click Test Application to test the method.
Otherwise, save the application and run it in a COMSOL Multiphysics session on the correct platform. In any
case, when you press the button in the application window, you should see a dialog stating a truism.

File Schemes and File Handling

T R A N S F E R R I N G F I L E S F R O M S E R V E R T O C L I E N T

To transfer files from a COMSOL Server to the client application, do not add any File node under Declarations, and
follow these steps:

1 Write the data to temp:///output.data, for example.

2 Add temp:///output.data as the argument to a downloadtoclient action.

For assistance when defining the argument for the downloadtoclient action, click the Edit Argument button ()
to open an Edit Argument dialog box (see Editing Initial Values and Arguments in Declarations and Command
Sequences), where you can choose one of the file schemes below from the File scheme list. You then specify the
filename (such as output.data) in the Filename field. For the embedded:/// file scheme, choose an existing file in
the application from the list under Choose an application file resource. Click OK to close the dialog box and fill the
Arguments field with the selected file scheme and filename.

F I L E S C H E M E S

Anywhere in the model or application where a file path is given that would normally refer to a file on the client file
system, you can instead use a scheme syntax such as <scheme>:///... to refer to a file that should be taken from
O V E R V I E W | 161

somewhere else on the server. The following table includes the available schemes and where the files exist when
running from the Application Builder and COMSOL Server.

Files saved to the temp scheme do not persist between multiple runs of the same application, even for the same user.
Files saved to the user scheme persist and can be accessed by the same user, even for other applications. Files saved
to the common scheme persist and can be accessed by all users for all applications.

You can modify the default locations separately using the following preferences settings.

U R I S Y N T A X

File scheme strings are uniform resource identifiers (URIs) as defined by RFC 2396 (http://www.ietf.org/rfc/
rfc2396.txt). In addition to what is allowed by RFC 2396, the file schemes allow any nonreserved Unicode
characters in the path segments. This means that spaces do not need to be escaped in file and directory names.
Sequences of escaped octets (for example, %20) are decoded as UTF-8. Currently, the file schemes do not use the
authority component; that is, they are always on the form <scheme>:///<path> with three initial slashes.

Getting Files to and from the Client File System

The Application Builder provides some ways of getting files to and from the client file system when running an
application. The following ways of getting files work both when running the web client and when running the
native client.

• Use the file import form object (see File Import) to ask the user for a file. The user browses to a file on the client
file system that is then uploaded to the server and available to the application and its methods. This method can
be used, for example, to provide a CAD file or experimental data from the user at runtime.

TABLE 4-3: FILE SCHEMES

SCHEME REFERS TO DEFAULT PATH IN
APPLICATION BUILDER

DEFAULT PATH ON COMSOL
SERVER

embedded:/// Files embedded in the model using file
libraries (read only).

Inside the MPH-file Inside the MPH-file

upload:/// Files that are uploaded to file
declarations.

user:/// or
temp:/// depending
on target

user:/// or
temp:/// depending on
target

temp:/// Files in a random temporary directory,
which is unique for each started
application instance.

Random subdirectory
of %TEMP% or /tmp

Random subdirectory of
.comsol/v55server/
service/users/
[username]

common:/// Files in a directory shared by all users and
applications.

In .comsol/v55/
applications/
files/common

In .comsol/
v55server/
applications/files/
common

user:/// Files in a directory shared by all
applications for the current user.

In .comsol/v55/
applications/
files/user

In .comsol/
v55server/
applications/files/
users/[username]

TABLE 4-4: DEFAULT LOCATION PREFERENCES

SCHEME APPLICATION BUILDER PREFERENCE COMSOL SERVER PREFERENCE

temp:/// Files>Folder for temporary files Files>Folder for temporary files

common:/// Files>Folder for common files Files>Folder for application library files

user:/// Files>Folder for user files Files>Folder for application user files
162 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

• You can call the fileOpen function from any application method. It picks any file from the server produced by
a method, the model, or embedded with the application and opens it using the associated application on the
client. This method can be used, for example, to open a PDF document on the client or show a text file or an
image exported from the model on the client.

• It is also possible to call the fileSaveAs function from any application method in a way that is similar to
fileOpen. It takes any file from the server and presents a Save As dialog box where the user can browse to a client
location to save the file. A call to fileSaveAs is typically preceded by some code that exports the file contents
to the source for the fileSaveAs command. This method is similar to downloading files from a link within a
web browser.

• The Save Application As and Save Application on Server As commands are available in the command sequence
tree for buttons and menu items in a form. These commands present a Save As dialog box where the user can
specify a client path where the entire application is saved. If the application is run on COMSOL Server, these
commands save the current state as a new application in the COMSOL Server Application Library.
O V E R V I E W | 163

C r e a t i n g Me t hod s

The following sections describe the tools for writing code and creating methods:

• Syntax Highlighting and Comments

• Code Completion and Tooltip Help

• Code Folding

• Adding Language Elements

• Adding Model Expressions

• Adding Model Code and Form Objects

• Going to the Node to Which the Source Code Is Mapped

• Recording Code

• Using Shortcuts

• Calling Other Methods Directly

• Using Properties Defined in Declarations as Variables

• Searching and Finding Text

• Indentation and Whitespace Formatting

• Brace Matching

See also the COMSOL Multiphysics Programming Reference Manual for information about the built-in methods
for working with the model object available in COMSOL Multiphysics (listed there except for physics interfaces).

Syntax Highlighting and Comments

Different language elements in the methods’ code are displayed using different styles. As an example, consider the
following code snippet.

The code snippet include three styles:

• Keywords (for, int, and so on) appear using a blue boldface font.

• String literals appear using a red font.

• The remainder of the code appears using a black font.

You can configure the syntax highlighting theme in the Preferences dialog box. Choose File>Preferences>Methods
to see the preferences that are specific for methods. Under Syntax highlighting, the Theme list contains two
predefined themes: Modern (the default) and Classic. Choose User defined to define a syntax highlighting mode
where the colors can be assigned to individual parts of the code, such as keywords, numbers, strings, and language
elements. Click the color chooser for each part of the code to choose a color from the color palette that opens.
Click the Define Custom Colors button to add additional colors that are defined using RGB values.
164 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

A D D I N G C O M M E N T S

You can add comments to the code by preceding the comment by //. You can toggle comments on and off for a
selected line using the shortcut Ctrl+7 or by right-clicking in the method window and choosing Toggle

Comment.

Code Completion and Tooltip Help

C O D E C O M P L E T I O N

When typing Java code in a method editor window, it is possible to request suggestions for completions of partial
code. The list of possible completions are shown in a separate completion list that opens. In some situations,
detailed information appears in a separate window when an entry is selected in the list. Code completion can always
be requested with the keyboard shortcut Ctrl+Space (or Ctrl+/). It appears automatically when you type a period
because you typically want to choose between the available methods when accessing a field.

The Application Builder supports the following types of completion suggestions.

New statements: A simple example is hitting Ctrl+Space without having entered anything, as shown below.

The completion list contains the member fields (for example, appFeat or model) and member methods (for
example, callGuiCommand) that can be called. You can select a completion in two ways:

• Using the arrow keys to select an entry in the list and pressing the Tab key to confirm the selection.

• Typing some text. The list is automatically updated so that only the completions that begin with the text are
kept. For example, if you type appF, then only appFeat remains. You can then press Tab to confirm the selection.

Partial statements: If you enter the beginning of a variable, field, or method name and press Ctrl+Space, the
suggested completions are shown.

Only variables that match the prefix ra are shown. This example shows that local variables also appear in the
completion suggestions.
C R E A T I N G M E T H O D S | 165

Class members: If you enter a variable or expression that resolves to a known Java class for the model object, then
you can get completion suggestions for the members in the class, as shown below.

This completion also works for chains of calls, as shown below.

Class members in assignments and declarations: In assignments and variable declarations, the expected type can
be used to filter the list of completions. Only completions that have the same type declared on the left side of the
assignment statement are shown.

Tags in the model object: When the expression to complete can be resolved to a concrete entity in the embedded
model, completions are available for the methods in the model object API that take a first argument that is a tag in
a list, as shown.

The list above comes from an application whose embedded model contains two plot groups (pg1 and pg2). The
completion list contains both the tags and the names of the corresponding plot groups. To transfer only the tag to
the code, choose a completion in the list and then press Tab.
166 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Types in the model object when creating new entities: When the expression to complete can be resolved to a
concrete entity in the embedded model, completions are available for operation types in the model object when
creating a new node.

Property names: When the expression to complete can be resolved to a concrete entity in the embedded model,
completions are available for property names used as first arguments to the get and set operations. These are
available for most features in the model object.

The example above shows the properties that are available for the plot group pg1 in the embedded model. If you
select an entry in the list, you see the property’s description and its data type. When available, you may also see a
link to the documentation and a set of allowed values. The allowed values appear if the set of allowed values is a
finite array of strings.

Property values: When the expression to complete can be resolved to a concrete entity in the embedded model,
completions are available for property values used as second arguments in the set operations that are available for
most features in the model object.

If you select an entry in the list, you see the property value’s description and a link to the documentation, if
available.
C R E A T I N G M E T H O D S | 167

T O O L T I P S F O R C O D E I N T H E M E T H O D E D I T O R

When hovering over different parts of the code for a method, tooltips appear to provide information about that
part of the code. The following tooltips appear for different parts of the code:

Property Names
When you hover over a property name for a model or application object property, you get information about the
property, similar to what you see for the property when code completion is used. For example, if you hover over
numerical in model.result().numerical("gev1").setResult();, you see the following tooltip.

Model Entities
If you hover over the same property’s model entity name, "gev1" in this case, you see the following tooltip with
information about the purpose of the model entity.
168 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Declarations
For variables defined under Declarations in the Application Builder tree, the variable’s description appears as the
tooltip when you hover above them. In this case, it is the string variable inXpolRatio.

Shortcuts
For shortcuts to form objects, also defined under Declarations, the description and the corresponding Java code
appear in the tooltip. In this case, it is for the shortcut with the name labelinXpolRatio.

P R E F E R E N C E S F O R C O D E G E N E R A T I O N A N D C O M P L E T I O N

In the Methods part of the Preferences dialog box, you can specify options for code generation and completion.

The Close brackets automatically check box is selected by default. The software then automatically inserts a
corresponding closing bracket if you type a {, [, or (character. Clear the check box to disable the addition of
closing brackets.
C R E A T I N G M E T H O D S | 169

The Generate compact code using 'with' statements check box is selected by default. The generated code uses with
statements to set a target to use with the coming calls to set(), setIndex(), getString(), and so on, which
makes the code more compact. Clear the check box if you prefer to use the full code without the use of with
statements.

Code Folding

By default, the methods’ editor windows provide code folding, which makes it possible to selectively hide and
display sections of the code in the editor. You can use code folding to manage methods that include a lot of code
by viewing only those sections of the code that are relevant at any given time.

Click the − (minus) button to hide (fold) that code segment or the + (plus) button to display the code segment.
When folded, put the cursor at the box with an ellipsis (…). A tooltip then displays the hidden code.

Figure 4-2: A method editor window before folding some of the code segments.

Figure 4-3: The same method after folding some of the code segments.

To turn off code folding, open the Preferences dialog box. On the Methods page, clear the Enable code folding check
box under Settings.
170 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Adding Language Elements

The Language Elements window includes common language constructs and templates for performing common
operations, such as creating arrays, or for blocks, which you can insert into a method. You can also add string
utilities, variable declarations and conversions, progress information and error messages, file handling, user interface
components, code for sending emails, and other useful language elements. Double-click to insert an expression, or
right-click and choose Insert Template (). Use the search field at the top to filter the list of available constructs
and templates.

Some actions use the current editor selection in the template — for example, putting the current selection within
the Multiline comment template. The part of the template that you are most likely to change is selected or the cursor
is positioned there.

Adding Model Expressions

The Model Expressions window includes COMSOL Multiphysics expressions that you can insert into a method
editor window for use with results or equation features in a method. For example, you can insert x (the
x-coordinate) in model.result().numerical("gev1").set("expr", "x"). Double-click an expression to
insert it, or right-click and choose Insert Expression. The program inserts the expression at the cursor in the method
editor window.

Figure 4-4: The full view of the available model expressions.
C R E A T I N G M E T H O D S | 171

Use the search field at the top of the window to filter the list of expressions. For example, the following figure shows
the list of expressions where si occurs:

Figure 4-5: A filtered view of the available model expressions.

The inserted expressions and functions are strings enclosed within quotation marks (for example, "sigma_const"),
unless the insertion point is already within a string. The reason for the string format is to make it clear that the
inserted expressions are model expressions and not code.

Adding Model Code and Form Objects

The Editor Tools window provides code for common model operations (for example, setting all nondefault
properties of a feature) and options to create applicable form objects corresponding to a model operation.

E D I T O R T O O L S

When you work in a method editor, you can insert the code at the cursor position in a method editor window.
Right-click a tree node in the Editor Tools window, choose from the actions applicable to that node in the model,
click one of the corresponding buttons underneath the tree, or double-click or press Enter to insert the top action
on the tree node’s context menu.
172 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Figure 4-6: Use the context menu to insert code into the current method.

The following actions are available in the method editor (not all actions are applicable to all nodes):

• Get (), to insert code to get the value of a parameter, property, or filename (for example,
model.param().get("w") or
model.component("comp1").geom("geom1").feature("r1").getDouble("rot")), or to insert a
reference to the feature (for example, model.geom("geom1").feature("r1")).

• Set (), to insert code to set the value of a parameter, property, or filename (for example,
model.param().set("w", 0); or
model.component("comp1").geom("geom1").feature("r1").set("rot", "0");).

• Set All (), to insert code to set all nondefault properties of a feature.

• Create (), to insert code to create the feature (for example,
model.component("comp1").geom("geom1").create("r1", "Rectangle");).

• Run (), to insert code to run the feature (for example, model.sol("sol1").run();).

• Enable () or Disable (), to insert code to enable or disable the feature (for example,
model.component("comp1").geom("geom1").feature("r1").active(true); to enable that feature).

• Edit Node (), to select that node under the Model branch in the main desktop’s Application Builder window
and open its Settings window for editing. You can also click the Edit Node button () at the top of the Editor

Tools window.

F O R M E D I T O R T O O L S

When you work in a form editor, you can insert form objects corresponding to an action or display for a selected
item in the tree. Right-click a tree node and choose among the different form objects or collection of form objects,
click one of the corresponding buttons underneath the tree, or double-click to insert the top option on the tree
node’s context menu.

The following actions are available in the form editor (not all actions are applicable to all nodes):

• Input (), to insert a Text Label, Input Field, and (if applicable) Unit object to display the name and an input
field for a model parameter or a variable under Declarations.
C R E A T I N G M E T H O D S | 173

• Output (), to insert a Text Label and Data Display object to display the name and value of a model parameter
or variable, or for a variable under Declarations.

• Graphics (), to insert a Graphics object for a plot group, geometry, or mesh.

• Button (), to insert a Button object for a file or view command or to create a report, for example.

Going to the Node to Which the Source Code Is Mapped

If you click the Go to Node button () in the Method ribbon toolbar, then the source code at the cursor is mapped
to an entity in the embedded model. If possible, the corresponding entity is shown in the Editor Tools window. This
window is opened automatically if it is not already open. You can also right-click the code and select Go to Node
when you are positioned on a part of the code that refers to the embedded model.

As an example, suppose that you enter the following code:

Position the cursor somewhere on feature and click Go to Node. You get the following effect:

If you move the cursor to somewhere on result and click Go to Node, then the Electric Potential plot group is
selected instead in the Editor Tools window.

Recording Code

This action makes it possible to insert code based on modifications of the embedded model. Put the insertion point
where you want to insert the actions, click Record Code (), perform the actions in the Model Builder window, and
then click Stop Recording () in the Method toolbar’s Code section. The recorded code then appears directly in the
174 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

method editor window. For example, if you update the size settings for a Rectangle geometry object, as in the
following figure the recorded code for that action appears in the method editor window.

When recording code, a red dot on a Method node indicates the method where the recorded code appears and a
red frame surrounds the method editor window for that method.

R E C O R D I N G A N E W M E T H O D

For convenience, there is also an action in the Home ribbon toolbar (as well as in the Method toolbar), in the Main
section, for creating a new method and starting the recording. Click Record Method (); enter a name for the new
method in the Name field and choose a type of method — Application method (the default) or Model method — from
the Method type list of the Record Method dialog box; perform the actions that you want to record; and then click
Stop Recording (). In principle, you do not need to see any code to record a method. If a method editor window
is open, the recorded code appears directly, just as when using Record Code above. When you record a new
method, a red frame surrounds the Model Builder and Application Builder windows in the COMSOL Desktop to
indicate that code recording is active.

Using Shortcuts

If you click Use Shortcut () in the Method ribbon toolbar (or press Ctrl+K), the method editor checks the source
code at the cursor. If it corresponds to an expression of a certain form, a Use Shortcut dialog box appears, where
you can enter the name of the shortcut in the Name field. Click OK to add the shortcut to the list in the Settings
window of the Shortcuts node and to replace the source code that is represents with that shortcut. If there is more
than one possible expression in the selected source code, a Select Expression dialog box appears, where you can select
the part to extract from the Extract list. The expression must correspond to a model entity that is currently included
in the embedded model.
C R E A T I N G M E T H O D S | 175

For example, enter the code in the following figure and position the cursor on the first occurrence of feature.

Click the Use Shortcut button to transform the source code into what is shown in the following figure.

The expression corresponding to the feature part of the source code has been replaced by the shortcut mslc1,
which is defined as Results/pg1/mslc1.

If you click the Use Shortcut button when the cursor is not at an expression of a supported type, an error message
appears. The expression form that is supported typically occurs when the model object API is used; for example, a
sequence of method invocations on an object such as

<variable name> [. <method name> (<method arguments (optional)>)]

Creating Local Variables and Their Type Declarations

If you have declared a local variable but does not know its type, you can click the Create Local Variable button ()
(or press Ctrl+1) to insert the correct type declaration. If the local variable is also missing, a unique local variable
is created along with its type declaration. For example, if you type

x = model.component("comp1").geom();

and then click the Create Local Variable button, the variable’s type declaration is added:

GeomList x = model.component("comp1").geom();

If you only added model.component("comp1").geom(), a unique local variable name is also added:

GeomList var3 = model.component("comp1").geom();
176 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Calling Other Methods Directly

Suppose that the application contains the methods method1 and method2. You can call a method by using its name
directly in the Java code. This is equivalent to calling callMethod(), which is declared in the superclass
ApplicationMethod (for this example, it is method16):

package builder;

import com.comsol.api.*;
import com.comsol.model.*;

public class method16 extends ApplicationMethod {

public void execute() {
// The following two lines are equivalent:
method2();
callMethod("method2");

}

}

To open the other method’s editor window, Ctrl+Alt+double-click the method name in the code (method2, for
example), or right-click and choose Go to Method ().

Using Properties Defined in Declarations as Variables

For each node under Declarations that corresponds to a data type (String, Boolean, and so on), corresponding
variables are available for use in the Java code. With some exceptions, they behave like ordinary Java variables. As
an example, suppose that there is a declaration of the string property myprop in a node under Declarations. The
following code assigns it a value (for this example, it is method16):

package builder;

import com.comsol.api.*;
import com.comsol.model.*;

public class method16 extends ApplicationMethod {

public void execute() {
myprop = "bar";

}

}

Searching and Finding Text

Press Ctrl+F to open a Find tool that you can use to search for text, and replace it if needed, in methods. In the Find
tool, you can click All to search the entire application, including user interface components, model entity tags,
operation identifiers, and labels. For example, searching for method also finds all methods, including all local
methods, in addition to finding all occurrences of the text Label. Click Methods to find and optionally replace a
string in methods.

You can also type a string to replace the search string within the Replace with text field.

Under Find in methods, click Current to search only in the current method, or click All to search all methods. Under
Direction, click Forward or Backward to control the search direction in the method. Select the Case sensitive check
box to make the search case sensitive (the search string must match the text exactly, including uppercase and
lowercase characters).
C R E A T I N G M E T H O D S | 177

Click Find Next to find the next occurrence of the search string. Click Replace to replace it with the string in the
Replace with text field. Click Replace All to search and replace all occurrences of the search string with the string in
the Replace with text field.

Click the Find All button to launch the search and display the search results in a Find Results window, where each
occurrence of the search string appears in a row. Double-click the row to highlight the search result in the method
where it occurs. The Method column lists the method where the search string appears, the Line column lists the line
where the string appears, and the Text column shows the text in which the search string appears.

Click the Refresh button () in the top-left corner of the Find Results window to perform the search or
search-replace action again and refresh the contents of the Find Results window.

Indentation and Whitespace Formatting

To format the code in a method so that the code uses the correct indentations and whitespace formats, press Tab,
or right-click in the method editor and select Indent and Format (). The formatting and insertion of whitespaces
applies to the selected part of the method’s code or to the current line if no code is selected. By default, indentation
and whitespace formatting also happen automatically when the keyboard focus leaves the method editor window.
You can specify if you want indentation and formatting to be applied automatically when leaving the method editor
window using the Indent and format automatically check box on the Methods page in the Preferences dialog box. The
formatting is the same as that used for the automatically generated code that you can record in the Model Builder.
The following list includes the most common whitespace rules:

• There is no space after a left parenthesis or before a right parenthesis.

• There is no space between a function name and the left parenthesis or between with and the left parenthesis.

• There is a space after keywords such as if, while, for, and catch.

• There is a space before and after operators, such as =, ==, <=, *, +, %, &&, and ||.

• There is a space after semicolon characters, but not before.

• There is no trailing whitespace on lines that contain at least one non-whitespace character.

To indent the currently selected lines without whitespace formatting, press Shift+Tab.

To increase or decrease indentation, regardless of the code formatting, use Ctrl+Alt+i to increase indentation and
Shift+Ctrl+Alt+i to decrease indentation.

Brace Matching

The method editor recognizes matching sets of braces (square brackets, curly braces, or parentheses) and highlights
both matching braces when you click to select one of them. Use the following keyboard shortcuts to navigate
between matching braces and to select the contents within braces:

• Ctrl+M, to move the cursor between matching braces

• Ctrl+Shift+M, to select the entire range of text between two matching braces
178 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

Debugg i n g and Runn i n g Me t hod s f o r App l i c a t i o n s

Running Methods

You can run methods directly from the Application Builder for testing and debugging, for example. To do so,
right-click a Method node in the Application Builder tree and choose Run (). The method is then run in the
Application Builder environment.

Indication of Compilation Errors

If there is a compilation error in a method, the method node shows a red cross:

Figure 4-7: The frequency method contains some compilation errors. The other methods have no errors.

If there is a compilation error in a local method for a form object, the local method icon shows a red cross.

Figure 4-8: Indication that the local method for this input field contains code that caused compilation errors.

Open the method in a method error to see which lines of code that show a compilation error. The incorrect code
is underlined, and a tooltip indicates the type of problem when you hover over the underlined code.

Debugging Tools

The Application Builder includes some tools for debugging the code in methods used by an application or in a
model as model methods. This functionality is available from the Debug and Breakpoints sections of the Method

ribbon toolbar.

You can mark lines of code where the test run of an application should pause. This might be useful to, for example,
make sure that a method really enters an if-statement or to make sure that a method actually ran. You can mark a
line of code in this way by adding a breakpoint to a line by clicking in the margin to the left of the line numbers.
The margin is then marked with a red dot that indicates the breakpoint. Note that clicking next to an empty line
will not add a breakpoint — the line has to contain a statement for the breakpoint to make sense.

Figure 4-9: A method editor window with a breakpoint at line 4.

To remove a breakpoint, click it again. All breakpoints can be removed in one action by using the Remove All ()
button in the Breakpoints section of the Method ribbon tab. Sometimes, it is convenient to make the test run of an
D E B U G G I N G A N D R U N N I N G M E T H O D S F O R A P P L I C A T I O N S | 179

application ignore the existing breakpoints. In this case, you can disable all breakpoints using the Disable All ()
toggle button. Disabled breakpoints are indicated by an empty red circle.

Figure 4-10: A disabled breakpoint on line 4 in the editor for method2.

If you run a method during the test run of an application, the method editor window is open, and the method has
an enabled breakpoint, then the method will stop running on the line of the breakpoint. The entire line then
becomes highlighted in yellow, and the Continue (), Step (), and Step Into () buttons are enabled in the
Debug ribbon tab. The Continue and Step buttons are only available when the debugger is paused.

Figure 4-11: The debugger is stopped at a breakpoint, and the Continue and Step buttons are available. The code uses
a debugLog method to print debugging information to the Debug Log.

If you click the Continue button (or press F5), the method continues to run until it completes or reaches another
breakpoint. If you click the Step button (or press F6), the method continues to run until the next line, where it
stops again, giving you the options to continue or step. The Step Into button works in the same way as the Step
button. However, if the line contains a call to another method or utility method, clicking Step Into (or pressing F7)
then takes you to the first line in that method instead of continuing to the next line in the current method. There
is also a Stop button (), which is available when you start to run a method. Clicking it forces the current method
to stop. It can be useful if you want to stop the debugging run immediately or if the method runs into an endless
loop, for example.

Often, it is useful to print messages that indicate that a line of code has been reached or to print the value of a certain
object. You can do this using the debugLog method. There are debugLog methods that take a String, double,
int, or boolean, or 1D or 2D array (matrix) types of these objects as input. These methods print a message to the
Debug Log window. You can control the visibility of the Debug Log view using the Debug Log () button in the
Method ribbon tab.

The Errors and Warnings Window

Compilation or syntax errors and warnings in methods appear in the Errors and Warnings window, which displays
the current number of errors and warnings at the top. Click the Check Syntax button () in the Method toolbar
180 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

or press F9 to perform a syntax check and display any errors and warnings. In the table below, errors and warnings
appear with the method and line where they occurred under Method and Line, respectively. Under Message, you will
find information about the particular error or warning. Double-click a warning or error to highlight the code where
it occurs in the corresponding method’s editor window.

Handling Runtime Errors in Methods

When you run a method in an application, runtime errors can occur. Such errors might not be discovered during
a syntax check or compilation. When such an error occurs, an Error window appears and provides information about
the type of error. Click Details to get additional information, including the name of the class and method, the line
number, and a link to the method so that you can debug it in its editor window.

Stopping a Running Method

When testing an application, a method may take a very long time to complete or contain an endless loop. You can
stop running a method when testing applications by pressing Ctrl+Pause.
D E B U G G I N G A N D R U N N I N G M E T H O D S F O R A P P L I C A T I O N S | 181

182 | C H A P T E R 4 : W O R K I N G W I T H M E T H O D S

I n d e x

A About dialog box 27

activation condition 49

Application Builder window 64, 153

Application Libraries window 15

application tree 14

Applications folder 15

applications, compiling 20

arranging form objects 70

Array Input form objects 124

array syntax 42

B background images 36

for cards 120

Boolean values 43

brace matching 178

breakpoints, adding 179

browser, for file import 120

Button objects 80

C canceling progress 107

Card form objects 118

Card Stack form objects 116

cards

adding 117

background images for 120

Check Box form object 87

choice lists 48

code completion 165

code folding 170

code, for model operations 172

columns and rows, in grid 74

Combo Box form objects 89

commands to run 29, 32, 39, 80, 84, 142

comments, in code 165

comparing applications 18

compilation error, indicating 74

compiler (node) 20

compiling applications 20

context menu, for form objects 70

continue and step, when debugging 180

copy forms, between applications 19

copying form objects 69–70

D data access 67

Data Display form objects 97

Debug Log window 180

debugging code 179

declaration of local variables 176

deleting form objects 70

desktop layout

resetting 155

displaying progress 107

dragging

to copy form object 69

duplicating form objects 70

E Editor Tools window 172

emailing COMSOL 8

Equation form objects 94

Excel files, saving to 111, 139

external c/c++ libraries 157

external Java libraries 157

extracting a subform 73

F file (node) 50

File Import form objects 120

file schemes 161

files

getting to and from file system 162

filters, for checking user inputs 77

Find Results windows 178

Find tool 177

finding text 177

folding, of code 170

Form Collection form objects 114

form methods 155

form name 64

Form objects 113

form objects

arranging 70

Array Input 124

Card 118

Card Stack 116

Check Box 87

Combo Box 89

Data Display 97

Equation 94

File Import 120

Form 113

Form Collection 114

Graphics 99

Hyperlink 146

Image 104

Information Card Stack 122

Input Field 76

Line 96

List Box 135

Log 108
I N D E X | 183

Message Log 110

overview of 75

Progress Bar 107

Radio Buttons 127

Results Table 111

Selection Input 130

Slider 143

Spacer 149

Table 138

Text 132

Text Label 92

Toolbar 147

Unit 93

Video 105

Web Page 103

Form ribbon toolbar 64

form title 64

Form toolbar 67

form windows 64

formatting, of methods 178

forms 34

preview of 34

G global methods 155

graphics commands 66

graphics data 51

Graphics form objects 99

grid

for sketching 35

resizing 73

grid lines

showing 70

snapping to 70

grid mode 70

rows and columns in 74

H Hyperlink form objects 146

I Image form objects 104

images, as background 36

importing files, command for 39, 81, 85, 142

indentation 178

information nodes, as source 76, 97, 133

Informations Card Stack form objects 122

Input Field form objects 76

input fields

checking inputs 77

inputs, to methods 55

Internet resources 8

K knowledge base, COMSOL 9

L Line form objects 96

List Box form objects 135

local methods 55, 155

local methods vs. global methods 152

local variables, declaration of 176

Log form objects 108

M main window, of application 26

matching, of brackets 178

Message Log form objects 110

method editor, tooltips in 168

Method node 155

Method toolbar 153

methods

as commands 74

inputs and output 55

local 55

local vs. global 152

running from Application Builder 179

running in form objects 74

searching and replacing text in 177

show in Model Builder 55

stopping 181

types of 155

model commands 66

model progress 107

O object shortcuts 51

on data change, event for 80

output, from methods 55

P parentheses matching 178

placement, of About link 27

preview of form layout 64

preview, of forms 34

Progress Bar form objects 107

progress bars 107

progress, for model 107

R Radio Button form objects 127

refreshing search 178

regular expressions, for input checking 78

replacing text, in methods 177

resizing the grid 73

Results Table form objects 111

RFC 2396 file scheme 162

rows and columns, in grid 74

S searches, refreshing 178

searching for text 177

searching text 177

selecting entire lines of code 153

selecting form objects

in sketch mode 69
184 | I N D E X

Selection Input form objects 130

selections

directly in graphics 100

using a Selection Input 130

settings windows 14

shortcuts

adding 51

using in methods 175

size, of grid 74

sketch mode 69

Slider form objects 143

snap zone 35, 119

Spacer form objects 149

stopping running applications 181

string arrays, syntax for 42

subform, extracting 73

T Table form objects 138

technical support, COMSOL 8

testing forms 74

Text form objects 132

Text Label form objects 92

tiled or tabbed layout 114

title, of application 26

Toggle Button objects 83

Toolbar form objects 147

toolbars

Form 67

Method 153

tooltips, in method editor 168

tooltips, in ribbons 29, 31

transferring files to client 161

U uniform resource identifiers 162

Unit form objects 93

unit sets 50

utility classes 156

V valid Boolean values 43

Video form objects 105

View section 155

W web browser

testing apps in 60

Web Page form objects 103

websites, COMSOL 9

whitespace formatting 178

windows

rearranging 155

Z zoom to extents 100
I N D E X | 185

186 | I N D E X

	Contents
	Chapter 1: Introduction
	About the Application Builder 8
	Overview of the Manual 10

	Chapter 2: Application Builder Tools
	Introduction 13
	Starting the Application Builder 14
	Overview of the Application Builder 16
	Compiling Applications 20
	Creating Add-ins 22
	The Inputs Branch 24
	The Main Window Branch 26
	The Forms Branch 34
	The Events Branch 38
	The Declarations Branch 41
	The Methods Branch 55
	The Libraries Branch 56
	Planning and Preparing an Application 58
	Creating Applications from Models 59
	Keyboard Shortcuts 61

	Chapter 3: Working with Forms
	Introduction 64
	The Form Objects 75

	Chapter 4: Working with Methods
	Overview 152
	Creating Methods 164
	Debugging and Running Methods for Applications 179

	Introduction
	About the Application Builder
	What Can You Do with the Application Builder?
	Accessing the Documentation
	Contacting COMSOL by Email
	COMSOL Websites

	Overview of the Manual

	Application Builder Tools
	Introduction
	Starting the Application Builder
	Launching the Application Builder
	Opening the Application Builder from the COMSOL Desktop
	Application Examples in the Application Libraries

	Overview of the Application Builder
	The Application Builder and the Application Tree
	The Home Toolbar
	The Main Section
	The Inputs section
	The Events Section
	The Declarations Section
	The Libraries Section
	The Main Window Section
	The Test Section
	The Compare Section
	The View Section

	Cutting, Copying, Duplicating, Deleting, and Pasting Components
	Copying Application Components Between Applications

	Compiling Applications
	Compiling Applications Using the COMSOL Compiler
	Output
	Appearance
	Physics Builder

	Creating Add-ins
	Overview
	Add-in Definition
	Add-in
	Protection
	Presentation

	Form Definition
	Description

	Method Definition
	Description

	The Inputs Branch
	The Application Argument Node
	Source
	Help Text

	The Main Window Branch
	The Main Window Node
	General
	Main Form
	Size
	About Dialog

	The Menu Bar Node
	The Toolbar Node
	The Menu Node
	The File Menu Node
	The Ribbon Node
	The Ribbon Tab Node
	The Ribbon Section Node
	The Item Node
	Choose Commands to Run

	The Toggle Item Node
	Source
	Choose Commands to Run

	The Separator Node

	The Forms Branch
	The Forms Node
	Appearance

	The Form Node
	Size
	Margins
	Dialog Settings
	Section Settings
	Sketch Grid
	Grid Layout for Contained Form Objects
	Appearance
	Events

	The Events Branch
	The Events Node
	Events

	The Event Node
	Source for Data Change Event
	Choose Commands to Run

	The Declarations Branch
	Array Syntax
	The String Node
	List of Variables

	The Boolean Node
	List of Variables

	The Integer Node
	List of Variables

	The Double Node
	List of Variables

	The Array 1D String Node
	List of Variables

	The Array 1D Boolean Node
	List of Variables

	The Array 1D Integer Node
	List of Variables

	The Array 1D Double Node
	List of Variables

	The Array 2D String Node
	List of Variables

	The Array 2D Boolean Node
	List of Variables

	The Array 2D Integer Node
	List of Variables

	The Array 2D Double Node
	List of Variables

	The Choice List Node
	List Contents

	Activation Condition
	Source
	Condition

	The File Node
	File Location

	The Unit Set Node
	Unit Groups
	Unit Lists

	The Graphics Data Node
	Initial Values
	Initial Values for 3D Geometry Source

	Adding Shortcuts
	List of Shortcuts

	Editing Initial Values and Arguments in Declarations and Command Sequences

	The Methods Branch
	The Methods Branch
	The Method Node
	Inputs and Output

	The Libraries Branch
	Images
	List of Images
	Preview

	Sounds
	List of Sounds

	Files
	List of Files

	Add-in
	Import Add-in

	Form
	Method

	Planning and Preparing an Application
	Preparing an Application

	Creating Applications from Models
	Copy as Code to Clipboard
	Testing the Application
	Applying Changes to a Running Application

	Keyboard Shortcuts

	Working with Forms
	Introduction
	Overview of the Forms and Tools for Creating Forms
	Working with a Form and Using the New Form Wizard
	Data Access
	The Form Toolbar
	The Main Section
	The Forms Section
	The Layout Section
	The Sketch Section
	The Grid Section
	The Test Section
	The View Section

	The Form Window Layout Modes
	Opening Other Form windows From A Form Window
	Dragging and Copying Form Objects

	The Sketch Mode
	Adding and Selecting Form Objects
	Showing Grid Lines and Snapping to the Grid
	Arranging Form Objects

	The Grid Mode
	Adding and Selecting Form Objects
	Copying, Duplicating, Cutting, and Deleting Form Objects
	Moving A Form Object
	Row and Column Settings
	Inserting and Removing Rows and Columns
	Aligning Form Objects
	Adjusting the Size of a Form Object
	Merging and Splitting Cells
	Extracting a Subform
	Resizing the Grid and the Form
	Changing the Grid Size

	Previewing and Testing the Form
	Running Local Methods in Form Objects

	The Form Objects
	Overview of the Form Objects
	Input Field
	Source
	Data Validation
	Position And Size
	Appearance
	Events

	Button
	Choose Commands to Run
	Dialog Actions
	Position And Size
	Appearance

	Toggle Button
	Source
	Choose Commands to Run
	Position And Size
	Appearance

	Check Box
	Source
	Position and Size
	Appearance
	Events

	Combo Box
	Source
	Choice List
	Position and Size
	Appearance
	Events

	Text Label
	Position and Size
	Appearance

	Unit
	Position and Size
	Appearance

	Equation
	Equation
	Position and Size
	Appearance

	Line
	Position and Size
	Appearance

	Data Display
	Source
	Number Format
	Position and Size
	Appearance

	Graphics
	Source for Initial Graphics Content
	Target for Data Picking
	Appearance
	Toolbar
	Position and Size

	Web Page
	Source
	Appearance
	Position And Size

	Image
	Position and Size
	Appearance

	Video
	Position and Size
	Appearance

	Progress Bar
	Appearance
	Position and Size

	Log
	Position and Size
	Appearance

	Message Log
	Position and Size
	Appearance

	Results Table
	Source
	Position and Size
	Appearance

	Form
	Position and Size

	Form Collection
	Tiled or Tabbed
	Active Pane Selector
	Panes
	Position and Size
	Appearance

	Card Stack
	Active Card Selector
	Cards
	Appearance
	Position and Size

	Card
	Card Activation
	Margins
	Sketch Grid
	Grid Layout for Contained Form Objects
	Appearance

	File Import
	File Destination
	Position and Size
	Appearance
	Events

	Information Card Stack
	Active Information Card Selector
	Information Cards
	Position and Size
	Appearance

	Array Input
	Source
	Layout Options
	Position and Size
	Appearance
	Events

	Radio Button
	Source
	Choice List
	Position And Size
	Appearance
	Events

	Selection Input
	Source
	Graphics to Use When Active
	Position and Size
	Appearance

	Text
	Source
	Position and Size
	Appearance
	Events

	List Box
	Source
	Choice List
	Position and Size
	Appearance
	Events

	Table
	Sources
	Toolbar
	Position and Size
	Appearance
	Events

	The Edit Custom Toolbar Item Dialog Box
	General
	Source
	Choose Commands to Run

	Slider
	Source
	Unit
	Appearance
	Position and Size
	Events

	Hyperlink
	Position and Size
	Appearance

	Toolbar
	Toolbar Items
	Position and Size
	Appearance

	Spacer
	Position and Size

	Working with Methods
	Overview
	Opening a Method Editor Window
	Coding and Methods Overview
	Local Methods vs. Global Methods
	Content of Methods

	The Application Builder Window
	The Method Windows
	The Method Toolbar
	The Main Section
	The Libraries Section
	The Edit Section
	The Code Section
	The Debug Section
	The Breakpoints Section
	The Test Section
	The View Section

	The Method Nodes and Method Editor Windows
	The Utility Class Node
	The External Java Library Node
	Import Library

	The External C Library Node
	Import Library for Windows, 64-Bit
	Import Library for Linux, 64-Bit
	Import Library for macOS, 64-Bit
	Loading

	Using External C Libraries
	Supported Argument Types
	Example of an External Function

	File Schemes and File Handling
	Transferring Files from Server to Client
	File Schemes
	URI Syntax

	Getting Files to and from the Client File System

	Creating Methods
	Syntax Highlighting and Comments
	Adding Comments

	Code Completion and Tooltip Help
	Code Completion
	Tooltips for Code in the Method Editor
	Preferences for Code Generation and Completion

	Code Folding
	Adding Language Elements
	Adding Model Expressions
	Adding Model Code and Form Objects
	Editor Tools
	Form Editor Tools

	Going to the Node to Which the Source Code Is Mapped
	Recording Code
	Recording a new Method

	Using Shortcuts
	Creating Local Variables and Their Type Declarations
	Calling Other Methods Directly
	Using Properties Defined in Declarations as Variables
	Searching and Finding Text
	Indentation and Whitespace Formatting
	Brace Matching

	Debugging and Running Methods for Applications
	Running Methods
	Indication of Compilation Errors
	Debugging Tools
	The Errors and Warnings Window
	Handling Runtime Errors in Methods
	Stopping a Running Method

	Index

