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Introduction

This guide describes the Structural Mechanics Module, an optional add-on
package that extends the COMSOL Multiphysics® modeling environment with
customized physics interfaces that solve problems in the fields of structural and
solid mechanics, including special physics interface for modeling of shells,

membranes, beams, plates, and trusses.

This chapter introduces you to the capabilities of this module and includes a
summary of the physics interfaces as well as information about where you can find
additional documentation and model examples. The last section is a brief overview
with links to each chapter in this guide.

¢ About the Structural Mechanics Module

e Overview of the User’s Guide
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About the Structural Mechanics
Module

In this section:

e Why Structural Mechanics is Important for Modeling

¢ What Problems Can It Solve?

e The Structural Mechanics Module Physics Interface Guide
¢ Common Physics Interface and Feature Settings and Nodes
e Geometry Levels for Study Capabilities

e Where Do I Access the Documentation and Application Libraries?

The Physics Interfaces and Building a COMSOL Multiphysics Model in
a the COMSOL Multiphysics Reference Manual

Why Structural Mechanics is Important for Modeling

The Structural Mechanics Module solves problems in the fields of structural and solid
mechanics, adding special physics interfaces for modeling shells and beams, for

example.

The physics interfaces in this module are fully multiphysics enabled, making it possible
to couple them to any other physics interfaces in COMSOL Multiphysics or the other
modules. Available physics interfaces include:

* Solid mechanics for 2D plane stress and plane strain, axial symmetry, and 3D solids
¢ Beams in 2D and 3D, Euler and Timoshenko theory

e Truss and cable elements

* Shells and plates, Mindlin theory

¢ Membranes

The module’s study capabilities include static, eigenfrequency, time dependent

(transient), frequency response, buckling, and parametric studies.
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There are several material models:

* Linear Elastic Materials can be isotropic, orthotropic, or fully anisotropic, and you

can use local coordinate systems to specify material properties.
* Linear Viscoelastic Materials
¢ DPiezoelectric Material

* Magnetostrictive Materials are available when used together with the AC/DC

module.

* Material models for hyperelasticity, metal plasticity, creep, viscoplasticity, nonlinear
elasticity, soil plasticity, concrete, rocks, and clay are available with the optional
Nonlinear Structural Materials Module and Geomechanics Module.

Large deformations as well as contact and friction, can also be modeled.

Coupling structural analysis with thermal analysis is one example of multiphysics easily
implemented with the module, which provides predefined multiphysics couplings for
thermal stress and other types of multiphysics. Piezoelectric materials, coupling the
electric field and strain in both directions are fully supported inside the module
through special multiphysics couplings solving for both the electric potential and
displacements. Structural mechanics couplings are common in simulations done with
COMSOL Multiphysics and occur in interaction with, for example, fluid flow
(fluid-structure interaction, FSI), chemical reactions, acoustics, electric fields,

magnetic fields, and optical wave propagation.

What Problems Can It Solve?

The Structural Mechanics Module contains a set of physics interfaces adapted to a
broad category of structural-mechanics analysis. The module serves as an excellent tool
for the professional engineer, researcher, and teacher. In education, the benefit of the
short learning curve is especially useful because educators need not spend excessive
time learning the software and can instead focus on the physics and the modeling

process.

The module is a collection of physics interfaces for COMSOL Multiphysics that
handles static, eigenfrequency, transient, frequency response, parametric, transient
thermal stress, and other analyses for applications in structural mechanics, solid

mechanics, and piezoelectricity.

STATIC ANALYSIS

In a static analysis the load and constraints are fixed in time.

ABOUT THE STRUCTURAL MECHANICS MODULE
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EIGENFREQUENCY ANALYSIS
An eigenfrequency analysis finds the damped or undamped eigenfrequencies and mode
shapes of a structure. Sometimes referred to as the free vibration of a structure.

Prestress effects and damping can be taken into account.

TRANSIENT ANALYSIS
A transient analysis finds the transient response for a time-dependent model, taking
into account mass, mass moment of inertia. The transient analysis can be either direct,

or using a modal solution.

FREQUENCY RESPONSE ANALYSIS
A frequency response analysis finds the steady-state response to harmonic loads. The
frequency-response analysis can be either direct, or using a modal solution. Effects of

prestress can be included.

LINEAR BUCKLING STUDY
A linear buckling analysis uses the stiffness coming from stresses and material to
define an eigenvalue problem where the eigenvalue is a load factor that, when

multiplied with the actual load, gives the critical load in a linear context.

PARAMETRIC ANALYSIS
A parametric analysis finds the solution dependence due to the variation of a specific

parameter, which could be, for instance, a material property or the position of a load.

THERMAL STRESS
In a transient thermal stress study, the program neglects mass effects, assuming that the
time scale in the structural mechanics problem is much smaller than the time scale in

the thermal problem.

LARGE DEFORMATIONS

You can also enable geometric nonlinearity for all structural mechanics interfaces. The
engineering strain is then replaced with the Green-Lagrange strain and the stress with
the second Piola-Kirchhoff stress. To solve the problem, the program uses a tota/

Lagrangian formulation.

ELASTOPLASTIC MATERIALS
An clastoplastic analysis involves a nonlinear material with or without hardening.

Several isotropic and kinematic hardening models are available.

The material models allow large strains.

INTRODUCTION



The elastoplastic material models are available in the Solid Mechanics, Membrane, and

Truss interfaces.

CREEP AND VISCOPLASTIC MATERIALS
A number of different material models for creep and viscoplasticity are available. In

these materials the rate of elastic strain depends on the stress.

HYPERELASTIC MATERIALS
In hyperelastic materials the stresses are computed from a strain energy density
function. They are often used to model rubber and biological tissue, but are also used

in acoustic elasticity. Many different models are available.

The hyperelastic materials are available in the Solid Mechanics and Membrane

interfaces.

NONLINEAR ELASTIC MATERIALS
The nonlinear elastic materials are intended for materials that exhibit a nonlinear
behavior already at small strains. Some brittle material as well as soils show this

behavior.

VISCOELASTIC MATERIALS
Viscoelastic materials have a time-dependent response, even if the loading is constant.

The Viscoelasticity materials are available in the Solid Mechanics and Membrane

interfaces.
* Hyperelastic, elastoplastic, creep, viscoplastic and nonlinear elastic
material models are available with the Nonlinear Structural Materials
Module.
& * Additional functionality and material models for geomechanics and soil

mechanics—nonlinear elasticity, soil plasticity, concrete, rock, and clay

material models—is available with the Geomechanics Module.

CONTACT MODELING

You can model contact between parts of a structure. The Solid Mechanics interface
supports contact with or without friction. The two contact algorithms available are
based on the augmented Lagrangian and penalty methods. The contact models can

be augmented with adhesion and decohesion.
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The Structural Mechanics Module Physics Interface Guide

The Poroelasticity interface requires, and couple with, the Structural
4 Mechanics Module and is discussed in the Subsurface Flow Module
User’s Guide.

At any time, a new model can be created or physics interfaces added. Right-click the
Root (top) node and select Add Component or right-click a Component node and select
Add Physics.

Depending on the physics interface, specify parameters defining a problem on points,
edges (3D), boundaries, and domains. It is possible to specify loads and constraints on
all available geometry levels, but material properties can only be specified for the
domains, except for shells, membranes, beams, and trusses, where they are defined on
the boundary or edge level.

In the COMSOL Multiphysics Reference Manual:

e Studies and Solvers
'El * The Physics Interfaces

* For a list of all the core physics interfaces included with a COMSOL
Multiphysics license, see Physics Interface Guide.

PHYSICS INTERFACE ICON |[TAG SPACE AVAILABLE STUDY TYPE

DIMENSION

= Fluid Flow

Fluid-Solid Interaction2 _L — 3D, 2D, 2D stationary; stationary,

axisymmetric |one-way coupled; time
dependent; time
dependent, one-way
coupled

Fluid-Solid Interaction, _J_ — 3D, 2D, 2D stationary; time dependent
Fixed Geometry2 axisymmetric

CHAPTER I:
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PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION
Fluid-Shell Interaction? — 3D, 2D stationary; stationary,
axisymmetric |one-way coupled; time
dependent; time
dependent, one-way
coupled
Fluid-Shell Interaction, — 3D, 2D stationary; time dependent
Fixed Geometry2 axisymmetric
Fluid-Membrane ) — 3D, 2D stationary; stationary,
Interaction” axisymmetric |one-way coupled; time
dependent; time
dependent, one-way
coupled
Fluid-Membrane — 3D, 2D stationary; time dependent
Interaction, Fixed axisymmetric
Geometry
&5 Structural Mechanics
Solid Mechanics! &1 |[solid 3D, 2D, 2D stationary; eigenfrequency;
axisymmetric | eigenfrequency,
prestressed; mode analysis;
time dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; response
spectrum, linear buckling;
bolt pre-tension
Thermal Stress2 L] — 3D, 2D, 2D stationary; time dependent
axisymmetric
Joule Heating and Thermal | e |— 3D, 2D, 2D stationary; time dependent

Expansion

axisymmetric

ABOUT THE STRUCTURAL MECHANICS MODULE
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PHYSICS INTERFACE

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Shell

Plate

Beam

Beam Cross Section

shell

plate

beam

bcs

3D

2D

3D, 2D

2D

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; response
spectrum; linear buckling

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; response
spectrum; linear buckling

stationary; eigenfrequency;
frequency domain;
frequency domain, modal;
time dependent; time
dependent, modal; modal
reduced order model;
linear buckling

stationary
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PHYSICS INTERFACE

ICON

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Truss

Membrane

Piezoelectric Devices2

truss

mbrn

3D, 2D

3D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; response
spectrum; linear buckling

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; response
spectrum

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, prestressed,
modal; frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; modal reduced
order model; small-signal
analysis; ; linear buckling

ABOUT THE STRUCTURAL MECHANICS MODULE

29



30 |

PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION
Magnetostriction2 S 3D, 2D, 2D stationary; eigenfrequency;
=

axisymmetric

time dependent; frequency
domain; small-signal
analysis, frequency domain;
eigenfrequency,
prestressed; frequency
domain, prestressed

! This physics interface is included with the core COMSOL package but has added
functionality for this module.

2 This physics interface is a predefined multiphysics coupling that automatically adds all the
physics interfaces and coupling features required.

CHAPTER I:

Common Physics Interface and Feature Settings and Nodes

There are several common settings and sections available for the physics interfaces and
feature nodes. Some of these sections also have similar settings or are implemented in
the same way no matter the physics interface or feature being used. There are also some
physics feature nodes that display in COMSOL Multiphysics.

In each module’s documentation, only unique or extra information is included;
standard information and procedures are centralized in the COMSOL Multiphysics
Reference Manual.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for
links to common sections and Table 2-4 to common feature nodes.
n You can also search for information: press F1 to open the Help

window or Ctrl+F1 to open the Documentation window.

Geometry Levels for Study Capabilities

The column for the dependent variables shows the field variables that formulate the
underlying equations. Depending on the engineering assumptions and the geometry
dimension, these variables include a subset of the displacement field #, v, and w in the
global coordinate system, pressure, and temperature. The Shell and Plate interfaces use
as dependent variables the variables a;, a,, and a,, which are the displacements of the
shell normals in the global x, y, and 2z directions, respectively. Such variables can be
expressed in terms of customary rotations ¢y, ¢,, and ¢, about the global axes.

INTRODUCTION



For each physics interface, the table indicates dependent variables and the geometry
levels (where data such as material properties, loads, and constraints are specified).

Edges exist only in 3D geometries. Studies are listed in a separate table in The

Structural Mechanics Module Physics Interface Guide section.

E}‘ Studies and Solvers in the COMSOL Multiphysics Reference Manual
PHYSICS GEOMETRY LEVEL
INTERFACE

NAME DEPENDENT POINTS EDGES BOUNDARIES

VARIABLES

STRUCTURAL MECHANICS
Solid Mechanics  solid u, (p) y \ V
Shell shell u, a v v v
Plate (3 DOF) plate W, Gy a, y V
Plate (6 DOF) plate u,a \ \
Beam beam u, 0 y Xl
Truss truss u \ \/
Membrane mbrn u V \/ V
Thermal Stress n/a* w @), T \/ V
Joule Heatingand  n/a* u (p), T, N v N
Thermal \%4
Expansion
Piezoelectric n/a* wV V V Xl
Devices
Fluid Flow
Fluid-Structure fsi Ugolids V V V
Interaction Ufyig P
Fluid-Structure n/a* Ugolids l V l
Interaction, Ugyig P

Fixed Geometry

* These are multiphysics couplings that do not have names.
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Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including
licensing and technical information. The electronic documentation, topic-based (or
context-based) help, and the application libraries are all accessed through the
COMSOL Desktop.

Ifyou are reading the documentation as a PDF file on your computer,
the blue links do not work to open an application or content

n referenced in a different guide. However, if you are using the Help
system in COMSOL Multiphysics, these links work to open other

modules, application examples, and documentation sets.

THE DOCUMENTATION AND ONLINE HELP

The COMSOL Multiphysics Reference Manual describes the core physics interfaces
and functionality included with the COMSOL Multiphysics license. This book also has
instructions about how to use COMSOL Multiphysics and how to access the
electronic Documentation and Help content.

Opening Topic-Based Help

The Help window is useful as it is connected to the features in the COMSOL Desktop.
To learn more about a node in the Model Builder, or a window on the Desktop, click
to highlight a node or window, then press F1 to open the Help window, which then
displays information about that feature (or click a node in the Model Builder followed
by the Help button ( [§ ). This is called topic-based (or context) help.

To open the Help window:
¢ In the Model Builder, Application Builder, or Physics Builder click a node or
window and then press F1.

* On any toolbar (for example, Home, Definitions, or Geometry), hover the
Win mouse over a button (for example, Add Physics or Build All) and then

press F1.
* From the File menu, click Help ( [E )-

¢ Inthe upper-right corner of the COMSOL Desktop, click the Help ( [ )
button.

CHAPTER I:
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To open the Help window:

¢ In the Model Builder or Physics Builder click a node or window and then
press F1.

¢ On the main toolbar, click the Help ( [gJ ) button.

e From the main menu, select Help>Help.

Opening the Documentation Window

To open the Documentation window:

Win e Press Ctrl+F1.

¢ From the File menu select Help>Documentation ( u ).

To open the Documentation window:

¢ Press Ctrl+F1.

* On the main toolbar, click the Documentation ( || ) button.
Linux

¢ From the main menu, select Help>Documentation.

THE APPLICATION LIBRARIES WINDOW

Each model or application includes documentation with the theoretical background
and step-by-step instructions to create a model or app. The models and applications
are available in COMSOL Multiphysics as MPH files that you can open for further
investigation. You can use the step-by-step instructions and the actual models as
templates for your own modeling. In most models, SI units are used to describe the

relevant properties, parameters, and dimensions, but other unit systems are available.

Once the Application Libraries window is opened, you can search by name or browse
under a module folder name. Click to view a summary of the model or application and

its properties, including options to open it or its associated PDF document.

The Application Libraries Window in the COMSOL Multiphysics
E}‘ Reference Manual.
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Opening the Application Libraries Window
To open the Application Libraries window ( ﬂ]]] ):

* From the Home toolbar, Windows menu, click ([[[f] ) Applications
Libraries.
Win ¢ From the File menu select Application Libraries.
To include the latest versions of model examples, from the File>Help
menu, select (5] ) Update COMSOL Application Library.

To include the latest versions of model examples, from the Help menu

Select Application Libraries from the main File> or Windows> menus.

Linux select (,T[ﬂ ) Update COMSOL Application Library.

CHAPTER I:

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.

COMSOL ACCESS AND TECHNICAL SUPPORT

To receive technical support from COMSOL for the COMSOL products, please
contact your local COMSOL representative or send your questions to
support@comsol.com. An automatic notification and a case number are sent to you by
email. You can also access technical support, software updates, license information, and

other resources by registering for a COMSOL Access account.
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COMSOL ONLINE RESOURCES

COMSOL website
Contact COMSOL
COMSOL Access
Support Center
Product Download
Product Updates
COMSOL Blog
Discussion Forum
Events

COMSOL Video Gallery

Support Knowledge Base

www.comsol.com
www.comsol.com/contact
www.comsol.com/access
www.comsol.com /support
www.comsol.com/product-download
www.comsol.com/support,/updates
www.comsol.com/blogs
www.comsol.com,/community
www.comsol.com/events
www.comsol.com/video

www.comsol.com/support/knowledgebase
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Overview of the User’s Guide

The Structural Mechanics Module User’s Guide gets you started with modeling using
COMSOL Multiphysics. The information in this guide is specific to this module.
Instructions how to use COMSOL in general are included with the COMSOL
Multiphysics Reference Manual.

As detailed in the section Where Do I Access the Documentation and
Application Libraries? this information can also be searched from the Help
menu in COMSOL Multiphysics.

CHAPTER I:

TABLE OF CONTENTS, GLOSSARY, AND INDEX

To help you navigate through this guide, see the Contents, Glossary, and Index.

MODELING WITH THE STRUCTURAL MECHANICS MODULE
The Structural Mechanics Modeling chapter gives you an insight on how to approach
the modeling of various structural mechanics problems.

STRUCTURAL MECHANICS THEORY
The Structural Mechanics Theory chapter introduces the general theory on which the
physics interfaces in the Structural Mechanics Module are based.

THE SOLID MECHANICS INTERFACE
The Solid Mechanics chapter describes The Solid Mechanics Interface, which is used
to model 3D solids, plane strain and plane stress 2D models, and axisymmetric models.

THE SHELL AND PLATE INTERFACES

The Shell and Plate chapter describes The Shell and Plate Interfaces, which are used to
model thin 3D structures (shell) and out-of-plane loaded plates (plate). The
underlying theory is described in Theory for Shell and Plate Interfaces.

THE BEAM INTERFACE

The Beam chapter describes The Beam Interface, which contains Euler
(Euler-Bernoulli) and Timoshenko beams for modeling slender 3D and 2D structures.
Typical examples are frameworks and latticeworks. The underlying theory for the

physics interface is described in Theory for the Beam Interface.
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THE BEAM CROSS SECTION INTERFACE

The Beam Cross Section chapter describes The Beam Cross Section Interface, which
is used for computing cross section properties for beams. It can also be used for a
detailed evaluation of stresses in a beam when the section forces to which it is subjected
are known. The first section discusses Using the Beam Cross Section Interface, and the

underlying theory is described in Theory for the Beam Cross Section Interface.

THE TRUSS INTERFACE

The Truss chapter describes The Truss Interface, which models slender 3D and 2D
structures with components capable to withstand axial forces only. Typical applications
are latticeworks, but it can also be used for modeling cables. In the section Modeling
with Truss Elements, you will find a discussion about how to set up models using this
interface. The underlying theory for the physics interface is described in Theory for the
Truss Interface.

THE MEMBRANE INTERFACE
The Membrane chapter describes The Membrane Interface, which can be used for

prestressed membranes, cladding on solids, and balloons, for example. The underlying

theory for the physics interface is also included in Theory for the Membrane Interface.

THE MULTIPHYSICS INTERFACES
The Multiphysics Interfaces and Couplings chapter describes these physics interfaces
found under the Structural Mechanics branch when adding a physics interface:

e The Thermal Stress Interface combines a Solid Mechanics interface with a Heat
Transfer interface. The coupling appears on the domain level, where the
temperature from the Heat Transfer interface acts as a thermal load for the Solid

Mechanics interface, causing thermal expansion.

* The Joule Heating and Thermal Expansion Interface combines solid mechanics
using a thermal linear elastic material with an electromagnetic Joule heating model.
This is a multiphysics combination of solid mechanics, electric currents, and heat
transfer for modeling of, for example, thermoelectromechanical (TEM)
applications.

e The Piezoelectric Devices Interface combines a Solid Mechanics with an
Electrostatics interface. Piezoelectric materials in 3D, 2D plane strain and plane
stress, and axial symmetry can be modeled.

OVERVIEW OF THE USER’S GUIDE
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The Magnetostriction Interface combines a Solid Mechanics with a Magnetic Fields
interface. Using this interface you can solve problems in the magnetostrictive field

with linear as well as nonlinear material models.

The Fluid-Solid Interaction Interface, found under the Fluid Flow branch,
combines fluid flow with the Solid Mechanics interface to capture the interaction
between the fluid and the solid in a situation where the fluid domain has significant

deformation. The solid material exists on domains which are adjacent to the fluid.

The Fluid-Shell Interaction Interface, found under the Fluid Flow branch,
combines fluid flow with the Shell interface to capture the interaction between the
fluid and the solid in a situation where the fluid domain has significant deformation.
The shell is modeled on the boundary of the fluid.

The Fluid-Membrane Interaction Interface, found under the Fluid Flow branch,
combines fluid flow with the Membrane interface to capture the interaction
between the fluid and the membrane in a situation where the fluid domain has
significant deformation. The membrane is modeled on the boundary of the fluid.

The Fluid-Solid Interaction, Fixed Geometry Interface, found under the Fluid Flow
branch, combines fluid flow with the Solid Mechanics interface to capture the
interaction between the fluid and the solid in a situation where the fluid domain can
be considered to be non-deforming. The solid material exists on domains which are
adjacent to the fluid.

The Fluid-Shell Interaction, Fixed Geometry Interface, found under the Fluid Flow
branch, combines fluid flow with the Shell interface to capture the interaction
between the fluid and the solid in a situation where the fluid domain can be

considered to be non-deforming. The shell is modeled on the boundary of the fluid.

The Fluid-Membrane Interaction, Fixed Geometry Interface, found under the Fluid
Flow branch, combines fluid flow with the Membrane interface to capture the
interaction between the fluid and the membrane in a situation where the fluid
domain can be considered to be non-deforming. The membrane is modeled on the
boundary of the fluid.
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Structural Mechanics Modeling

The goal of this chapter is to give you an insight on how to approach the modeling
of various structural mechanics problems.

Some physics interfaces and features discussed in this chapter are only available with
certain products. For a detailed overview of the functionality available in each

product, visit http://www.comsol.com/products/specifications /
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In this chapter:

Study Types

Selecting the Physics Interface
Selecting Discretization

Coupling Different Element Types
Applying Loads

Defining Constraints

Calculating Reaction Forces
Introduction to Material Models
Modeling Piezoelectric Problems
Mechanical Damping and Losses
Modeling Geometric Nonlinearity

Contact Modeling
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Activating and Deactivating
Material

Springs and Dampers

Defining Multiphysics Models
Thermally Coupled Problems
Computing Mass Properties
Pretensioned Bolts

Performing a Response Spectrum
Analysis

Stress Linearization

Solver Settings

Part Libraries



Study Types

Introduction

In this section, you will find information about when and how to apply the study types
which are available for structural mechanics problems:
¢ Stationary Analysis

* Eigenfrequency Analysis

* Mode Analysis

¢ Time Domain Analysis

* Frequency Domain Analysis

* Modal Superposition

e Harmonic Perturbation

* Modal Reduced Order

* Linearized Buckling Analysis

* Bolt Pretension Study

* Response Spectrum Analysis Study

For general information about study types and solvers, see Studies and
Gl. Solvers in the COMSOL Multiphysics Reference Manual

Stationary Analysis

You can consider a structural mechanics problem as stationary if the following two
criteria are fulfilled:

* The loads vary so slowly that inertial forces are negligible. Problems of this type are

referred to as quasi-static.

* There are no explicit time dependencies in the material model. Viscoelasticity and

creep have such time dependences.

To perform this type of analysis, you use a Stationary study step.

STUDY TYPES | 4l
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In many cases, there is a variation in the load, even though the solution for each value
of the load can be considered as stationary. There are three conceptually different

cascs:

e The load values are independent; it is just a number of different load cases you want
to compute. The load case handling functionality described in Load Cases is well

suited for this purpose.

* You want to study a nonlinear problem where the solution is path dependent, or
where the load must be increased in small increments in order to obtain a converged
solution. In this case you should use the parametric continuation solver. Create a
parameter under Global Definitions>Parameters, which you use to control the
variation of the load. Then select Auxiliary sweep under Study Extensions in the
settings for the Stationary solver. In the table for the auxiliary sweep parameters, add

the load controlling parameter, and define its range of variation.

* In a multiphysics problem, another physical quantity might be truly
time-dependent, but on a time scale that is “slow” from the structural mechanics
point of view. This is usually the case with, for example, problems coupled to heat
transfer or diffusion. If the problem also is one-way coupled in the sense that the
structural deformations do not affect the other physics, it will be unnecessarily
expensive to solve also the structural problem in the time domain, irrespective of
whether it is linear or nonlinear. In this situation, you should first solve the other
physics in a time-dependent study, and then the structural mechanics problem in a
subsequent stationary study step using the time t as the parameter in the auxiliary
sweep.

CONSTRAINTS

A stationary problems is solvable only if the structure is sufficiently constrained. There
must not be any possible rigid body modes; thus no stress-free deformation states are
allowed.

For a more detailed discussion about sufficient constraints, see Rigid
@l Body Motion.

CHAPTER 2:

Eigenfrequency Analysis

An eigenfrequency study solves for the eigenfrequencies (natural frequencies) and the

shapes of the corresponding eigenmodes.

STRUCTURAL MECHANICS MODELING



When performing an eigenfrequency analysis, you can specify whether to look at the
mathematically more fundamental eigenvalue, A, or the eigenfrequency, f, which is
more commonly used in a structural mechanics context. The relation between the two
is

where i is the imaginary unit.

Because only the shape and not the size of the modes (eigenvectors) have physical
significance, the computed modes can be scaled arbitrarily. You can select the method
for scaling in the Eigenvalue Solver node of the solver sequence. Scaling of eigenvectors
is set to Mass matrix, the eigenmodes U are orthogonalized with respect to the mass
matrix M so that

U/MU, =1 2-1)

This is a common choice for the scaling of eigenvectors within the structural mechanics
field. The choice of eigenvector scaling does not affect for example the results of a
subsequent modal superposition analysis, but it will affect the interpretation of an

exported modal representation of the system.

MODAL PARTICIPATION FACTORS
Modal (or ‘mass’) participation factors are useful tools when working with the modal

representation of a structure. Through them, you can get the following information:

¢ The fraction of the total mass of a structure that a certain number of modes
represent is a result. This can be important when judging if a set of modes forms a
good enough base for a modal superposition.

¢ The main direction of vibration for a certain mode can be seen from the relation
between the participation factors.

e When you have a large set of modes, an examination of the participation factors can

give information about the dominant modes.

To compute modal participation factors, a Participation Factors node must be present
under Definitions in the current component. When you add an Eigenfrequency study

from the Add Study window, such a node is automatically created.

You can also add it manually under Definitions>Variable Utilities. If you do that after an
eigenfrequency study has been run, you need to do an Update Solution in order to get

access to the variables containing the participation factors.

STUDY TYPES
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The modal participation factors are available as global variables, and these can for

example be displayed in a table using a Global Evaluation node under Derived Values in
the Results branch. The participation factor results are available as predefined variables
in the Definitions submenu for the component. In Table 2-1, the variables created from

a Participation Factors node is listed (assuming the default tag mpf1).

TABLE 2-1: PARTICIPATION FACTOR VARIABLES

VARIABLE DESCRIPTION
mpf1.mass Total mass
mpf1.CMJ Center of mass, ] coordinate

mpf1.mEffLJ  Effective mass, translation along ] axis

mpf1.mEffRJ  Effective mass, rotation around ] axis

mpf.pfLJ Participation factor, translation along ] axis

mpf.pfRJ Participation factor, rotation around | axis
mpf.pfLnormJ Normalized participation factor, translation along J axis

mpf.pfRnormJ Normalized participation factor, rotation around J axis

The normalized participation factors are those which would be obtained if mass matrix
scaled eigenmodes would have been used.

If you would compute all eigenmodes of a structure, and sum all modal
masses, they will usually not exactly match the total mass of the structure.
The reason is that any mass which is associated with constrained degrees
of freedom is lost. This effect is discretization dependent. The mass lost

[

is a fraction of the mass of the elements having constrained nodes.

For an example showing how to compute modal participation factors and
modal mass, see In-Plane Framework with Discrete Mass and Mass
Moment of Inertin: Application Library path
Structural_Mechanics_Module/Verification_Examples/

ﬂ:ﬂ] inplane_framework_freq.

For an example showing an eigenfrequency computation in a model
having a rigid body mode, see Eigenfrequency Analysis of a Free
Cylinder: Application Library path Structural_Mechanics_Module/
Verification_Examples/free_cylinder.
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In the COMSOL Multiphysics Reference Manual:

* Eigenvalue Solver
* Studies and Solvers

E}‘ ¢ Derived Values, Evaluation Groups, and Tables
In the theory chapter of the Structural Mechanics User Guide:

* Modal Participation Factors

It is possible to compute eigenfrequencies for structures which are not fully
constrained; this is sometimes referred to as free-free modes. For each possible rigid
body mode, there is one eigenvalue which in theory is zero. The number of possible

rigid body modes for different geometrical dimensions is shown in the table below.

TABLE 2-2: NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES
3D 6 (3 translations + 3 rotations)
2D axisymmetric | (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + | rotation)
2D (plate) 3 (I translation + 2 rotations)

The computed rigid body modes will in general not be recognizable as having pure
translation or rotation. Rather, they will contain linear combinations of all the

fundamental rigid body motions.

In a piezoelectric model, one more zero eigenfrequency could appear if you have not

set a reference value for the electric potential.

In practice, the natural frequencies of the rigid body modes are not computed as
exactly zero, but can appear as small numbers which can even be negative or complex.
If rigid body modes are present in the model, then it is important to use a nonzero
value in the Search for eigenfrequencies around text field in the settings for the
Eigenfrequency study step. The value should reflect the order of magnitude of the first

important nonzero eigenfrequency.

DAMPING

If any type of damping is included in the model, an eigenfrequency solution
automatically returns the damped eigenvalues. The eigenfrequencies and, in general,
also the mode shapes are complex in this case. A complex-valued eigenfrequency can
be interpreted so that the real part represents the actual frequency, and the imaginary
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part represents the damping. The ratio between the imaginary and real parts of the
eigenfrequency is the relative damping of the corresponding eigenmode,

imag(®;)

i 7 real(,)

In a complex mode shape there are phase shifts between different parts of the
structure, so that not all points reach the maximum at the same time under free

vibration.

Some damping types will still give real valued eigenmodes, this is the case for Rayleigh
damping and loss factor damping.

PRESTRESSED ANALYSIS

In a loaded structure, the natural frequencies may be shifted due to stress stiffening.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the
Eigenfrequency study step. This is automatic when you add the Eigenfrequency,
Prestressed study type.

The prestress loading can include a contact analysis, in which case the subsequent

eigenfrequency analysis provide as linearization around the current contact state.

@t Prestressed Structures

Mode Analysis

The Mode Analysis study type(@) is available with the Solid Mechanics interface in
2D plane strain.

Elastic waves can propagate over large distances in structures like rails and pipes, with
a generic name referred to as waveguides. After some distance of propagation in a
waveguide of uniform cross section, such guided waves can be described as a sum of
just a few discrete propagating modes, each with its own shape and phase speed. The
equation governing these modes can be obtained as a spatial Fourier transform of the
linearized time-harmonic equation in the waveguide axial z direction or by inserting

the assumption that the mode is harmonic in space,
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and eliminating all out-of-plane z dependence.

Similar to the full time-harmonic equation, the transformed equation can be solved at
a given frequency with a nonzero excitation for most axial wave numbers k,. But at
certain discrete values the equation breaks down. These values are the propagation
constants or wave numbers of the propagating or evanescent waveguide modes. The
eigenvalue solver can solve for these propagation constants together with the

corresponding mode shapes.

. The propagating wave number is a function of the frequency. The relation
= between the two is commonly referred to as a dispersion curve.

The most common use for the Mode Analysis is to define sources for a subsequent
time-harmonic simulation. If there is a component with one or more waveguide
connections, its behavior can be described by simulating its response to the discrete set

of propagating modes on the waveguide opening cross sections.

¢ Out-of-plane and Circumferential Modes in the Structural Mechanics
Theory Chapter

* Studies and Solvers and Mode Analysis in the COMSOL Multiphysics
Reference Manual

Time Domain Analysis

There are two classes of problems where a stationary solution cannot be used:

e When the inertial forces no longer are negligible, the full problem as given by
Newton’s first law must be solved.

e When there are time dependencies in the material model, as for creep or

viscoelasticity.

The most general way of doing that is to use a Time Dependent study. In this type of
analysis, you can incorporate any type of nonlinearity, and there are no limitations on
the time dependence of the loads.

A time domain solution can be preceded by a stationary study, if for example prestress
effects are needed.

STUDY TYPES

47



48 |

For a linear problem including inertia, using the modal superposition method is often

much more efficient than using the standard direct method.

SOLVER SELECTION

The two classes of dynamic problems presented above have quite different properties.
The inertial forces in the full structural dynamics problem contain second-order time
derivatives of the displacements, whereas creep and viscoelasticity only have first-order
derivatives. The physical and numerical properties of these equations differ

significantly.

There are two general solvers for time-dependent problems in COMSOL
Multiphysics.

* The Generalized alpha method, which is recommended for structural dynamics
problems. This is the default solver if Structural Transient Behavior is sct to Include

inertial terms in the physics interface settings.

* The BDF method, which is recommended for the first-order problems. This is the
default solver if Structural Transient Behavior is sct to Quasi-static in the physics

interface settings.

In the COMSOL Multiphysics Reference Manual:

@l * Time-Dependent Solver

¢ Studies and Solvers

Frequency Domain Analysis

In a frequency domain analysis, you study the response to a harmonic steady state
excitation for certain frequencies. Such a steady state can prevail once all transient

effects have been damped out.

The response must be linear, so that the single frequency harmonic excitation gives a
pure harmonic response with the same frequency. The model may however contain
nonlinearities; the harmonic response is computed around a linearization point. In
such a case, the frequency domain analysis can be considered as a very small

perturbation around the linearization point.

@l Harmonic Perturbation
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All loads and responses are in general complex valued quantities. If not all loads have
the same phase, you can prescribe the phase of a certain in two ways:

* Add a Phase subnode to the load, in which you give the phase angle.

* Enter the load as a complex value, for example as

100[N]*(1+0.5%1) /sqrt(1.25).

Most results of a frequency domain analysis are complex. In results evaluation, the real
value of any result quantity will be shown. Assuming that you want to display for
example the displacement in the x-direction, u, you have following options:

e Plot u or real(u). This gives the displacement at zero phase angle.

* Dlot imag(u). This gives the displacement at a phase angle of 90 degrees.

* DPlot abs(u). This gives the amplitude of the displacement.

¢ Plot arg(u). This gives the phase angle of the displacement.

The reference phase, with respect to which the results above are reported.
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Result quantities that are nonlinear in terms of the displacements, such as principal
stresses, should be interpreted with great care. They will in general not be harmonic,

so the amplitude and phase information is not reliable.

Some extra variables for postprocessing are created in a frequency-domain
analysis. As an example, in the Solid Mechanics interface the following
variables are defined:

* solid.disp—Norm of displacement (at current phase angle)

* solid.vel—Norm of velocity (at current phase angle)

* solid.acc—Norm of acceleration (at current phase angle)

* solid.disp_rms—RMS displacement over a cycle

* solid.vel_rms—RMS velocity over a cycle

solid.acc_rms—RMS acceleration over a cycle

[

* solid.uAmpX—Amplitude of displacement in X direction

* solid.uAmp_tX—Amplitude of velocity in X direction

* solid.uAmp_ttX—Amplitude of acceleration in X direction
* solid.uPhaseXx—Phase of X displacement, in radians

* solid.uPhase_tX—Phase of X velocity, in radians

* solid.uPhase_ttX—Phase of X displacement, in radians

The components in other coordinate directions are obtained by replacing

X by another coordinate name.

PRESTRESSED ANALYSIS
The shift in the natural frequencies in a prestressed structure may have a significant
effect on the frequency response. This is particularly important when the frequencies

of the load are close to any of the natural frequencies of the structure.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the
Frequency Domain study step. This is automatic when you add the Frequency Domain,

Prestressed study type.
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The prestress loading can include a contact analysis, in which case the subsequent

frequency domain analysis provide as linearization around the current contact state.

e Prestressed Structures

Q .

Harmonic Perturbation

OBTAINING A TIME HISTORY

Sometimes you want to study the time history over a period for the results of a
frequency domain analysis. You can do that by adding a Frequency to Time FFT study
step. The frequency response results are then viewed as terms in a Fourier series, which
can be transformed to time domain. It is possible combine the results for several
frequencies into a single time history, under the assumption that they are all multiples

of the same fundamental frequency.

For an examples showing how to obtain a time history from frequency

domain results, see

* Viscoelastic Structural Damper: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency.
e Vibration Analysis of @ Deep Beam: Application Library path

Structural_Mechanics_Module/Verification_Examples/

vibrating_deep_beam.

Modal Superposition

Analyzing forced dynamic response for large models can be very time-consuming. You
can often improve the performance dramatically by using the modal superposition
technique. The following requirements must be met for a modal solution to be

possible:

* The analysis is linear. It is possible, however, that the structure has been subjected
to a preceding nonlinear history. The modal response can then be a linear
perturbation around that state.

* There are no nonzero prescribed displacements.

¢ The important frequency content of the load is limited to a range that is small when

compared to all the eigenfrequencies of the model, so that its response can be
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approximated with a small number of eigenmodes. In practice, this excludes wave
and shock type problems.

¢ Ifthe modal solution is performed in the time domain, all loads must have the same

dependency on the time.

When using the Structural Mechanics Module, there are four predefined study types

for modal superposition:

e Time Dependent, Modal
* Frequency Domain, Modal
¢ Time Dependent, Prestressed, Modal

e Frequency Domain, Prestressed, Modal

The two first of these study types consist of two study steps: One step for computing
the eigenfrequencies and one step for the modal response. The two latter have three
study steps. Before the eigenfrequency step, you solve a static load case in order to get

a prestress state used in the eigenfrequency computation.

In practice, you have often computed the eigenfrequencies already, and then want to
use them in a modal superposition. In this case, start by adding an empty study, and
then add a Time Dependent, Modal or Frequency Domain, Modal study step to it. After

having added the study step this way, you must point the modal solver to the solution
containing the eigenfrequencies and eigenmodes. You do this by first selecting Show
default solver at the study level, and then selecting the eigenfrequency solution to be

used in the Eigenpairs section of the generated modal solver.

In a modal superposition, the deformation of the structure is represented by a linear
combination of its eigenmodes. The amplitudes of these modes are the degrees of
freedom of the reduced problem. You must select which eigenmodes to include in the
analysis. This choice is usually based on a comparison between the eigenfrequencies of
the structure and the frequency content of the load. As a rule of thumb, select

eigenmodes up to approximately twice the highest frequency of the excitation.

In the modal superposition formulation in COMSOL, the full model is projected onto
the subspace spanned by the eigenmodes. A problem having the number of degrees
equal to the number of included modes is then solved. Note that this differs from many
implementations of modal superposition, where it often is assumed that the modal

equations are totally decoupled.
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An implication of this, is that it is not necessary to assume a certain structure of the
damping matrix. Any type of damping which is allowable in the corresponding analysis

of the full system can also be used in the modal based analysis.

For many common cases, the modal superposition analysis is not sensitive to whether
the eigenmodes were computed using damping or not. The reason is that the
eigenmodes of problems with Rayleigh damping and loss factor damping can be shown
to be identical to those of the undamped problem, so that the projection to the
subspace spanned by the eigenmodes is the same in both cases. For more general
damping, it is however recommended that you suppress all contributions to the
damping during the eigenfrequency step, and thus base the modal superposition on
the solution to the undamped eigenfrequency problem.

FREQUENCY DOMAIN ANALYSIS

All loads are assumed to have a harmonic variation. This is a perturbation type analysis,
so only loads having the Harmonic perturbation property selected are then included in
the analysis.

TIME-DEPENDENT ANALYSIS

Only the factor of the load which is independent of time should be specified in the load
features. The dependency on time is specified as Load factor under the Advanced section
of the modal solver. This factor is then applied to all loads.

* Modal Solver and Studies and Solvers in the COMSOL Multiphysics
@l Reference Manual

* Mechanical Damping and Losses

For an example showing how to perform modal superposition in time and
frequency domain, see Various Analyses of an Elbow Bracket:
il Application Library path Structural_Mechanics_Module/Tutorials/

elbow_bracket.

Harmonic Perturbation

Analyses in the frequency domain assume that the problem your study is linear, at least
with respect to the response to the harmonic excitation. There may be other

nonlinearities, such that the structure has responded nonlinearly to a previous loading.
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This loading could, for example, have caused a large rotations or prestress of a rubber
membrane.

The concept of harmonic perturbation is in COMSOL Multiphysics used for
distinguishing the linear harmonic analysis from a possible prestress analysis. The most
important implication is that if a load has the Harmonic Perturbation sclection, it is
applied only in a study that is of the perturbation type. A load without this selection is,
on the other hand, ignored in such a study. In this way two sets of loads can be
distinguished from each other. Technically speaking, the effect of marking a load as
Harmonic Perturbation is that the 1inper () operator is applied to the value of the load.

The default settings for the different structural mechanics study types in the frequency
domain are summarized in Table 2-3.

TABLE 2-3: DEFAULT PERTURBATION SETTINGS FOR STRUCTURAL MECHANICS STUDY TYPES

STUDY TYPE STUDY STEP PERTURBATION

Frequency Domain Frequency Domain No

Frequency Domain, Prestressed  Stationary No
Frequency Domain, Perturbation ~ Yes

Frequency Domain, Modal Eigenfrequency N/A
Frequency Domain, Modal Yes

Frequency Domain, Prestressed,  Stationary N/A

Modal Eigenfrequency N/A
Frequency Domain, Modal Yes

Note the following:

e With the default settings you cannot use the same set of loads for a Frequency Domain
and a Frequency Domain, Modal study because only the latter responds to
perturbation loads.

* You can change the behavior of a Frequency Domain study to be of the perturbation
type by modifying the solver sequence. In the General section of the settings for the
Stationary Solver, change Linearity to Linear perturbation.

¢ A solver that does not have Linearity sct to cither Linear perturbation or Linear may
respond to nonlinear effects. There are multiphysics problems where this is wanted
because there may be a nonlinearity in another physics, even though the harmonic

solution within structural mechanics is linear. But if there are nonlinearities within
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the structural mechanics parts of the model, you must be careful with the solver

settings.

In a Frequency-Domain, Perturbation study step, that is when Linearity is set
to Linear perturbation, geometric nonlinearity will be incorporated in the
sense that there is a split between the material and spatial frames. This

makes it possible to take into account for example stiffness from follower

loads, and to use a contact solution as linearization point.

This frame split was introduced in version 5.3. As an effect, models
n created in an earlier version, in which some expressions have a frame
dependency may produce results that differ from before. Examples of

such cases are:

¢ Pressure loads

* Loads defined in coordinate systems with deformation dependent axis

orientation

e User-defined expressions containing spatial (‘lowercase’) coordinates

In the COMSOL Multiphysics Reference Manual:

¢ Frequency Domain Perturbation Study Step

@

* Harmonic Perturbation — Exclusive and Contributing Nodes

* Built-In Operators (linper() operator)

For most load types, the use of Harmonic Perturbation is straightforward, but some

cases need a more detailed discussion:

* A Rigid Connector can be assigned an Harmonic Perturbation subnode in which you
can prescribe harmonic perturbation values to constrained degrees of freedom. If

you have added Applied Force or Applied Moment nodes under a Rigid Connector, you
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can independently assign Harmonic Perturbation to these nodes, so that the loads are

considered as being of the perturbation type.

¢ Even though initial stresses and strains are not usually considered as loads, you can

assign Harmonic Perturbation also to the Initial Stress and Strain nodes.

For an example showing how to use harmonic perturbation, see Bracket
il — Frequency-Response Analysis: Application Library path

Structural_Mechanics_Module/Tutorials/bracket_frequency.

CHAPTER 2:

Modal Reduced Ovder

Reduced-order modeling seeks to reduce the number of degrees of freedom in a
physical model, whilst still retaining the essential physics. For a lightly damped
resonant system driven at one of its resonant frequencies, it is reasonable to consider
only the contributions to the system of a small number (m) of modes within the signal
bandwidth. In some cases a single mode is sufficient. A system with n degrees of
freedom has mass, stiffness, and damping matrices of size n-by-n. A reduced-order
representation of the system considering m modes has size m-by-m. The reduction in
complexity of the system, and the computational speed up is therefore significant when
m « n. This section describes the theory of the reduced-order system and gives

guidelines on how to obtain reduced-order models from a COMSOL model.

This can be employed in two different ways: Either you can use the built-in modal
solvers for the time or frequency domain, or you can export the small equivalent system
and analyze it outside COMSOL, for example, as a component in a larger system

simulation.

THE MODAL COORDINATE SYSTEM
Consider a mechanical system, with n degrees of freedom, described by an equation of

the form

Mu+Du+Ku=F (2-2)

where w is the displacement vector (size: n-by-1), K is the stiffness matrix (size:
n-by-n), D is the damping matrix (size: n-by-n), and M is the mass matrix (size:

n-by-n). In the frequency domain the problem takes the form

2 .
-0"Muy+ioDuy+Ku, = F
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where u = uoem)t.

Initially consider the system in the absence of damping and forces. The undamped
system has n eigenvalues ;, which satisfy the equation

K{li = mileAli (2-3)

These eigenvectors can be shown to be orthogonal with respect to both M and K:

u; Mu; =

|
(=)

1#£], 0 # o; (2-4)

u; Ku; =0 1#], w; # (l)j (2-5)
Next the following n-by-n matrix is constructed, with columns taken from the n

eigenvectors:

U=[ay 5 )

Then consider the following matrix:

uiMui uiMuy

AP A ap A

T uzMul IIQMuz

U MU =

~ “ ~ “
u,_1Mu,_; u,_1Mu,

u,Mu,_1 u,Mu,

From Equation 2-4 it is clear that this is a diagonal matrix. Similarly from Equation 2-5
it is clear that UTKU is also diagonal.

From the properties of the eigenvectors it is possible to expand any function in terms

of the eigenvectors. Thus the displacement u can be written as:

n
u = Z a;u;

This equation can also be expressed in the form:

u = Ua (2-6)
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where a is a column vector containing the coefficients a; as rows. In general a is

time-dependent.

Now consider the original equation: Equation 2-2. First substitute for u using
Equation 2-6. Then transform the equation to the modal coordinate system by
premultiplying by UT. This gives:

U'MUa + UTDUa + UTKUa = UTF 2-7)

It has already been established that the matrices UTMU and UTKU are diagonal and
frequently a damping model is chosen that results in a diagonal damping matrix. For
example, in Rayleigh damping D = aM + BK, where o and B are constants. For a
general damping, the transformed damping matrix is however not diagonal. As an

alternative, a damping ratio, {;, can be assigned to each mode.

EIGENVALUE SCALING

The precise form of Equation 2-7 is determined by the normalization adopted for the
eigenfunctions. In structural applications the eigenfunctions are often normalized such
that UTMU =I. This is referred to as mass matrix scaling in the eigenvalue solver. In
this case Equation 2-3 gives

T 9°~T_ =
u; Kui =, u; Mui = ;

2

so that
UTKU = diag(w;%)

where diag(mi2) is the diagonal matrix with diagonal elements 0)i2. Similarly, if
damping ratios for each mode are defined, the damping matrix can be expressed in the
form

U'DU = diag(2¢;0,)
Thus if mass matrix scaling is used Equation 2-7 takes the form
. . . . 2 T
a +diag(2¢;w;)a + diag(w;,)a = U F (2-8)

It is also possible to scale the eigenvectors so that the point of maximum displacement
has unit displacement. This is referred to as max scaling in the eigenvalue solver. For
an individual mode this scaling has a simple physical interpretation—the

corresponding component of a, a;, is the amplitude of the i:th mode, measured at the
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point of maximum displacement, when the mode is driven by the force F. In this case
Equation 2-7 takes the form

diag(m g i)éi +diag(cyg i)ai + diag(keﬁc) Da = UTF (2-9)

Here meg ; is the effective mass of the i:th mode, cegr; = 2megr ;€;0; is the effective
damping parameter for the mode, and ke ; is the effective spring constant. Each
element of the vector UTF gives the force component that acts on each of the
respective modes.

When using max scaling, it is the largest value of a degree of freedom
which is scaled to 1. The total displacement in that node will thus be
between 1 and /3 .

!

If degrees of freedom other than displacements are active in the
eigenfrequency problem, the maximum value may occur in another type
of degree of freedom such as electric potential or pressure. Consequently,
the peak displacement in that mode can then be less than 1.

REDUCED-ORDER MODELS

The preceding discussion did not consider how to reduce the number of degrees of
freedom in the system. For systems in which the vector UTF has only a few significant
components (for example, components i = 1, ..., m where m « n) the following
approximation can be made:

m

u= z a;u;

i=1
The expression for u in matrix becomes:
u=Ua

where U' is now an m-by-n and a' is a vector with m components. The equation
system in modal coordinates now takes the form

v'Mva +UTDUa + UTKUa = UTF (2-10)

The matrices U'TMU', U'TDU', and U'TKU" now have dimensions m-by-m. Similarly
the vector U'TF has m components. This results in a significant reduction in the
system complexity.
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REDUCED-ORDER MODELS WITH PHYSICAL DAMPING

If physically relevant damping is present in the system, the above theory must be
modified as the damping matrix is no longer diagonal in the modal coordinate system.
COMSOL can still handle this case as the modal solver does not make the assumption
that any of the matrices are diagonal. In this case the eigenvalues become complex and
the eigenvectors split into right and left eigenvectors. The right eigenvectors U are
solutions of the equation:

2 . ~
-o;,"Mu,; +ioDu,; +Ku,; = F
As in the previous section, for a reduced set of modes, it is assumed that:
u=U,a

where U', is the n-by-m matrix containing the right eigenvectors chosen for the modal
analysis. Once again a' is a vector with m components. The system in modal

coordinates takes the form

U, MU, U, DULa + U KU = U F

where U’} is the n-by-m matrix containing the left eigenvectors chosen for the modal

analysis.

The matrices U'ZTMU',, U'ZTDU'r, and U'ZTKU', are no longer necessarily diagonal.
The modal solver accepts any linearly independent set of vectors to project the solution

vector and equations onto and constructs the reduced-order system accordingly.

CONSTRUCTING REDUCED-ORDER MODELS WITH COMSOL

To obtain the data necessary to construct reduced-order models from a COMSOL
simulation the Modal Reduced Order Model study step is available. Add this study step
after an existing Eigenvalue study step, by right-clicking the Study I node and selecting
Study Steps>Time Dependent>Modal Reduced Order Model. Then solve the model. After
the model has solved, right-click the Results>Derived Values node and select System
Matrices. In the output section choose the Matrix to display in the list. The mass matrix
corresponds to the matrix U'ZTM U', the stiffness matrix corresponds to U 'ZTK U',,and
the damping matrix corresponds to U'ZTDU'r. The vector U 'ZTF is available as the load
vector. The Modal Reduced Order Model exports these matrices in a format that
respects the normalization of the preceding Eigenvalue study. To change this select the
Study I>Solver Configurations>Solver I>Eigenvalue Solver | node and change the Scaling
of Eigenvectors sctting under the Output section. Use the Max setting if an equivalent
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Mass-Spring-Damper system is required, in which case the modal amplitude

corresponds to the maximum displacement of the mode.

Linearized Buckling Analysis

A linearized buckling analysis can be used for estimating the critical load at which a
structure becomes unstable. This is a predefined study type that consists of two study
steps: An initial step in which a unit load is applied to the structure, and a second step

in which an eigenvalue problem is solved for the critical buckling load.
The idea behind this type of analysis can be described in the following way:
Consider the equation system to be solved for a stationary load f,
Ku = (K;,+Kyp)u = f
Here the total stiffness matrix, K, has been split into a linear part, K, and a nonlinear
contribution, Ky,

In a first order approximation, Ky, is proportional to the stress in the structure and
thus to the external load. So if the linear problem is solved first for an arbitrary initial
load level £y,

Kiu, = f,
then the nonlinear problem can be approximated as
(Ky,+ MKy (up)u = AMf,

where A is called the load multiplier.

An instability is reached when this system of equations becomes singular so that the
displacements tend to infinity. The value of the load at which this instability occurs can
be determined by, in a second study step, solving an eigenvalue problem for the load

multiplier A.
(Ki,+ AKyp,(ug)u = 0
COMSOL reports a critical load factor, which is the value of A at which the structure

becomes unstable. The corresponding deformation is the shape of the structure in its
buckled state.
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The level of the initial load used is immaterial since a linear problem is solved. If the
initial load actually was larger than the buckling load, then the critical value of A is

smaller than 1.

Do not select geometric nonlinearity in a linearized buckling analysis.
Since the nonlinear effect of the stress is already taken into account in the

n formulation, an explicit use of geometric nonlinearity would make the
computed buckling load dependent on the load level used in the preload
study step.

Be aware that for some structures, the true buckling load can be
significantly smaller that what is computed using a linearized analysis.

This phenomenon is sometimes called smperfection sensitivity. Small

[

deviations from the theoretical geometrical shape can then have a large
impact on the actual buckling load. This is especially important for curved
shells.

For a structure that exhibits axial symmetry in the geometry, constraints,
and loads, the critical buckling mode shape can still be nonaxisymmetric.

[

A full 3D model should always be used when computing buckling loads.

* Studies and Solvers and Linear Buckling in the COMSOL Multiphysics
Reference Manual

Linear Buckling in the theory section of the Structural Mechanics
Module User’s Guide

* Bracket — Linear Buckling Analysis: Application Library path

Structural_Mechanics_Module/Tutorials/bracket_linear_buckling

Linear Buckling Analysis of & Truss Tower: Application Library path

Structural_Mechanics_Module/Buckling/truss_tower_buckling

Bolt Pretension Study

The Bolt Pretension study step is a special case of a Stationary study step, where the

special degrees of freedoms used for modeling prestressed bolts are solved for. In all

62 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



other study types, these degrees of freedom are inactive. Typically, you include a Bolt
Pretension study step as the first step in a study in order to simulate the state after the
assembly of a bolted joint. You can the add any other types of study steps for

computing the effects of the service loads.

E}‘ Pretensioned Bolts

Prestressed Bolts in a Tube Connection: Application Library path
[ﬂ:ﬂ Structural_Mechanics_Module/Contact_and_Friction/tube_connection

Response Spectrum Analysis Study

Response spectrum analysis is used for computing an approximation of the structural

response to transient, nondeterministic events, such as earthquakes or shocks.

The Response Spectrum Analysis study is mainly an entry point when adding studies.
What you actually get when you add such study is an Eigenfrequency study step together

with a Response Spectrum node under Definitions.

The actual response is computed on demand during result evaluation, using the
computed eigenfrequencies and modes. The settings for the evaluation are done in the

Response Spectrum 2D and Response Spectrum 3D data scts.

If your response spectrum evaluation requires inclusion of missing mass correction,
you need also to compute a set of stationary load cases. To set up that analysis, use the

Missing mass correction study: Create button in the Response Spectrum node settings.

e See Performing a Response Spectrum Analysis for a detailed
description of how to work with response spectrum evaluations.
¢ The theory is described in Response Spectrum Analysis Theory.

E}, e The settings for the special data sets are described in Response
Spectrum 2D and Response Spectrum 3D in the COMSOL
Multiphysics Reference Guide.

e The Response Spectrum node is described in the COMSOL
Multiphysics Reference Guide.

STUDY TYPES
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* Earthquake Analysis of a Building: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

Shock Response of & Motherboard: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response
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Selecting the Physics Interface

The structural mechanics products contain a number of physics interfaces for a wide

range of applications. This section contains some guidelines for how to select an

appropriate physics interface for your analysis.

The basic physics interfaces for structural mechanics are:

* Solid Mechanics — General modeling of objects with extension in all directions

* Shell and Plate — For objects which are thin in one direction, but have significant

bending stiffness

e Membrane — For objects which are thin in one direction, and have negligible

bending stiffness

* Beam — For objects where two directions have significantly smaller dimensions

than the third; significant bending stiffness

* Truss — For objects where two directions have significantly smaller dimensions than

the third; only axial forces can be transmitted

For a detailed overview of the functionality available in each product, visit

http://www.comsol.com/products/specifications /

Solid Mechanics

The Solid Mechanics interface offers the most general modeling of structural

mechanics problems and is formulated based on general principles of continuum

mechanics. It is the interface which contains the largest number of material models,

and the most advanced boundary conditions. It is also the only physics interface that

supports contact analysis.

The drawback with using solid elements is that the models can become

computationally expensive, especially in 3D. For structures which are thin or slender,

you should consider using one of the specialized physics interfaces.

SELECTING THE PHYSICS INTERFACE
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3D SOLID GEOMETRY
The degrees of freedom (dependent variables) in 3D are the global displacements u, v,
and w in the global x, y, and z directions, respectively.

Figure 2-1: Loads and constraints applied to a 3D solid using the Solid Mechanics
interfuce.

2D GEOMETRY

Plane Stress
The plane stress variant of the 2D physics interface is useful for analyzing thin in-plane
loaded plates. For a state of plane stress, the out-of-plane components of the stress

tensor are zero.

Figure 2-2: Plane stress models plates where the londs ave only in the plane; it does not
include any out-of-plane stress components.

The 2D physics interface for plane stress allows loads in the x and y directions, and it
assumes that these are constant throughout the material’s thickness, which can vary
with x and y. The plane stress condition prevails in a thin flat plate in the xy-plane
loaded only in its own plane and without any z direction restraint.
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Plane Strain
The plane strain variant of the 2D physics interface that assumes that all out-of-plane

strain components of the total strain &, €,,, and €, are zero.

Figure 2-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant
throughout the thickness of the material, but the thickness can vary with x and y. The
plane strain condition prevails in geometries, whose extent is large in the z direction
compared to in the x and y directions, or when the z displacement is in some way
restricted. One example is a long tunnel along the z-axis where it is sufficient to study

a unit-depth slice in the xy-plane.

AXISYMMETRIC GEOMETRY

The axisymmetric variant of the Solid Mechanics interface uses cylindrical coordinates
r, ¢ (phi), and z. Loads are independent of ¢, and the axisymmetric variant of the
physics interface allows loads only in the r and z directions.

The 2D axisymmetric geometry is viewed as the intersection between the original
axially symmetric 3D solid and the half plane ¢ =0, r = 0. Therefore the geometry is
drawn only in the half plane r > 0 and recover the original 3D solid by rotating the 2D
geometry about the z-axis.

Figure 2-4: Rotating a 2D geometry to recover a 3D solid.

SELECTING THE PHYSICS INTERFACE
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Shell and Plate

The Shell interface is useful when the object is thin in one direction. Structures built
from welded or bolted flat plates is an archetypal shell structure, and so are pressure
vessels.

The Plate interface is a specialization of the Shell interface, used for 2D modeling in
the XY-plane. A plate model has its main action in bending out of the plane, but it can
also treat in-plane forces. If the loads act only in the plane, using Solid Mechanics with

the Plane Stress option is a better choice.

Shells are modeled on boundaries, and the transverse direction is represented only by
the mathematical model. The degrees of freedom consist of displacements and

rotations at the modeled boundary. This results in an assumption where the in-plane
stresses and strains vary linearly through the thickness, and the stress in the thickness
direction is zero. The thickness of a shell does not have to be constant, although this

is by far the most common case.

The Shell and Plate interfaces can be used both for ‘thin’ and ‘thick’ shells. Shear
deformations are taken into account; this is usually called Mindlin theory. The material

model is linear elastic.

When modeling with shells, it important to keep track of ‘top’ and ‘bottom’ side when
applying loads and interpreting the results.

The in-plane stiffness of a shell is proportional to the thickness £, while the bending
stiffness is proportional to 13 The difference in stiffness along different directions can
thus become very large. When an object is very thin, a shell model may be numerically

ill-posed. It is then better to use the Membrane interface.

Membrane

The Membrane interface can be used for very thin objects, like cloth, where only
in-plane forces are important. Membranes can be considered as plane stress elements,

but with an arbitrary, possibly curved configuration is space.

In most applications, a membrane must be pretensioned in order to have a stable
configuration, so it will almost invariably be used in a geometrically nonlinear analysis.
The only exception is when it is used as a ‘cladding’ on top of a solid, since it will then
be stabilized by the solid.

In the Membrane interface a large number of different material models can be used.
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Beam

A beam is an abstract model where only the extension in the axial direction is modeled
explicitly on an edge. The cross section is specified in terms of properties such as area
and moments of inertia.

The exact stress distribution in the beam is not explicitly modeled. It is actually not
even fully determined by the cross-sectional properties. Instead, six (in 3D) resultant
section forces are used: axial force, shear forces in two perpendicular directions, two

bending moments, and one twisting moment.
Two formulations are available in the Beam interface:

* The classical Euler-Bernoulli beam theory, which is applicable for slender beams.

¢ Timoshenko theory, where shear deformations are taken into account. This allows

the Beam interface to be applied to rather thick beams.

Truss

The Truss interface has four distinct purposes:

* Modeling of trusses, consisting of straight bars carrying only axial forces

* Modeling of cables and wires

* As reinforcements, used in conjunction with other physics interfaces

* For modeling discrete springs and dampers, often added to other physics interfaces
For a truss model, only one geometrical property is needed, the cross section area. The

material model can be linear elastic or elastoplastic. There is also a special material

model for creating spring/damper data.

The truss element has no stiffness in the directions perpendicular to its extension. For
trusses, this is usually not a problem since they are designed such that each member is
stabilized by its neighbors. For cables however, a prestress is necessary to keep them
stable.

SELECTING THE PHYSICS INTERFACE
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CHAPTER 2:

Shape Function Order

In structural mechanics analysis, the focus is often on the stresses and strains rather
than on the displacements. Since the strains are derivatives of the displacement field,
the accuracy of the strains will be one order less than the accuracy of the displacements.
For this reason, second-order shape functions are used as default in most of the
structural mechanics interfaces. Often this gives the best tradeoff between model size

and accuracy.

It is well known that using first-order shape functions in solid mechanics will give an
overly stift solution, unless a very fine mesh is used. This is especially noticeable for

triangular and tetrahedral elements.

If the purpose of the analysis is only to compute stittness, rather than stresses, the use
of linear shape functions can still be justified. This is the default choice in the
Multibody Dynamics interface.

If the solution contains discontinuities, like when some type of front is moving
through the material, first-order elements and a fine mesh is often a good choice, since
the advantage of the higher-order elements lies in their ability to represent smooth
gradients.

TRUSS ELEMENTS
In the Truss interface the default is to use first-order shape functions, since the

elements are mainly used in a context where the axial force in each element is constant.

When truss elements share an edge with other structural elements, you should choose

the same discretization in both interfaces, usually quadratic.

BEAM ELEMENTS

The beam elements have only one set of shape functions, which cannot be changed.
The axial displacement and the twist are represented by first-order shape functions,
while the bending is represented by cubic Hermitian shape functions. This element can
then represent a constant axial force, a constant twisting torque, a linear bending
moment, and a constant shear force. This is the exact solution for a beam having no
distributed loads.
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A consequence of this formulation is that it may not possible to obtain a perfectly
conforming approximation if a beam shares an edge with elements from another

physics interface.

Lagrange and Sevendipity Shape Functions

In the Solid Mechanics and Membrane interfaces, you can choose between two
families of shape functions: Lagrange and servendipity. The default is to use serendipity

shape functions.

The serendipity elements have the advantage of generating significantly fewer degrees
of freedom for structured meshes. The accuracy is in most cases almost as good as for
the Lagrange elements. The Lagrange elements are however less sensitive to strong

mesh distortions.

The serendipity shape functions differs from the Lagrange shape functions only for the

following element shapes:

e 2D: Quadrilateral elements of discretization order higher than 1

* 3D: Hexahedral, prism, and pyramid elements of discretization order higher than 1

In the COMSOL Multiphysics Reference Manual:

{?}‘ e The Lagrange Element (shlag)
* The Nodal Serendipity Element (shnserp)

When coupling to other structural mechanics physics interfaces, the same type of shape
functions should be used in both interfaces to ensure conformity in displacement shape
functions. Since there is no difference between the two families of shape functions in

1D, this is not an issue when connecting edges.

Choosing Shape Functions in Multiphysics Models

In problems where several physics fields participate, the accuracy can sometimes be
improved by considering how the different fields interact. In structural mechanics, it
is common that other physics fields directly affect the inelastic strains. This is the case

in, for example, thermal expansion and hygroscopic swelling.

SELECTING DISCRETIZATION
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In thermal expansion, the elastic strain used in most constitutive relations is the
difference between the total strain, which is computed from derivatives of the

displacement field, and the thermal strain:
€al = 4ot~ Eth = Egop— (T = Thep)

Since the thermal strain is directly proportional to the temperature, a consistent
approximation would be to use one order lower discretization order for the
temperature than for the displacements. These kinds of considerations are
automatically made when you add the built-in multiphysics interfaces, such as The

Thermal Stress Interface.

Another type of coupling appears on the boundary between two domains having
different physics, as in fluid-structure interaction and acoustic-structure interaction.
When, for example, Thermoviscous Acoustics is coupled to Solid Mechanics, then the
time derivative of the displacement in the solid is set equal to the velocity in the
acoustic medium on the shared boundary. In this case, it makes sense to have the same

shape function order for these two fields.

Implicit Shape Function Orders

Some solid mechanics formulations contain other degrees of freedom in addition to
the displacements. The shape functions are then selected internally based on your

choice of displacement discretization.

MIXED FORMULATION
When the mix formulation is selected for a certain material, the pressure (mean stress)

is added as an extra degree of freedom to form what is called a mixed formulation.

The shape function used for the pressure is continuous Lagrangian, having an order
that is one below what is used for the displacement shape functions. The pressure
degree of freedom is, however, discontinuous over domain boundaries in order to

allow for discontinuities in material properties and stresses.

VISCOELASTIC STRESS AND STRAIN

When using the Viscoelastic material, auxiliary degrees of freedom are added either for
the viscoelastic strains or the viscoelastic stresses, depending on whether a linear or a
nonlinear formulation is used. These degrees of freedom are local to the element, and

you can select either the discontinuous Lagrange or Gauss point data type.
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The discontinuous Lagrange shape functions will have an order that is one below what

is used for the displacement shape functions.

If Gauss point data is used, the same integration points as used for the numerical
integration of the stiffness matrix are used. This order depends on the selected

displacement discretization order.

INELASTIC STRAINS

For material models like plasticity and creep, the inelastic strains are formally degrees
of freedom. They will be allocated at the same integration points as used for the
numerical integration of the stiffness matrix. This order depends on the selected

displacement discretization order.
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Coupling Different Element Types

In this section:

e Introduction to the Element Types
* Coupling Techniques

* Solver Settings

Introduction to the Element Types

In some engineering structures, the optimal idealization is a mixture of different

element types. Some examples are:

 Structures that are thin in large regions but more three-dimensional at certain
locations. A mixture of solids and shells can then significantly reduce the model size.

 Dlates or shells having beams as stiffeners.

* Truss elements acting as reinforcement bars in a concrete structure.

A thin layer of one material on top of another material. In this case, an idealization

with shells or membranes covering the boundary of a solid can be useful.

When several physics interfaces are added in COMSOL Multiphysics, the default is
always that each physics interface has its individual degrees of freedom. In structural
mechanics the first physics interface has the displacement variables (u, v, w), then the
second physics interface has (u2, v2, w2), and so on. This means that the physics
interfaces initially are independent even when defined on the same geometrical part.
To get the intended interaction requires that a coupling is established between the

physics interfaces.

Various methods to couple different element types are discussed in this section.

Coupling Techniques

The following basic techniques to connect physics interfaces with displacement

degrees of freedom is discussed in this section:

¢ Renaming Degrees of Freedom
* Using Customized Coupling Features

¢ Using General Coupling Operators
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RENAMING DEGREES OF FREEDOM

The easiest coupling method is to rename the displacement degrees of freedom so that
these are the same for all physics interfaces. This is sufficient, for example, when using
membranes as cladding on a solid boundary or truss elements as reinforcement bars in

a solid.

In the Beam, Shell, and Plate interfaces, the deformation is described also by rotational
degrees of freedom. In the general case, these degrees of freedom interact with the

translational degrees of freedom in a connection.

In some special cases—for example, when a thin shell acts as cladding on a solid—it is
sufficient to make the degree of freedom names for the displacements common; the

rotational degrees of freedom are not important. If, however, a shell edge is connected
to a solid, it acts as a “hinge”, which in most cases is not the intended behavior. You

then need to use the more sophisticated techniques described next.

The default shape functions in the Solid Mechanics interface are of the
serendipity type, whereas in the Shell interface Lagrange shape functions
are used. If you are placing a shell element on the boundary of a solid
n element, you must select Lagrange shape functions also in the Solid
Mechanics interface so that the two physics interfaces share the same node

points.

The shape functions used in the Beam interface have special properties,
and a beam cannot have the same degrees of freedom as another physics

interface if the same edge or boundary are shared.

n Also, the representation of rotations differs between the Shell and Plate
interfaces (displacement of normal) and the Beam interface (rotation
angle). It is therefore not possible to use common degree of freedom

names for the rotational degrees of freedom.

USING CUSTOMIZED COUPLING FEATURES

There are a number of built-in couplings, by which you can add connections that are
difficult to set up manually:

* Shell Edge to Solid Boundary (3D)

* Shell Boundary to Solid Boundary (3D)

* Beam Point to Solid Boundary (2D)

COUPLING DIFFERENT ELEMENT TYPES
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¢ Beam Point to Solid Boundary (3D)
e Beam Edge to Solid Boundary (2D)
* Beam Edge to Solid Boundary (3D)
* Beam Edge to Shell Edge (3D)

e Beam Point to Shell Boundary (3D)

e Beam Point to Shell Edge (3D)

Shell Edge to Solid Boundary (3D)

A shell can be coupled to a solid by adding a Solid-Shell Connection multiphysics
coupling. In the settings, set Connection type to Solid boundaries to shell edges. This
situation typically occurs when you want to make a transition from a thin region to one
which is thicker. Usually, shell assumptions should be valid on both sides of the
transition. The solid geometry is expected to have the same thickness as the thickness

given in the Shell interface.

You can choose between two different formulations, by setting Method to cither Rigid
or Flexible. The flexible version is significantly more accurate locally at the connected
solid boundary, but it comes with a cost in terms of some extra degrees of freedom.
Also, this method requires a large enough number of degrees of freedom in the
thickness direction of the solid. For second order elements, typically three elements are

required.

Shell Boundary to Solid Boundary (3D)

A shell can also be coupled to a solid by adding a Solid-Shell Connection multiphysics
coupling with Connection type sct to Solid and shell shared boundaries or Solid and shell
parallel boundaries. This connection is used to add a shell on top of a solid as a
‘cladding’. It is possible to include an offset distance. The boundaries may be
coincident or parallel.

Beam Point to Solid Boundary (2D)

A beam in 2D can be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling. In the settings, set Connection type to Solid boundaries to beam
points. This coupling is intended for modeling a transition from a beam to a solid
where beam assumptions are valid on both sides of the connection.

You can choose between two different formulations, by setting Method to either Rigid
or Flexible. The flexible version is significantly more accurate locally at the connected
solid boundary, but it comes with a cost in terms of some extra degrees of freedom.

Also, this method requires a large enough number of degrees of freedom in the
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thickness direction of the solid. For second order elements, typically three elements are

required.

Beam Point to Solid Boundary (3D)

A beam in 3D can be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling. In the settings, set Connection type to cither Solid boundaries to
beam points, general. or Solid boundaries to beam points, transition. These two

couplings are fundamentally different.

The Solid boundaries to beam points, general connection is used for modeling a beam
with one end ‘welded’ to the face of the solid. You can specify the size of the area

around the beam end that is connected in several ways.

The Solid boundaries to beam points, transition coupling is intended for modeling a
transition from a beam to a solid where beam assumptions are valid on both sides of
the connection. Thus, the geometry of the solid at the transition should match the

cross section data given to the beam.

This connection type includes warping of the solid cross section. In order to compute
the warping properties, an extra PDE is solved over the cross section boundaries. To
improve the performance, you should preferably solve for these variables once in a
separate stationary study or study step. In that study step, deselect all physics interfaces
except the Solid-Beam Connection multiphysics coupling in the Physics and Variables

Selection section.

There are four warping variables, one named ‘Warping function’, and three named
‘Warping constant’. In the successive study steps, you need to manually suppress them.
This you can do under the Dependent Variables node, where you first set Defined by
study step to User Defined. Then for each of these four variables, clear the Solve for this

field check box.

Beam Edge to Solid Boundary (2D)

A beam in 2D can also be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling with Connection type sct to Solid and beam shared boundaries or
Solid and beam parallel boundaries. This connection is used for adding a beam on top
of'a solid as a ‘cladding’. It is possible to include an offset distance. The boundaries

may be coincident or parallel.

Beam Edge to Solid Boundary (3D)
A beam in 3D can also be coupled to a solid by adding a Solid-Beam Connection

multiphysics coupling with Connection type sct to Solid boundaries to beam edges. This

connection is used for adding a beam which is ‘welded’ along the surface of the solid.

COUPLING DIFFERENT ELEMENT TYPES

77



78 |

Beam Edge to Shell Edge (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type sct to cither Shell and beam shared boundaries or

Shell and beam parallel boundaries. This connection is used for adding beams as
stiffeners to shells. The edges may be coincident or parallel. It is possible to prescribe
that the beam has an offset from the shell when a coincident edge is used.

Beam Point to Shell Boundary (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type sct to Shell boundaries to beam points. This connection
is used for modeling a beam with one end ‘welded’ to the face of the shell. You can

specify the size of the area around the beam end that is connected in several ways.

Beam Point to Shell Edge (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type sct to Shell edges to beam points. This connection is
used for modeling a beam with one end ‘welded’ to the edge of the shell. You can

specify how large portion of the edge that is connected to the beam end in several ways.

The underlying theory and more details can be found in Connection Between Shells

and Solids and Connection Between Shells and Beams.

» Examples of all types of couplings between shells and beams are shown
in Connecting Shells and Beams: Application Library path
Structural_Mechanics_Module/Tutorials/shell_beam_connection

il

* An example of couplings between shells and solids is shown in
Connecting Shells and Solids: Application Library path
Structural_Mechanics_Module/Tutorials/shell_solid_connection

CHAPTER 2:

USING GENERAL COUPLING OPERATORS
The most general method of connecting parts modeled with different physics
interfaces is by using a General Extrusion operator. In this case the parts need not even

be in contact, so the connection is an abstraction.

An example could be a shell stiffened by beams. In practice, you would probably use
the built-in coupling described in Beam Edge to Shell Edge (3D) for this case, but the
examples displays the principles.

In structure like this, the beam is usually placed at one side of the shell, so that the

centerline of the beam and the midsurface of the shell do not coincide. This difference
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must be taken into account, so the edges representing the beam are geometrically
disconnected from the midsurface of the shell.

Beam centerline

Mathematically, the connection between the beam and the shell can be expressed as

Upeam = Wepent + q) X (Xbcam - Xshell)

¢beam = ¢shell

or equivalently as

Upeam = Wgpent + ((Xbcam - Xshell) ‘m)a

q)beam = q)shell

Here ¢ is the rotation vector, which contains the rotational degrees of freedom in the
Beam interface. The rotation vector is also available as a variable in the Shell interface,
where it is derived from the rotational degrees of freedom a. The shell normal is
denoted by n.

To create the coupling:

I Add a General Extrusion node under Definitions. Sclect the line on the shell
midsurface as source. Enter data in the Destination Map.
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2 Add a Prescribed Displacement/Rotation node in the Beam interface and select the
corresponding edge.

3 Enter data for the prescribed displacements and rotations, for example

genext1(u)+genexti(shell.thy)*zdist, where zdist is some expression
defining the distance from the beam axis to the shell midsurface.

Because a shell does not have a valid rotation degree of freedom around
its normal, the rotation of the beam should not be connected in that
direction.

[

In the COMSOL Multiphysics Reference Manual:

'@l * Component Couplings and Coupling Operators and General

Extrusion

e About Component Couplings
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Applying Loads

An important aspect of structural analysis is the formulation of the forces applied to
the modeled structure. The freedom is available to use custom expressions, predefined
or user-defined coordinate systems, and even variables from other modeling physics

interfaces.

Loads can be applied in the structural mechanics interfaces on the body, face, edge, or
point levels. Add The Solid Mechanics Interface ( IEI ) to the Model Builder, then from
the Physics toolbar, Domains, Boundaries, Edges, and Points menus, click to select Body
Load, Face Load, Edge Load, or Point Load. This guide includes a detailed description of
the functionality for each physics interface.

In this section:

e Units, Orientation, and * Pressure
Visualization ¢ Acceleration Loads
* Load Cases e Temperature Loads—Thermal
e Singular Loads Expansion
* Moments in the Solid Mechanics * Hygroscopic Swelling
Interface ¢ Total Loads

Units, Orientation, and Visualization

USING UNITS

Enter loads in any unit, independently of the base SI unit system in the model, because
COMSOL automatically converts any unit to the base SI unit system. To use the
feature for automatic unit conversion, enter the unit in square brackets, for example,
100[1bf/in"2].

PREDEFINED AND CUSTOM COORDINATE SYSTEMS

In this module, different predefined coordinate systems are available when materials or
boundary conditions are specified. There is always the global coordinate system.
Depending on the dimensionality of the part being worked with, there can also be
predefined coordinate systems such as and the local tangent and normal coordinate

system for boundaries.
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Custom coordinate systems are also available and are useful, for example, to specify a
load in any direction without splitting it into components. From the Definitions

toolbar, select a Coordinate System (|- ) from the menu.

Some coordinate systems can have solution dependent axis directions. If
you use such a system for defining a load, the directions of the load follow

the moving coordinate axis directions if the Include geometric nonlinearity

[

check box is selected under the Study settings section of the current study

step.

CHAPTER 2:

VISUALIZATION

If you have switched on the physics symbols (see Displaying Physics Symbols in the
Graphics Window — An Example in the COMSOL Multiphysics Reference Manual),
then an applied load is indicated by a symbol together with a coordinate system
indicator displaying the definition directions for the load. The actual direction or
magnitude of the load you enter is not, however, reflected by the symbol. As a load in
COMSOL Multiphysics can be a function of parameters, variables, the solution, or
results from other physics interfaces, it is not possible to display it with only the

information available in the individual load feature.

Once you have turned on the physics symbols for a certain physics interface, you can
fine-tune the display. Every feature which has associated physics symbols will now have
a check box Show physics symbols, by which you can control the display of the symbols

for that specific feature.

You can always display the loads actually used after the analysis, since they are available
among the result quantities. Sometimes, especially if you have entered complicated
load expressions in a large model, it is important to inspect the load distribution before

you run the analysis. You can then do like this:

I On the Study toolbar, click Get Initial Value. This operation is fast when compared
to actually solving the problem.

2 From the Results toolbar, add a 3D Plot Group or 2D Plot Group.

3 Add a suitable plot type to the plot group, for example an Arrow Surface plot.
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4 Seclect a result from the Load group in the results for the physics interface.

In the COMSOL Multiphysics Reference Manual:
e Physics Symbols
¢ Using Units

¢ Coordinate Systems

For an example showing how to examine the load distribution, see
Bracket — Statric Analysis: Application Library path
ﬂ:ﬂ] Structural_Mechanics_Module/Tutorials/bracket_static. This is also the first

example used in the Introduction to the Structural Mechanics Module.

Load Cases

For a Stationary study, you can define load cases and constraint cases. A load or

constraint can be assigned to a load or constraint group, and then used conditionally.

For most load types, the load case acts as a simple multiplier, but some cases need a

more detailed discussion:

¢ A Prescribed Displacement or Prescribed Displacement/Rotation node can be assigned
both a constraint group and a load group. You can use the constraint group to
switch off the whole constraint. The load group acts as a multiplier to nonzero

prescribed values of displacement and rotations.

* When a load case multiplier is used for Thermal Expansion, the multiplier is applied
not to the actual temperature, but to the difference between the temperature and
the strain free reference temperature. The temperature difference, and thus the

thermal strain, is proportional to the load case multiplier.

* Since Thermal Expansion nodes are exclusive (only the last one given gives a
contribution for a certain domain), you cannot switch between different Thermal

Expansion nodes only by assigning them to different load cases.

* A Spring Foundation or Thin Elastic Layer node can be assigned a constraint group,
which you can use to switch it on and off. If there is also a Predeformation subnode,
then you can assign a load group to that subnode. The prescribed predeformation
is then multiplied by the load case multiplier. Predeformation nodes are exclusive,

you cannot switch between them by assigning them to different load cases.
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* A Rigid Connector can be assigned both a constraint group and a load group. You can
use the constraint group to switch off the prescribed displacements and rotations.
The load group acts as a multiplier to nonzero prescribed values of displacement and

rotations.

¢ Ifyou have added Applied Force or Applied Moment nodes under a Rigid Connector,

you can assign individual load groups to these nodes

* Ifyou have added Applied Force or Applied Moment nodes under a Rigid Domain, you
can assign individual load groups to these nodes.

For an example about how to set up expressions for controlling position
and distribution of loads using load cases, see Pratt Truss Bridge:

[ Application Library path Structural_Mechanics_Module/Civil_Engineering/
pratt_truss_bridge.

CHAPTER 2:

Singular Loads

In reality, loads always act on a finite area. However, in a model a load is sometimes
defined on a point or an edge, which leads to a singularity. The reason for this is that
points and lines have no area, so the stress becomes infinite. Because of the stress
singularity, there are high stress values in the area surrounding the applied load. The
size of this area and the magnitude of the stresses depend on both the mesh and the
material properties. The stress distribution at locations far from these singularities is
unaffected according a to a well-known principle in solid mechanics, the St. Venant’s
principle. It states that for an elastic body, statically equivalent systems of forces
produce the same stresses in the body, except in the immediate region where the loads
are applied.

Figure 2-5 shows a plate with a hole in plane stress loaded with a distributed load and
a point load of the same magnitude. The mesh consists of triangular elements with
quadratic shape functions. The high stress around the point load is dissipated within
the length of'a few elements for both mesh cases. The stresses in the middle of the plate
and around the hole are in agreement for the distributed load and the point load. The
problem is that due to the high stress around the singular load it is easy to overlook
the high stress region around the hole. When the point load is applied, the range must
be manually set for the stress plot to get the same visual feedback of the high stress
region around the hole in the two cases. This is because the default plot settings
automatically set the range based on the extreme values of the expression that is
plotted.
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Despite these findings it is good modeling practice to avoid singular loads because it is
difficult to estimate the size of the singular region. In the Structural Mechanics
Module it is possible to define loads on all boundary types. However, avoid singular

loads altogether with elastoplastic or creep materials.

The Plasticity and Creep nodes are available as a subnode to Linear Elastic
o Material nodes with the Nonlinear Structural Materials Module or the
Geomechanics Module.

s O

o)

1 2

Vb

normal mesh size

finer mesh size

Figure 2-5: A plate with a hole subject to a distributed load (left) and a point load (right).

Moments in the Solid Mechanics Interfuce

The Solid Mechanics interface, as opposed to the Beam, Plate, and Shell interfaces,
does not have rotational degrees of freedom. This makes the direct specification of
moment loads somewhat more complicated. To specify moments, attach a Rigid
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Connector to the loaded area. The rigid connector has rotational degrees of freedom,
and it is possible to apply moments directly. For load application, the flexible
formulation of the rigid connector is particularly useful, since it avoids artificial

stiffening of the boundary where the load is applied.

Pressure

A pressure is a load acting toward the normal of a face of the structure. If there are
large deformations in the model and the Include geometric nonlinearity check box is
selected under the Study settings section of the current study step, the pressure acts as
a follower load. The pressure is then defined with respect to the geometry and, as the
geometry deforms locally, the orientation of the load changes. The size of the loaded
area can also change as an effect of straining.

Acceleration Loads

Acceleration loads can be found, for example, in the structural mechanics analysis of
an airplane seat. Acceleration or deceleration of the aircraft produces a force that an
accurate simulation must include. Because expressions can be used when specifying

loads, it is easy to model acceleration loads.

For modeling rotating parts under static conditions, use centrifugal acceleration loads.

The body load in the radial direction is
K, = po?r (2-11)

where p is the density of the material, o is the angular frequency, and r is the radial

distance from the axis of rotation. A cylindrical coordinate system is often useful here.

Temperature Loads—Thermal Expansion

When performing thermal expansion analysis, temperature loads are specified by
entering a temperature and a reference temperature in a thermal expansion subnode
which is available from the context menu (right-click the parent node, a Linear Elastic
Material node, for example) or from the Physics toolbar, Attributes menu. Enter a
constant temperature or an analytic expression that can depend on the coordinates or
dependent variables. For beams, plates, and shells it is also possible to specify bending
temperature loads. More details are available in the descriptions for each physics

interface.
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When a separate physics interface is used to model heat transfer in the material, the
entry for the temperature is the dependent variable for the temperature from that
physics interface, typically 7'. In most cases, possible temperature variables from other

physics interfaces can be directly selected from a list.

* For more information about how to couple heat transfer analysis with
structural mechanics analysis, see Thermal-Structure Interaction. This

E}‘ module also includes The Thermal Stress Interface.

¢ For a detailed discussion about thermal effects in structural mechanics

models, see Thermally Coupled Problems.

Hygroscopic Swelling

Some materials have the capability to absorb significant amounts of moisture through

diffusion processes. Changes in the moisture content may then cause volume changes.

To include the effects of hygroscopic swelling, the Hygroscopic Swelling subnode is
available from the context menu (right-click the parent node, Linear Elastic Material
node, for example) or from the Physics toolbar, Attributes menu. Enter a constant
concentration or an analytic expression that can depend on the coordinates or
dependent variables. For beams, plates, and shells it is also possible to specify bending
swelling loads caused by concentration gradient in the transverse direction. More

details are available in the descriptions for each physics interface.

When a separate physics interface is used to model the moisture diffusion in the
material, the entry for the concentration is the dependent variable for the
concentration from that physics interface, typically ¢. In most cases, possible
concentration variables from other physics interfaces can be directly selected from a
list.

The diffusion of the moisture into the material also adds to the mass density. You can
choose to automatically include this effect in a dynamic analysis, and also in mass

proportional loads, such as gravity and rotating frame loads.

Total Loads

You can specify a load either as a distributed load per unit length, area, or volume, or

as a total force to be distributed on a boundary. In the case of a total load, the applied
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distributed load is the given load divided by the area (or length, or volume) on which

its acts.
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Defining Constraints

Defining the proper constraints for structural mechanics models is just as important as
defining the loads as together they make up the model boundary conditions. This
module has many useful predefined physics features to define the constraints or to

create user-defined expressions that define constraints.

In this section:

* Rigid Body Motion

¢ Orientation

e Prescribed Displacements, Velocities, and Accelerations
e Symmetry Constraints

¢ FElemental and Nodal Constraints

* Suppressing Constraints on Lower Dimensions

¢ Kinematic Constraints

e Rotational Joints

Rigid Body Motion

In most cases, a structure must have a set of constraints which is sufficient to suppress
any rigid body motions. A stationary problems is solvable only if the structure is
sufficiently constrained. There must not be any possible rigid body modes; thus no
stress-free deformation states are allowed. In a dynamic analysis, rigid body motions

are admissible. The inertial forces will then balance the external forces.

The number of possible rigid body modes for different geometrical dimensions is
shown in the table below.

TABLE 2-4: NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES
3D 6 (3 translations + 3 rotations)
2D axisymmetric | (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + | rotation)
2D (plate) 3 (I translation + 2 rotations)
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If the model is underconstrained, you may encounter the following problems:

e The solver reports that the stiffness matrix is singular.

¢ The solver reports that the stiffness matrix is ill-conditioned. Theoretically, the
matrix is singular for a structure with rigid body modes, but because of the roundoff

errors during the solution this is not exactly determined.
¢ A nonlinear analysis fails to converge.
e An iterative linear equation solver fails to converge.

* You get a solution with an extremely large displacement, orders of magnitude larger

than what is expected.

For a single bodys, it is seldom difficult to see whether it is fully constrained or not, but
for a more complex assembly, including several physics interfaces, or advanced

couplings and boundary conditions, it may not be trivial. If you suspect that rigid body
modes is a problem in your model, you can run an eigenfrequency analysis, and check

for modes with zero eigenfrequency as described in Eigenfrequency Analysis.

If there are no constraints which are dictated by the physical boundary conditions of
the structure, you can use the Rigid Motion Suppression boundary condition to

automatically remove the rigid body motions. When you do this, the assumption is that
the external loads are in equilibrium. If not, reaction forces and stress concentrations

will appear at seemingly arbitrary points where the automatic constraints were placed.

As an alternative to applying constraints, you can also add elastic supports through a

Spring Foundation node to suppress rigid body motion.

Rigid Motion Suppression Boundary Condition in the Structural
@l Mechanics Theory chapter.

Orientation

You can specify constraints in global as well as in any previously defined local

coordinate system.

{i Coordinate Systems in the COMSOL Multiphysics Reference Manual
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Prescribed Displacements, Velocities, and Accelevations

The most fundamental constraint is the prescribed displacement, where the individual
components of displacement or rotation can be prescribed to zero or nonzero values

for points, edges, boundaries, or domains.

For dynamic analysis, you can also directly prescribe the velocity or acceleration. The
conditions for prescribing displacements, velocities, or accelerations are mutually
exclusive for the same geometrical object since they prescribe the same degree of

freedom.

In frequency domain, a prescribed velocity v, or prescribed acceleration @, can be

directly interpreted as a prescribed displacement u

p:

v
u, = 2
P i
—-a
u, = —2
p 2
[0}

where o is the angular frequency.

In the case of a time-dependent analysis, the prescribed displacement is obtained as

t

uy(t) = uo(t0)+jup(r)dr

to
or
t T
uy(t) = uo(t0)+J. uo(t0)+J'ap(§)d§ dr
Lo to

where ug and v are is given by the initial conditions. It is not possible to set explicit
initial conditions, but if initial values are taken from a previous study, they will be
respected. In order to compute the integrals, wp, is introduced as a separate degree of

freedom which is solved for by adding an extra ODE.

As prescribing the velocity or acceleration in time domain comes with an extra cost,

you should always consider using a prescribed displacement instead. As long as the
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time history of the velocity or acceleration is a known a priori and does not depend on

the solution itself, this is possible.

e When the velocity or acceleration has a simple time dependence, you can integrate
it analytically one or two times to obtain the displacement, and directly prescribe the

displacement instead.

e When you have complicated known velocity or acceleration histories, for example
from measurements, you can use the integrate () operator. In this case, you enter
the prescribed displacement as integrate (my_data(tau),tau,0,t). Here
my_data is the measured data as function of time, and tau is a dummy integration

variable

In a stationary analysis, the prescribed velocity and acceleration nodes can have two
different behaviors. As a default, they are ignored, but you can also select that the
degrees of freedom having a prescribed velocity or acceleration in a dynamic analysis

should be constrained to zero in a static analysis.

When a local coordinate system is used for prescribing a prescribed velocity or
acceleration, the axis directions must be fixed in space. As an example, you cannot use

a Boundary System rotating with the deformation.

Symmetry Constraints

In many cases symmetry of the geometry and loads can be used to your advantage in
modeling. Symmetries can often greatly reduce the size of a model and hence reduce
the memory requirements and solution time. When a structure exhibits axial
symmetry, use the axisymmetric physics interfaces. A solid that is generated by rotating
a planar shape about an axis is said to have axial symmetry. In order to make use of
the axisymmetric physics interfaces, all loads and constraints must also be the same

around the circumference.

For other types of symmetry, use the predefined symmetry and antisymmetry
constraints. This means that no expressions need to be entered—instead just add the

type of constraint to apply to the model.

Physics Interface Axial Symmetry Node in the COMSOL Multiphysics
'El Reference Manunl
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If the geometry exhibits two symmetry planes (Figure 2-6), model a quarter of the
geometry by using the Symmetry node for the two selected surfaces.

Symmetry planes Apply symmetry constraints

Figure 2-6: If the geometry exhibits two symmetry planes, model o quarter of the geometry
by using the Symmetry feature for the two selected surfaces.

Both geometric symmetry and loads are important when selecting the

n correct constraints for a model.
In an eigenfrequency or buckling analysis, the eigenmodes might be
n nonsymmetric even if the structure is symmetric.

Figure 2-7 shows symmetric and antisymmetric loading of a symmetric geometry.
When modeling half of the geometry, the correct constraint for the face at the middle
of the object would be Antisymmetry in the case of antisymmetric loading and
Symmetry in the case of symmetric loading of the object.

| |

A | 2 AT\Q

Symmetry plane Antisymmetry plane

Figure 2-7: Symmetry plane (left) and antisymmetry plane (vight).
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SYMMETRY IN 2D AXISYMMETRY
In an axisymmetric model, the only possible symmetry is when the symmetry plane is
normal to the Z-axis. For models in 2d axisymmetry, the Symmetry Plane node is used

for prescribing this type of symmetry.

Antisymmetry cannot exist in this case.

TRANSLATION OF THE SYMMETRY PLANE

In some situations, you may want to use a symmetry condition, in which the symmetry
boundary actually can move along its normal. This may for example the case when you
use symmetry conditions to terminate your modeled region even though the situation
is not truly symmetric. The best approximation may then be that the boundary remains

planar, but that there is no resultant reaction force from the boundary condition.

You can modify the symmetry condition, so that it can translate in various ways by
using the controls in the Normal Direction Condition section of the settings for the
Symmetry constraint. You can model the following cases:

* Reaction force free translation.

¢ Prescribed total force acting on the constrained part.

¢ The displacement in the normal direction is prescribed.

Note that allowing translation in the symmetry constraint is only meaningful if the

geometry selection corresponds to a single symmetry plane.

For an example showing how to force a boundary to remain plane, but

still allow it to translate in its normal direction using this special version
[T of Symmetry, sce Thermo-Mechanical Analysis of a Surface-Mounted

Resistor: Application Library path Structural_Mechanics_Module/

Thermal-Structure_Interaction/surface_resistor.

Symmetry Condition with Translation in the Structural Mechanics
@l‘ Theory chapter.
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Elemental and Nodal Constraints

For most constraints, you can select between using elemental and nodal constraints.
To do this, select Advanced Physics Options, so that the Constraint Settings section is

displayed.
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When using nodal constraints, one constraint is generated for each node within the
selection a certain constraint feature. With elemental constraints, the number of
constraints added at a node equals the number of elements connected to that node.
This means that if some values used in the constraints differ between the elements,
then different constraints will be generated by the elemental method, whereas with the

nodal method an average is computed at the node before adding the constraint.

When several constraints are present at a node, the internal constraint elimination
algorithm is responsible for reducing them to a minimum unique set. Using elemental
constraints will clearly put an extra burden on this algorithm, so whenever possible you

should use nodal constraints.

The two different options exist, since under some circumstances the actual constraints
can differ between the two methods. Consider for example a symmetry constraint,
where the displacement in the direction normal to the boundary is constrained by the

equation

where n is the unit normal vector.

If there are several intersecting symmetry planes, like in Figure 2-6, using nodal

constraints could cause a problem:

e If both boundaries are selected in the same Symmetry node, then only a single
constraint is applied for each node along the common edge, while you actually want
constraints along the normals of both planes. The normal used would be pointing
somewhere between the two planes, since a nodal constraint uses averaging of the

values from the adjacent elements.

¢ If two Symmetry nodes are used, so that the selection in any one of them only
contains boundaries without a normal direction discontinuity, the intended
constraints are added. On the common edge, there will be two contributions, one
from each Symmetry node, and each using the normal direction of its boundary. If
you want to use nodal constraints, you must set up your model in this way if the

constraints are orientation dependent.

Elemental constraints, on the other hand, can cause problems if the constraints added
by adjacent elements are not exactly the same. This could for example happen if the
normal orientation differs between neighboring elements. In such a case, a boundary
could behave as if it were fixed when a Symmetry, Antisymmetry, or Roller constraint is
applied. Such a situation could occur when the component consists of an imported

mesh, so that no underlying geometry exists.
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The default type of the constraint, nodal or elemental, differs between different
constraint features. A nodal formulation is the default whenever it is considered safe,
like for a Fixed Constraint. Whenever the constraint can have a dependency on the

surface orientation, the default value is elemental.

See also Constraint Settings in the COMSOL Multiphysics Reference
a Mannal.
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Suppressing Constraints on Lower Dimensions

Sometimes, boundary conditions on two adjacent objects can come into conflict on a

shared object.

For most constraints in the structural mechanics interfaces, you have the possibility to
select that certain objects of lower dimensions should be excluded from the main
selection. To do this, you must first select Advanced Physics Options. In the settings for
a constraint, like for example Prescribed Displacement, new sections named Excluded
Surfaces, Excluded Edges, and Excluded Points will then appear. In these sections, you
can select geometrical objects which should be excluded from the main selection when

the constraint is applied.

In the structural mechanics interfaces, there are many types of complex constraints,
and sometimes you may get conflicts or duplicates which makes the model either
overconstrained, or problematic for the automatic constraint elimination algorithm. If
you are aware of such situations, it is good practice to remove one of the potentially
conflicting constraints. One example of such a situation is when you have a Solid-Shell

Connection meeting a symmetry plane, as shown in Figure 2-8.

Symmetry plane

Figure 2-8: Example of potentinlly conflicting constraints
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Here you would add a Symmetry condition on a boundary in the Solid Mechanics
interface, as well as a Symmetry condition on an edge in the Shell interface. But at the
same time, the displacements on whole boundary where the solid meets the shell are
controlled by shell degrees of freedom as an effect of the Solid-Shell Connection. As a
result, on the edge marked with Conflict in the sketch, the displacements will be
controlled both by the symmetry condition is Solid Mechanics, and implicitly through
the coupling, by the symmetry condition in the Shell interface. Particularly if the
geometry is curved, there is a risk that these constraints are not identical from a
numerical point of view. In this case, excluding the conflicting edge from the selected
boundary in the Solid Mechanics interface will make the behavior unique and fully
predictable.

Another example where constraints will come in conflict is if you want to constrain the
displacement on parts of the geometry using weak constraints, while keeping the

default pointwise constraints on other parts. If the same mesh node has both types of
constraints, the solution will fail, so you must exclude any common geometrical objects

from the selection in one of the constraints.

See also Excluded Surfaces, Excluded Edges, and Excluded Points in the
@}‘ COMSOL Multiphysics Reference Manual.

Kinematic Constraints

Kinematic constraints are equations that control the motion of solids, faces, edges, or
points. Add a Prescribed Displacement constraint to enter expressions for constraints.
You can define the equations using predefined coordinate systems as well as custom

coordinate systems. Special constraints, for instance to keep an edge of body straight

or to make a boundary rotate, require such constraint equations.

In the 3D and 2D Solid Mechanics interfaces and in the Shell and Beam

interface there is a special constraint called a Rigid Connector. A rigid
R connector is applied to one or more boundaries, edges, or points and force
them to behave as connected to a common rigid body. The rigid
connector can be given prescribed displacements and rotations and thus

simplifies the realization of some constraints.
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Rotational Joints

Joints between elements in The Truss Interface are automatically rotational joints
because the truss elements have no rotational degrees of freedom. For beams, however,
the rotational degrees of freedom are by default coupled between elements. To create
a rotational joint between two beam elements, add one additional Beam interface to a
geometry. Make sure that it is only active for the edge that includes the point where
the joint is positioned and that no other physics interface is active here. Couple the
translational degrees of freedom and leave the rotational degrees of freedom

uncoupled at the joint.
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Calculating Reaction Forces

There are different ways to evaluate reaction forces and these are discussed in this

section.

* Using Predefined Variables to Evaluate Reaction Forces
* Using Weak Constraints to Evaluate Reaction Forces
* Using Surface Traction to Evaluate Reaction Forces

e Using Surface Traction to Evaluate Reaction Forces

The following sections describe the merits and costs of these methods.

Using Predefined Variables to Evaluate Reaction Forces

The results analysis capabilities include easy access to the reaction forces and moments.
They are available as predefined variables. The reaction force variables are available
only at the nodes, and not as a continuous field, so they are not suitable for graphic
presentation.

To compute the sum of the reaction forces over a region, use

Volume Integration, Surface Integration, or Line Integration under
Results>Derived Values. The integration method discovers that the
reaction forces are discrete values and applies a summation instead of an

g integration.

If you create an integration operator under
Component>Definitions>Component Couplings>Integration to sum reaction

forces, you must explicitly set Method to Summation over nodes.

Reaction forces are computed as the sum of the nodal values over the selected volume,
face, or edge. Reaction moments are calculated as the sum of the moment from the
reaction forces with respect to a reference point, and any explicit reaction moments (if

there are rotational degrees of freedom).

Specify the default coordinates of the Reference Point for Moment Computation at the
top level of the Settings window for the physics interface. After editing the reference
point coordinates, you need to right-click the Study node and select Update Solution

for the change to take effect on the reaction moment calculation. During
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postprocessing, you can modify the coordinates of the reference point in the

Parameters section of a result feature..

* Reaction forces are not available for eigenfrequency analysis or when

weak constraints are used.

» Reaction force variables are computed where there are constraints, that
is Dirichlet conditions like Fixed Constraint, or Prescribed Displacement.
Reaction force variables are found in the Reactions folder in the result
menus, and have names like solid.RFx or solid.RMz for an

x-directed force and a moment around the z-axis respectively.

* From the physical point of view, there can be other sources of reaction
forces, such as the elastic and viscous forces from a Spring Foundation.
Such forces are not included in the reaction force variables, but are
placed in separate variables. You will find them in the Spring and
damping forces folder in the result menus.

[

Total reaction force variables are available. In these variables, reaction
forces, spring forces, and damping forces have been integrated over the
whole physics interface. These variables are found in the Reactions
folder in the result menus, and have names like solid.RFtotalx or
solid.RMtotalz for an x-directed force and a moment around the
z-axis respectively. These variables should thus, for a stationary analysis,

be equal to the total applied load.

* Ifreaction forces are summed independently for two adjacent
boundaries, the total sum is not the same as if the reaction forces were
summed for both boundaries in one operation. The values of the nodes
at the common edge always contain contributions from the elements
at both sides of the edge.

Derived Values, Evaluation Groups, and Tables in the COMSOL
@ Multiphysics Reference Manunal

Using Weak Constraints to Evaluate Reaction Forces

Select the Use weak constraints check box to get accurate distributed reactions. Extra
variables that correspond to the reaction traction distribution are automatically added

to the solution components.
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With weak constraints activated, COMSOL Multiphysics adds the reaction forces to
the solution components. The variables are denoted X_1m, where X is the name of the
constrained degree of freedom (as, for example, u_1m and v_1m). The extension 1m
stands for Lagrange multipliers. It is only possible to evaluate reaction forces on
constrained boundaries in the directions of the constraints.

To compute the total reaction force on a boundary, integrate one of the
variables X_1m using Volume Integration, Surface Integration, or Line
Integration under Derived Values.

[§ ﬁ ]
If the constraint is defined in a local coordinate system, the degrees of
freedom for the weak constraint variables are defined along the directions

of that system.

Since the reaction force variables are added to the solution components, the number
of DOFs for the model increases slightly, depending on the mesh size for the
boundaries in question. Boundaries that are adjacent to each other must have the same
constraint settings. The reason for this is that adjacent boundaries share a common
node.

Using weak constraints affects the structure of the equation system to be solved, and
is not suitable for all types of equation solvers.

In the COMSOL Multiphysics Reference Manual:

Gl. ¢ Derived Values, Evaluation Groups, and Tables

e Symmetric and Nonsymmetric Constraints

Using Surface Traction to Evaluate Reaction Forces

As an alternative method, you can obtain values of the reaction forces on constrained
boundaries by using boundary integration of the relevant components of the surface
traction vector.

For 2D components, multiply the surface traction by the cross section

) thickness before integrating to calculate the total reaction force.
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Two different types of surface traction results can be computed in COMSOL
Multiphysics:

The first type, contained in the variables i nt er f ace.Tax, is computed from the
stresses. It is always available. Since the surface traction vector is based on computed
stress results, this method is less accurate for computing reactions than the other

methods.

The second type, contained in the variables i nt er f ace.Tracx, is computed using a
method similar to the weak constraints, but without introducing the Lagrange
multipliers as extra degrees of freedom. The accuracy is high, but there is an extra
computational cost. These traction variables are computed only if the Compute
boundary fluxes check box in the Discretization section is selected for the Solid

Mechanics interface.

In case of geometric nonlinearity, the two types of traction variables are
interpreted differently. The i nt er f ace.Tax variables are based on

Cauchy stress, and contains a force per current area. If you integrate them

[

you must use the spatial frame. The i nt er f ace . Tracx variables are based
on First Piola-Kirchhoft stresses and contains a force per undeformed

area. An integration must then be done on the material frame.

Evaluating Surface Traction Forces on Internal Boundaries

As opposed to the other methods for reaction force computation, the boundary flux
based tractions are computed not only on external boundaries, but also on internal
boundaries. On internal boundaries, there are then two traction fields: One acting
from each of the domains sharing the boundary. These internal traction fields are
contained in the variablesi nter f ace.iTracux andi nt er f ace.iTracdx. The letters
u and d in the variable names indicate the up and down side of the boundary
respectively. If you need the value of the total force acting on an internal section
through your model, these variable can be integrated. The i nt er f ace.iTracux
andi nterface.iTracdx variables are only available if the Compute boundary fluxes
check box is selected in the Discretization section of the physics interface, and there are

internal boundaries in your model.

Computing Accurate Fluxes in the COMSOL Multiphysics Reference
@ Manunl
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Introduction to Material Models

In this section:

e Material Models for Structural Mechanics

* Entering material data

¢ Introduction to Linear Elastic Materials

¢ Introduction to Viscoelastic Materials

¢ Mixed Formulation

* Modeling Damage

¢ About the Material Databases for the Structural Mechanics Module

* Using External Materials

Material Models for Structural Mechanics

The Structural Mechanics Module without any add-on modules provides the Linear
Elastic material with Viscoelasticity and Thermal Expansion modeling capabilities. It

also provides access to piezoelectric and magnetostrictive materials.

If you have the optional products Nonlinear Structural Materials Module or
Geomechanics Module, many other classes of nonlinear materials are also available.
These models can be modified and extended, and custom material models can be
defined.

You can also add a material model which you have coded yourself and made available

as a binary library file using an External Stress-Strain Relation.

* Modeling Piezoelectric Problems
* Modeling Magnetostrictive Materials

@l In the COMSOL Multiphysics Reference Manual:

* Working with External Materials

e External Material
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In Table 2-5 you can find an overview of the families of materials, and their

applicability in the various structural mechanics interfaces.

TABLE 2-5: MATERIAL MODELS IN THE BASIC PHYSICS INTERFACES

MATERIAL SOLID SHELL/ MEMBRANE BEAM TRUSS
MODEL MECHANICS PLATE

Linear Elastic Material X X X X X

Nonlinear Elastic X — X — —
Material

Hyperelastic Material
Shape Memory Alloy

Piezoelectric Material

X X X X

Magnetostrictive
Material

Viscoelasticity
Plasticity
Soil Plasticity

Creep

X X X X X
I
I
I
I

Elastoplastic Soil
Material

Viscoplasticity
Porous Plasticity
Concrete

Rocks

Damage

X X X X X X
I
I
I
I

External Stress-Strain
Relation

Rigid Domain X — — — —
Spring-Damper — — — — X

Many of the material models can be augmented by effects like thermal expansion,
hygroscopic swelling, initial stresses and strains, and external stress.

Combination of Material Models

It is possible to combine many of the effects in an additive manner. The models based

on eclasticity all have the same structure where
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I An elastic strain is computed by removing all inelastic strains (for example, plastic or

thermal strains) from the total strain.
2 An “elastic stress” is computed from the elastic strains.
3 Any additional stresses (for example viscous stresses, or initial stresses) are added to

form the total stress.

This concept will give you a great freedom in combining effects. Some such useful
combinations are

* Plasticity and thermal expansion

* Dlasticity and creep

* Two different creep models

* Thermal expansion and hygroscopic swelling

¢ Viscoelasticity and creep

Entering material data

For most material data, you have the option to choose between From material and
User defined. The preferred way of supplying the material data, is through the Materials
node. If you are using data from the Material Library, this is the only option, but also
when supplying your own data this will improve clarity of model.

Constitutive matrices, such as the elasticity matrix for an anisotropic material, are in
many cases per definition symmetric. Only the upper diagonal of the matrix given as
input is used for forming the matrix used, so you need not enter the lower diagonal

part.

Introduction to Linear Elastic Materials

Linear elasticity forms the basis for the majority of structural mechanics simulations.

For isotropic linear elasticity, two parameters are enough to describe the material
behavior. The number of parameters increases to (at most) 21 for the fully anisotropic
case in 3D. When setting up a model, make sure that the material parameters are
defined in agreement with the type of relationship used. If necessary, transform the
material data before entering it in the physics interface. For example, for orthotropic

materials calculate the Poisson’s ratio vy, by
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@l In the theory section Linear Elastic Material

Introduction to Viscoelastic Materials

The generalized Maxwell, standard linear solid (SLS) and Kelvin-Voigt viscoelastic

materials are available. All the models are linear, and the corresponding materials can
be described as consisting of one or more branches with a spring and a dashpot acting
in parallel to a linear elastic material. For each viscoelastic branch, the shear modulus

and the relaxation time (or viscosity) are entered.

e Linear Viscoelastic Materials

@

* Viscoelasticity

CHAPTER 2:

Mixed Formulation

Nearly incompressible materials can cause numerical problems if only displacements
are used in the interpolating functions. Small errors in the evaluation of volumetric
strain, due to the finite resolution of the discrete model, are exaggerated by the high
bulk modulus. This leads to an unstable representation of stresses, and in general to
underestimation of the deformation because spurious volumetric stresses might

balance also applied shear and bending loads.

When the Pressure formulation is sclected in the Use mixed formulation list, the negative
volumetric stress py, is treated as an additional dependent variable. The resulting mixed
formulation is also known as u-p formulation. This formulation removes the effect of
volumetric strain from the original stress tensor and replaces it with an interpolated

pressure, py,. A separate equation constrains the auxiliary pressure variable to make it

equal (in a finite-element sense) to the original pressure calculated from the strains.
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Select this setting when the material data is close to incompressibility. For an isotropic

material, this happens when Poisson’s ratio approaches 0.5.

The mixed formulation is useful not only for linear elastic materials but
also for elastoplastic materials, hyperelastic materials, and viscoelastic

materials.

The order of the shape function for the auxiliary pressure variable should
be one order less than that for the displacements. Thus, it is not
recommended to use linear elements for the displacement variables in the
n domains, where the mixed formulation is turned on. Also note that some
iterative solvers do not work well together with mixed formulation

because the stiffness matrix becomes indefinite.

Modeling Damage

Modeling problems with strain localization might turn into unstable behavior and
convergence difficulties. The following techniques can be used to help is such

situations:

* Use a displacement controlled loading scheme since damage is often associated with
areduction in load carrying capacity, see the Cracking of @ Notched Beam example
in the Geomechanics Module or in the Nonlinear Structural Mechanics Module

Application Libraries.

* Better convergence is often obtained when the Nonlinear method is set to Constant

(Newton) with a Damping factor cqual to 1, and a Jacobian update on every iteration.

* Reduce the smallest and/or largest allowable step size in an auxiliary sweep, or

restrict the time steps in a time dependent study.

¢ Introducing a soft spot where a crack is expected can make the localization of strains
more stable, see the Brittle Damage in Uniaxial Tension example in the
Geomechanics Module or in the Nonlinear Structural Mechanics Module
Application Libraries. Alternatively, a random spatial distribution of the material

parameters could be employed to obtain a similar result.
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When using the crack band method or no regularization at all, the following steps are

recommended:

¢ The size of the biggest mesh element should not exceed h<2EGy/ GtS27 where E is
the Young’s modulus, Gy is the fracture energy per unit area, and Gy is the tensile
strength. Larger values of A will cause a snap-back of the stress-strain curve at the

material point level.

e Use linear shape functions for the displacement. When using higher order shape
functions, strains may localize in either rows of Gauss points or entire elements

depending on the stress state and numerical round off.

e Ifcracks are located on a symmetry plane, the model parameters should be modified
so that the amount of dissipated energy is reduced by one half in the elements
adjacent to the symmetry plane. This can be achieved, for example, by reducing the

fracture energy in that row of elements.

When using the implicit gradient method, the element size should be sufficiently small
to resolve damaged zones.

About the Material Databases for the Structural Mechanics Module

The Structural Mechanics Module includes these material databases: Liquids and
Gases, with temperature-dependent fluid dynamic and thermal properties, MEMS, an
extended solid materials library with metals, semiconductors, insulators, and polymers
common in MEMS devices, and a Piezoelectric database with over 20 common
piezoelectric materials. The materials include temperature-dependent fluid dynamic

and thermal properties.

In the COMSOL Multiphysics Reference Manual:

¢ MEMS Materials Database
{R ¢ DPiczoelectric Materials Database
* Liquids and Gases Materials Database

e Materials

For an example of the MEMS materials database and Piezoelectric
materials database, see Piezoelectric Shear-Actuated Beam: Application
ﬂ]]] Library path Structural_Mechanics_Module/Piezoelectric_Effects/

shear_bender.
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Using External Materials

If you need to use a constitutive modal which is not available among the built-in
material models, it is possible to program it yourself. Such a material function, termed
an external material, is coded in C. If you already have an existing code in another

language like Fortran or C++, it is however possible to write a wrapper function to it.

Before moving to implementing your own material model, there are however two

other options to consider:

¢ Many material models like hyperelasticity, creep and plasticity have User defined as
one of the options in addition to the standard models. Any material model which

you can describe using built-in variables is most conveniently described here.

¢ A material model which can partially described in terms of a PDE can often be
implemented using one of the mathematical interfaces. Stresses or strains computed
in that interface are then injected in an existing material model using the External

Stress and External Strain subnodes.

There are two basic types of external material functions: those which completely
replace other material definitions in a domain, and those that just compute an inelastic
strain contribution to be used as part of an existing material model. The former is
referenced from an External Stress-Strain Relation node, whereas the latter is

referenced from an External Strain subnode.

During the solution, an external material routine is always called for each Gauss point
during evaluation of stiffness matrices and computation of residuals. During result
presentation, the external material can be called from any location in the geometry, as

requested by for example graphs and point evaluations.

Almost invariably, you need to store state variables in the external material, such as for
example plastic strains. The state variables are stored at the Gauss points. If an external
material is called at another location, the state variables will be interpolated to that
location. This means that the state of the material may not be exactly consistent there,
which can lead to some artifacts during result presentation. You can avoid this problem
by using the gpeval operator.

In the COMSOL Multiphysics Reference Manual:

Gl. * Working with External Materials

e External Material
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LIBRARY OF UTILITY FUNCTIONS

In order to simplify the task of writing the code for an external material, a library of
utility routines is provided. It provides a toolkit for operations common in solid
mechanics such as various tensor operations or computing principal stresses and

effective stresses.

LIST OF UTILITY FUNCTIONS

csext_add: Function that adds two matrices
/*

*

Function: csext_add

Description:
Adds two (3 x 3) matrices 'A' and 'B' and stores the
result 'A + B' in 'C'.

Arguments:
double A[3][3]
double B[3][3]
double C[3][3] (output)

Return value:
void

* 0% X X X X X X X X X X F

/
void csext_add(double A[3][3],double B[3][3], double C[3][3]);

csext_det: Function that computes the matrix determinant

/*

* Function: csext_det

K e e e e e e e -

* Description:

* Computes the determinant of a (3 x 3) matrix 'A' and
* returns the value.
*

* Arguments:

* double A[3][3]

*

* Return value:

* double

*

*

/
double csext_det(double A[]3[3]);
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csext_dev: Function that computes the deviator of a matrix

/*

* Function: csext_dev

K o e e e e e e e e e - -

* Description:

* Computes the deviator of a (3 x 3) matrix ‘A’
* and stores the value in 'dev'.
*

* Arguments:

* double A[3][3]

* double dev[3][3] (output)

*

* Return value:

* void

*

*/

void csext_dev(double A[3][3], double dev[3][3]);

csext_dot: Function that computes the inner product of two matrices
/*
* Function: csext_dot
*

* Description:

* Computes the inner product of (3 x 3) matrices 'A' and 'B',
* and returns 'A : B'.
*

* Arguments:

* double A[3][3]

* double B[3][3]

*

* Return value:

* double

*

*/

double csext_dot(double A[3][3],double B[3][3]);

csext_eig: Function that computes the spectral decomposition of a symmetric matrix
/*
* Function: csext_eig
Description:
Computes the eigenvalues and eigenvectors of a
symmetric (3 x 3) matrix 'A'.
The eigenvalues are stored in 'vals', sorted with the
largest value in vals[O].
The eigenvectors are stored column-wise in 'vecs' with

*

L I
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the same ordering as the eigenvalues.
Normal execution returns 0. Non-zero means that the
computation failed.

Arguments:
double A[3]1[3]
double vals[3] (output)
double vecs[3][3] (output)

Return value:
int

* 0% Ok X X X X X X X X X F

/
int csext_eig(double A[3][3], double vals[3], double vecs[3][3]);

csext_gl: Function that computes the Green-Lagrange strain tensor
/*

*

Function: csext_gl

Description:
Computes the Green-Lagrange strain tensor 'egl' based on
the Right Cauchy-Green deformation tensor 'rcg'.

Arguments:
double rcg[3]1[3]
double egl[3][3] (output)

Return value:
void

* 0% Ok X X X X X X X X F X

/
void csext_gl(double rcg[3][3],double egl[3][3]);

csext_inv: Function that computes the matrix inverse
/*

*

Function: csext_inv

Description:
Computes the inverse of a (3 x 3) matrix 'A'.
The inverse, if it exists, is stored in 'inv'.
0 is returned if successful, -1 if 'A' is numerically
singular. The matrix 'A' is considered singular if
abs(det(A))<tol.

Arguments:
double A[3]1[3]

* 0% Ok F X Ok X X F F
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double tol
double inv[3][3] (output)

*

*

*

* Return value:
* int

*

*

/
int csext_inv(double A[3][3], double tol, double inv[3][3]);

csext_lcg: Function that computes the Left Cauchy-Green deformation tensor
/*

*

Function: csext_lcg

K e e e e e e e e m e e m e m e m - -

* Description:

* Computes the Left Cauchy-Green deformation 'lcg' tensor
* based on the deformation gradient 'defgrad'.
*

*

* Arguments:

* double defgrad[3][3]

* double 1cg[3][3] (output)

*

* Return value:

* void

*

*/

void csext_lcg(double defgrad[3][3], double 1cg[3][3]);

csext_lpolar: Function that computes the Left polar decomposition of a matrix
/*

*

Function: csext_lpolar

*

* Description:

* Computes the Left polar decomposition F = VR,

* such that the deformation gradient 'defgrad' is

* multiplicatively decomposed into a rotation, 'R',
* and a stretch tensor, 'V'.

* If the polar decomposition fails, -1 is returned.
* If successful, 0 is returned.

*

* Arguments:

* double defgrad[3][3]

* double V[3][3] (output)

* double R[3][3] (output)

*

*

Return value:
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* int

*

*/
int csext_1lpolar(double defgrad[3][3], double V[3][3],
double R[3][3]);

csext_mises: Function that computes the von Mises effective stress
/*

*

Function: csext_mises

Description:
Computes and returns the von Mises effective stress based
on a stress tensor 'sig'.

Arguments:
double sig[3][3]

Return value:
double

EE I I I S S T R I I T

/
double csext_mises(double sig[3][3]);

csext_mul: Function that multiplies two matrices
/*
* Function: csext_mul
*

Description:
Multiplies two (3 x 3) matrices 'A' and 'B'.
The result 'AB' is stored in 'C'.

*

*

*

*

* Arguments:

* double A[3][3]

* double B[3][3]

* double C[3][3] (output)
*
*
*
*
*

Return value:
void

/
void csext_mul(double A[3][3], double B[3][3], double C[3][3]);

csext_rcg: Function that computes the Right Cauchy-Green deformation tensor
/*
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*

*

*
*
*
*
*
*
*
*
*
*
*
*

Function: csext_rcg

Description:

Computes the Right Cauchy-Green deformation tensor 'rcg’
based on the deformation gradient 'defgrad'.

Arguments:

double defgrad[3][3]
double rcg[3][3] (output)

Return value:

void

void csext_rcg(double defgrad[3][3], double rcg[3][3]);

csext_rpolar: Function that computes the Right polar decomposition of a matrix

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function: csext_rpolar

Description:

Computes the Right polar decomposition F = RU,
such that the deformation gradient 'defgrad' is
multiplicatively decomposed into a rotation, 'R',
and a stretch tensor, 'U'.

If the polar decomposition fails, -1 is returned.
If successful, 0 is returned.

Arguments:
double defgrad[3][3]
double R[3][3] (output)
double U[3][3] (output)

Return value:

int

int csext_rpolar(double defgrad[3][3], double R[3][3],
double U[3][3]);

csext_spect: Function that computes a matrix based on its spectral decomposition

/*

*

* F X

Function: csext_spect

Description:

Computes a symmetric (3 x 3) matrix 'A' based on
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* its spectral decomposition A=Q*diag*Q"T.

* The matrix 'diag' is diagonal and stores the

* eigenvalues of 'A'. The matrix 'Q' stores the

* eigenvectors (column-wise) of 'A', with the ordering
* corresponding to the eigenvalues in 'diag'.

* The vector 'd' stores the diagonal elements of 'diag'.
*

* Arguments:

* double Q[3][3]

* double d[3]

* double A[3]1[3] (output)

*

* Return value:

* void

*

*/

void csext_spect(double Q[3][3], double d[3], double A[3][3]);

csext_trace: Function that computes the matrix trace
/*

*

Function: csext_trace

Description:
Computes and returns the trace of a (3 x 3) matrix 'A'.

Arguments:
double A[3]1[3]

Return value:
double

* 0% X X X X X X X X X

/
double csext_trace(double A[3][3]);

csext_transp: Function that computes the matrix transpose
/*

*

Function: csext_transp

Description:
Computes the transpose of a (3 x 3) matrix 'A'.
The result is stored in 'transp'.

Arguments:
double A[3][3]
double transp[3][3] (output)

* 0% Ok F  F Ok F X *
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* Return value:
* void
*
*/
void csext_transp(double A[3][3], double transp[3][3]);

csext_add_voigt: Function that adds two matrices
/*

*

Function: csext_add_voigt

Description:
Adds two matrices 'A' and 'B' stored on Voigt form.
The result is stored in 'C'.

Arguments:
double A[6]
double B[6]
double C[6] (output)

Return value:
void

L SR S S R R N

/
void csext_add_voigt(double A[6], double B[6], double C[6]);

csext_dev_voigt: Function that computes the deviator of a symmetric matrix
/*
* Function: csext_dev_voigt

* Description:

* Computes the deviator of a (symmetric) matrix 'A' stored on
Voigt form.

* The result is stored in 'dev'.

*

* Arguments:

* double A[6]

* double dev[6] (output)

*

* Return value:

* void

*

/
void csext_dev_voigt(double A[6], double dev[6]);

csext_dot_voigt: Function that computes the inner product of symmetric matrices
/*
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* Function: csext_dot_voigt
*

Description:
Computes and returns the dot product (inner product) of two
symmetric (3 x 3) matrices 'A' and 'B' stored on Voigt form.

*

*

*

*

* Arguments:

* double A[6]
* double B[6]
*

* Return value:
* double

*

/
double csext_dot_voigt(double A[6], double B[6]);

csext_mises_voigt: Function that computes the von Mises effective stress
/*

*

Function: csext_mises_voigt

Description:
Computes and returns the von Mises effective stress based
on a stress tensor 'sig' on Voigt form.

Arguments:
double sig[6]

Return value:
double

EE I I R S S T R I T T

/
double csext_mises_voigt(double sig[6]);

csext_utils_trace_voigt: Function that computes the matrix trace

* Function: csext_trace_voigt

Description:
Computes and returns the trace of a symmetric (3 x 3) matrix
'A' stored on Voigt form.

*

*

*

*

* Arguments:

* double A[6]
*

* Return value:
* double

*
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double csext_trace_voigt(double A[6]);

csext_utils: Function to change from Voigt notation

/*

*

L S S T S I SR R I

/

Function: csext_from_voigt

Description:

Converts a symmetric (3 x 3) matrix 'A' stored

on Voigt form to matrix form. The result is stored in 'B'.
1, the values of last three elements of 'A' are
un-altered when passed into 'B'.
2, the values of last three elements of 'A' are
halved when passed into 'B'.

If 'def' =
If 'def' =
Returns -1
Arguments:
double A[6]
int def
double B[3]

Return value:
int

if the value of 'def'

[3] (output)

is invalid, 0 otherwise.

int csext_from_voigt(double A[6], int def, double B[3][3]);

csext_to_voigt: Function to change to Voigt notation

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function: csext_to_voigt

Description:
Converts a
The result
If 'def' =
of 'A' are
If 'def' =
of 'A' are
Returns -1

Arguments:
double A[3]
int def
double B[6]

Return value:
int

symmetric (3 x 3) matrix 'A' to Voigt form.

is stored in 'B'.

1, the values of the off-diagonal components
un-altered when passed into 'B'.

2, the values of the off-diagonal components
doubled when passed into 'B'.

if the value of 'def'

[3]

(output)

is invalid, 0 otherwise.
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*
*/
int csext_to_voigt(double A[3][3], int def, double B[6]);

csext_jac_conv: Function to convert the Jacobian
/*
* Function: csext_jac_conv

* Description:

* Converts a Jacobian from 'dSde' to 'dSdF' using the deformation
* gradient ‘'defgrad', where:

* - 'S' is the 2:nd Piola-Kirchhoff stress tensor,

* - 'e' 1is the Green-Lagrange strain tensor,

* - 'F' is the deformation gradient.

* If 'def' = 1, dSde is defined using tensor shears.

* If 'def' = 2, dSde is defined using engineering shears.
* Returns -1 if the value of 'def' is invalid.

*

* Arguments:

* double dSde[6][6]

* int def

* double defgrad[3][3]

* double dSdF[6][9] (output)

*

* Return value:

* int

*

*/

int csext_jac_conv(double dSde[6][6], int def,
double defgrad[3][3], double dSdF[6][9]);

csext_unit: Function to define a unit matrix
/*

*

Function: csext_unit

Description:
Initializes an (n x n) matrix 'A' to the identity matrix.
Returns -1 if n < 1,
0 otherwise.

Arguments:
int n
double *A (output)

Return value:
int

L S I I
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*
*/
int csext_unit(int n, double *A);

csext_zero: Function to initialize a matrix
/*
* Function: csext_zero
Description:
Initializes an (m x n) matrix 'A' to zero.
Returns -1 if m <1 orn < 1,
0 otherwise.

*

*

*

*

*

*

* Arguments:

* int m

* int n

* double *A (output)
*
*
*
*
*

Return value:
void

/
int csext_zero(int m, int n, double *A);
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Modeling Piezoelectric Problems

In this section:

¢ About Piezoelectric Materials

* DPiezoelectric Coupling

* Create the Piezoelectric Effect Interface and Define Domains
¢ Complete Settings of Piezoelectric Materials

* Add Damping and Loss

¢ Define Material Properties

* Multiphysics Modeling Approaches in the COMSOL Multiphysics
Reference Manual.

ﬁl * Diezoelectric Coupling

* DPiezoelectric Material in the theory section

CHAPTER 2:

About Piezoelectric Materials

Piezoelectric materials become electrically polarized when strained. From a
microscopic perspective, the displacement of atoms within the unit cell (when the solid
is deformed) results into electric dipoles within the medium. In certain crystal
structures, this combines to give an average macroscopic dipole moment or electric
polarization. This effect, known as the direct piezoelectric effect, is always
accompanied by the converse piezoelectric effect, in which the solid becomes strained
when placed in an electric field.

Within a piezoelectric, there is a coupling between the strain and the electric field,

which is determined by the constitutive relation:

S =s;T+d E
D = dT +epE

(2-12)

Here, the naming convention used in piezoelectricity theory is assumed: S is the strain,
T is the stress, E is the electric field, and D is the electric displacement field. The
material parameters sg, d, and 7, correspond to the material compliance, the coupling
properties and the permittivity. These quantities are tensors of rank 4, 3, and 2
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respectively. The tensors however are highly symmetric for physical reasons, and they
can be represented as matrices within an abbreviated subscript notation, which is
usually more convenient. In the Piezoelectric Devices interface, the Voigt notation is
used, which is standard in the literature for piezoelectricity but which differs from the
defaults in the Solid Mechanics interface.

The Piezoelectric Material uses the structural mechanics nomenclature.
The strain is named € (instead of S) and the stresses are denoted by either
n o or S (instead of T). This makes the names consistent with those used in

the other structural mechanics interfaces.

Equation 2-12 will, using the notation from structural mechanics, then read

€ = SEG+dTE 2-13)
D = do+egpe L E

Equation 2-12 (or Equation 2-13) is known as the strain-charge form of the
constitutive relations. The equation can be re-arranged into the stress-charge form,

which relates the material stresses to the electric field:

T
6 =cpe-e E (2-14)
D = ee+egpe (E

The material properties, cg, e, and €g are related to sg, d, and ep. It is possible to use
cither form of the constitutive relations. In addition to Equation 2-12 or
Equation 2-14, the equations of solid mechanics and electrostatics must also be solved

within the material.

* Piezoelectric Coupling
@l ¢ Modeling Piezoelectric Problems

* DPiezoelectric Material in the theory section

Piezoelectric Material Orientation

The orientation of a piezoelectric crystal cut is frequently defined by the system
introduced by the IRE standard of 1949 (Ref. 8). This standard has undergone a
number of subsequent revisions, with the final revision being the IEEE standard of
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1987 (Ref. 9). Unfortunately the 1987 standard contained a number of serious errors
and the IEEE subsequently withdrew it. COMSOL therefore adopts the preceding
1978 standard (Ref. 10), which is similar to the 1987 standard, for material property
definitions. Most of the material properties in the material library are based on the
values given in the book by Auld (Ref. 11), which uses the 1978 IEEE conventions.
This is consistent with general practice except in the specific case of quartz, where it is
more common to use the 1949 IRE standard to define the material properties.
COMSOL therefore provides additional sets of material properties consistent with this
standard for the case of quartz. Note that the material properties for quartz are based
on Ref. 12, which uses the 1949 IRE standard (the properties are appropriately
modified according to the different standards).

The stiffness, compliance, coupling, and dielectric material property matrices are
defined with the crystal axes aligned with the local coordinate axes. Note that the signs
of several matrix components differ between the 1949 and the 1978 standards (see
Table 2-6). In the absence of a user-defined coordinate system, the local system
corresponds to the global X, Y, and Z coordinate axes. When an alternative coordinate
system is selected this system defines the orientation of the crystal axes. This is the
mechanism used in COMSOL to define a particular crystal cut, and typically it is
necessary to calculate the appropriate Euler angles for the cut (given the thickness
orientation for the wafer). All piezoelectric material properties are defined using the
Voigt form of the abbreviated subscript notation, which is universally employed in the
literature (this differs from the standard notation used for the Solid Mechanics
interface material properties). The material properties are defined in the material
frame, so that if the solid rotates during deformation the material properties rotate

with the solid. See Modeling Geometric Nonlinearity.

Crystal cuts are usually defined by a mechanism introduced by the IEEE /IRE
standards. Both standards use a notation that defines the orientation of a virtual slice
(the plate) through the crystal. The crystal axes are denoted X, Y, and Z and the plate,
which is usually rectangular, is defined as having sides /, w, and ¢ (length, width, and
thickness). Initially the plate is aligned with respect to the crystal axes and then up to
three rotations are defined, using a right-handed convention about axes embedded
along the /, w, and ¢ sides of the plate. Taking AT cut quartz as an example, the IEEE
1978 standard defines the cut as: (YX7) —35.25°. The first two letters in the bracketed
expression always refer to the initial orientation of the thickness and the length of the
plate. Subsequent bracketed letters then define up to three rotational axes, which move
with the plate as it is rotated. Angles of rotation about these axes are specified after the

bracketed expression in the order of the letters, using a right-handed convention. For
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AT cut quartz only one rotation, about the / axis, is required. This is illustrated in
Figure 2-10. Note that within the 1949 IRE Standard AT cut quartz is denoted as:
(YX1) +35.25°, since the X-axis is rotated by 180° in this convention and positive

angles therefore correspond to the opposite direction of rotation (see Figure 2-9).

Table 2-7 summarizes the differences between the standards for different crystal cuts.

When defining the material properties of Quartz, the orientation of the
X, Y, and Z axes with respect to the crystal differs between the 1987 IEEE
standard and the 1949 IRE standard. Figure 2-9 shows the alignment of

the axis for the case of right-handed quartz. A consequence of this is that

both the material property matrices and the crystal cuts differ between the

two standards. Table 2-6 summarizes the signs for the important matrix

elements under the two conventions. Table 2-7 shows the different

definitions of the crystal cuts under the two conventions.

TABLE 2-6: SIGNS FOR THE MATERIAL PROPERTIES OF QUARTZ, WITHIN THE TWO STANDARDS COMMONLY

EMPLOYED
IRE 1949 STANDARD IEEE 1978 STANDARD
MATERIAL RIGHT HANDED LEFT HANDED RIGHT HANDED LEFT HANDED
PROPERTY QUARTZ QUARTZ QUARTZ QUARTZ
S14 + + - -
C14 - - + +
dq1 - + + -
di4 - + - +
e - + + -
ey + - + -
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TABLE 2-7: CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL
THICKNESS

STANDARD REPRESENTATION AT cUT BT CUT

IRE 1949 Standard (YX1) +35.25° (YX1) —49°
Y-thickness Euler  (ZXZ: 0°,-35.25°,0°) (ZXZ: 0°,49°,0°)
angles
Z-thickness Euler  (ZXZ: 0°,-125.25°,0°) (ZXZ: 0°, -41°,0°)
angles

IEEE 1978 Standard (YXI) -35.25° (YXI) +49°
Y-thickness Euler  (ZXZ: 0°, 35.25°,0°) (ZXZ: 0°,-49°,0°)
angles
Z-thickness Euler  (ZXZ: 0°,-54.75°,0°)  (ZXZ: 0°,-139°,0°)
angles

When defining the material orientation, it is necessary to consider the orientation of
the plate with respect to the global coordinate system in addition to the orientation of
the plate with respect to the crystallographic axes. Consider the example of AT cut
quartz in Figure 2-10. The definition of the appropriate local coordinate system
depends on the desired final orientation of the plate in the global coordinate system.
One way to set up the plate is to orientate its normal parallel to the Y axis in the global
coordinate system. Figure 2-11 shows how to define the local coordinate system in this
case. Figure 2-12 shows how to define the local system such that the plate has its
normal parallel to the global Z axis. In both cases it is critical to keep track of the
orientation of the local system with respect to the global system, which is defined

depending on the desired orientation of the plate in the model.

There are also a number of methods to define the local coordinate system with respect
to the global system. Usually, it is most convenient to define the local coordinates with
a Rotated System node, which defines three Euler angles according to the ZXZ
convention (rotation about Z, then X, then Z again). Note that these Euler angles
define the local (crystal) axes with respect to the global axes—this is distinct from the

approach of defining the cut (global) axes with respect to the crystal (local) axes.
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D.¢ ; 1949

Figure 2-9: Crystallographic axes defined for vight-handed quartz in COMSOL and the
1978 IEEE standard (color). The 1949 standard axes ave shown for comparison (gray).

Figure 2-9 is reproduced with permission from: IEEE Std 176-1987 -
IEEE Standard on Piezoelectricity, reprinted with permission from
IEEE, 3 Park Avenue, New York, NY 10016-5997 USA, copyright 1987,
by IEEE. This figure must not be reprinted or further distributed without
prior written permission from the IEEE.

i
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Figure 2-10: Definition of the AT cut of quartz within the IEEE 1978 standard. The AT
cut is defined as: (YXI) —35.25°. The first two bracketed letters specify the initinl
ovientation of the plate, with the thickness divection, t, along the crystal Y axis and the
length divection, 1, along the X axis. Then up to three rotations about axes that move with
the plate ave specified by the corresponding bracketed letters and the subsequent angles. In
this case only one votation is requived about the l axis, of —35.25° (in a vight-handed
sense).
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Figure 2-11: Defining an AT cut crystal plate within COMSOL, with normal in the
global Y-divection. Within the 1978 IEEE standard the AT cut is defined as (YXI)
-35.25°. Start with the plate normal or thickness in the Y, divection (a) and rotate the
plate —35.25° about the l axis (b). The global coordinate system rotates with the plate.
Finally rotate the entive system so that the global coordinate system is orvientated as it
appears in COMSOL (c). The local coordinate system should be defined with the Euler
angles (ZXZ - 0, 35.25° 0).(d) shows a coordinate system for this system in COMSOL.
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Figure 2-12: Defining an AT cut crystal plate within COMSOL, with normal in the
global Z-dirvection. Within the 1978 IEEE standarvd the AT cut is defined as (YXI)
—35.25°. Begin with the plate normal in the Z,,.-direction, so the crystal and global systems
ave coincident. Rotate the plate so that its thickness points in the Y .-divection (the
starting point for the IEEE definition), the global system rotates with the plate (b). Rotate
the plate —35.25° about the | axis (d). Finally rotate the entire system so that the global
coordinate system is ovientated as it appears in COMSOL (d). The local coordinate system

should be defined with the Euler angles (ZXZ: 0, -54.75°, 0). (e) shows a coordinate system
for this system in COMSOL.
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Piezoelectric Losses

Losses in piezoelectric materials can be generated both mechanically and electrically.

In the frequency domain, these can be represented by introducing complex material
properties in the elasticity and permittivity matrices, respectively. Taking the
mechanical case as an example, this introduces a phase lag between the stress and the
strain, which corresponds to a Hysteretic Loss. These losses can be added to the
Piezoelectric Material by three subnodes: Mechanical Damping, Coupling Loss, and
Dielectric Loss. The losses typically defined as loss factors (see below).

The hysteretic electrical losses are usually used to represent high frequency electrical
losses that occur as a result of friction impeding the rotation of the microscopic dipoles

that produce the material permittivity.

Low frequency losses, corresponding to a finite material conductivity, can be added to
the model through an Electrical Conductivity (Time Harmonic) subnode. This feature
operates only in the frequency domain.

In the time domain, the losses can be added by using the Rayleigh Damping option in
the Mechanical Damping and Coupling Loss subnodes, and by using the Dielectric
Dispersion option in the Dielectric Loss subnodes. These types of damping are also

available in the frequency domain.

E}‘ Rayleigh Damping

HYSTERETIC LOSS

In the frequency domain, the dissipative behavior of the material can be modeled using
complex-valued material properties, irrespective of the loss mechanism. Such hysteretic
losses can be applied to model both electrical and mechanical losses. For the case of
piezoelectric materials, this means that the constitutive equations are written as

follows.

For the stress-charge formulation

~ -T
o=cge-¢ E

D= ;€+;:sE

and for the strain-charge formulation
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~ ~T
e =sgo+d E

D= (~1(5+;TE

where cg , d , and € are complex-valued matrices, where the imaginary part defines the

dissipative function of the material.

Both the real and complex parts of the material data must be defined so as to respect
the symmetry properties of the material being modeled and with restrictions imposed
by the laws of physics.

A key requirement is that the dissipation density is positive; that is, there
is no power gain from the passive material. This requirement sets rules for
n the relative magnitudes for all material parameters. This is important

when defining the coupling losses.

CHAPTER 2:

In COMSOL, you can enter the complex-valued data directly or by means of loss
factors. When loss factors are used, the complex data X is represented as pairs of a
real-valued parameter

X = real(X)

and a loss factor
Nx = imag()})/rcal()})
the ratio of the imaginary and real part, and the complex data is then:
)} = X(1£jny)

where the sign depends on the material property used. The loss factors are specific to
the material property, and thus they are named according to the property they refer to,
for example, 1.g. For a structural material without coupling, simply use ng, the
structural loss factor.

The loss factors are defined so that a positive loss factor value usually corresponds to a

positive loss. The complex-valued data is then based on sign rules.

By default, there is no damping until at least one of the damping and losses related
subfeatures is added.
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For the Piezoelectric Material node, the following equations apply via the

corresponding three subnodes:

Mechanical Damping

“m,n m,n ..m,n
ce =cg (l+jn.g)

“m,n m,n ..m,n
sg =sg (1-jngg )
where m and n refer to components of each matrix.

Coupling Loss

=™ (14"

o
|

Qe
|

=d™"(1+my""

Dielectric Loss

~m,n

m,n ..m,n
&rs =&g (1-jMeg )
~“m,n m,n ..m,n
&r =& (L-jner )
Note that the multiplication is applied component-wise.

In practice, it is often difficult to find complex-valued data for each of the matrix

clements in the literature. Measuring the losses independently is a challenging task.

The loss factors can also be entered as scalar isotropic factors independently of the

material and the other coefficients.

A good check on the chosen values is to compute a number of eigenfrequencies,
possibly using some different sets of boundary conditions. All computed
eigenfrequencies must have a positive imaginary part in order to represent a damped

motion.

For more information about hysteretic losses, see Ref. 1 to Ref. 4.

For more details, see Piezoelectric Dissipation in the Structural

@}‘ Mechanics Theory chapter.
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ELECTRICAL CONDUCTIVITY (TIME HARMONIC)

For frequency domain and eigenfrequency analyses, the effect of electrical conductivity
of the piezoelectric material (see Ref. 2, Ref. 5, and Ref. 6) can be included. Thus, in
addition to the displacement current, the conduction electric current term is used

V-joD+d_) =0

J =GCE

¢

where 6, is the material electrical conductivity, and E is the electric field. The above

form of the equation is used for the eigenfrequency analysis in COMSOL Multiphysics.

When the conduction loss is applied, the default eigenvalue analysis will
in most cases return a number of pure imaginary eigenfrequencies. To
avoid this, you can configure the solver to search for eigenvalues with real
part larger than zero.

n Do not use any dielectric loss factor damping together with the
conduction loss in an eigenfrequency analysis. However, the dielectric
dispersion can be used together with conduction loss in an
cigenfrequency analysis, as shown in the next section Dielectric

Dispersion.

In the COMSOL Multiphysics Reference Manual:

{R * Seclecting a Stationary, Time-Dependent, or Eigenvalue Solver

* Eigenvalue Solver

For the frequency domain analysis, the angular frequency is just a parameter, and the

equation can be transformed into
V.(D-jo '6.E) = 0

which allows you to use both a dielectric loss factor and electrical conductivity in a
frequency response study. In such case, ensure that the loss factor refers to the
alternating current loss tangent, which dominates at high frequencies, where the effect
of ohmic conductivity vanishes (Ref. 7).
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DIELECTRIC DISPERSION
The Dielectric Loss subnode can be set to use the Dielectric Dispersion option. In such

case, the following equations need to be solved in the time domain:

V-(%)+Jp) =0

where you can specify two material parameters: the relaxation time T4 and the relative
permittivity increment Ag,g. The latter can be either a matrix or a scalar quantity. This

model is a one-term version of the more general Debye dispersion model, Ref. 13.

With the absence of free electric charges, the above equations can be combined and

integrated in time to yield the following equation:
oD
V. (D +Ta5; + soAerE) =0

This is the equation form used in COMSOL Multiphysics for time dependent analysis.
For the eigenfrequency and frequency domain analyses, the corresponding equation is:

V. [(1+j140)j0D + eerrSwa] =0

In most cases, the factor jo can be factored out, so that the following equation is
solved:

V. (D +jty0D + eOAerE) =0
This equation, together with the constitutive relation D = eg + gpe,gE, gives

Ag g 'rdwserrS
2] E E|l=0

V{ee+so[srs+ -J

1+ (1q0) 1+ (Tdco)2

which shows how the dispersion parameters contribute to the polarization and losses.
Thus, the effective relative permittivity varies from €,g + Ag.g down to €.g as the
excitation frequency increases from zero. The damping effect vanishes for both large

and small frequencies, and it reaches the maximum for ® = 1/14.
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Dielectric dispersion can be combined with conduction loss for both eigenfrequency
and frequency domain analyses. The following equation forms are used, respectively,

in the frequency domain:
V- [D+jtq0D +g5Ae (E+ (74 —jwil)JC] =0
and in eigenfrequency analyses:
V- [(1+jT3w)joD + eoAsrsij +(1 +jtd(o)Je] =0

where J . = 6.E is the conduction electric current.
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Piezoelectric Coupling

The piezoelectric effect is an interaction between the mechanical and electrical physics,
where a stress applied on a piezoelectric material generates a voltage (direct effect) or
a voltage applied on it generates the deformation of the material (inverse effect). In
COMSOL Multiphysics, the Piezoelectric Devices interface is constituted of one Solid
Mechanics and one Electrostatics interface, which are coupled together by a Piezoelectric
Effect multiphysics feature. Hence a piezoelectric problem contains solid and
electrostatic domains, with at least one domain shared by the two physics interfaces

and with the piezoelectric coupling defined on it.

Create the Piezoelectric Effect Interface and Define Domains

A piezoelectric problem can be set up in different ways:

* By sclecting Piezoelectric Devices from the Model Wizard,
* By choosing Piezoelectric Devices from the Add Physics menu when working in an
existing model, or

¢ By adding the corresponding features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be

piezoelectric materials.

When setting up the problem manually (that is, by adding single physics interfaces one
at a time) both Solid Mechanics and Electrostatics interfaces should be added. Then, you
have to specify which domains are in each physics, and which domains are to be

modeled as piezoelectric materials.

I On the Solid Mechanics interface Settings window, locate the Domain Selection
section. Select the domains which undergo structural deformation, including the

piezoelectric material domains.
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2 Go to the Solid Mechanics>Piezoelectric Material node (if it is not yet available, add
it). Select the domains where the piezoelectric effect applies. Non-piezoelectric

domains can be modeled using the other available material models.

3 Go to the Electrostatics node and under Domain Selection select the domains the
electrostatics equations must be solved. These domains include all the piezoelectric

domains, and any other insulating domains.

Since metals usually have a conductivity several orders of magnitude
higher than other materials, it is normal not to solve the electrostatics

equations in their corresponding domains, but instead the surfaces of the

[

material are represented as isopotentials with an appropriate boundary

condition (usually a terminal or floating potential).

4 Go to the Electrostatics>Charge Conservation, Piezoelectric node (if it is not yet
available, add it). Select the domains where the piezoelectric effect has to be

modeled.

5 A Multiphysics>Piezoelectric Effect node is already present if the coupling was added
using either the Model Wizard or Add Physics window. If the model is set up manually
(that is, single physics interfaces are added), right-click the Multiphysics Couplings
node to add a Piezoelectric Effect coupling.

6 Confirm that all the domains where the piezoelectric material is present are selected.

Only domains that have both Charge Conservation, Piezoelectric selected in
the Electrostatics interface and Piezoelectric Material sclected in the Solid

Mechanics interface are selected. The selection of this feature cannot be

[

edited. If several Solid Mechanics or Electrostatics interfaces are present,

select the correct ones.

7 Confirm that remaining domains are well assigned:

- Solid and electrostatic domains: In these domains, the electrostatics and
structural problems are solved independently without any piezoelectric coupling.

This is the case for insulators.

- Solid-only domains: In these domains, only mechanical phenomena are modeled,
and the electrostatics phenomena are neglected. Metals are typically modeled in
this way, because their conductivity is so high that their surfaces can be treated as
isopotential surfaces within the electrostatics problem. In some cases, insulators
are modeled using these settings, for example, when there is no potential applied
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across the domain, and correspondingly solving the electrostatics equations

would produce a constant potential and waste computing resources.

- Electrostatics-only domains: Those domains are nonsolid. This is typically the

case of air, in which the electrostatics is solved but not mechanics.

- Nonsolid and nonelectrostatic domains: In those domains, another physics is
solved. A typical example is an acoustic domain in the case of piezoacoustic

modeling.

Complete Settings of Piezoelectric Materials

Go to the Solid Mechanics>Piezoelectric Material node. On the Settings window

complete these settings:

¢ Coordinate System Selection section: The material is poled in the x3 direction of the
coordinate system (x1,x2,x3) specified in this section. By default, it is set to the global
coordinate system. If the piezoelectric material is poled along an other direction,
you need to define a coordinate system so that its third direction is aligned with the
poling direction. Then, assign it as the coordinate system which orients the material

in the Coordinate System Selection section.

If a given piezoelectric material is present with several orientations (such
as stacked piezoelectric disks) you need to define several Piezoelectric
g Material nodes and to assign a different coordinate system for each of

them.

* Piezoelectric Material Properties: Sclect whether the constitutive relation of
piezoelectric material is in Stress-charge or in Strain-charge form. This choice

defines the type of material properties that will be used.
e Geometric Nonlinearity: sclect the check box to force strains to be linear.

* Energy Dissipation: Select the check box to enable the calculation of the dissipated

energy.
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Add Damping and Loss

In the physics toolbar you can add attributes to the Piezoelectric Material node,

especially the following damping and loss contributions:

Mechanical Damping: Specify the domains of application, then choose if you want to
define a loss factor for cE, a loss factor for sE (in Strain-charge form), an isotropic
loss factor, or a Rayleigh damping.

Dielectric Loss: Specify the domains of application, then choose if you want to define

a loss factor for €S, a loss factor for €T (in Strain-charge form), or dispersion.

Coupling Loss: Specify the domains of application, then choose if you want to define

a loss factor for e, a loss factor for d (in Strain-charge form), or Rayleigh damping.

Conduction Loss (Time-Harmonic): Specify the domains of application, then choose

how you want to define the Electrical conductivity.

Define Material Properties

Define material properties for the piezoelectric materials. The material library contains

several common piezoelectric materials under the piezoelectric section. If you want to

define your own piezoelectric material, you need to specity its properties by hand. The

required properties depend on whether the constitutive relations are in Stress-charge

or Strain-charge form, and which damping and loss attributes are created. Defining all

piezoelectric settings before materials preselects the required properties and makes the

completion easier:

MECHANICAL PROPERTIES:

Density rho (SI unit: kg/ms)
Elasticity matrix cE (SI unit: Pa) in Stress-charge form.

Compliance Matrix sE (SI unit: 1/Pa) in Strain-charge form.

ELECTROSTATIC PROPERTIES:

Relative Permittivity epsilonrS (dimensionless) in Stress-charge form.

Relative Permittivity epsilonrT (dimensionless) in Strain-charge form.

COUPLING PROPERTIES

Coupling matrix eES (ST unit: C/mz) in Stress-Charge form.
Coupling matrix dET (SI unit: C/N) in Strain-charge form.
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DAMPING AND LOSS PROPERTIES

Loss factor for elasticity matrix cE, eta_cE, or loss factor for elasticity matrix sE,
eta_sE: required when Mechanical Damping is present. The latter is valid only in
Strain-Charge form.

Loss factor for electrical permittivity matrix erS, eta_epsilonS, or Loss factor for
electrical permittivity matrix erT, eta_epsilonT: required when Dielectric Loss is

present. The latter is valid only in Strain-Charge form.

Loss factor for coupling matrix e, eta_cES, or loss factor for coupling matrix d,
eta_dET: required when Coupling Loss is present. The latter is valid only in
Strain-Charge form.

Electrical conductivity sigma (SI unit: S/m): required when Conduction Loss is
present.

Working with Materials and Piezoelectric Materials Database in the

E}‘ COMSOL Multiphysics Reference Manual.

Coupling Piezoelectric Devices with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars,

microphones, sensors, and so forth. This is why coupling piezoelectric devices with

acoustic domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics

interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics,

Transient (depending on which study type you want to use) plus an Acoustic-Structure

Boundary coupling under the Multiphysics Couplings node. You can also directly create

the nodes that are needed for coupling by adding an Acoustic-Piezoelectric Interaction

interface from the Model Wizard or Add Physics windows. If solid and acoustic domains

are correctly defined, then the right coupling boundaries are automatically selected.

Then specify domains of application for each physics.

Select solid domains and Piezoelectric Material domains in Selid Mechanics.

Select electrostatic domains and Charge Conservation, Piezoelectric domains in

Electrostatics.
Select acoustic domains in a Pressure Acoustics node.

Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and

Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid
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Mechanics, or Electrostatics interfaces are present, select the right ones that need to

be coupled in the multiphysics interfaces.

¢ Continue the modeling process by entering the settings for each physics interface

and feature and define materials.
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Modeling Magnetostrictive Materials

Magnetostriction Coupling

Magnetostriction is an interaction between the mechanical and magnetic physics,
where a magnetic field applied on magnetostrictive material generates the deformation
of the material (direct effect), and a stress applied on it changes the material
magnetization (inverse effect). In COMSOL Multiphysics, the Magnetostriction
interface is constituted of one Solid Mechanics and one Magnetic Fields interface, which
are coupled together via a Magnetostriction multiphysics feature. Hence a
magnetostriction problem contains solid and magnetic domains, with at least one
domain shared by the two physics interfaces and with the magnetostriction coupling

defined on it.

Create the Magnetostriction Interface and Define Domains

A magnetostriction problem can be set up in different ways:

* By sclecting Magnetostriction from the Model Wizard,

¢ By choosing Magnetostriction from the Add Physics menu when working in an

existing model, or

* By adding the corresponding features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be

magnetostrictive materials.

When setting up the problem manually (that is, by adding single physics interfaces one
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then,
you have to specify which domains are in each physics, and which domains are to be

modeled as magnetostrictive materials.

I On the Solid Mechanics interface Settings window, locate the Domain Selection
section. Select the domains which undergo structural deformation, including the
magnetostrictive material domains.

2 Go to the Solid Mechanics>Magnetostrictive Material node (if it is not yet available,
add it). Select the domains where the magnetostriction effect applies.
Nonmagnetostrictive domains can be modeled using the other available material

models.
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3 Go to the Magnetic Fields node and under Domain Selection sclect the domains the
magnetics equations must be solved. These domains include all the magnetostrictive

domains, and any other magnetic domains.

4 Go to the Magnetic Fields>Ampere’s Law, Magnetostrictive node (if it is not yet
available, add it). Select the domains where the magnetostriction effect has to be

modeled.

5 A Multiphysics>Magnetostriction node is already present if the coupling was added
using either the Model Wizard or Add Physics window. If the model is set up manually
(that is, single physics interfaces are added), right-click the Multiphysics Couplings

node to add a Magnetostriction coupling.

6 Confirm that all the domains where the magnetostrictive material is present are

selected.

Only domains that have both Ampere’s Law, Magnetostrictive sclected in
the Magnetic Fields interface and Magnetostrictive Material sclected in the

Solid Mechanics interface are active in the selection for Magnetostriction

[

coupling. The selection of this multiphysics feature cannot be edited. If
several Solid Mechanics or Magnetic Fields interfaces are present, select the

correct ones.

CHAPTER 2:

7 Confirm that remaining domains are well assigned:

- Solid and magnetic domains: In these domains, the magnetics and structural
problems are solved independently without any magnetostriction coupling. This
represents deformable magnetic materials for which the magnetostriction
coupling is negligible.

- Solid-only domains: In these domains, only mechanical phenomena are modeled,
and the magnetics phenomena are neglected. This represents deformable solid

nonmagnetic materials.

- Magnetics-only domains: Those domains are nonsolid. This is typically the case

of air, in which the magnetics is solved but not mechanics.

- Nonsolid and nonmagnetic domains: In those domains another physics is solved.
Typical examples are acoustic domains and fluid flow domains, which might be

present in various multiphysics models.
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Linear vs Nonlinear Magnetostriction

The magnetostrictive strain has a nonlinear dependence on the magnetic field and the
mechanical stress in the material. However, the effect can be modeled using linear
coupled constitutive equations if the response of the material consists of small

deviations around an operating point (bias point).

For linear magnetostriction model, it is possible to express the relation between the
stress S, strain €, magnetic field H, and magnetic flux density B in either a
stress-magnetization form or strain-magnetization form. In COMSOL
Multiphysics, both constitutive forms can be used; simply select one, and the software
will make all necessary transformations if needed. For details, see the corresponding

the theory section Linear Magnetostriction Model. You find all the necessary material

data inputs within the Magnetostrictive Material selected in the Solid Mechanics interface.

The nonlinear model of magnetostrictive strain can be used for the whole range from
full demagnetization to saturation magnetization. For more details, see the

corresponding the theory section Nonlinear Magnetostriction.

In case of nonlinear magnetostriction, the magnetization model can be selected. The
following options are available: Langevin function, Hyperbolic tangent, User defined,
and Linear. The last option will make it possible to find an explicit expression for the
magnetization. Note however that such model does not have a proper saturation
behavior, and thus it should be used only in the operating range far from saturation.
For 1l other choices, the magnetization vector components will be treated as extra

dependent variables.
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Mechanical Damping and Losses

CHAPTER 2:

Damping and losses are important for determining the response in Time Dependent

and Frequency Domain studies, and sometimes also when computing

eigenfrequencies. This section describes how to model damping and loss using

different damping models. In this section:

In this section:

About Damping

Rayleigh Damping

Loss Factor Damping

Viscoelastic Damping

Explicit Complex Valued Damping

Equivalence Between Loss Factor, Rayleigh, and Viscous Damping
Piezoelectric Damping

Adding Damping in the Modal Solver

Damping Sources

There are many sources of damping in a system. Some some them are:

Dissipation in the material. This dissipation can be for example be proportional to
the amplitude of the strain rate (viscous damping) or to the amplitude of the strain
itself (hysteretic damping).

Thermoelastic damping, which is a thermodynamic effect which is related not only

to the state in a point, but also to the gradients of the temperature field.
Damping caused by the surrounding medium, often air or water.
Friction between joined parts.

Components intended to supply damping like a dashpot in a car suspension.

It is often difficult to separate and quantify these effects, so damping modeling is one

of the biggest challenges in structural dynamics.
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About Damping

Phenomenological damping models are typically invoked to model the intrinsic
frictional damping present in most materials (material damping). These models are
casiest to understand in the context of a system with a single degree of freedom. The
following equation of motion describes the dynamics of such a system with viscous

damping:
2
m—+c— +ku = f(t) (2-15)

In this equation u is the displacement of the degree of freedom, m is its mass, ¢ is the
damping parameter, and % is the stiffness of the system. The time (¢) dependent forcing
term is f(¢). This equation is often written in the form:

2
d’u
2

du 2 ()
+ 20wy =T + ogu = (2-16)
dt dt m

where & =c/(2mmg) and u)02 =k/m. In this case { is the damping ratio ({ =1 for
critical damping) and g is the undamped resonant frequency of the system. In the
literature it is more common to give values of { than ¢. The relative damping £ can also
be readily related to many of the various measures of damping employed in different

disciplines. These are summarized in Table 2-8.

TABLE 2-8: RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING DEFINITION RELATION TO
PARAMETER DAMPING RATIO

Damping ratio ¢ = /€ itical -

Logarithmic u(ty) 8, =2ng
decrement d (u(to T ’c))
(L«1)
where ¢ is a reference time and 7 is the period
of vibration for a decaying, unforced degree of
freedom.
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TABLE 2-8: RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING DEFINITION RELATION TO

PARAMETER DAMPING RATIO

Quality factor @ = w/Aw Q~1/(20)
where A is the bandwidth of the amplitude (f«1)
resonance measured at 1/@ of its peak.

Loss factor ~ i(&) At the resonant
N =5z W, frequency:

n=2¢

where @y, is the energy lost per cycle and Wy, is

the maximum potential energy stored in the (f«1)
cycle. The variables @;, and W), are available as

solid.Qh and solid.Wh.

In the frequency domain, the time dependence of the force and the displacement can
be represented by introducing a complex force term and assuming a similar time

dependence for the displacement. The equations

f(t) = Re{F®} and u(t) = Re{UL®}

are written where o is the angular frequency and the amplitude terms U and F can in
general be complex (the arguments provide information on the relative phase of
signals). Usually the real part is taken as implicit and is subsequently dropped.
Equation 2-15 takes the following form in the frequency domain:

~o’mU+jocU+kU = F 2-17)
where the time dependence has canceled out on both sides. Alternatively this equation
can be written as:

_0’U+ 2jo0y EU + o)(z)U = (2-18)

F
m
There are three basic damping models available in the structural mechanics interfaces
for explicit modeling of material damping—Rayleigh damping, viscous damping, and
loss factor models based on introducing complex quantities into the equation system.
There are also other phenomena which contribute to the damping. Some material

models, such as viscoelasticity and plasticity are inherently dissipative. It is also possible

to model damping in spring conditions.
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Rayleigh Damping

A common method of modeling damping is Rayleigh damping, where two damping
coeflicients are specified. This type of damping is not directly related to any physical
process, but must be seen as a way to take the total damping of a structure into

account.

Rayleigh damping introduces damping in a form based on Equation 2-15. This means
that the method can be applied generally in either the time or frequency domain. The
parameter ¢ in Equation 2-15 is defined as a fraction of the mass and the stiffness using
two parameters, o3 and Bgg, such that

c = agm+Bygk (2-19)

Substituting this relationship into Equation 2-15 and rearranging into the form of
Equation 2-16 gives:

d’u

2.du 2 (@)
— + (o + W) 5o + WU =
272 (Otgar + Bag®o) gy +Wou = —~
When there are many degrees of freedom m, k, and ¢ become matrices and the

technique can be generalized.

Rayleigh damping can therefore be identified as equivalent to the damping ratio at

resonance of:

l(adM )

= S| == + By g0 (2-20)
2\ o, K70

Note that Equation 2-20 holds separately for each vibrational mode in the system at
its resonant frequency. In the frequency domain it is possible to use frequency
dependent values of oz and Byg. For example setting o,g37 = 0 and Bgg = 2L/wg
produces a equivalent viscous damping model at the resonant frequency.

While Rayleigh damping is numerically convenient, the model does not agree with
experimental results for the frequency dependence of material damping over an
extended range of frequencies. This is because the material damping forces behave
more like frictional forces (which are frequency independent) than viscous damping
forces (which increase linearly with frequency as implied by Equation 2-17). In the
frequency domain it is possible to introduce loss factor damping, which has the desired

property of frequency independence.

MECHANICAL DAMPING AND LOSSES | 149



A complication with the Rayleigh damping model is to obtain good values for the
damping parameters 037 and Byg. A more physical damping measure is the relative
damping, the ratio between actual and critical damping, often expressed as a
percentage of the critical damping. Commonly used values of relative damping can be

found in the literature.

Using Equation 2-20, this relationship at two frequencies, f1 and f, with different

relative damping, £; and Cg, results in an equation system that can be solved for ops

and Byx:
1
I, [udﬂ ) H
A%& nfy| Bax] |52

The damping ratios are then

C1fo = Cof:
Oy = 47f 11y 1}; f221

5 Gl
dK Tl',(fg—f%)

Using the same relative damping, {; = g, does not result in a constant damping factor
inside the interval f; < f < fo. It can be shown that the damping factor is lower inside

the interval, as Figure 2-13 shows.

Rayleigh damping

Relative damping

r — — — — Specified damping

Figure 2-13: An example of Rayleigh damping.
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Since the coefficients o737 and Byg. should not be negative, the damping ratios are

constrained by the respective frequencies as

hlb f

f 2 C1 f 1
For many applications it is sufficient to leave o,z as zero and to define damping only
using the By coefficient. Then according to Equation 2-20, a damping which

increases linearly with frequency is obtained. If the damping ratio {(f{)) or loss factor

N(fp) is known at a given frequency fp, the appropriate value for B g is:

Bax = C/(nfy) = n/(2mf)

Loss Factor Damping

Loss factor damping (sometimes referred to as material damping, structural damping,

or hysteretic damping) can be applied in the frequency domain.

The loss factor is a measure of the inherent damping in a material when it is
dynamically loaded. It is typically defined as the ratio of energy dissipated in unit

volume per radian of oscillation to the maximum strain energy per unit volume.

In COMSOL Multiphysics the loss information appears as a multiplier to the elastic

constitutive matrix D¢
D = (1+jn)D

For a nonlinear elastic material, this applies to the tangential stiffness.

The use of loss factor damping traditionally refers to a scalar-valued loss factor 775. But
there is no reason that 77, must be scalar. Because the loss factor is a value deduced from
true complex-valued material data, it can be represented by a matrix of the same
dimensions as the anisotropic stiffness matrix. Especially for orthotropic materials,
there should be a set of loss factors of all normal and shear elasticity modulus

components, and COMSOL allows all these options, so a more general expression is.

Dfnn =(1 +jns,mn)Dmn

For hyperelastic materials the loss information appears as a multiplier in strain energy
density, and thus in the second Piola-Kirchhoff stress, S:

MECHANICAL DAMPING AND LOSSES

151



152 |

CHAPTER 2:

LA
S=( M) 3

Loss factor damping is available for frequency response analysis and damped
eigenfrequency analysis in all interfaces.

Viscous Damping

You can add an explicit viscous damping to several material models. Viscous damping
can be used both in time domain and frequency domain. In the viscous damping
model, and extra contribution, proportional to the strain rate, is added to the stress

tensor, as described in Viscous Damping Theory.

You can specify the viscous damping for volumetric strains and shear strains
independently.

Equivalence Between Loss Factor, Rayleigh, and Viscous Damping

In frequency domain, it is possible to use Rayleigh damping in order to specify an
equivalent viscous damping. Set the stiffness damping parameter By, to the loss
factor, m, divided by the excitation frequency:

B _n_n
dK " onf T o

The mass damping factor, o737, should be set to zero.

If, on the other hand, you would want to use a viscous damping, corresponding to a
certain Rayleigh stiffness damping, the conversion to bulk and shear viscosity can be

made using the expressions

Ny = KBk
T]v = GBdK

where K and G are the bulk and shear moduli respectively. Equivalently you can

transform between loss factor damping and viscous damping,
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Explicit Complex Valued Damping

In frequency domain, it is possible to define damping by modeling the dissipative
behavior of the material using complex-valued material properties. In COMSOL
Multiphysics, you can enter the complex-valued data directly, using i or sqrt(-1) for

the imaginary unit.

Viscoelastic Damping

In some cases damping is included implicitly in the material model. This is the case for
a viscoelastic material, where damping operates on the shear components of stress and

strain.

When viscoelasticity is modeled in the frequency domain, it will act as a loss factor
damping. The complex modulus G*() is the frequency-domain representation of the

stress relaxation function of viscoelastic material. It is defined as
G* = G'+jG" = (1+jn )G’

where G' is the storage modulus, G" is the loss modulus, and their ratio ng= G"/G" is
the loss factor. The term G' defines the amount of stored energy for the applied strain,
whereas G" defines the amount of energy dissipated as heat; G', G", and ng can all be
frequency dependent.

Piezoelectric Damping

Piezoelectric losses are more complex and include coupling and electrical losses in
addition to the material terms. For damping in piezoelectric materials, see Piezoelectric

Losses.

For piezoelectric materials, B is only used as a multiplier of the structural
contribution to the stiffness matrix when building-up the damping matrix as given by
Equation 2-19. In the frequency domain studies, you can use the coupling and
dielectric loss factors equal to Bygo to effectively achieve the Rayleigh damping
involving the whole stiffness matrix.

Adding Damping in the Modal Solver

In COMSOL it is possible to solve a problem for a set of modes in the absence of
damping, and then to use those solutions as a modal basis to solve a problem in the

time (using a time domain modal study) or frequency domain (using a Frequency
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Domain, Modal study). In both of these cases it is possible to manually assign a

damping ratio to the computed modes in the time or frequency domain study. To do
that, right click on the study and choose Show Default Solver, then expand the solver
sequence until the Modal Solver node is visible. In the settings window for that node,

add damping ratios for each of the modes.

For more details, see the section Modal Solver in the COMSOL
a Multiphysics Reference Manual.
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Modeling Geometric Nonlinearity

This section discusses how to model problems where displacements or strains are of a
size where the deformation of the structure has to be taken into account when
formulating the equations. Examples of the type of problems where this feature is
useful include:

* Thin structures, where the deflection is of the same order of magnitude as the
thickness.

e Where the structure exhibits large rotations. A rigid body rotation of only a few
degrees causes significant strains and stresses in a material where a linear strain

representation is used.
e Where the strains are larger than a few percent.
e Contact problems.

* Where a prestress must be taken into account for computing the dynamic response

of a structure.
* Buckling problems.
¢ Where a deformed mesh is used.

* Fluid-structure interaction problems.

¢ Contact Modeling
ﬁ}‘ ¢ Fluid-Structure Interaction

¢ The more formal theory is described in Analysis of Deformation

Geometric Nonlinearity, Frames, and the ALE Method

Consider the bending of a beam in the general case of a large deformation (see
Figure 2-14). In this case the deformation of the beam introduces an effect known as

geometric nonlinearity into the equations of solid mechanics.

Figure 2-14 shows that as the beam deforms, the shape, orientation, and position of
the element at its tip changes significantly. Each edge of the infinitesimal cube
undergoes both a change in length and a rotation that depends on position.
Additionally the three edges of the cube are no longer orthogonal in the deformed
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configuration (although typically for practical strains the effect of the
nonorthogonality can be neglected in comparison to the rotation).

From a simulation perspective it is possible to solve the equations of solid mechanics
on cither a fixed domain (this is often called a Tota! Lagrangian formulation), or on
a domain that changes continuously with the deformation. The latter approach is often
called an Updated Lagrangian formulation. These two approaches also stand in
contrast to the Eulerian formulation which is often used for fluid mechanics. In an
Eulerian formulation the flow through a domain fixed in space is considered, while in

the Lagrangian formulation a fixed volume of material is considered.

In COMSOL Multiphysics, the concepts of a material frame and a
spatial frame are used. Equations formulated in the material frame will
give a Total Lagrangian formulation, while equations formulated in the

[

spatial frame will give an Eulerian formulation.

See Frames and Coordinate Systems in the theory chapter for more
details.

CHAPTER 2:

Solid mechanics in COMSOL Multiphysics is formulated on the material frame. This
is achieved by defining a displacement field for every point in the solid, usually with
components «, v, and w. At a given coordinate (X, Y, Z) in the reference configuration
(on the left of Figure 2-14) the value of u describes the displacement of the point
relative to its original position. The displacement is considered as a function of the
material coordinates (X, Y, Z), but it is not explicitly a function of the spatial
coordinates (x, y, z). The spatial coordinates is the current location in space of a point
in the deformed solid. As a consequence, it is only possible to compute derivatives with
respect to the material coordinates.

Taking derivatives of the displacement with respect to X, Y, and Z enables the
definition of a strain tensor. There are possible representations of the deformation. Any
reasonable representation must however be able to represent a rigid rotation of an
unstrained body without producing any strain. The engineering strain fails here, thus
it cannot be used for general geometrically nonlinear cases. One common choice for
representing large strains is the Green- Lagrange strain. It contains derivatives of the
displacements with respect to the original configuration. The values therefore
represent strains in material directions. This allows a physical interpretation, but it
must be realized that even for a uniaxial case, the Green-Lagrange strain is strongly

nonlinear with respect to the displacement. If an object is stretched to twice its original
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length, the Green-Lagrange strain is 1.5 in the stretching direction. If the object is
compressed to half its length, the strain would read -0.375.

An even more fundamental quantity is the deformation gradient, which contains the
derivatives of the deformed coordinates with respect to the original coordinates:

ox

F == =Vu+lI

X
The deformation gradient contains all information about the local deformation in the
solid, and can be used to form many other strain quantities. As an example, the
Green-Lagrange strain is

1.7
e=S(FF-I)

An element at point (X, Y, Z) specified in the material frame moves with a single piece
of material throughout a solid mechanics simulation. It is often convenient to define
material properties in the material frame as these properties move and rotate naturally
together with the volume element at the point at which they are defined as the
simulation progresses. In Figure 2-14 this point is illustrated by the small cube
highlighted at the end of the beam, which is stretched, translated, and rotated as the

beam deforms. The three mutually perpendicular faces of the cube in the Lagrange
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frame are no longer perpendicular in the deformed (spatial) frame. The deformed
frame Coordinates in this frame are denoted (x, y, z) in COMSOL.

dv’

zr dVU

d4, dA’

Figure 2-14: An example of the deformation of a beam showing the undeformed state
(left) and the deformed state (vight) of the beam itself with an element near its tip
bighlighted (top), of the element (center) and of lines parallel to the x-axis in the
undeformed state (bottom,).

It is important to note that, as the solid deforms, the Lagrangian frame
becomes a nonorthogonal curvilinear coordinate system (see the lower
n part of Figure 2-14 to see the deformation of the X-axis). Particular care

is therefore required when defining physics in this coordinate system.

FRAME CONTROL CONFLICTS

Under geometric nonlinearity, a Solid Mechanics interface (or a similar structural
mechanics interface, for example Multibody Dynamics) will assume control over the
spatial frame in the domains where it is active. However, the definition of the spatial

frame must be unique, and there may be conflicts. Some examples are:

¢ A Solid Mechanics interface and a moving mesh feature, for example Deforming

Domain or Rotating Domain have a common selection. In this case, the selection in
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the Solid Mechanics interface will be marked as ‘not applicable’. Thus, it is not

possible to solve a structural mechanics problem on such a domain.

¢ There are more than one frame-controlling physics interfaces active on the same

domain.

When two physics interfaces are competing for frame control, you will get the error
message “Multiple moving frame specifications on the same selection” when trying to
run the study. To identify the problem, go to the settings for the study step, and select
Modify model configuration for study step. There, you will get an overview of the frame
control in the model. Note that it is quite possible that several features control the

spatial frame, as long as it is on different selections.

-_’:"H"‘u_’}_ ~ 1

LA

= -(Zorr;pilte & Update Solution

Label: Stationary =
¥ Study Settings

Include geometric nonlinearity

Results While Solving

¥ Physics and Variables Selection

Modify model configuration for study step

Global Definitions
4 [l Component1 (compl)
= Definitions
4 I-J;:" Solid Mechanics (solid), Controls spatial frame
il Linear Elastic Material 1

T Freel
= Initial Values 1
4 I-J;:" Solid Mechanics 2 (solid2), Controls spatial frame
i Linear Elastic Material 1
T Freel
= Initial Values 1

e@Meo@n =

When you select a physics interface in the tree view, you can click the Control Frame
Deformation button ( g ) to toggle whether that interface should control the spatial

frame or not.
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STRESS MEASURES

For example, in the spatial frame it is easy to define forces per unit area (known as
tractions) that act within the solid, and to define a stress tensor that represents all of
these forces that act on a volume element. Such forces could be physically measured,
for example using an implanted piezoresistor. The stress tensor in the spatial frame is
called the Cauchy or true stress tensor (in COMSOL this is referred to as the spatial
stress tensor). To construct the stress tensor in the Lagrangian frame a tensor
transformation must be performed on the Cauchy stress. This produces the second
Piola-Kirchhoff (or material) stress, which can be used with the material strain to solve
the solid mechanics problem in the (fixed) material frame. This is how the Solid

Mechanics interface works when geometric nonlinearities are enabled.

For the Cauchy stress tensor, both the force components and the normal to the area
on which the force is acting have fixed directions in space. This means that if a stressed
body is subjected to a pure rotation, the actual values of the stress components will
change. What was originally a uniaxial stress state might be transformed into a full
tensor with both normal and shear stress components. In many cases, this is neither

what you want to use nor what you would expect.

Consider for example an orthotropic material with fibers having a certain orientation.
It is much more plausible that you want to see the stress in the fiber direction, even if
the component is rotated. The Second Piola-Kirchhoft stress has this property as it is
defined along the material directions. In the figure below, an originally straight
cantilever beam has been subjected to bending by a pure moment at the tip. The
xx-component of the Cauchy stress and Second Piola-Kirchhoff stress are shown. Since
the stress is physically directed along the beam, the xx-component of the Cauchy stress
(which is related to the global x-direction) decreases with the deflection. The Second
Piola-Kirchhoftf stress however, has the same through-thickness distribution all along

the beam, even in the deformed configuration.
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Figure 2-15: xx-components of the Cauchy stress tensor (top) and Second-Piola-Kivchhoff
stress tensor (below) for an initially straight beam

Another stress measure available in COMSOL Multiphysics is the First Piola-Kirchhoff
stress. It is a multiaxial generalization of the nominal (or engineering) stress. The stress
is defined as the force in the current configuration acting on the original area. The First
Piola-Kirchhoft stress is an unsymmetric tensor, and is for that reason less attractive to
work with. Sometimes you may also encounter the Kirchhoff stress, although it is not
used in COMSOL Multiphysics. The Kirchhoff stress is just the Cauchy stress scaled

by the volume change. It has little physical significance, but can be convenient in some

mathematical and numerical operations.

Unfortunately, even without a rotation, the actual values of all these stress
representations are not the same. All of them scale differently with respect to local
volume changes and stretches. This is illustrated in the graph below. The
xx-component of four different stress measures are plotted at the fixed end of the beam
from the example above. At this point, the beam axis coincides with the x-axis, so the
directions of all stress tensor components coincide. In the center of the beam, where
strains, and thereby volume changes are small, all values approach each other. For a
case with large rotation but small strains, the different stress representations can be

s¢en as purc rotations of the same stress tensor.
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Figure 2-16: Stress distribution across the beam at the constrained end

If you want to compute the resulting force or moment on a certain boundary based on
the stresses, there are in practice only two possible choices: Either integrate the Cauchy
stress over the deformed boundary, or integrate the First Piola-Kirchhoff stress over
the same boundary in the undeformed configuration. In COMSOL Multiphysics this
corresponds to selecting either Spatial frame or Material frame in the settings for the

integration operator.

ALE METHOD

In the case of solid mechanics, the material and spatial frames are associated directly
with the Lagrangian and Eulerian frames, respectively. In a more general case (for
example, when tracking the deformation of a fluid, such as a volume of air surrounding
a moving structure) tying the Lagrangian frame to the material frame becomes less
desirable. Fluid must be able to flow both into and out of the computational domain,
without taking the mesh with it. The Arbitrary Lagrangian-Eulerian (ALE)
method allows the material frame to be defined with a more general mapping to the
spatial or Eulerian frame. In COMSOL Multiphysics, a separate equation is solved to
produce this mapping—defined by the mesh smoothing method (Laplacian, Winslow,

hyperelastic, or Yeoh) with boundary conditions that determine the limits of
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deformation (these are usually determined by the physics of the system, whilst the
domain level equations are typically being defined for numerical convenience). The
ALE method offers significant advantages since the physical equations describing the

system can be solved in a moving domain.

Deformed Geometry and Moving Mesh in the COMSOL Multiphysics
E}‘ Reference Manual

Geometric Nonlinearity for the Solid Mechanics Interface

For the Solid Mechanics interface, you enable a geometrically nonlinear analysis for a
certain study step by selecting the Include geometric nonlinearity check box in the Study

Settings section of a study step.

If any active feature in the model requires the analysis to be geometrically nonlinear,
the Include geometric nonlinearity check box is selected automatically, and it cannot be

cleared. The physics features which force this behavior are:

* Contact, because the deformation between the contacting boundaries must be part
of the solution.

* Moving mesh (when at least one deforming domain is active).

e Large strain plasticity.

* Hyperelastic materials, which are always formulated for large strains.

Usually you would also want to use geometric nonlinearity when a Moving Mesh

interface is present, but this is not forced by the program.

When you select a geometrically nonlinear study step, the behavior of several features

differ from that in a geometrically linear case:

¢ There is an important difference between using uppercase (X, Y, Z, R) and
lowercase (x, y, 2, r) coordinates in expressions. The lowercase coordinates

represent the deformed position, and this introduces a dependency on the solution.

* Many features, such as coupling operators, can be specified as operating either in the
material (X, Y, Z) or the spatial (x, y, 2) frame. This setting does not make a
difference unless a geometrically nonlinear analysis is performed. In most cases you

would want to do the operation in the material frame.
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e The strain representation is changed from using engineering strains to
Green-Lagrange strains, unless the Force linear strains check box is selected in the

Geometric Nonlinearity section of a certain material.

¢ Where Green-Lagrange strains are used, Second Piola-Kirchhoff stresses are also
used. This means that material data must be given in terms of these quantities. This
distinction is important only when the strains actually are large.

* Pressure loads are interpreted as follower loads, so that the direction of the load as

well as the loaded area are deformation dependent.

¢ Rigid connectors take finite rotations into account.

@l Studies and Solvers in the COMSOL Multiphysics Reference Manual

CHAPTER 2:

Geometric Nonlinearity for the Shell, Plate, Membrane, Beam and
Truss Interfaces

For the Shell, Plate, Membrane, Beam, and Truss interfaces, a geometrically nonlinear
analysis is enabled in the same way described above. For the Membrane interface,
geometric nonlinearity must almost always be used, since it is nonlinear effects which

supply the stiftness in the transverse direction.

The geometric nonlinearity in the Beam interface is limited to large rotations and

displacements, but small strains.

The effect of using geometric nonlinearity in these interfaces is limited to the stress and
strain representation as the other effects described in Geometric Nonlinearity for the

Solid Mechanics Interface are not relevant.

Solving Geometrically Nonlinear Problems

Depending on the geometrically nonlinear effects that appear in your model, you may
have to use different solution strategies. Some problems in this class are strongly

nonlinear, while others show only a weak deviation from linearity. Some guidelines are:

* Ifthe problem has a path dependent solution, then it must be solved in an
incremental way in order to give a correct solution. Problems including for example
plasticity or friction belong to this class. If you do the analysis in time domain, then
the solution is inherently incremental. If the analysis is stationary, invoke the
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parametric continuation solver by adding an Auxiliary Sweep, and ramp up some

loading parameter. In either case, make sure that the step size is not too large.

¢ Problem that have a unique solution, like an elastic model subjected to large
rotations or strains can be solved in a single static load step without loss of accuracy.
It is however possible that such an approach will not converge, in which case a

parametric continuation solver must be used.

* In problems involving large rotations, the default settings of the nonlinear solver
will sometimes give a too conservative solution strategy. You can often decrease the
solution time significantly by modifying the settings under Method and Termination
in the settings for the Fully Coupled or Segregated Step node in the solver sequence.
Set Nonlinear method to Constant (Newton) and use a rather high Damping factor. In

most cases the value 1 will work.

* If you model a situation which to a large extent is a rigid rotation, it is often
necessary to use tighter tolerances than usual in order to avoid spurious stresses.
Since the strains are computed from the differences of the displacements in an
element, even a small relative error in the displacements (which are large) can cause

significant strains. This will be visible in a case where the actual stresses are small.

Prestressed Structures

You can analyze eigenfrequency, frequency domain, or time dependent problems
where the dynamic properties of the structure are affected by a preload, such as a
tensioned string.

Usually, a study of a prestressed problem includes using study steps. The first step is a
Stationary step in which the static preload is applied. The preload step can be computed
with or without taking geometric nonlinearity into account. In the second study step,
where you compute the eigenfrequency or the frequency response, it is necessary to
take geometric nonlinearity into account. Even if the displacements and strains are

small, this is what gives the prestress contribution to the equations.
There are four predefined study sequences for prestressed dynamic analysis:

* Eigenfrequency, Prestressed
* Frequency Domain, Prestressed
* Frequency Domain, Prestressed, Modal

e Time Dependent, Prestressed, Modal
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The prestressed study types assume that the loading causes small perturbations around

the prestressed state.

In a general nonlinear analysis, like a Stationary or Time Dependent study step, the full

combined effect of the prestress and other loads will automatically be included.

The same principles apply also to a linear buckling analysis, except that both study steps
should be geometrically linear. The nonlinear contribution is included in the

formulation of the buckling eigenvalue itself.

FOLLOWER LOADS

Loads which change orientation with deformation, such as a pressure, actually
contribute not only to the load, but also to the stiftness. This is a physical effect, and
not just a numerical artifact. Whether such loads are included or not in an
Eigenfrequency study step will affect the computed eigenfrequencies. If you for some
reason do not want this effect, you must suppress the load in the Physics and Variables

section of the Eigenfrequency node.

If you use a local coordinate system for describing a load, you must in case

of' geometric nonlinearity pay attention to whether that coordinate system

has constant axis orientations or not. As an example, the default boundary

system has Frame sct to Deformed Configuration, so that a load represented
n in that system will behave as a follower load. Change to Reference

Configuration if the load should act in fixed directions.

In more general terms, any feature in which there is a dependency on the
choice of frame (material or spatial) can potentially affect the outcome of

a prestressed analysis.

CONTACT AND PRESTRESSED ANALYSIS
If a contact is included in the prestress load case, you can perform a subsequent
eigenfrequency or frequency domain analysis in which the linearization will be made

around the computed contact state.
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INELASTIC STRESSES AND STRAINS
When inelastic stresses and strains are part of the problem description, you need to
make some extra considerations. Such contributions are formally part of the

constitutive model, but generate load vector contributions.

There are three Preset study types which can be used to set up these two
study steps: Eigenfrequency, Prestressed; Frequency Domain, Prestressed;

and Linear Buckling.

If you want to explicitly prescribe the stress field for a prestressed analysis
rather than solving for it, you should not use the two study step
procedure. In such a case, prescribe the stress field using an Initial Stress

n and Strain, External Stress, or External Strain node. Then add a separate
Eigenfrequency or Frequency Domain study and select Include Geometric
Nonlinearity in the settings for the study step.

Eigenfrequency, Prestressed, Frequency Domain, Prestressed, and Linear
E}‘ Buckling in the COMSOL Multiphysics Reference Manual

¢ For an example of a general prestressed eigenfrequency analysis see
Bracket — Eigenfrequency Analysis: Application Library path
Structural_Mechanics_Module/Tutorials/bracket_eigenfrequency.
[ e For an example of an analysis where the stress state is explicitly
prescribed, see Vibrating Membrane: Application Library path
Structural_Mechanics_Module/Verification_Examples/

vibrating_membrane.

Geometric Nonlinearity for the Piezoelectric Material

PIEZOELECTRIC MATERIALS WITH LARGE DEFORMATIONS

The linear piezoelectric equations as presented in About Piezoelectric Materials with
engineering strains are valid if the model undergoes only relatively small deformations.
As soon as the model contains larger displacements or rotations, these equations
produce spurious strains that result in an incorrect solution. To overcome this

problem, so-called large deformation piezoelectrical equations are required.
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The Piezoelectric Material implements the large deformation piezoelectrical equations

according to Yang (Ref. 1). Key items of this formulation are:

* The strains are calculated as the Green-Lagrange strains, €;;:

1[8ui a_ul Bukaukj

“ = 33X, T X, T 20X, X, (2-21)
k

Green-Lagrange strains are defined with reference to an undeformed geometry.
Hence, they represent a Lagrangian description. In a small-strain, large rotational
analysis, the Green-Lagrange strain corresponds to the engineering strain in

directions that follow the deformed body.

¢ Electrical field variables are calculated in the material directions, and the electric
displacement relation is replaced by an expression that produce electric polarization

in the material orientation of the solid.

¢ In the variational formulation, the electrical energy is split into two parts: The
polarization energy within the solid and the electric energy of free space occupied

by the deformed solid.

The first two items above result in another set of constitutive equations for large

deformation piezoelectricity:

T
S =cpe-e E

P =ee+ey(e,g-DE

where S is the second Piola-Kirchhoft stress; € is the Green-Lagrange strain, E,, and
P, are the electric field and electric polarization in the material orientation; I is the
identity matrix; and cg, e, and €, are the piezoelectric material constants. The

expression within parentheses equals the dielectric susceptibility of the solid:
X = &g~ I

The electric displacement field in the material orientation results from the following

relation
-1
D, =P +¢e,JC E
where C is the right Cauchy-Green tensor

c=Fr'F
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Fields in the global orientation result from the following transformation rules:

E=F'E,_
P=J'FP_ .99
) )
D = J 'FD_
1
Py = Py

where F is the deformation gradient; o/ is the determinant of F; and p,, and py are the
volume charge density in spatial and material coordinates respectively. The
deformation gradient is defined as the gradient of the present position of a material
pointx=X+ u:

_
)¢

Finally, one can rewrite the constitutive equations as

T
S =cpe-e E

D, =ec+eye,gE + sO(chl -DE_,
DECOUPLED MATERIALS WITH LARGE DEFORMATIONS

The large deformation formulation described in the previous section applies directly to
non-piezoelectric materials if the coupling term is set to zero: e = 0. In that case, the
structural part corresponds to the large deformation formulation described for the
solid mechanics interfaces.

The electrical part separates into two different cases: For solid domains, the electric

energy consists of polarization energy within the solid and the electric energy of free
space occupied by the deformed solid—the same as for the piezoelectric materials. For
nonsolid domains this separation does not occur, and the electric displacement in these

domains directly results from the electric field—the electric displacement relation:

D = ¢y, E

The Electrostatics Interface in the COMSOL Multiphysics Reference
@I‘- Manual

MODELING GEOMETRIC NONLINEARITY

169



LARGE DEFORMATION AND DEFORMED MESH

The Piezoelectric Devices Interface can be coupled with the Moving Mesh (ALE)
interface in a way so that the electrical degrees of freedom are solved in an ALE frame.
This feature is intended to be used in applications where a model contains nonsolid
domains, such as modeling of electrostatically actuated structures. This functionality is

not required for modeling of piezoelectric or other solid materials.

The use of ALE has impacts on the formulation of the electrical large deformation
equations. The first impact is that with ALE, the gradient of electric potential directly
results in the electric field in the global orientation, and the material electric field

results after transformation.

The most visible impact is on the boundary conditions. With ALE any surface charge
density or electric displacement is defined per the present deformed boundary area,

whereas for the case without ALE they are defined per the undeformed reference area.

Deformed Geometry and Moving Mesh in the COMSOL Multiphysics
@l Reference Manual
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Contact Modeling

General

Situations where objects come into contact with each other occur frequently in
mechanical simulations. Setting up and solving contact problems is sometimes a
challenging task, and this section contains information about important aspects of
creating models involving contact.

In a contact analysis, you solve for the contact state and the contact forces. If friction
is ignored, the state only consists of being in contact or not, and the force variable is
the contact pressure in the normal direction. With friction included, there are two
possible states for the relative tangential displacement when in contact: sticking and

sliding. The tangential force vector is added as force variable.

The contact analysis functionality in COMSOL Multiphysics also includes the
possibility to prescribe adhesion and decohesion between the contacting objects.

In this section:

* Setting up a contact problem * Multiphysics Contact

» Contact Pairs * Fallback Nodes for Contact

¢ Meshing for Contact Analysis * Solver Settings for Contact Analysis
* Constraints * Monitoring the Solution

¢ Settings for Contact Nodes * Dependent Variables in Contact

e Time-Dependent Contact Analysis Analysis

* Important Contact Variables

Setting up a contact problem

Mechanical contact can be modeled in the Solid Mechanics and Multibody Dynamics

interfaces. To model a mechanical contact problem, you must do the following:

* Add Contact Pair nodes under Definitions. A contact pair consists of two sets of

boundaries, which are called the source and destination boundaries.
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* Add Contact nodes in the physics interface. In the Contact node, you select the
contact pairs to be used, and provide the settings for the physical and numerical

properties of the contact model.

* In the finalization step of the geometry sequence, you should normally have Action
set to Form an assembly. If Form a union is used, then the contacting boundaries must

be geometrically separated in the initial configuration.

* Select a suitable study type. You can analyze contact using a Stationary or Time

Dependent study step.

¢ Documentation of the Contact, Friction and Adhesion nodes.
* Contact Analysis Theory.

@l e Identity and Contact Pairs in the COMSOL Multiphysics Reference
Manual.

* Time-Dependent Contact Analysis.

CHAPTER 2:

In a multiphysics analysis, a contact problem can also incorporate for example changes
in the heat flux or electric current through the contacting boundaries. You will then
also need to add corresponding features in the other participating interfaces, like a
Thermal Contact node in the Heat Transfer in Solids interface. The contact state and
contact pressure used in other physics interfaces is always supplied by the structural

mechanics interface.

The fact that you add a Contact node to your model will make all study steps

geometrically nonlinear.

INCLUDING FRICTION
In real life, there is always some friction between contacting objects, but this is often

ignored. There are several reasons to do this simplification:

* In many cases, only the normal forces are significant for the general force
distribution in the structure, while the frictional forces only cause a minor local
effect.

¢ The values of the friction coefficients are difficult to obtain, and unless the structure
is assembled under well controlled conditions, the magnitude of the friction can

vary a lot.

* Adding friction to a contact problem will often increase the computation time

significantly, or even cause convergence problems.
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There are a number of situations when friction modeling cannot be avoided. Some of
them are:

* When a significant portion of the load is carried by shear stresses in the contact

boundaries.

* When a tangential force is necessary to maintain stability and avoid rigid body
motions. In many cases, it is however possible to replace the friction by a suitable
constraint instead, as long as there are no resultant forces being resisted by such a
constraint.

* When the frictional dissipation is an important component of a dynamics problem,

or when it is needed as a heat source in a thermal analysis.

ADHESION AND DECOHESION
You can also specify that the contacting boundaries stick to each other so that they will
not separate or slide. The onset of adhesion, when the boundaries become

permanently attached to each other, can be based on several criteria:

¢ When a certain contact pressure is exceeded.

e When the gap distance between the contact boundaries is smaller than a certain
value.

* When a user specified logical expression is fulfilled. This can for example be used if

an adhesive cures when a certain temperature is exceeded.

* From the start of the analysis. This case is particularly interesting if you are

interested in modeling the tearing of a thin glue layer by decohesion.

If adhesion is active between the contact boundaries, it is possible to break the bond
by adding a decohesion rule. You can choose between several different decohesion

laws.

. The energy dissipated due to decohesion is not accounted for in energy

= balances or in heat source terms.

SELECTING THE CONTACT ALGORITHM
In COMSOL Multiphysics, there are two possible methods for solving contact
problems: the augmented Lagrangian method and the penalty method.

The default augmented Lagrangian method provides better accuracy, but at a higher
computational cost. It requires additional degrees of freedom, and is less stable from

the convergence point of view. This method ensures that there will not be any
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penetration between the contacting objects in a well converged solution. The contact
pressure and friction forces are added as degrees of freedom. The contact pair is
asymmetric (that is, it is a source /destination pair). The destination contact domain
is constrained not to penetrate the source domain, but not vice versa. The contact
condition is evaluated in the integration points on the destination boundary. It is thus
possible for a node to have a small penetration into the source boundary, even in a

converged state.

In comparison, the penalty method is rather simple and robust. Roughly speaking, it
is based on inserting a stiff spring, active only in compression, between the contacting
boundaries. In addition to the robustness, it has the advantage that no special solver is
required, which makes it easier to set up multiphysics problems and time-dependent

studies.

The penalty method must be used when modeling adhesion.

You can select the method used for computing the normal direction pressure and the

friction forces independently.

Contact Pairs

To decide which boundaries to assign as source and destination in a contact pair

consider the following guidelines:

* Make sure that the source boundary stiftness in the normal direction is higher than
the destination boundary stiftness. This is especially important if the difference in

stiffness is quite large (for example, over ten times larger).

* If one of the boundaries belongs to a part that is rigid, either since it is a rigid
domain, or because of the constraints applied, it should be selected as the source

boundary.

* When the contacting parts have approximately the same stiffness, consider the
geometry of the boundaries instead. Make a concave boundary the source and a

convex boundary the destination rather than the opposite.

For efficiency, include only those boundaries that can actually come in contact in the
destination selection. For the source, it is often a bit more efficient to make it so large
that every destination point ‘sees’ a corresponding source point. The source point is
obtained by following the normal to the destination until it reaches the source
boundary.
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FIXED GEOMETRY CONTACT

In some situations, the relative sliding between the contacting boundaries is small. This
is often the case for shrink fit simulations or when mounting a component using
prestressed bolts. The sliding can be considered as small if it is significantly less than
the length of an element edge.

In this case, it is possible to simplify the problem by selecting the Mapping Method to
be Initial Configuration in the Contact Pair node. With this setting, a certain point on

the destination boundary will see the same point on the source boundary during the
entire simulation. This will make the contact analysis to run faster and convergence to

be more stable.

The analysis is still geometrically nonlinear when using this option, and the contact

region can still have arbitrarily large displacements and rotations.

AUTOMATIC GENERATION OF CONTACT PAIRS

Contact pairs can be automatically generated during the finalization of the geometry
sequence. When Action is set to Form an assembly, you can select Create pairs, and use
Contact pair as Pair type. Boundaries which are in geometrical contact with each other
will then be placed in contact pairs. When you add Centact nodes in the physics

interface, you select which of these suggested pairs to actually use for the contact

analysis.
The automatic pair generation will not know which side to use as source
or destination. Based on the rules above, you may need to switch them
g using the Swap Source and Destination button in the Source Boundaries

section of the pair settings.

Meshing for Contact Analysis

Once the source and destination boundaries are chosen, mesh the destination finer
than the source. Do not make the destination mesh just barely finer than the source
because this can cause nonphysical oscillations in the contact pressure. Make the
destination at least two times finer than the source. The reason is that the algorithm is
asymmetric; the points on the destination side connects to the source side, and not vice
versa. So with a coarse mesh on the destination side, a large portion of an element (or
even a whole element) on the source side could be without connection to the

destination.
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It is always important that the geometry is well resolved, so that a curved contact
boundary actually is seen as curved rather than ‘faceted’. The density of the mesh often
needs to be finer than what would be needed to resolve stresses on a similar boundary
without the contact conditions. If the normals to the contact boundaries change much
from one element to the next, there is a risk that the contact analysis does not

converge.

If the source boundary is rigid, there are no requirements on the mesh size of the
destination boundary. In this case, you may use a significantly finer mesh on the source
boundary than on the destination boundary. This is sometimes necessary in order to

resolve the geometry well.

Constraints

Make sure that the bodies are sufficiently constrained. If the bodies are not in contact
in the initial configuration, and there are no constraints on them, there will be possible

rigid body displacements. This causes the solver to fail and must be avoided.

For a more detailed discussion about sufficient constraints, see

@l‘ Constraints under Stationary Analysis.

CHAPTER 2:

Sometimes, as when simulating mounting processes, the structure is fully constrained
only once the contact is fully established. There are some strategies for how you can

deal with this problem.

¢ Create the geometry or set initial values for the displacement variables so that there

is a small penetration in the initial configuration.

* Use boundary conditions giving a prescribed displacement rather than a prescribed
force. When possible, this is usually the best solution to the stability problem. Note

that you can always obtain the force actually applied from the reaction forces.

e Add a temporary weak spring during the beginning of the simulation. Assuming
that a parameter p, ranging from 0 to 1, is used for applying the external load, you

can introduce a stabilizing spring with stiffness &, in the x direction as
k, = k(1-p)2 ® 1

and similarly in any other direction that needs to be restrained. It is not important
whether the spring is applied to domains, boundaries, or edges, but it should not create

local forces. The value for the stiffness £ should be chosen so that the force generated
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by the spring balances the external load at a sufficiently small displacement. A too weak
spring will give a too large initial overclosure of the contact boundaries. A too stift

spring might influence the solution too much.

Settings for Contact Nodes

PENALTY FACTOR
An important parameter in the settings for the Contact node is the penalty factor. It is
used for both the augmented Lagrangian method and the penalty method, but the

interpretation is different:

* In the augmented Lagrangian method, the penalty factor is a numerical parameter,
which affects the convergence properties of the algorithm. A higher value gives a

faster convergence, but at the price of less stability.

* In the penalty method, the penalty factor has a straightforward interpretation as the
stiffness of a distributed spring connecting the two contacting boundaries. A higher
value will decrease the unphysical penetration, but can be detrimental to the

numerical conditioning of the stiffness matrix.

e When modeling adhesion, the penalty factor is the stiffness in the normal direction

of the adhesive layer.

In the augmented Lagrangian method, the value of the penalty factor
I_El does not affect the accuracy of the final solution, like it does in the penalty
method.

When running into convergence problems, check the penalty settings. If the iteration
process fails in some of the first iterations, lower the penalty parameters. If the model
seems to converge but very slowly, consider increasing the maximum value of the

penalty parameters.

Increasing the penalty factor can lead to an ill-conditioned Jacobian matrix and
convergence problems in the Newton iterations. This is often seen by noting that the
damping factor becomes less than 1 for many Newton iterations or that the structure

“jumps” into an unphysical state. If this occurs, decrease the penalty factors.

The default values for the penalty factors is based on an “equivalent” Young’s modulus
(Eequiv) of the material on the destination side. For linear elastic isotropic materials
Eequiv is equal to the actual Young’s modulus. For other types of materials Eequiv is

defined by an estimate of a similar stiffness at zero strain. For materials that are user
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defined or in other senses nonstandard (for example, anisotropic with large differences

in stiffness in different directions), Eequiv might need to be replaced with another

estimate.
For nonlinear materials in general, and for elastoplastic materials in
particular, there can be a significant change in stiffness during the solution
El process. Choose the source and destination boundaries accordingly. You

may even have to adjust the penalty factor as the solution progresses when

such materials form a contact boundary.

Penalty Factor Relaxation
When using the augmented Lagrangian method, having a well tuned penalty factor is

an important factor for the performance of the contact iterations.

The default value is selected as a compromise between speed and stability, but with
more weight on stability. The strategy is to for each new step (parametric step or time
step) start with a softened penalty factor, which is then increased over the first four
iterations. The purpose is to stabilize the problem if there are large overclosures in the

first iterations. This is called relaxation.

In a situation where the contact is well established, using relaxation will however cost

extra iterations, and it may even lead to a loss of convergence.

The penalty factor can be tuned in several ways. You have three basic choices, ranging

from simple to advanced:

* With a Preset penalty factor, you can choose having it tuned for Stability or Speed.
With Stability, relaxation is used in every step. With Speed, a constant penalty factor
is used all the time, and the value used is also higher than the final value obtained

when using Stability.

* With Manual tuning, you can make adjustments to the magnitude of the penalty

factor, and to the relaxation strategy.

* With User defined, you can enter any expression for the penalty factor.

For details about these settings, see the documentation of the settings for
@l‘ the Contact node.
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Some hints for selecting the penalty factor:

* Use relaxation only when large changes in the contact state is expected.
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If an analysis takes a long time, check the convergence graphs. If the contact
variables show a steady, but slow, convergence it may help to increase the penalty

factor. Increase by a factor of 2-5.

If a model fails to converge and the contacting parts appear to have moved far from
each other, it is probable that the penalty factor is too high. You can then either

decrease the total stiffness or add more relaxation.

TRIGGER CUTBACK

If, during the iterations, a contact problem comes into a state where it is far from the

converged solution, it is unlikely that the solution will ever converge. In such a case,

much computing time can be spent before the maximum number of iterations is

reached, and the solver makes an attempt with a smaller time or parameter step. To

speed up this process, you can select the Trigger cutback check box. You can then enter

alogical expression which, when fulfilled, will force the solver to immediately abandon

the iterations and try a smaller step. Such an expression can, for example, be a

maximum displacement (like solid.disp > 5[mm]), based on what is physically

realizable for the structure. The expression is evaluated in all points on the boundary,

but you can also use a global value, like an average or a maximum.

OFFSET AND ADJUSTMENT

It is possible to assign an offset to both the source and destination boundaries. When

an offset is given, the boundary used in the computations is not the geometrical

boundary, but a virtual boundary displaced by the offset value. You can use this option

for several purposes:

When analyzing problems with for example shrink fit, nominal dimensions can be
used for the geometry, and the overclosure in included in the gap by using the
offset.

When there is a small clearance between two boundaries, a negative offset can be

used instead of changing the geometry.

If geometries are such that a large overclosure exists in the initial configuration, the
contact algorithms may not converge. You can then add a negative offset, which is
slowly removed by letting it depend on time or on the parameter in the parametric

continuation solver.

When the source or destination boundaries are curved, the discretization introduced

by the meshing may lead to small variations in the computed distance between the

source and destination boundaries, even though the geometrical shapes of the two

objects are ideal. When modeling for example a shrinkage fit, this effect can cause
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significant fluctuations in the contact pressure. If you select Force zero initial gap, the
computed distance from destination to source will be adjusted by the initial distance.
This adjustment can be combined with an offset. The offset is applied to the adjusted

value.

The mesh as such is not adjusted, it is only the distance computation which is affected.
This type of adjustment is most useful when the sliding is small, so that the gap distance

is always computed between the same points on source and destination.

INITIAL VALUE

In the augmented Lagrangian method, where the contact pressure is a dependent
variable, it can be given an initial value. In force-controlled contact problems where no
other stiffness prohibits the deformation except the contact, the initial contact pressure
is crucial for convergence. If it is too low the parts might pass through each other in

the first iteration. Ifit is too high they never come into contact.

DISCRETIZATION

When using the augmented Lagrangian method it is possible to change the order of
the shape functions used for the contact pressure and friction force degrees of freedom.
The default is linear shape functions, and this matches the quadratic shape functions
used as default for the displacement degrees of freedom in the Solid Mechanics
interface. The only situation when you should consider changing the discretization for

the contact variables is if you use cubic or higher shape functions for the displacements.

Selecting any other discretization else than Linear requires that the solver sequence is
modified manually, since the default lumped solver is no longer optimal for the contact

pressure update. An ordinary segregated step should then be used.

ADHESION
When using the penalty method, you can specify that the boundaries in the contact pair

should stick to each other after coming into contact.

The adhesive layer is conceptually without thickness, but by specifying on offset in the
Contact node, you can to some extent include the dimensions of the adhesive layer.

The adhesive layer always has a finite stiffness. For a glue layer, this represents the true
stiffness. For a more conceptual joining of two boundaries, this stifftness should be
considered in the same way as the penalty stiffness in the contact formulation. The
stiffness can differ between tension and compression: In compression the stiffness is

always taken as the penalty stiffness, whereas you can change the tensile stiffness.
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Decohesion

Two boundaries joined by adhesion can separate if you select any of the decohesion
laws. You must then specify the maximum strength and the total energy release during
decohesion for pure tension and pure shear. In most cases, the decohesion process is a

mixture between tension and shear, so you also have to specify the interaction rule.

As long as the stress is below the maximum strength, the adhesive layer retains it
original stiffness. Once the displacement in the layer is so large that the maximum
strength is exceeded, the material is considered as damaged, and the stifthess is
decreased. The same damage factor is applied to both the tensile and the shear stiffness,

while the compressive stiffness is unchanged.

Decohesion is an inherently unstable process. The elastic energy in the strained
adhesive layer will be released during decohesion. Numerically, the decreasing
stress-strain curve manifests itself as a local negative stiffness. Such a problem may be
possible to solve, if the surrounding material can absorb the released energy. The

numerical stability is closely coupled to the physical stability of the structure.

 Ifthe structure is in load controlled situation, there is no possibility to continue the
analysis when the peak external load has been exceeded. Physically, this corresponds

to a sudden collapse of the component.

* If the structure is loaded by prescribed displacements, it is usually possible to
continue the analysis further. It may however happen that the stored elastic energy
in the structure is large enough to force a complete breakdown of the adhesive layer

once a certain external displacement is reached.

» If possible, use prescribed displacements in a decohesion analysis, and evaluate the

applied load from the reaction forces.

* Sometimes it is not possible to use prescribed displacements, for example if the load
is distributed. You can then add a Global Equation to control the loading rate by
some other quantity that increases monotonically. This is the same technique that is
used for post-buckling problems.

* You may have to change the settings in the Method and Termination section of the
settings for the Fully Coupled or Segregated nodes in the solver sequence, for example

by allowing a larger number of iterations.
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¢ The true unstable failure is a dynamic event. This can be analyzed using a time
dependent solver, but the computational cost can be high. The inertial forces will

then balance the released energy.

* Documentation of the Contact, Friction and Adhesion nodes.

@,

* Adhesion and Decohesion in the Structural Mechanics Theory chapter.

For an example showing decohesion analysis, including how to use a

global equation to control an unstable problem, see Mixed-Mode
il Debonding of a Laminated Composite: Application Library path

Structural_Mechanics_Module/Contact_and_Friction/

cohesive_zone_debonding

Time-Dependent Contact Analysis

The contact formulation is strictly valid only for stationary problems. It is still possible
to use contact modeling in a time-dependent analysis, as long as inertial effects are not
important in the contact region or you use a sufficiently short time step. In practice,
this means that you can solve both gquasi-static problemsand truly dynamic problems,
as long as situations with impact are avoided. When in doubt, try to do an a posteriori
check of conservation of momentum and energy to ensure that the solution is

acceptable.

In time-dependent contact models, the penalty method is usually the better choice.

Multiphysics Contact

Multiphysics contact problems often exhibit a high degree of nonlinearity, which leads
to convergence problems for the nonlinear solver. As an example, consider heat
transfer through the contact area, where initially only a small spot is in contact. The
solution for the temperature field is then extremely sensitive to the size of the contact
area. If at the same time, the solid deforms due to thermal expansion, there may be

large changes in the contact area between each iteration,

It is important to resolve the size of the contact area accurately, that is, to
n use a very fine mesh in the contact area when modeling fully coupled
multiphysics problems.
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If the contact area is larger, a fine mesh is not required because then the temperature
solution is not that sensitive to the size of the contact area. If possible, start with an

initial configuration where the contact area is not very small.

You can use the contact variables (gap and contact pressure) in expressions for
quantities in other physics interfaces. As an example, a thermal resistance in the contact

region can depend on the contact pressure.

In many cases, the penalty method is preferred in multiphysics contact problems
because of its better stability and less restrictive requirements on solver selections. If
the contact conditions depend strongly on the contact pressure, use the augmented

Lagrangian method because if its higher accuracy.

Fallback Nodes for Contact

When a Contact node has been added, it always contains one subnode, Free. This is the
default fallback condition on the part of the boundary where contact is not established.
By right-clicking the Contact node, you can replace it by another fallback condition.
The most common case is when there is a pressure load acting on the part of the
boundary that is currently not in contact. In this case you would add a Boundary Load
fallback node.

* Ifyou add an ordinary Boundary Load node after a Contact node and use
the same boundary selection, the load will be applied also to the part
of the boundary that is in contact. In most cases, this is not a physical

n behavior.

* Ifa Boundary Load node appears before a Contact node in the model

tree, the load on the common selection will be ignored, irrespective of

whether the boundary actually is in contact or not.

Solver Settings for Contact Analysis

The following solver settings can help to successtully solve contact models:

¢ In a contact analysis, you almost invariably use an incremental approach. It is
possible to solve a problem without friction in a single stationary load step, but such
an approach will often fail to converge. In a stationary analysis, you should then use

the parametric continuation solver, and gradually increase the load or displacement.
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Enable it by selecting Auxiliary sweep under Study Extensions in the settings for the

Stationary solver.

Use a direct solver instead of an iterative solver as linear equation solver if the
problem size allows it. Direct solvers are less sensitive and can provide better

convergence.

As a default, the dounble dogley nonlinear solver is selected when a stationary study
is generated and Contact nodes are present in the model. For the majority of contact
problems this solver has more stable convergence properties than the Newton
solver, which is the generally used default solver for other problems. Using the same
settings, the Double dogleg solver tends to be somewhat slower than the Newton
solver on problems where both solvers converge. It is however often possible to take
larger load steps when using the double dogleg solver. For some problems, the
Newton solver can still be the better choice, so if you experience problems using the

default settings, try to switch solver.

It is important to scale the contact degrees of freedom manually. The convergence
check relies on the scaling of the degrees of freedom, but since contact pressures and
friction forces often are zero over parts of the simulation, you should not rely on
automatic scaling. When the solver sequence is first created, both contact pressure
and friction forces are given a manual scaling which is relevant for typical
metal-to-metal contact. You should in most cases change this to values appropriate
for your application. The variable scaling is accessed under Dependent Variables in the
solver sequence. Set the scale for each variable to a value which is representative for
the expected result. Too large values may give a too early convergence, while too

small values may lead to an excessive number of iterations.

For some contact problems, it is necessary to let the parametric solver use a more
defensive strategy when going to the next parameter step. This can be controlled by

setting the value of Predictor in the Parametric feature to Constant.

When using the augmented Lagrangian method, at least one lumped step will be
generated in the segregated solver for each Contact node. The number of lumped
steps will be increased even more if you select the Group contact variables in solver
per pair check box in the Advanced section of the settings for the Contact node. This
split of variables into different lumped steps does not influence the solution as such;
you can equally well group the contact variables in a single lumped step. Each
lumped step will however generate an individual curve in the convergence plot,

making it easier to pinpoint the source of convergence problems.

If the model includes friction, try solving the problem without friction first. When

the model seems to work without friction, friction can be added.
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* Always solve contact problems which contain friction or decohesion incrementally,
using a parametric or time-dependent solver. The evolution of the friction forces is
history dependent. For contact problems without friction an incremental strategy is

not necessary but often a good choice.

* For models that include decohesion, see also suggestions under Decohesion.

Monitoring the Solution

It is often useful to monitor the solution during a contact analysis. This can be done

in different ways.

Using the Results while solving functionality in the study step is a good practice. You
can either use a stress plot, or a plot of the contact pressure. In most cases, the scale of
a deformed plot should be set to 1 when monitoring contact problems. Note that if
you select Results while solving in the Segregated feature, the plot is updated after each

iteration, thus allowing you to monitor the convergence in detail.

For each contact pair, two global variables that can be used in probe plots are available.
These are the maximum contact pressure (sol i d.Tnmax_pai r ) and the minimum gap
distance (sol i d.gapmin_pair).

Looking at the convergence plot will give valuable information about the convergence
properties. There will, as a default, be one graph per Contact node in the Model Tree,
which will help you pinpoint the source of a convergence problem. You can increase
the granularity further, by selecting the Group contact variables in solver per pair check

box in the Advanced section of the settings for the Contact node.

You can also select to include information about the contact state in the solver log. To
do that, select the Add contact status to solver log check box in the Advanced section of

the settings for the Contact node. For each contact pair, messages like
69 points of 120 are now in contact.
33 points started to stick. 72 points are now sticking.
12 points started to slide. 47 points are now sliding.

will be generated for each time or parameter step. Only changes are reported.

Dependent Variables in Contact Analysis

The Contact and Friction nodes will generate a number of degrees of freedom which

depend on the settings and study type. You will see these degrees of freedom appear

CONTACT MODELING

185



under Dependent Variables in the solver sequence. There are two types of extra variables
created:

 Variables changed until convergence is reached during the iterations. These variables
appear in the Lumped Step nodes in the Segregated solver or in the Fully Coupled
node.

* Variables used to store the state, once the iterations have converged for a certain
time or parameter step. These variables are appear in the Previous Solution node. In
a stationary solver, the path to this node is Stationary Solver>Parametric>
Previous Solution. In a time-dependent solver it appears directly under

Time-Dependent Solver.

If you change settings in the Contact or Friction nodes after the solver
sequence has been generated, dependent variables may be added or
removed. The second case is never a problem, but when new dependent
variables are created, they are not automatically added to the groups in the
n segregated solver. You may then encounter the error message
“Segregated solver steps do not involve all components.” You
can then either regenerate the solver sequence, or manually insert the

missing variables into the Lumped Step and Previous Solution nodes.

In Table 2-9 the dependent variables which can be created by the Contact or Friction
nodes are summarized. To shorten the variable names, the full scope has been
removed. As an example, the contact pressure variable for pair p1 in component comp1,
generated in the Solid Mechanics interface solid, will have the full name
comp1.so0lid.Tn_p1. In the table, it is shown as Tn.

TABLE 2-9: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME  DESCRIPTION EXPLANATION CREATED SOLVER NODE

Tn Contact pressure  The contact Contact: Lumped
pressure in the Augmented Step
normal direction  Lagrangian used

Tt Friction force The friction force  Friction: Lumped
vector Augmented Step

Lagrangian used

186 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



TABLE 2-9: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME

DESCRIPTION

EXPLANATION

CREATED

SOLVER NODE

cm_old

sliptot_old

contact_old

isContact_old

isSliding_old

isSticking_old

Woent

Previous mapped
source
coordinates

Previous
accumulated slip

Contact variable
in previous step

Contact status
variable in
previous step

Sliding friction
status variable
previous step

Sticking friction
status variable
previous step

Contact energy
density

The location on
the source where
this point was
located at last
converged
solution

Total slip in this
point at last
converged
solution

Nonzero if the
point was in
contact at last
converged
solution within
the friction
detection
tolerance

Nonzero if the
point was in
contact at last
converged
solution

Nonzero if the
point was in a
sliding state at last
converged
solution

Nonzero if the
point was in a
sticking state at
last converged
solution

Elastic energy
stored in normal
contact by the
penalty factor.

Friction node
present

Friction: Store
accumulated slip
selected

Friction node
present

Contact: Add
contact status to
solver log
selected

Contact: Add
contact status to
solver log
selected. Friction
node present.

Contact: Add
contact status to
solver log
selected. Friction
node present.

Contact: Store
energy variables
selected.

Previous
Solution

Previous
Solution

Previous
Solution

Previous
Solution

Previous
Solution

Previous
Solution

Segregated
step
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TABLE 2-9: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME  DESCRIPTION EXPLANATION CREATED SOLVER NODE
Wrric Frictional Energy dissipated  Contact: Store Segregated
dissipation energy by friction energy variables step
density selected. Friction
node present.
cma_old Previous adhesive  Position on the Adhesion node Previous
mapped source source where this  present Solution
coordinates point was located
when adhesion
was detected.
u_max_old Maximum Maximum norm Adhesion node Previous
adhesion of adhesive layer  present Solution

displacement at

displacement

reached until
previous step.
Also used as
indication of
adhesion
activation.

previous step

Important Contact Variables

In n this section you will find a summary of variables created in the contact feature

which can be useful in postprocessing.

TABLE 2-10: IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
solid.gap_p1 Gap distance including  Contact
offsets, contact pair
pl
solid.gapmin_p1 Minimum gap Contact
distance, contact pair
pl
solid.cnt1.Tn Contact pressure Contact
solid.Tnmax_p1 Maximum contact Contact
pressure, contact pair
pl
solid.cntl. Friction force norm Friction

fric1.Ttnorm
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TABLE 2-10: IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS

solid.cnt1. Friction force, x Friction

fric1.Ttx component

solid.Went_tot Total contact energy  Contact Integration over
all contact
boundaries

solid.Wfric_tot Total frictional Friction ntegration over all

dissipation energy

contact
boundaries
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Activating and Deactivating Material

CHAPTER 2:

In some applications, you may want to activate or deactivate material during an
analysis. An example is when you want to model the addition of material during

processes such as additive manufacturing or welding.

The information in this section is applicable if your license includes the
Structural Mechanics Module or the MEMS Module.

The Activation subnode can be used for this purpose. You enter an activation
expression to determine whether material is active or not. When this boolean
expression is satisfied, the material is activated. Rather than truly adding or removing
material, the Activation subnode alters the stiffness and density of the material to

emulate this.

It is typically required that material is activated in a state of zero stress. Therefore,
Activation activates material in a stress-free state by removing all elastic strains present

at the point of activation.

ACTIVATION

When you want to be able to activate or deactivate one or several domains selected in
a Linear Elastic Material node, you add the Activation subnode. You then select the
domains that you want to subject to Activation. The Activation expression input field is
used to define when material should be activated, and the Activation scale factor is used

to reduce the elastic stiffness and density of the material which is not active.

In Figure 2-17 a case is shown where the material in domains 1, 2 and 3 is to be
activated when an auxiliary sweep parameter para exceeds the value 1.5. The

activation scale factor has the default values of 10'5.

The activation condition can be any type of expression or function. A common case is
that it is a function of the temperature. The activation expression is evaluated in each
Gauss point. This means that an element can be partially activated. If you want to force
whole elements to be activated, you can for example put the activation expression
inside the centroid() operator.
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Settings Properties = g

Activation

Label: Activation1

* Domain Selection

Selection: ’AII domains v]
1 L]
| | :
3 B -
Active ETj ol

» Override and Contribution

~ Activation

Activation expression:
para=>15

Activation scale factor:

le-5 1

Figure 2-17: Settings for the Activation subfeature.

VARIABLES

Two useful variables are created when you add the Activation subnode. The variable
isactive is set to ‘1’ when the activation condition is satisfied, and it is ‘0’ otherwise.
The variable wasactive is used to record if the material has been active at any previous
step in the analysis. This variable can be used to “lock” the state of activation, once it
has been reached. Suppose that you want the material in the previous example to
remain active even if para later becomes less than 1.5. The activation expression for an

interface with the name solid could then be expressed as:

(para > 1.5) || solid.wasactive

TABLE 2-11: VARIABLES DEFINED BY THE ACTIVATION SUBNODE

VARIABLE DESCRIPTION
<physics>.isactive Current state of the material (I or 0)
<physics>.wasactive Variable set to | if isactive has been | previously

Domains which are not selected in any Activation subnode alway have the isactive
variable set to ‘1°.
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RESULTS
If you have performed an analysis in which only part of the material is active, it is useful

to apply a Filter and only display the regions which actually are active, see Figure 2-18.

Settings Proper‘ties W& Physics Bui = g

Filter

Label: Filter1

Element Selection =h

AY
4

Logical expression for inclusion:
solid.isactive

Element nodes to fulfill expression:

’ Smooth - ]

Figure 2-18: Filter settings to only display active material.
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Springs and Dampers

The Spring Foundation and Thin Elastic Layer physics nodes supply elastic and

damping boundary conditions for domains, boundaries, edges, and points.

The features are completely analogous, with the difference that a Spring Foundation
connects the structural part on which it is acting to a fixed “ground,” while the Thin

Elastic Layer acts between two parts, either on an internal boundary or on a pair.

A Spring Foundation is most commonly used for simulating boundary conditions with
a certain flexibility, such as the soil surrounding a construction. Another important use
is for stabilizing parts that would otherwise have a rigid-body singularity. This is a
common problem in contact modeling before an assembly has actually settled. In this
case a Spring Foundation acting on the entire domain is useful because it avoids the

introduction of local forces.

A Thin Elastic Layer used as a pair condition can simulate thin layers with material
properties that differ significantly from the surrounding domains. Common

applications are gaskets and adhesives.

When a Thin Elastic Layer is applied on an interior boundary, it usually models a local

flexibility, such as a fracture zone in a geological model.
The following types of data are defined by these nodes:
e Spring Data

¢ Loss Factor Damping

e Viscous Damping

SPRING DATA

The elastic properties can be defined either by a spring stiffness or by a force as function
of displacement. The force as a function of displacement can be more convenient for
nonlinear springs. Each spring node has three displacement variables defined, which
can be used to describe the deformation dependency. These variables are named

<i nterface_name>. uspringl_<tag>, <i nterface_name>. uspring2_ <t ag>, and
<i nterface_name>. uspring3_<t ag> for the three directions given by the local
coordinate system. In the variable names, <t ag> represents the tag of the feature
defining the variable. The tag could, for example, be spf1 or tel1 for a Spring
Foundation or a Thin Elastic Layer, respectively. These variables measure the relative

extension of the spring after subtraction of any predeformation.
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In addition to explicitly supplying a spring stiffness, you can choose to enter elastic
material data and the layer thickness. The spring stiffness is then computed internally,

based on an assumption of plane strain conditions.

LOSS FACTOR DAMPING
The loss factor damping adds a loss factor to the spring data above, so that the total

force exerted by the spring with loss is
£, = (L+in)f

where £ is the elastic spring force, and 1 is the loss factor.

Loss factor damping is only applicable for eigenfrequency and frequency-domain

analysis. In time-dependent analysis the loss factor is ignored.

VISCOUS DAMPING

It is also possible to add viscous damping to the Spring Foundation and Thin Elastic
Layer features. The viscous damping adds a force proportional to the velocity (or in
the case of Thin Elastic Layer: the relative velocity between the two boundaries). The
viscosity constant of the feature can be made dependent on the velocity by using the
variables named <i nt er f ace_nane>. vdamper1_<t ag>,

<i nterface_nane>.vdamper2_<tag>, and <i nt er f ace_name>. vdamper3_<t ag>,

which contain the velocities in the three local directions.

Bracket — Spring Foundation Analysis: Application Library path
ﬂ:ﬂ] Structural_Mechanics_Module/Tutorials/bracket_spring

@l Spring Foundation and Thin Elastic Layer
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Defining Multiphysics Models

The following modeling tips are about how to define multiphysics models. A good
place to start reading is in Building a COMSOL Multiphysics Model in the COMSOL
Multiphysics Reference Manual.

In this section:

e Thermal-Structure Interaction
e Acoustic-Structure Interaction

e Thermal-Electric-Structural Interaction

Thermal-Structure Interaction

The Thermal Stress Interface included with this module has a predefined one-way
coupling for thermal-structure interaction (thermal stress), which combines a Solid
Mechanics interface with a Heat Transfer interface from the Heat Transfer Module or
COMSOL Multiphysics.

By default, COMSOL Multiphysics takes advantage of the one-way coupling and
solves the problem sequentially using the segregated solver. The solution for the
temperature is separated from the stress-strain analysis, which then uses the computed

temperature field from the heat transfer equation.

Using a single iteration in the segregated solver does not produce a

correct result if there are thermal properties that depend on the

I

displacements. Examples are when a heat source causes mechanical losses

(damping) in the material or when thermal contact is present.
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Acoustic-Structure Interaction

When the Structural Mechanics Module is used together with an acoustics physics
interface from the Acoustics Module, it is possible to model a wide range of

acoustic-structure interaction problems..

There are several physics interfaces available that are documented and

described in the Acoustic-Structure Interaction Interfaces chapter in

Acoustic Module User’s Guide

¢ The Acoustic-Solid Interaction, Frequency Domain Interface

¢ The Acoustic-Solid Interaction, Transient Interface

* The Acoustic-Piezoelectric Interaction, Frequency Domain Interface
@l ¢ The Acoustic-Piezoelectric Interaction, Transient Interface

* The Solid Mechanics (Elastic Waves) Interface

* The Poroelastic Waves Interface

e The Acoustic-Solid-Poroelastic Waves Interaction Interface

e The Acoustic-Poroelastic Waves Interaction Interface

* The Acoustic-Shell Interaction, Frequency Domain Interface

¢ The Acoustic-Shell Interaction, Transient Interface

Thermal-Electric-Structural Intevaction

The Joule Heating and Thermal Expansion Interface enables
thermal-electric-structural interaction. This is a combination of three physics

interfaces: Solid Mechanics, Heat Transfer in Solids, and Electric Currents.

The thermal-electric coupling is bidirectional, with Joule heating and
temperature-dependent electrical properties, while the temperature coupling to the
Solid Mechanics interface is unidirectional.

By default, COMSOL Multiphysics takes advantage of the one-way coupling and
solves the problem sequentially using the segregated solver. Temperature and electric
potential are solved using a coupled approach and then the stress-strain analysis uses

the computed temperature field from the heat transfer equation.
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Using a single iteration does not produce a correct result if there are
thermal properties or electrical that depend on the displacements, making

the thermal-structure part into a two-way coupling.
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Thermally Coupled Problems

A wide class of structural mechanics problems are related to effects of variations in

temperature. In this section various such effects are discussed.

Temperatures can either be computed using another physics interface, usually Heat

Transfer in Solids, or directly be prescribed in the input for the various physics nodes.

For information about the predefined coupling between the Solid
@l Mechanics and Heat Transfer in Solids interfaces, see The Thermal Stress

Interface.

In this section:

e Temperature-Dependent Material Data
e Thermal Expansion
* Constraints and Thermal Expansion

¢ Thermoelastic Damping

Temperature-Dependent Material Data

Many material properties, such as Young’s modulus, coefficient of thermal expansion,
and yield stress, can have a significant dependence on temperature. In many cases,
materials supplied in the material libraries and databases have such dependencies

incorporated.

@l Materials in the COMSOL Multiphysics Reference Manual

CHAPTER 2:

If a material property under the Materials branch has a temperature dependence, you
have to input the temperature to be used in the Model Input section in the settings

window for the node in the physics interface that references the property. It is possible
that not all aspects of a material are defined in the same node in the Model Builder tree.

For example, if a problem is run with thermal expansion and plasticity, then:

* Young’s modulus, Poisson’s ratio, and density are given in the Linear Elastic

Material node.
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* Yield stress and hardening function are given in the Plasticity node.

* Coefhicient of thermal expansion is given in the Thermal Expansion (for Materials)

subnode.

The Plasticity node is available as a subnode to the Linear Elastic Material
node when you have either the Nonlinear Structural Materials Module or

the Geomechanics Module.

For each of these nodes, there is a Model Input section in the Settings window. Some
of these sections may be empty if none of the properties given in that node has a
temperature dependence. In general you have to supply the temperature in all the
Model Inputs sections. This can be done either by explicitly giving a temperature or by

selecting a temperature variable from another physics interface.

If there is a Temperature Coupling node under the Multiphysics branch,
then you cannot change the temperature input under Model Inputs. The
n temperature is automatically taken from the connected Heat Transfer in

Solids interface.

MASS DENSITY AND VOLUME REFERENCE TEMPERATURE

All structural mechanics interfaces are formulated on the material frame. This means

that the equations of motion are written for a certain volume in its initial configuration.

The preservation of mass requires that the mass density is constant. In a structural
mechanics problem this means that the mass density must not change. If you are using
a material in which the density has a temperature dependence, you must specify a
specific temperature at which the value is evaluated. This is the volume reference
density. Conceptually, you can consider this as the temperature at which the domain
has the size in which it is drawn. In practice, the choice of reference temperature is
seldom an issue, unless your application requires extreme precision. The density of a
solid material has a rather slow variation with temperature, so in most cases it is

sufficient to use room temperature as reference.

If any material in the model has a temperature dependent mass density, the Volume
reference temperature list will appear in the Model Input section of the material settings.

As a default, the value of T..¢ is obtained from a Common model input. You can also

select User defined to enter a value or expression for the reference temperature locally.

THERMALLY COUPLED PROBLEMS
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When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( 24 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The
default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

| 4
u® -

the Create Model Input button This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

All effects of volume change with temperature are incorporated through the thermal
expansion effects.

Thermal Expansion

As the temperature changes, most materials react by a change of volume. For a
constrained structure, the stresses that evolve even with moderate temperature changes
can be considerable. The volume change can be is represented a thermal strain ey,
which produces stress-free deformations. For a linear elastic material, the constitutive
law is

0 =C:(e—gy)

In the computations, the thermal expansion appears as a load, even though it formally

is a part of the constitutive relations.

* You can include thermal expansion in a model either by adding a
Thermal Expansion (for Materials) subnode to the chosen material, or
by using the The Fluid-Solid Interaction Interface and Coupled
Interfaces (described in the COMSOL Multiphysics Reference
Manual).

* When the temperature distribution is computed by another physics

interface (often Heat Transfer in Solids), it is a good practice to use a

C discretization which in the heat transfer interface is one order lower
than what is used in the structural mechanics interface. The thermal
strains are proportional to the temperature, while the strains in the
structural problem are computed as derivatives of the displacements, so
the approximations will then be consistent. This is automatically taken
care of when you use The Thermal Stress Interface or The Joule

Heating and Thermal Expansion Interface.
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TEMPERATURE DEPENDENCE OF THE THERMAL EXPANSION
COEFFICIENT

When performing an analysis over a larger range of temperatures, you often need to
take into account the temperature dependence in the values of the thermal expansion
coefficient itself.

As long as you are using materials from the COMSOL Material Library, everything is
handled internally. When you want to enter data from your own measurements or from
the literature, you do, however, need to be aware of some details in the definitions
used.

Tangent or Secant Data
Thermal expansion coefficients can appear in two forms: tangent and secant.

The tangent form states that the increment in length is

dL

4L _ o1yt (2-23)
where oy is the tangential thermal expansion coefficient. This form, which is the
thermodynamic definition, is conceptually simple, because oy, is uniquely defined at
cach temperature. It is, however, less convenient to use in practice because an
integration is required for determining the actual change in length for a finite

temperature difference.
The secant formulation, which is the default in COMSOL Multiphysics, is often used

in engineering:

AL
LO

= a(T)AT

In the secant formulation, the actual values of o will however depend on the choice of
reference temperature, 7o, at which the material has the reference length Ly:
AL
E(; = 0((T’Tref)(T - Tref)
Converting from Tangent Form to Secant Form
Equation 2-23 can be integrated, giving
"

ln(l%) = j o, (1)d (2-24)

Tref

THERMALLY COUPLED PROBLEMS |

201



202 |

CHAPTER 2:

Define
"

KT, T, = I o (1)d1

T

ref
Thus,
A_L B l‘__ eI(T,Tref)_1
LO LO
giving the secant thermal expansion coefficient as
eI(T’Tref) 1
T, T, o) = ==
ref (T- Tref)

For most materials and temperature ranges I(7T,T..¢) « 1, which makes it possible to

approximate with the simpler expression

I(T’Tref)

o(T,T, ) = T-T..0
re

(2-25)
If you have access to tangent data, you can choose between two different methods for
using them in COMSOL Multiphysics:

¢ In most of the physics interfaces, you can enter tangent data directly by selecting
Tangent coefficient of thermal expansion in the settings for Thermal Expansion. When
using this option, a numerical integration of Equation 2-24 will be performed each
time the thermal strain is used. This will have a negative impact on the performance,

when compared to using a secant coefficient of thermal expansion.

¢ Precompute the expression in Equation 2-23 externally for the intended range of

temperatures. This can for example be done in a spreadsheet program. Enter the
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computed result as a function, which is then used as any other secant temperature
dependent thermal expansion coefficient.

When using Tangent coefficient of thermal expansion, the integrate
operator is used. It is called with the two integration limits being the
reference temperature <phys>.Tref and the current temperature
<phys>.T, where <phys> is the tag of the physics interface. If you define

-& the expression for the coefficient of thermal expansion yourself, you must
ensure that it depends on a ‘free’ variable, and not use the same
temperature variable as you use to prescribe the current temperature
<phys>.T.

Thermal Expansion Coefficient Dependence on Reference Temperature

Let o (T') be the temperature-dependent function that represents the measured values
of the secant thermal expansion coefficient. The change in length of a sample at a given
temperature 7' with respect to the sample’s original length at a temperature 7', is called
dilation.

Note that by definition, the dilation at T' = T, is zero, so T, denotes the strain-free
state of the material as far as the measured values of o, (7') is concerned. Denote the
length of the sample at a temperature T as L(T') and the strain-free length as

Ly = L(Ty,). The dilation can be then expressed as L(T') — L(T',). Using the definition
of the secant coefficient of thermal expansion, L(T') can be written as:

L(T) = [1+ o, (T(T-T,)IL(T,) (2-26)

When using the measured data, it is possible that the strain-free state occurs at a
temperature T'..gwhich differs from T',,. The dilation at any temperature 7 would then
be defined as L(T') — L(Tye), where L(T',.o¢) can be written as.

L(T,op) = [1+ 0 (Toop)(Tror— T )IL(T,) (2-27)

As a result of this shift in the strain-free temperature, it is necessary to redefine the
thermal expansion coefficient so that L(T') and L(T'¢) can be related using
Equation 2-26 but with T, replaced by T'ef.

L(T) = [1+ 0 (T)(T = (Tye) IL((Tep)) (2-28)

Here o,(T) is the redefined thermal expansion coefficient, based on Tef. It can be
derived from the relations above. Using Equation 2-26 and Equation 2-28 there are
two ways of writing the current length L(T'), so that

THERMALLY COUPLED PROBLEMS

203



204 |

[1+ 0, (THT = (Tye)IL((Tyep)) = [1+ 0y (TUT -T)IL(T,)  (2-29)

Equation 2-27 makes it is possible to eliminate L(T'f) and L(T},) from
Equation 2-29, and after some algebra 0,(T') can then be written as

0Lm(T) — OCm(Tref)

T- Tref
(2-30)
T.)

O (T) + (T —Tp)

o (T) = 1+ 0, (Tooo)(T,

ref ™

Representation in COMSOL Multiphysics

Most materials listed in the material libraries and databases available with COMSOL
Multiphysics and its add-on products contain a function for the measured
temperature-dependent thermal expansion coefficient curve. You can find this from
the Materials branch, as shown in Figure 2-19. The Piecewise function named

alpha_solid_1 is the measured thermal expansion coefficient o, (7).

Using Functions in Materials in the COMSOL Multiphysics Reference
a Mannal

The Material Contents section in Figure 2-19 shows the material property alpha,
which is the redefined thermal expansion coefficient o,(T"). The complete expression
for alpha is as follows:
(alpha_solid 1(T[1/K])[1/K]+(Tempref-293[K])*
if (abs(T-Tempref)>1e-3, (alpha_solid_1(T[1/K])[1/K]
-alpha_solid_1(Tempref[1/K])[1/K])/(T-Tempref),
d(alpha_solid _1(T[1/K]),T)[1/K]))/
(1+alpha_solid_1(Tempref[1/K])[1/K]*(Tempref-293[K]))
This is essentially Equation 2-30, but with a small modification to avoid problems if

T=Tref .
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4 558 Materials
4 1015 (UNS G10150) [solid] (mat2)
4 Basic (def)
. Piecewise (dl)
. Piecewise 2 (CTE)
. Piecewise 3 (k)
O(T) [ Pecenised (7
4w Piecewise 5 (C)
o Piecewise 6 (mu)
M Piecewise 1 (Syfunc_

M Piecewise 7 (rho) "

¥ Material Contents

% i e (& Property MName Value Unit
+w Piecewise § (kappa) n T (LTTL/K])-dL(Te..

CTE CTE CTE(T[L/KDL/K] (/K

*

Coefficient of thermal expansion  |alpha (alpha(TL/KDL/K. /K
at constant pressure |[Cp CITI7E O Tk ™ RIT (37 Tkg-K)

a(T) —

mu mu mu(T[1/K])[Pa] Pa
Syfunc Syfunc | Syfunc_solid_1(ep... Pa
Density rho rtho(T[L/KI)[kg/ ... kg,"m’
kappa kappa  |kappa(T[1/K])[Pa] Pa
Young's modulus E E(T[1/K])[Pa] Pa

Figure 2-19: An example in COMSOL Multiphysics showing the Materials branch and
where to find the temperature-dependent thermal expansion coefficient.

In the definition of alpha (to be more specific: <material_tag>.def.alpha)in
COMSOL Multiphysics, T}y, is set as 293 K and T is obtained from the variable
Tempref which typically fetches its value from the physics interface.

Using Your Own Material Data
If you use our own material data in COMSOL Multiphysics (via an interpolation or
any other function), you can still copy-paste the built-in expression for alpha into your

New Material. You just need to:

* Replace the function name alpha_solid_1(T[1/K])[1/K], with the function
name that you have assigned to the temperature-dependent measured thermal

expansion coefficient and use the correct temperature units. This is particularly
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important if the measured data used the Fahrenheit scale (denoted by [degF] in
COMSOL Multiphysics).

¢ Ensure that the value of T}, is changed from 293 K to the actual value of
temperature that was used as the strain-free temperature to compute 0, (7") in the
function that you created.

User-Defined Materials and Libraries in the COMSOL Multiphysics
lﬂ Reference Manual

CHAPTER 2:

Constraints and Thermal Expansion

When a structure is undergoes thermal expansion, the fact that the motion is restricted

by constraints will in general cause stresses. There are three types of such effects:

* The global expansion is restricted by constraints at different locations, so that
internal forces are introduced throughout the structure.

* At a boundary which is constrained, local stresses can appear if the boundary is not

free to expand in the tangential direction.

¢ Internally, the same type of local constraint effects will be caused by rigid objects,
such as Rigid Domains.

In many cases, not only the structure which actually is modeled deforms due to the
changes in temperature, but also the surroundings (which are approximated by
constraints) will deform. You can take this effect into account by adding a Thermal
Expansion subnode to the constraints. The constraints will then provide an extra
displacement based on a given temperature field. For thermal strains, which have a
simple variation in space (for example linear temperature variations), it is possible to
completely offset the constraint stresses using this method. For more general cases, the

stresses caused by the constraint can be significantly reduced.

The thermal expansions of the constraints are independent of that of the material in
the adjacent domain, so that the surrounding structure can be made from another

material, or have a different temperature distribution.
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You can however also inherit temperature and thermal expansion coefficient from the
domain being constrained. This is useful for the common case that the temperature

and materials are the same over the modeled structure body and its surroundings.

The spatial variation of the temperature and coefficient of thermal
expansion must be explicit functions of the material frame coordinates. It
n is not possible to use a computed temperature distribution for the thermal

expansion of the constraints.

e Thermal Expansion (for Constraints)

e Thermal Expansion of Constraints in the theory section.

For an example showing how to relive the stress at constraints in a heated
structure, see Thermal Expansion in o« MEMS Device: Application
ﬂ:ﬂ] Library path Structural_Mechanics_Module/Thermal-Structure_Interaction/

thermal_expansion.

Thermoelastic Damping

In most engineering problems, the coupling between temperatures and structural
problems can be considered as unidirectional. Only the thermal expansion is taken into

account.

The opposite effect, where changes in stress cause heat generation may be important
in small structures vibrating at high frequencies. The Thermoelasticity interface,
available with the MEMS Module, is designed for analyzing such problems.

Itis also possible to take this effect into account by adding the Thermoelastic Damping
node to the Heat Transfer in Solids interface. When you add a Thermal Expansion node
to a material in the Solid Mechanics interface, the heat source term is computed and

made available to the Heat Transfer in Solids interface.

When you add a Thermal Expansion node under the Multiphysics Couplings branch, it is
possible to select whether the thermoelastic damping effect should be taken into
account or not. The heat source contribution is then included automatically without

adding any data in the heat transfer interface.
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In either case, the heat source term is only present when Structural Transient Behavior
is set to Include inertial terms.

See also

* Entropy and Thermoelasticity

Q

e Thermal Expansion (for Materials)

¢ The Fluid-Solid Interaction Interface
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Fluid-Structure Interaction

Fluid-Structure Interaction (FSI) involves several phenomena where a solid structure
and a fluid interact with each other. The interaction has three possible components,

which can be more or less important:

¢ The pressure and viscous forces in the fluid provides a load on the boundary of the
solid. Usually, the pressure is dominant.

e The deformation of the structure changes the geometry of the fluid domain.

e The fluid sees the structure as a moving wall, which imposes a velocity at the

interface.

You can model FSI with four different structural mechanics interfaces: Solid
Mechanics, Multibody Dynamics, Shell, and Membrane. The fluid-flow can be
modeled with any physics interface from the Single-Phase Flow and Two-Phase Flow,

Phase Field groups.

Deforming Fluid Domains

When a fluid-structure interaction multiphysics interface is added using the Model
Wizard, a Deforming Domain node can be added automatically in the Model Builder under
the Definitions node. This is the case for the following interfaces:

* Fluid-Solid Interaction

¢ Fluid-Shell Interaction

¢ Fluid-Membrane Interaction

* Fluid-Multibody Interaction

¢ Fluid-Multibody Interaction, Assembly

The Deforming Domain node is however is not added for multiphysics interfaces

denoted ‘Fixed Geometry’, which are intended for cases where the deformation of the

fluid domains is small everywhere.

A deforming domain represents domains and boundaries where the mesh can deform.
By default, the Deforming Domain node has an empty selection. You can the select any
fluid domain. However, this is only needed if the geometry of such a domain

experience significant changes due to the deformation or rotation of the adjacent solid

domains. Otherwise, the moving mesh computations could introduce unnecessary
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overhead and nonlinearity in the model (see Deformed Mesh Fundamentals).
Domains selected in the Solid Mechanics interface are not applicable. The
deformations of the solid parts are handled in the formulation of the Solid Mechanics

interface.

If no domains are selected in the Deforming Domain node, a fixed

E| geometry case is solved.

CHAPTER 2:

Under the Deforming Domain, you can also chose the Mesh smoothing type, by default
set to Hyperelastic. More information of the smoothing type can be found in
Deforming Domain chapter in the COMSOL Multiphysics Reference Manual

By default, the mesh is free at all external boundaries of the geometry, and it follows
the solid boundaries at the solid-fluid interfaces. You can also add other types of
boundary conditions for the mesh motion, for details see Deformed Geometry and
Moving Mesh in the COMSOL Multiphysics Reference Manual.

Union or Assembly

In most cases you model FSI problems so that the geometry sequence is set up to form
a union, and the same multiphysics coupling, Fluid-Structure Interaction, is used
irrespective of the type of structural mechanics interface. This coupling will

automatically find all boundaries which are shared between the structure and the fluid.

There are however cases where the assembly mode must be chosen, particularly when
having mechanisms, as is common in the Multibody Dynamics interface. In this case,
the interface between the solid and the fluid is no longer formed by a common
boundary. Rather, it consists of two boundaries, located at the same place in space.
These boundaries will in general slide with respect to each other. To model this, you
use the Fluid-Structure Interaction, Pair multiphysics coupling. You must create
appropriate pairs containing the boundaries from both types of physics under

Definitions, and manually select them in the Fluid-Structure Interaction, Pair node.

UNION — FLUID-STRUCTURE INTERACTION

When using Fluid-Structure Interaction, the spatial frame also deforms with a mesh
deformation that is equal to the displacements u_solid of the solid within the solid
domains. The mesh is free to move inside the fluid domains, and it adjusts to the
motion of the solid walls. This geometric change of the fluid domain is automatically
accounted for in COMSOL Multiphysics by the ALE method.
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ASSEMBLY — FLUID-STRUCTURE INTERACTION, PAIR
The Fluid-Structure Interaction, Pair coupling does not automatically transfer the mesh

deformation at the interface from structural displacements.

For the moving mesh, you must specify the deformation of the mesh manually. Add a
Prescribed Mesh Displacement node under the Moving Mesh node, in which you give the
structural displacement as the mesh displacement expression. The variables for the

displacement in the structure is provided by the multiphysics coupling.

The variable names to use have the form <tag>.u_solid,
El" <tag>.v_solid, and <tag>.w_solid, where <tag> is the tag of the
multiphysics coupling, for example fsipi.

Contact and FSI

Sometimes the structural deformations are so large that object may come into contact
with each other with the fluid being squeezed in-between. Modeling contact together
with FSI requires some special considerations. The mesh in the fluid domain may

deform, but the topology remains the same — a fluid domain cannot be split into two.
If you are to model a valve or a similar structure, then the two solid parts cannot come

exactly into contact.

By adding an offset in the settings for the Contact node, you can force the two sides of
the solid to experience contact at some distance before they meet in the geometrical
sense. This approach only will however leave a thin channel through which the fluid
can pass. The reduction in flow may be sufficient, but you can block it even further by
increasing the viscosity in the channel when the gap is closed. To do that, you can for
example compute the minimum gap anywhere in the contact pair, and then make the
viscosity a function of it. Another option is to compute the wall distance in the fluid
from both sides of the contact pair, and use that information to modify the viscosity,
Do not increase the viscosity more than a couple of orders of magnitude, to avoid

numerical problems.

In configurations where you more or less completely cut off the whole flow, you must
pay particular attention to your boundary conditions. A prescribed flux will cause an
extreme pressure build-up upstream of the valve, and thus unrealistically large forces

on the structure.
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Computing Mass Properties

CHAPTER 2:

In structural mechanics analysis, especially when modeling dynamic problems, the
mass properties of a structure or its part can be an important aspect of the design. To
compute such mass properties, you can use Mass Properties node, which can be added
under Component>Definitions. There, you can select the geometry domains to be
included into the computations, and select physics interfaces that will define the mass

properties. You can add and configure several mass property contributions if needed.

Settings
Mass Contributions
4 & Untited.mph {root)
) Global Definitions Label:  Mass Conributions 1

“
Definitons
4 fh Mass Properties 1 {massi)
i, Mass Contributions 1 Geometric entity level: I Domain
b, Mass Contributions 2
52 Equation View
J- Boundary Systemn 1 fsysi)
[ view 1
Geometry 1
= Materials I
‘= Solid Mechanics (sofi) e
A Mesh 1
& Results

Source Selection

Selection: I Manial

* Density

Density source: I From specified physics interface j

Physics: I Solid Mechanics (sold) j E

F Include adiacent entities of lower dimension
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Volume, mass, center of mass, and moments of inertia will be computed. They will

become available as predefined variables which you can find in the equation view under

the corresponding Mass Properties node.

¥ Variables

Narme Expression Unit Description

massl.volume  massLintDim 3{root.round{mass1.con... m® volume

mass1.mass mass LintDimo{mass 1.rho_pnt)+mass. .. kg IMass

mass 1.CMX (mass LintDimo(mass 1.rho_pnt®)+... 'm Center of mass, X component
mass 1.CMY (massLintDimO(mass 1.rho_pnt*¥)+... m Center of mass, ¥ component
mass 1.CMZ (mass LintDimo(mass l.rho_pnt*2)+... m Center of mass, £ component
mass 1.IKK mass LintDimo({mass1.rho_pnt*y~2... kg'm?  Moment of inertia Xx component
mass LIXY mass LintDim0{-mass L.rho_pntkx*y)... kg'm2?  Moment of inertia XY component
mass LIV mass LIKY kg'mz |Moment of inertia ¥x component
mass 1.IXZ mass LintDim0{-mass L.rho_pntkx*z)... kg'm?  Moment of inertia X2 component
mass L.IZx mass 1.IXZ kg'mz |Moment of inertia Zx component
mass LIVY mass LintDim0{mass L.rho_pnPk(x~2... kg'm?  Moment of inertia ¥ component
mass1.IVZ mass LintDimo(-mass 1.rho_pnt*y*z)... kg'm?  Moment of inertia ¥Z component
mass LIZY mass LIVZ kg'mz  |Moment of inertia Zv component
mass1.IZZ mass LintDimo({mass1.rho_pnt*x~2... kg'm?  Moment of inertia ZZ component

Besides for postprocessing purposes, you can also use these variables in any

user-defined expressions, user inputs, and in optimization criteria.

Structural mechanics interfaces contribute to the mass properties in several ways:

* All material models, including Rigid Domain, define mass density contributions.

* Added Mass nodes for all geometric entity levels can also contribute with added mass

density. It is possible to suppress the contribution from an Added Mass node by using

the Exclude contribution check box in the Frame Acceleration Forces section.

* Point Mass nodes will contribute both with mass and with the specified mass moment

pfinertia. It is possible to suppress the contribution from an Point Mass node by

using the Exclude contribution check box in the Frame Acceleration Forces section.

* The Hygroscopic Swelling nodes, which can be added to most material models for all

structural elemcnts, can use the moisture content as an extra mass anSity

contribution.
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* Rigid Domain and Rigid Connector can contribute directly to the total mass properties
via their Mass and Moment of Inertia subnodes
Settings
Mass and Moment of [nertia

4 & Untiled.mph froot)

() Global Definitions Label:  Mass and Moment of Inertia 1
4 W Component 1 feompi) -
4 = Definitions Equation

4 i Mass Properties 1 fmassi)

: ¥ Center of Mass
#_ Mass Conrbutions 1

1= Boundary System 1 [sys1) Conter ofrotaton j
l:‘ View 1
Geomelry 1

& Materials ~ Mass and Moment of Inertia

4 7 Solid Mechanics (sofif)
W Linear Elastic Material 1
o Free 1 m 100 kg
W Initial Values 1
4 mw Rigid Connector 1
' Mass and Morrent of Ineria 1 ' 400 kgm?
= ESZI;Sh 1 I Isoropic j

Mass:

Moment of inertia:

e Structural elements like beams and shells take their true geometrical dimensions into
account when contributing to the mass properties. As an example, a beam
contributes to the rotational inertial around its axis, even though the geometrical
model is only an edge. The beam cross section properties are used to compute the
data.

The mass properties can be computed on both initial geometry (material frame) and
deformed geometry (spatial frame). The results may differ considerably in case of large
deformations. To compute the results in the undeformed geometry, you do not have
to perform the whole analysis, it is sufficient to choose Get Initial Values under the Study
node. To obtain the mass properties in the deformed configuration, you need to the
full analysis, so that the displacement results are available.

In the COMSOL Multiphysics Reference Manual:
* Mass Properties
¢ Studies and Solvers

* Derived Values, Evaluation Groups, and Tables
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Effective Properties of Periodic
Structures

Sometimes, you need to model on different scales. The heterogeneous
micromechanics material properties cannot be directly used in the macroscopic scale in
which the structure is to be analyzed. In such a case, you typically want to use a

homogencous material model with appropriate average properties.

The Cell Periodicity feature facilitates the evaluation of such average properties. It is
based on the idea of a representative volume element (RVE). The RVE is a domain

which contains a representation of the material in the microscale.

If the material is truly periodic, the RVE typically is the smallest possible unit cell. If
the material has a random distribution of for example porosities, the RVE should be
large enough to be representative for the average properties of the material on a macro

scale.

The only requirement on the shape of the RVE is that it should be possible to fill space
with a repetitive pattern of RVEs. This means that there are a set of matching boundary

pairs, each pair having the same geometry, but offset by a given distance.

RVE Modeling Using the Cell Periodicity Node

To model an RVE, you add the domain feature Cell Periodicity, and select the domains
representing the RVE. For each pair of matching boundaries, add a Boundary Pair

subnode, and select the boundaries.

In principle, there is no limitation on the physics features you can use for modeling the
RVE, as long as the basic assumptions about periodicity are not violated. You should
however not add any displacement constraints, because the possible rigid body

motions are automatically constrained by the Cell Periodicity node.

MESHING
The accuracy of the analysis is significantly better if each pair of matching boundaries
has the same mesh. Mesh the boundaries before the domains, and use Copy Face to

ensure that the mesh matches.

If you decide to use a nonmatching mesh, then the stress disturbances can reduced by

using a weak form of the periodicity constraints.
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Micromechanical Model of & Composite: Application Library path
ﬂ]]] Structural_Mechanics_Module/Tutorials/

micromechanical_model_of_a_composite
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Pretensioned Bolts

The information about pretensioned bolts is applicable if your license

includes the Structural Mechanics Module.

Bolted joints are common in mechanical and civil engineering structures. If you are
interested in analyzing the details of a bolted joint, the prestress in the bolt must be
taken into account in order to correctly capture the behavior under service loads. The
Bolt Pretension functionality in COMSOL Multiphysics designed to simplify such
analyses.

During mounting, a bolt is tightened to a certain prestress. The mounting of the bolt
is, in general, accompanied by deformations of the surrounding structure. In the

subsequent service, the force in the bolt can then change due to external loads.

MODELING THE BOLTS

You must use a specific modeling technique in order to use a bolt in a prestress analysis.

I Model each bolt using solid elements in 3D or 2D axial symmetry. In 3D, it is
usually most efficient to add the predefined bolt geometries from the Part Libraries.
In 2D axial symmetry, the bolt is always assumed to be axially symmetric, and thus

parallel to the Z-axis.

2 Make sure that there is at least one internal boundary perpendicular to the bolt axis
somewhere in the shank. In the following, this boundary is referred to as the s/iz
boundary (Figure 2-20). The slit boundary can be composed of several boundaries
in the geometry.

3 Ifyou are using bolts from the Part Libraries, a slit boundary is predefined, and has
the selection name Pretension cut. In order to make this boundary selection
visible from the physics interface, select its Keep check box in the Boundary Selections

section of the settings for the part instance (Figure 2-21).

4 If needed, add contact conditions between the bolt head and the component, and
between different components clamped by the bolt.

5 Add a Bolt Pretension node, in which the pretension force or stress is prescribed for

a set of bolts with the same data.
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6 For cach bolt having an identical pretension stress, add a Bolt Selection subnode
where the slit boundary is selected.

When a bolt is located in a symmetry plane (so that only half the bolt is
modeled), and Automatic symmetry detection is sclected in the Bolt
Selection node, the given pretension force is interpreted as the force in the
whole bolt, not as the force in the modeled half. This makes it possible to
use the same Bolt Pretension node for a set of similar bolts where some of

[,

them are located in symmetry planes.

Bolt head

boundary

Figure 2-20: Example of a bolted joint.
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4 W Component1 (compl)

= Defintions Part: | Simple Bolt, No Thread MAE
4\ Geometry 1 Choose from Library...

& Import1 (imp1) L

4 Washer1 (pil) “| b Input Parameters

Ly e

Bolt1 (pid) X . . .

"4 Washer 2 (pi3) I Position and Orientation of Output

Loy . . ]

s Bolt 2 (pid) I Object Selections

o Washer 3 (pi5)

4 Bolt 3 (pif) I Domain Selections

") Rotate1 (rot1)
") Rotate 2 (rot2)
# split1 (spll)

¥ Boundary Selections

L4 . .
Union 1 (unil) MName Contribute to Keep Physics
Union 2 (uni2) Exterior MNone ~|| O
Union 3 (uni3)
= Shank MNeone -
& Work Plane1 {wp1) an g
£ Partition Objects 1 (par) Head, free surface None ~ O
[E] Upper half (borsell) Head, contact surf... | None ~|| O
[ Delete Entities 1 (dell)
[T Block1 (bik1) Pre-tension cut MNone || & =4

Form Assembly (fin)

New C lative Selecti
Ignore Edges1 (igel) W -umuative Seection

Figure 2-21: Getting access to the slit boundary selection for a bolt from the Part Libraries.

Each bolt defined in the Bolt Selection node has a single degree of freedom called
predeformation, d. At the slit boundary, the two sides of the bolt are disconnected so
that the displacements over it can be discontinuous. The discontinuity is represented
by:

u, = ug-(d-r)n

Here the subscript u denotes the upside of the slit boundary, and d denotes the
downside. n is the normal pointing out from the downside. The sign has been selected
so that d gets a positive value when the bolt force is tensile. An optional relaxation r

can also be included.

The axial force in the bolt is thus caused by a small overlap between the two sides of
the slit boundary. It is computed as the reaction force belonging to the degree of
freedom d.

It is only meaningful to introduce the relaxation in a later study step. If it is present all
the time, then its only effect would be to increase the predeformation during the
pretension analysis by r. Thus, the value of 7 is usually a function of the load history,

which is initially zero.
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SETTING UP THE STUDY STEPS

In an analysis of prestressed bolts, you have to use two or more separate study steps.
They can be part of a single study or be placed in different studies. The first study step,
in which the bolt prestress is prescribed, simulates the mounting process. If you would
only use a force to load the bolt (for example, as an initial stress), the resulting stress
in the bolt would be less than the intended, due to the compression of the material
around the bolt. The prestress step ensures that the bolts have the intended prestress,

irrespective of the flexibility of the surrounding structure and their interaction.

In the subsequent studies the bolt force is allowed to change, while keeping the
extension of the bolt, as caused by the first study, fixed. The procedure to do this is as
follows:

I Run the study step for the mounting simulation. The predefined study type Bolt
Pretension is designed for this.

2 Add one or more studies or study steps to analyze the effects of the service loads.

3 Since the pretension degrees of freedom are not solved for in the service load study
steps, they must obtain their values from the pretension study step. If the study steps
are sequential within the same study, this action is not needed, since the default then
is to inherit values from the previous study step. For other cases, go to the Values of
Dependent Variables scction of the study step, sct Values of variables not solved for to

User controlled, and then select the pretension study step.
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It is important to make sure that you only solve for the bolt
predeformation degrees of freedom in the pretension study step, and not

when analyzing the service loads.

If you use the Bolt Pretension study type for the pretension study step, and
any other study type to analyze the service loads, the solvers are
automatically set up to handle this. The Bolt Pretension study type is
actually a special case of a Stationary study step, with the sole purpose of
activating the predeformation degrees of freedom. These degrees of

freedom are by default not solved for in any other study type.

If you however set up your studies manually, the information below is
useful. Also, in versions prior to 5.3, this automatic mechanism was not

n available, so in older models the studies were always set up manually.

You enable or disable the solution of individual degrees of freedom under
the Dependent Variables node for a certain study step in the solver
sequence. If required, begin by clicking Show Default Solver in the study
node or in the Solver Configurations node of the study. Then move to the
Dependent Variables node, and in the General section, set Defined by study
step to User defined.

You can now go to the node for each predeformation degree of freedom
below Dependent Variables and adjust the state of the Solve for this state
check box.

For more information, see also Dependent Variables and Studies and
Solvers in the COMSOL Multiphysics Reference Manual.

RESULTS

The results in a bolt do not belong to any part of the geometry, but are global
variables. To access the result from a certain bolt, a full scope of the type
<interface>.<Bolt Pretension tag>.<Bolt Selection tag>.<variable>
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must be used. An example could be solid.pblti.sblt1.F_bolt. The bolt results
are summarized in the table below.

TABLE 2-12: BOLT VARIABLES

VARIABLE DESCRIPTION

d_pre Predeformation

F_bolt Axial force in the bolt

F_shear Shear force in the bolt (3D only)

If you place a bolt in a symmetry plane, that only half of the bolt is modeled, this will

automatically be detected. The results are reported for the whole bolt, not for the
symmetric half.

@t Studies and Solvers in the COMSOL Multiphysics Reference Manunl

Prestressed Bolts in a Tube Connection: Application Library path
[ﬂ]] Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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Simplified Modeling of Bolt Threads

When an internal and an external thread are engaging, there will be a complex local
stress state. When analyzing such geometries, you can approach the problem at three
levels:

¢ Make a full 3D model of the actual thread geometry and solve the contact problem.
This approach is only used in some rare cases, since such a model by necessity
becomes very large. Also, the actual stress state in the thread itself is seldom the

target of an analysis.

* Ignore the thread completely and just connect the two parts by a union operation
or through a Continuity pair. This approach will provide an accurate solution outside

a region with a size of a couple of bolt diameters from the bolt hole.

* Use the simplified Bolt Thread Contact condition. With this approach, the stresses
will be correct, except at distances where stress concentrations caused by the actual
thread geometry are significant. The important part of the solution that can be
captured by this simplified contact condition is that the contact pressure between
the threads will push the walls of the bolt hole outward. This will cause significant
tensile hoop stresses around the bolt hole.

When you use Bolt Thread Contact, you model the face of both the bolt and the bolt
hole as cylinders. The actual geometry of the thread is taken care of by the
mathematical formulation of the contact condition. The most important parameter is

the thread angle, since it determines the direction of the contact forces.

In the Bolt Thread Contact node, you enter general data about the bolt geometry. For
each individual bolt, you need to add one Thread Boundary Selection subnode.

PENALTY FACTOR

The contact condition is enforced using a penalty formulation. In practice, this means
that a stiff spring is inserted between the two boundaries. In most contact problems,
you want to use a high penalty factor, in order to avoid excessive overclosure of the
contacting boundaries. In this case, however, there is a certain flexibility which has its
source in a slight bending of the threads in real life. This effect can to some extent be
accounted for by allowing a certain flexibility in the contact condition. For this reason,
the default penalty factor is rather low. You may need to adjust it to suit your
conditions.
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A higher penalty factor also means that the force is transfered from the external thread

to the internal thread over a shorter distance along the bolt axis.

CONTACT ORIENTATION

In most cases, you know a priori which side of the thread that will be in contact. You
can reduce the size of the contact problem by a factor of two by selecting an
appropriate value for the Contact orientation. The default is to search in both

directions.

Ifa bolt is pretensioned, the contact orientation will be Up if the bolt orientation is such
that the Orientation vector points toward the bolt head. If the bolt geometry, including
orientation, is computed using the Automatic option, you will often have to use the

Direction adjustment option to have full control over the up and down directions.

MODELING HINTS
* You must create one Contact Pair for ecach bolt and mating bolt hole. The bolt

should be the destination side of the contact pair.

¢ In the Part Libraries, you will find predefined parametrized bolt geometries which
also contain a domain intended to be used as drill for the bolt hole.

e The cylindrical surfaces of the bolt and bolt hole should have the same diameter. If
you want to decrease the stiffness of the bolt because it is not solid all the way out
to the nominal diameter, a good suggestion is to decrease Young’s modulus by a

factor based on the stress area of the bolt.

¢ Since the contacting boundaries are cylindrical, there is a risk that the bolt, instead
of computing the gap to the nearest point on the bolt hole, will instead see a point
on the opposite side. A good practice is to select Manual control of search distance in
the settings for the Contact Pair. Half the diameter of the bolt is an appropriate

search distance.

* Since the relative displacements between the bolt and the hole are small, setting
Mapping method to Initial Configuration in the settings for the Contact Pair can
improve efficiency.

* In the initial state, the two objects being joined may possess rigid body modes, just
like in any other contact problem. If so, you can for example add weak springs to

maintain stability.
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Performing a Response Spectrum
Analysis

INTRODUCTION

Response spectrum analysis is used to approximately determine the structural response
to short nondeterministic events like earthquakes and shocks. The idea is that the event
is characterized by the peak response that it would give a single degree of freedom
(SDOF) oscillator having a certain natural frequency and relative damping. The

response value is provided as a function of the natural frequency of the oscillator.

If the dynamic structural response is viewed as a modal superposition, each eigenmode
within the given frequency range acts as an SDOF oscillator, with a peak amplitude
which is known from the spectrum. There is, however, no information about when
each mode reaches it peak value. The most conservative assumption is that all modes
should be combined using the individual peak values. Using such approach will in most
cases result into an extremely conservative design. For this reason, other summation
methods have been developed. When performing a response spectrum analysis, you

will have access to several such methods.

SETTING UP A RESPONSE SPECTRUM ANALYSIS

The response spectrum analysis is not a study type. The computations are performed
during result evaluation. You enter the methods and parameters in the settings for the
Response Spectrum 2D or Response Spectrum 3D data sets. These data sets require the
following:

¢ An eigenfrequency solution, where the eigenmodes to be included in the response
spectrum analysis have been computed. All computed eigenmodes are used. If you
want to filter out a particular set of modes, you can add a Combine Solutions study
step after the Eigenfrequency study step. Such a filter can for example be based on the
effective modal mass, so that only modes which contribute significantly to the mass
are included.

The time to evaluate a result when using a response spectrum data set

n varies almost quadratically with the number of eigenmodes you include.
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* A corresponding set of modal participation factors. To generate them, add a
Response Spectrum node under Definitions in the component. If you have computed
the eigenfrequency prior to adding the Response Spectrum node, you need to

perform an Update Solution.

Model Builder ~ }| Settings
- = ETEL= v Respanse Spectrum
4 G building_response_spectrum.mph {root)
@ Global Definitions Label:  Response Spectrum1 =l
4 [m Component]l (compl) Name:  rspl
4 = Definitions
IL Response Spectrum 1 (rspl) | Response Spectrum
&= Boundary System 1 (sys1)
View 1 Eigenfrequency study: Study: Eigenfrequency +
/A, Geometry 1 Missing mass correction study: | Create

=& Materials
¢ Insome response spectrum evaluation methods, you are required to compensate for
the mass which is not represented by the included eigenmodes. In order to do so, a
number of special stationary load cases must also be computed. You can set up all
nodes required in the model builder tree by clicking the Missing mass correction

study: Create button in the Response Spectrum node.

Adding a Response Spectrum Study
In the Add Study dialog, there is a study type called Response Spectrum. When you select
it, two things happen:

* A study, containing a single Eigenfrequency study step is created.

* A Response Spectrum node is added under Definitions in the first component which
contains at least one structural mechanics physics interface. In this node, the
Eigenfrequency study list will be initialized to point to the Eigenfrequency study step

that was just created.

If you already have computed the eigenfrequencies of a structure, and then want to
perform a response spectrum evaluation, there is no need to add a new study. Just add
a Response Spectrum node under Definitions->Variable Utilities, and then do an Update

Solution to make the new variables available.

226 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



Missing mass correction
You create a missing mass correction study from the Response Spectrum node by

clicking the Missing mass correction study: Create button.

It is not possible to undo this operation. To revert, you will have to

n manually delete all the nodes which were created.

A number of items are then created in the model tree:

* A set of load group nodes are created under Global Definitions. There are two load
groups for each spatial direction. The load group nodes are placed under a common

group named Load Groups for Missing Mass Correction.

Maodel Builder ~ | Settings
- Tt 1~ =tELE Load Group
4 @ buildi t .mph t
@ building response spectrum.mph (root) Label: Load Group: Modal Mass X ,%

Parameters Parameter name:  IgRspXMode

Functions

Load Groups for Missing Mass Corn ™ Group Members

| Load Group: Total Mass X

Load Group: Modal Mass X " Feature Interface Compon
Load Group: Total Mass ¥ Modal Mass Load X | Beam (beam) compl
Load Group: Modal Mass ¥

Load Group: Total Mass Z

Load Group: Modal Mass 2

Materials

The Parameter name of the load group is reserved, and you should not modify it.

* A new study named Study: Missing Mass Load Cases is created. This study contains
three or four study steps, depending on the spatial dimension. First, there is one
Combine Solutions study step for each spatial direction. In these steps, a weighted
sum of the eigenmodes is computed. The weights are the modal participation factors
in each direction. This gives a measure of the mass that the eigenmodes represent.
These study steps must reference the eigenvalue solution, including any subsequent
filtering. If you change the study from which the eigenmodes are to be taken, you

must also change the choice in the Solution drop-down in all of the Combine Solutions
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nodes. The final study step in the study is a stationary study step, where each load
group is solved separately by adding one load case per load group.
Model Builder ~ | Settings

ombine Solutions
Compute

i
4
)

4 4 building_response_spectrum.mph (root)
) Global Definitions
i@ Componentl [compl) Label: Medal Mass Surmmmation X E
~db Study: Eigenfrequency
~dt Study: Gravity

¥ Combine Solutions Settings

4 o Study: Missing Mass Load Cases Solution operation: Weighted surmmation -
7 Step 1: Modal Mass Summation X
b Step 2: Modal Mass Summation Y Solution: Study: Eigenfrequency/Sol. = | |3
2 Step 3: Modal Mass Summation Z -
— Weights method: One expression -
E Step 4: Missing Mass Static Load Cases €ights metho B
4 e, Solver Configurations Expression: compl.rspl.pfLX
4 ljl Solution 4 (sold) [] Clear source solution

f';; Combine Solutions 1
[} Solution Store 2 (sol5)
«g':; Combine Solutions 2
Solution Store 3 (solf)
% Combine Solutions 3
E Solution Store 4 (sold)
%{ Compile Equations: Missing Mz
wiw Dependent Variables 1
]:_5 Stationary Solver 1
& Results

If the physics interface has loads other than those automatically generated
for missing mass correction, you need to make sure that those loads are
not solved for in the Missing Mass Static Load Cases study step. There are

several ways of doing that. You can, for example:

* Disable the other load nodes temporarily in the model tree before
n solving.

* Disable them in this study, by using Modify model configuration for study
step in the Physics and Variables scction in the settings for the study

step. This is the preferred method.

* Assign the other loads to a new load group.

* In each structural mechanics physics interface in the component, a set of Gravity
nodes are added. There are two such nodes for each spatial direction. Each gravity
node is connected to a corresponding load group. Half of the loads are pure gravity
loads, used when only together with the Static ZPA method. The other set of loads,

which are used in the Missing mass method, are referencing the combined solutions
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as the depend on the computed eigenmodes. The gravity nodes are placed under a

common group, named Loads for Missing Mass Correction.

4 4 building_response_spectrum.mph (root)
@ Global Definitions Label: Modal Mass Load X =

4 [l Componentl {compl) + Edge Selection

= Definitions
7\ Geometry1 Selection: | All edges -
=i Materials 1
4 E 1:Bear'r? (beam) . . 3 |_—'. _
=3 Linear Elastic Material 1 3 B )
23 Cross Section Data - Columns Active 4 ET"] Sl
% Freel 5 --
83 Initial Values 1 6
5 Cross Section: Horizontal X (HEA260) g -
&5 Cross Section: Horizontal ¥V (HEA220)
3 Fixed Constraint 1 I Override and Contribution
5 Added Mass - Horizontal ¥ ; .
#95 Added Mass - Horizontal ¥ b Equation
Gravity 1 ~ Coordinate System Selection
4 Loads for Missing Mass Correction
T Total Mass Load X Coordinate systern:
2 Modal Mass Load X Global coordinate system -
&% Total Mass Load ¥
% Modal Mass Load ¥ v Gravity
% Total Mass Load Z
&% Modal Mass Load Z (withsol('sel3',u/l[m])-1)"1[m/s"2] |x
£ Mesh1 9 (withsol{'sol5' w/1[m])J*1[m/s*2] y | m/s
~dt Study: Eigenfrequency (withsol('sol5',w/1[m]))*1[m/s"2] z

SETTINGS FOR THE RESPONSE SPECTRUM DATA SETS

Defining the Spectra
You input the spectra as functions under Global Definitions. Usually, either an

interpolation function, or an analytic function, or a piecewise function is used.

There are two common methods to describe the design response spectra: either as
function of frequency, or as function of period time. Use the Depends on setting to

control this.

The handling of units in the functions are nonstandard:

e The unit of the argument is ignored. The function is called with either frequency
(Hertz) or period time (seconds) as defined by the setting in Depends on.

¢ The unit of the function is not checked. The function will however be scaled to
model units, so if you for example enter the unit mm/s”2 for an acceleration
spectrum, the function will (in an ST system) be scaled by 1,/1000. You would get

the same effect if the entered unit an inconsistent, for example mm.
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The spectra you enter have the following correlation to the spatial directions:

* In 2D, you give two spectra, one horizontal, and one vertical. The horizontal

spectrum acts along the global X-axis, and the vertical one acts along the Y-axis.
* In 3D, the vertical spectrum always acts along the global Z-axis.

e In 3D, you can supply two different horizontal spectra, called primary and
secondary horizontal spectrum respectively. Those spectra act in two orthogonal
directions which by default coincide with the global X and Y directions. By giving a
non-zero value to Primary axis rotation, you can make the primary spectrum act in

an arbitrary direction in the X-Y plane.

¢ Some Spatial combination methods in 3D (CQC3 and SRSS3) assume that the two
horizontal spectra are equal except for an amplitude scale factor. In such case, you
only provide one spectrum together with a Secondary horizontal spectrum scale factor

(value between 0 and 1).

Mode Combination

The combination of the eigenmodes is the core of the response spectrum methods.
Most commonly the combination is done in two passes: first the response to the
excitation in each spatial direction is determined, and then a total response is computed
by combining the spatial responses. However, for certain methods the total response

is computed in one pass.

First, you select a Spatial combination method. If it is SRSS or Percent method, you also

select a Mode combination method.

The mode combination methods require different inputs. In particular, several of them
provides a possibility to choose whether the coupling terms between modes are to be
considered as always positive, or they may actually reduce the total response. This is
controlled by the Use absolute value for coupling terms check box. Its default value
differs between the methods, according to what is expected to be the most common

choice.

Periodic Modes and Rigid Modes

For frequencies higher than the highest frequency content of the excitation, the SDOF
system will respond as a rigid body. Some of the response spectrum evaluation methods
take this into account. The effect is that high frequency (‘rigid’) modes are assumed to
have a higher degree of correlation than low frequency (‘periodic’) modes. To take this
effect into account, you can select Rigid modes to be the Gupta method or the

Lindley-Yow method.
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Missing Mass Correction

In general, only a small fraction of the total number of eigenmodes are used in the
superposition. Therefore, some fraction of the total mass of the structure is not
accounted for. The ignored modes usually have high natural frequencies. Such modes
will not have a significant dynamic amplification. The mass in the corresponding
SDOF system will just follow the movement of the foundation. This means that if the
distribution of the missing mass is known, then it can be treated as an extra stationary

mass force, where the peak acceleration during the event replaces the acceleration of
gravity.
You can use two different methods for missing mass correction:

* In the Missing mass method, the difference between the true mass distribution and
the mass represented by the used eigenmodes will act as extra static load. Typically,
most of the missing mass is located close to support points, where he modal
amplitudes are low. This method can be used together with either the Gupta method

or the Lindley-Yow method.

¢ In the Static ZPA method, the total inertial force is used as static load. At the same
time, only the periodic part of the response is used in the mode summation. This
method can only be used together with the Lindley-Yow method, since it is only

compatible with the assumptions about how the rigid modes are scaled.

RESULT INTERPRETATION
All results from a response spectrum analysis are positive; the evaluation methods
contain absolute values or RMS-like operations. This has important implications for

the interpretation of the results:

¢ If the sign of your result quantity is important for the conclusions, you need to

manually consider also the case of a negative value.

It is not meaningful to show deformation or vector plots of response spectrum

results.

An underlying implicit assumption for response spectrum analysis is that it is
performed in a frame of reference that follows the foundations of the structure. Thus,
all displacements, velocities, and accelerations are relative to the foundation which in
itself is accelerating. Thus, it is difficult to evaluate the absolute acceleration. The
conservative way of doing so is to add the peak acceleration of the underlying event to
the computed acceleration. This will usually be rather conservative since the peak of

the excitation seldom coincides in time with the peak of the response.
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For displacements, the relative displacements between two objects within the same
moving frame is usually a more important result than the absolute displacement, so it

does seldom matter whether a constant value is added to all points or not.

* The theory is described in Response Spectrum Analysis Theory.

* The Response Spectrum node is described in the COMSOL
Multiphysics Reference Guide.

* Combine Solutions and Updating a Solution in the COMSOL
Multiphysics Reference Guide.

e The settings for the special data sets are described in Response
Spectrum 2D and Response Spectrum 3D in the COMSOL
Multiphysics Reference Guide.

* Earthquake Analysis of a Building: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

Shock Response of & Motherboard: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response
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Stress Linearization

The information about stress linearization is applicable if your license

includes the Structural Mechanics Module.

Stress linearization is a procedure in which the stress distribution along a line through
the thickness in a solid is approximated with an equivalent linear stress distribution,
similar to what would be the result of an analysis using shell theory. The line is
commonly referred to a stress classification line, SCL. This type of evaluation is
common is the analysis of pressure vessels. It is also useful for the dimensioning of

reinforcements for concrete structures, and for fatigue analysis of welds.

To perform a stress linearization, you add one Stress Linearization node for each SCL.

ORIENTATION OF STRESS COMPONENTS
The stresses along the SCL are represented in a local orthonormal coordinate system,
x1-x2-x3. The x1 direction is oriented along the SCL, so it is mainly the stresses in the

second and third directions which are of interest.

e In 3D, you must specify the x2 direction, and thus implicitly the x3 direction. You
specify the orientation either by selecting a point in the x1-x2 plane, or by defining
an orientation vector in an approximate x2 direction. In either case, the actual x2
direction is chosen so that it is perpendicular to the SCL, and lies in the plane you
have specified. The x3 orientation is then taken as perpendicular to x1 and x2. As
long as you are only interested in a stress intensity, the choice of orientation is
arbitrary.

* In 2D, the x3 direction is the out-of-plane direction, and the x2 direction is

perpendicular to the SCL in the X-Y plane.

* In 2D axial symmetry, the x3 direction is the azimuthal direction, and the x2

direction is perpendicular to the SCL in the R-Z plane.

CREATING THE STRESS CLASSIFICATION LINE
The most straightforward way to create an SCL, is to include it in the geometry, and

then select it in a Stress Linearization node.
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Figure 2-22: Four stress classification lines in a transition region at a pressuve vessel
nozzle.

There are, however, some situations where the direct approach is less convenient:

e When the introduction of the SCL in the geometry must be done after the analysis,
since the locations of critical regions were not obvious when setting up the initial
analysis. It is of course possible to add new edges and rerun the analysis, but this
may not be a good solutions if the analysis time is long.

¢ When the introduction of the edges for the SCL makes the meshing more difficult.
It may for example not any longer be possible to use swept meshes, or the mesh
quality is reduced in critical regions.

In this case, a possible solution is to operate on a copy of the geometry in another
component. It is then possible to use submodeling — that is, to study only a local
region with its boundaries having displacements controlled by the solution from the
larger model.

Below is an outline of the steps you need to take for this approach.

I In the original component (assume that its tag is comp1), add a General Extrusion

operator. Set Source frame to Material. You can name the operator, but in the
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following description, the default name genext1 is assumed. This operator will be

used for mapping results to the second component.

2 Add a new component of the same dimension as the one in which you performed

the original analysis.

3 Add the geometry, using for example Insert Sequence or Import. to the new

component (comp2).
4 Add the lines you are going to use for stress linearization to the imported geometry.

5 Adda Solid Mechanics interface, and select only the domains which contain the new

lines. You can even change the geometry so that you cut out parts of the domains.

6 Add a Prescribed Displacement node having domain selection. Select All domains.
Prescribe the displacement in all directions to be the same as in the original model
with expressions like comp1.genext1(u) for Prescribed in x direction.

7 If the original analysis contains inelastic strains, such as thermal expansions, these
must also be included. You can do this either by adding a Thermal Expansion node
with appropriate settings, or by explicitly importing the inelastic strains using an
External Strain node. In the latter case, you would use expressions like
compi.genexti(solid.eth11) for the strain components.

8 Add Stress Linearization nodes for the new linearization lines.

9 Add the materials that were used in comp1. The most efficient approach is to add
them under Global Definitions, and link to the same material definitions from both
components.

10 Create a mesh for the domains in comp2 which you are solving for. It is only the
mesh close to the new edges to which you need to pay any attention.

Il Add a new stationary study, in which you solve only for the new Solid Mechanics
interface in comp2.

12 In the settings for the new study set Values of variables not solved for to point to the
solution from which you want to pick the results in comp1. You can also add an
Auxiliary sweep, if the original analysis contains results for several parameters or time

steps.

13 Run the new study.

STUDIES AND SOLUTIONS
Stress linearization is a pure postprocessing operation. The Stress Linearization node
will only create a number of variables, which can be evaluated under Results. It is thus

possible to add such nodes after the main analysis has been performed. In order to

STRESS LINEARIZATION

235



make the new variables available for postprocessing, you must then run an Update
Solution.

RESULTS
When you have included one or more Stress Linearization nodes in a model, a number

of data sets and an extra default plot are generated.

One edge data set is created for each SCL. These data sets are named Linearization

Line <n>, where n is an integer number.

4 [El Results
4 Data Sets

TH Study 1 Initialization/Solution 1 (sol1)

[H Linearization Line

[H Linearization Line 1

[H Linearization Line 2

[H Linearization Line 3

ti Study 2: Heat Transfer/Solution 2 (sol2)

Figure 2-23: Generated data sets in o model with four SCL.

The default plot contains graphs for the 22 component of the actual stress, the
membrane stress, and the linearized stress. The first Linearization Line data set is
selected. By changing edge date set in the plot group, you can easily move between the
different stress classification lines.

Line Graph: Stress tensor, linearization line system, 22 component
Line Graph: Membrane stress, 22 component
Line Graph: Membrane plus bending stress, 22 component
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Figure 2-24: Defanlt plot along a stress classification line.
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VARIABLE NAMES

Each Stress Linearization node adds a number of variables. Many of these variables exist

with two different scopes, physics scope and feature scope. The physics scope is the

name of the physics interface, having the default value ‘solid’. The feature scope

contains also the tag of the Stress Linearization node, for example ‘s11’.

As an example, the variable solid.Sm22 and the variable solid.s11.5m22 have the

same value. The variables with physics scope makes it more convenient to create

expressions using postprocessing. You could for example make a line plot of

solid.sb22, and get all edges having a stress linearization colored by their individual

results.

TABLE 2-13: VARIABLE FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN COMMENT SCOPE
THEORY SECTION

Shij Stress tensor in G;j ij=11,12,13,22, Physics,
local coordinate 23, 33 Feature
system

Smij Membrane stress Om, ij ij=11,12,13,22, Physics,

23, 33 Feature

Sbmaxij Maximum bending Ob(max), ij ij=11,12,13,22, Feature
stress 23,33

Sbij Bending Stress Oy, ij ij=11,12,13,22, Physics,

23,33 Feature

Smbij Membrane + Omb, ij ij=11,12,13,22, Physics,
bending stress 23, 33 Feature

Spsij Peak stress, Op(start), ij ij=11,12,13,22, Feature
starting point | 23,33

Speij Peak stress, Op(end), ij ij=11,12,13,22, Feature
starting point 23,33

SIm Stress intensity, Oint Physics,
membrane Feature

Slmbs Stress intensity, Oint Feature
membrane +
bending, starting
point

Slbme Stress intensity, Oint Feature

membrane +

bending, endpoint
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TABLE 2-13: VARIABLE FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN COMMENT SCOPE
THEORY SECTION

Simb Stress intensity, max(SIimbs, Simbe)  Physics,
membrane + Feature
bending,

Nij Local in-plane N;; ij=22,23,33 Feature
force

Mij Local bending Mij ij=22,23,33 Feature
moment

Qi Local out-of-plane i=2,3 Feature
shear force

lengthtot  Length of SCL L Feature

arclength Coordinate along X Feature

SCL

@

Stress Linearization in the Structural Mechanics Theory Chapter.
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Solver Settings

COMSOL Multiphysics includes many solvers and solver settings. To make it easier to
use a suitable solver and its associated solver parameters, the physics interfaces have

different default settings based on the study type and features used. In some situations,
the default settings may need to be changed. This section helps you to select a solver

and its settings to solve structural mechanics and related multiphysics problems.
In this section:

e Symmetric Matrices
* Selecting Iterative Solvers

* Specifying Tolerances and Scaling for the Solution Components

{j}‘ Studies and Solvers in the COMSOL Multiphysics Reference Manual

If you make changes to the physics, this will not be reflected in the solver
.& settings unless you regenerate the solver sequence.

Symmetric Matrices

Use the Matrix symmetry list (see the General section on the Settings window for
Advanced for a solver node such as Stationary Solver). There you can explicitly state
whether the assembled matrices (stiffness matrix, mass matrix) resulting from the

compiled equations are symmetric or not.

Normally the matrices from a single-physics structural mechanics problem are

symmetric, but there are exceptions, including the following cases:

* Multiphysics models solving for several physics simultaneously (for example, heat
transfer and structural mechanics). Solving for several Structural Mechanics
interfaces, such as shells combined with beams, does not create unsymmetrical

matrices.
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¢ Contact with friction.

¢ Elastoplastic analysis

Advanced and Stationary Solver in the COMSOL Multiphysics Reference
@ Manunl

One of the benefits of using the symmetric solvers is that they use less memory and are
faster. The default option is Automatic, which means the solver automatically detects if
the system is symmetric or not. Some solvers do not support symmetric matrices and

always solve the full system regardless of symmetry.

Selecting the Symmetric option for a model with unsymmetric matrices

may lead to incorrect results. For a nonlinear problem that is only weakly
.ﬁ. unsymmetric, it may still be useful, since the faster solution of the

symmetric problem may offset the lower convergence rate. This is, for

example, the case for contact problems with a low coefficient of friction.
ple, p

Complex matrices can be unsymmetric, symmetric, or Hermitian. Hermitian matrices

do not appear in structural mechanics problems.

Selecting the Hermitian option for a model with complex-valued
A- symmetric matrices produces incorrect results.

Selecting Iterative Solvers

The default solver for structural mechanics is the MUMPS direct solver in both 2D and
3D. For large 3D problems (several hundred thousands or millions of degrees of
freedom) it is beneficial to use iterative solvers when possible to save time and memory.
The drawback is that they are more sensitive and might not converge if the mesh

quality is low. The iterative solvers also have more options than the direct solvers.

For Stationary, Time Dependent studies and Frequency Domain studies in 3D, a
GMRES iterative solver is preconfigured and available as an alternative solver

suggestion for solid mechanics models.

If the model is set up using quadratic (default) or higher order elements for the
displacement dependent variable, this GMRES solver will use geometric multigrid
(GMQ) as the preconditioner.

240 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



For slender geometries, changing to SOR Line as presmoother and postsmoother can
give better results compared to SOR that is the default for GMG preconditioner.

For models using linear elements for the displacement dependent variable, the
preconditioner will be changed to smoothed aggregated algebraic multigrid (AMG).
This is to avoid remeshing when creating the discretization on the coarse level. Note
that you need to manually regenerate the solver sequence after you change the element
order if you want to make use of such change in the predefined iterative solver
configuration.

For eigenfrequency/cigenvalue studies, use the default direct solver (MUMPS).

Specifying a shift frequency greater than the lowest eigenfrequency results

m

in indefinite matrices.

E}‘ Studies and Solvers in the COMSOL Multiphysics Reference Manual

Solver Settings for Viscoelasticity, Creep, and Viscoplasticity

Viscoelastivity, creep, and viscoplasticity are time-dependent phenomena. The time
scale is however often such that inertial effects can be ignored. When that is the case,
you can modify the solver settings to improve the performance of the time-dependent
analysis.

PHYSICS INTERFACE SETTINGS

In the Model Builder, click the Solid Mechanics node. In the Settings window, under
Structural Transient Behavior, sclect Quasi-static to treat the elastic behavior as
quasi-static (with no mass effects; that is, no second-order time derivatives for the
displacement variables). Selecting this option gives a more efficient solution for
problems where the variation in time is slow when compared to the natural frequencies
of the system since no mass matrix will be created.

SOLVER SETTINGS

When Quasi-static is selected on the physics interface Settings window, the automatic
solver suggestion changes the method for the Time Stepping from Generalized alpha to
BDF.

SOLVER SETTINGS
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For a Fully Coupled node (or Segregated node for multiphysics problems), the default
Nonlinear method under Method and Termination is Automatic (Newton). To get a faster
computation time when the effective strain rate is low or moderate, select Constant

(Newton) as the Nonlinear method instead.

In the COMSOL Multiphysics Reference Manual:

'El * Studies and Solvers
 Fully Coupled and Segregated

CHAPTER 2:

Specifying Tolerances and Scaling for the Solution Components

The absolute-tolerance parameters used for time-dependent studies are problem
specific. By default, the absolute tolerance is applied to scaled variables, with the

default value being 0.001 for all solution components.

The default scaling for the displacement components is based on the size of the
geometry in the model, and certain reasonable scales are used for the pressure and
contact force variables, if any. You are encouraged to change these scales as soon as
better values are known or can be guessed or estimated from the applied forces, yield
stress, reaction forces, maximum von Mises stress, or similar. The same suggestion
applies to the displacement scale, which can be estimated easily if the problem is
displacement controlled. This approach can significantly improve the robustness of the
solution. The variable scaling is accessed under Dependent Variables in the solver

sequence. The scales need to be entered using the main unit system in the model.

Solver Settings

In many situations, the default in COMSOL Multiphysics when having several physics
interfaces is to generate a solver sequence with a segregated solver. When several
structural mechanics interfaces are present, it can happen that the degrees of freedom
are placed in different segregated steps by the default solver generation. Itis, however,
not possible to solve a model where the structural mechanics degrees of freedom are
placed in different segregated groups, so in this case you must modify the solver

settings.

* If the model only consists of structural mechanics interfaces, the best option is

usually to replace the segregated solver with a fully coupled solver.
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* Ifthe model contains contact conditions where the augmented Lagrangian method
is used, then a segregated solver must be used. Place all structural mechanics degrees
of freedom except the contact variables in one segregated step. The contact variables

should remain in the lumped step.

* Ifthere are other types of physics interfaces being solved in the same study, then the
segregated solver should usually be kept. Make sure that all structural mechanics

degrees of freedom except contact variables are solved in one segregated step.

In the COMSOL Multiphysics Reference Manual:

@l ¢ Solution Operation Nodes and Solvers

e About the Stationary Solver
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Part Libraries

The Part Libraries can be used to store and access a set of standard geometric entities.
It is possible to create custom user-defined geometry libraries or to use built-in
collections of geometric entities that are available with many add-on modules for
COMSOL Multiphysics.

A dedicated part library for the Structural Mechanics Module is included. The library

consists of two main parts:

* Bolts, nuts, and washers. These are parts intended for quick modeling of fasteners.
The bolts geometries are prepared for use with the Pretensioned Bolts functionality.
Some of the bolt geometries are also augmented with an extra domain intended for

use as a ‘drill” when building the geometry.

Hex Bolt

blen

Bolt with hexagonal head.

Figure 2-25: Example of & bolt part.

* Beam cross sections. These are 2D geometries, primarily intended for use in The
Beam Cross Section Interface. The library includes geometries for all standard beam

cross sections according to European and US standards, as well as generic beam
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geometries.

European HEA-beam

European wide flange beams.

A single size parameter controls all section dimensions, For example, entering 120 as
parameter gives a standard HEA 120 beam cross section.

Figure 2-26: Example of o standard beam cross section.

Generic channel cross-section shape with either flat or tapered flange.

Figure 2-27: Example of o generic beam cross section.
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All entities in the built-in the Part Libraries are fully parameterized, making them easy

to use as parts in large-scale industrial models.

{i Part Libraries in the COMSOL Multiphysics Reference Manual
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Structural Mechanics Theory

This chapter contains the theory behind the implementation of the structural
mechanics functionality in COMSOL Multiphysics. It is assumed that the reader

has a basic knowledge of solid mechanics.

In this chapter:

Solid Mechanics Theory

Frames and Coordinate Systems

Analysis of Deformation

Stresses

Material Models

Formulation of the Equilibrium Equations
Study types

Damping

Loads and Boundary Conditions

Stress Linearization

Energy Quantities
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Solid Mechanics Theory

Introduction

In the following, the theory for the Solid Mechanics interface is described. To a large
extent, this theory covers other structural mechanics physics interfaces, such as Shell
and Beam, which are included with the Structural Mechanics Module. For these other
interfaces, only the details which are specific to a certain interface are described its

documentation.

e Theory for Shell and Plate Interfaces
e Theory for the Membrane Interface
@l * Theory for the Beam Interface
* Theory for the Beam Cross Section Interface

e Theory for the Truss Interface

CHAPTER 3:

TENSOR NOTATION

Some of the theory is developed using tensor notation. In most cases, explicit index
notation is avoided. This means that the order of a tensor usually must be understood
from the context. As an example, Hooke’s law for linear elasticity is usually written like

c = C:e

Here, the stress tensor 6 and the strain tensor € are second-order tensors, while the
constitutive tensor C is a fourth-order tensor. The ‘> symbol means a contraction over

two indices. In a notation where the indices are shown, the same equation would read
Gij = Cijri€ri
where the Einstein summation convention has been used as a shorthand for

) o
Sij = > > Cijnitul

k=1l=1

In a few cases, non-orthonormal coordinate systems must be considered. It is then
necessary to keep track of the covariance and contravariance properties of tensors. In

such a case, Hooke’s law is written

STRUCTURAL MECHANICS THEORY



GL] _ Cljklgkl

The stress and constitutive tensors have contravariant components, while the strain

tensor has covariant components.
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Frames and Coordinate Systems

CHAPTER 3:

In this section:

e Material and Spatial Coordinates

¢ Coordinate Systems

Material and Spatial Coordinates

The Solid Mechanics interface, through its equations, describes the motion and
deformation of solid objects in a 2- or 3-dimensional space. In COMSOL Multiphysics
terminology, this physical space is known as the spatial frame, and positions in the
physical space are identified by lowercase spatial coordinate variables x, y, and z (or r,

¢, and z in axisymmetric components).

Continuum mechanics theory also makes use of a second set of coordinates, known as
material (or refevence) coordinates. These are normally denoted by uppercase
variables X, Y, and Z (or R, @, and Z) and are used to label material particles. Any
material particle is uniquely identified by its position in some given initial or reference
configuration. As long as the solid stays in this configuration, material and spatial

coordinates of every particle coincide and displacements are zero by definition.

More information can be found in About Frames chapter in the COMSOL
Multiphysics Reference Manual.

When the solid object deforms due to external or internal forces and constraints, each
material particle keeps its material coordinates X (bold font is used to denote
coordinate vectors), while its spatial coordinates change with time and applied forces

such that it follows a path
x = xX,t) = X+uX, t) (3-1)

in space. Because the material coordinates are constant, the current spatial position is
uniquely determined by the displacement vector u, pointing from the reference
position to the current position. The global Cartesian components of this displacement
vector in the spatial frame, by default called #, v, and w, are the primary dependent
variables in the Solid Mechanics interface.

By default, the Solid Mechanics interface uses the calculated displacement and

Equation 3-1 to define the difference between spatial coordinates x and material
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coordinates X. This means the material coordinates relate to the original geometry,

while the spatial coordinates are solution dependent.

Material coordinate variables X, Y, and Z must be used in coordinate-dependent
expressions that refer to positions in the original geometry, for example, for material
properties that are supposed to follow the material during deformation. On the other
hand, quantities that have a coordinate dependence in physical space — for example, a
spatially varying electromagnetic field acting as a force on the solid — must be

described using spatial coordinate variables x, y, and z.

In a geometrically linear analysis, no difference is made between the two
coordinate systems. For this case, the material and spatial coordinates
coincide. This may seem inconsistent with equation Equation 3-1 but
ensures linearity for problems that are expected to be linear. It is then, for
n example, equivalent to choose a coordinate system related to the material
frame or one related to the spatial frame. In a geometrically nonlinear
analysis, however, any use of a spatial coordinate in an expression will
introduce a nonlinear contribution because it will be deformation

dependent.

Coordinate Systems

Force vectors, stress and strain tensors, as well as various material tensors are
represented by their components in a specified coordinate system. By default, material
properties use the canonical system in the material frame. This is the system whose
basis vectors coincide with the X, Y, and Z axes. When the solid deforms, these vectors

rotate with the material.

Loads and constraints, on the other hand, are applied in spatial directions, by default
in the canonical spatial coordinate system. This system has basis vectors in the x, y, and
z directions, which are forever fixed in space. Both the material and spatial default
coordinate system are referred to as the global coordinate system in the physics

interface.

FRAMES AND COORDINATE SYSTEMS |
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Vector and tensor quantities defined in the global coordinate system on either frame
use the frame’s coordinate variable names as indices in the tensor component variable

names.

For example, solid.SXY is the material frame XY-plane shear stress, also
known as a second Piola-Kirchhoff stress, while solid.sxy is the
corresponding spatial frame stress, or Cauchy stress. There are also a few

mixed tensors, most notably the deformation gradient solid.Fdxy,
which has one spatial and one material index because it is used in

converting quantities between the material and spatial frames.

It is possible to define any number of user coordinate systems on the material and
spatial frames. Most types of coordinate systems are specified only as a rotation of the
basis with respect to the canonical basis in the underlying frame. This means that they
can be used both in contexts requiring a material system and in contexts requiring a
spatial one. A coordinate system defined on the spatial frame will in general introduce
nonlinearities in the problem, since its directions are deformation dependent in case of

a geometrically nonlinear analysis.

The coordinate system can be selected separately for each added material model, load,
and constraint. This is convenient when for example, an anisotropic material with
different orientation in different domains is required. The currently selected

coordinate system is called the local coordinate system.

Coordinate systems used for describing a material must be defined on the material

frame.
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Analysis of Deformation

The analysis of deformation aims at deriving descriptions of the local deformation in a
material suitable for use in a constitutive relation. Often, but not always, this amounts

to deriving a strain tensor.

This section starts by a general description of finite deformation in solids. At the end,

the specialization to engineering strains used in geometrically linear analysis, is made.
In this section:

e Lagrangian Formulation

e Deformation Measures

e Invariants of Strain

e Inelastic Strain Contributions

* Axial Symmetry and Deformation
¢ Generalized Plane Strain

e Out-of-plane and Circumferential Modes

Lagrangian Formulation

The formulation used for structural analysis in COMSOL Multiphysics for both small
and finite deformations is a total Lagrangian formulation. This means that the
computed stress and deformation state is always referred to the material configuration

rather than to current position in space.

Likewise, material properties are always given for material particles and with tensor

components referring to a coordinate system based on the material frame. This has the
obvious advantage that spatially varying material properties can be evaluated just once
for the initial material configuration, and they do not change as the solid deforms and

rotates.

Consider a certain physical particle, initially located at the coordinate X. During

deformation, this particle follows a path
x = x(X, t)

Here, x is the spatial coordinate and X is the material coordinate.
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For simplicity, assume that undeformed and deformed positions are measured in the

same coordinate system. Using the displacement w it is then possible to write
x = X+u(X,t)

The displacement is considered as a function of the material coordinates (X, Y, Z), but
it is not explicitly a function of the spatial coordinates (x, y, ). It is thus only possible

to compute derivatives with respect to the material coordinates.

In the following, the gradient operator is assumed to be a gradient with respect to the
material coordinates, unless something else is explicitly stated.

V =Vx =9 9 9
9X 9Y 0Z

The gradient of the displacement, which occurs frequently in the following theory, is
always computed with respect to material coordinates. In 3D:

Ju Jdu Jdu

0X dY dZ
Vu = |[0v dv dv

0X 0Y 07
ow Jw Jow

0X oY 0Z)
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The deformation gradient tensor F shows how an infinitesimal line element, dX, is

mapped to the corresponding deformed line element dx by

ox
dx = =5dX = FdX
X
The deformation gradient F' contains the complete information about the local
straining and rotation of the material. It is a two-point tensor (or a double vector),
which transforms as a vector with respect to each of its indices. It involves both the

reference and present configurations.

In terms of the displacement gradient, F' can be written as

ox
F == =Vu+I
X
The deformation of the material (stretching) will in general cause changes in the
material density. The ratio between current and initial volume (or mass density) is

given by

dV.  Po

= — =det(F) =J

av, = p et(F)

Here, pg is the initial density and p is the current density after deformation. The
determinant of the deformation gradient tensor F'is related to volumetric changes with
respect to the initial state. A pure rigid body displacement implies JJ = 1. Also, an

incompressible material is represented by JJ = 1. These are called zsochoric processes.

The determinant of the deformation gradient tensor is always positive (since a negative
mass density is unphysical). The relation p = py/<J implies that for < 1 there is
compression, and for J > 1 there is expansion. Since J > 0, the deformation gradient

F is invertible.

In the material formulations used within the structural mechanics interfaces, the mass
density should in general be constant because the equations are formulated for fixed
material particles. You should thus not use temperature-dependent material data for

the mass density. The changes in volume caused by temperature changes are
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incorporated using the coefficient of thermal expansion when you add Thermal

Expansion (for Materials) to the material model.

The variable solid.rho represents a “reference” or “initial” density py,
. and not the “current” density p. If you are interested in finding the
El density of the deformed material (the density in the spatial frame), you
can compute it using the expression solid.rho/solid.J.

Deformation Measures

Since the deformation tensor F' is a two-point tensor, it combines both spatial and
material frames. It is not symmetric. Applying a singular value decomposition on the
deformation gradient tensor gives an insight into how much stretch and rotation a unit
volume of material has been subjected to. The 7ight polar decomposition is defined as

F =RU

where R is a proper orthogonal tensor (det(R) = 1,and R~ = RT) and Uis the
right stretch temsor given in the material frame. The rotation tensor R describes the
rigid rotation, and all information about the deformation of the material is contained
in the symmetric tensor U.

* The internal variables for the deformation gradient tensor with respect
to global material coordinates are named solid.FdxX, solid.FdxY,
and so on.

* The internal variables for the deformation gradient tensor with respect
to local material coordinates are named solid.Fdx1, solid.Fdx2,

and so on.

[

The rotation tensor components are named solid.RotxX,
solid.RotxY, and so on.

¢ The right stretch tensor components are named solid.UstchXX,

solid.UstchXY, and so on.

An upper case index refers to the material frame, and a lower case index

refers to the spatial frame.
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The stretch tensor contains physically important information about the deformation
state. The eigenvalues of the U tensor are the principal stretches, Aq, Ag, and Ag. The

stretch of a line element with initial length L and current length L is

L
A= L_o =l+eg,,,

where €¢pg is the engineering strain. The three principal stretches act along three
orthogonal directions. In the coordinate system defined by these principal directions,

the U tensor will be diagonal:

A 00
U={020
0 0 %y

The right Cauchy-Green deformation tensor C defined by

c=r'F =02

It is a symmetric and positive definite tensor, which accounts for the strain but not for
the rotation. The eigenvalues of the C tensor are the squared principal stretches, thus
providing a more efficient way to compute the principal stretches than by using the
stretch tensor U directly.

The Green-Lagrange strain tensor is a symmetric tensor defined as
1 1.1
€ = 2(C—I) = 2(F F-I)

Since C is independent of rigid body rotations, this applies also to the Green-Lagrange
strain tensor.

Using the displacement components and Cartesian coordinates, the Green-Lagrange

strain tensor can be written on component form as
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e = (2a, 2, 2 O

i = 2\3x, T ax, T 0X, ox,/ - (3-2)

The rotation independence of the Green-Lagrange strain tensor, together
with the fact that it for small strain approaches the engineering strain
tensor explains why it is a common choice in constitutive models for small

strain- finite rotation. As an opposite, a pure rigid rotation causes strains

when engineering strains are used.

The Green-Lagrange is the natural strain representation in a Lagrangian
description. Since it is a tensor in the material frame, its values should be

interpreted in along the undeformed axis orientations.

* The internal variables for the Green-Lagrange strains are named
solid.eX, solid.eXY, and so on.

* The internal variables for the Green-Lagrange strain tensor in local

coordinates are named solid.el11, solid.el12, and so on.

In a geometrically linear analysis, the strain variables

[

solid.eX,solid.el11, and so on, will instead represent engineering
strain.

* The right Cauchy-Green deformation tensor in local coordinate system
are named s0l1id.C111, solid.C112, and so on.

Some textbooks prefer to use the left Canchy-Green deformation tensor
El' B=FF T, which is also symmetric and positive definite but it is defined in
the spatial frame.

ENGINEERING STRAIN
Under the assumption of small displacements and rotations, the normal strain

components and the shear strain components are related to the deformation as follows:
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_ ou _Yxy_ 1(0u  dv
&~ 3% fy= 9 2($+a

_dv _ Yy 1(ov  dw (3-3)
S S a2 )

_ ow _Yxz 1l(0u  Jw
" 5% G 5= 55 )

In COMSOL Multiphysics, the tensor form of strain representation (€, €5, &) i

used.
In the documentation, the symbol € is used to denote strain in general. In
a geometrically nonlinear analysis, the strain should be interpreted as a
n Green-Lagrange strain. In a geometrically linear analysis, the engineering

strain is used.

The symmetric strain tensor € consists of both normal and shear strain components:

€y 8ch €xz
€= Exy 83’ 8}’2

€z 8yz €

The strain-displacement relationships for the axial symmetry case for small
displacements are

_odu u ow _du  dw
r

R Ez=g,and yrz—E 5

A general description of the axially symmetric case is given in Axial Symmetry and

Deformation.

Invariants of Strain

PRINCIPAL STRAINS
The principal strains are the eigenvalues of the strain tensor (¢), computed from the

eigenvalue equation

(e— epl)vp =0
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The three principal strains are sorted so that

€ 12¢€

pl=*p2 2 €p3

This sorting is true also for the 2D cases. The corresponding vectors in the principal
directions, vy, are orthonormal.

* The internal variables for the principal strains are named solid.ep1,
solid.ep2, and solid.ep3 respectively.

* The internal variables for the components of the directions of the first
principal strains are named solid.ep1X, solid.ep1Y, and
solid.ep1Z. The direction vectors for the other two principal strains

[

are named analogously.

In a geometrically nonlinear analysis, the Green-Lagrange strain tensor is
used. The orientations of the principal directions will thus be with respect
to the material directions. If you plot the principal strains as arrows, you
should thus use an undeformed plot.

PRINCIPAL STRETCHES

The principal stretches are the eigenvalues of the stretch tensor U, and are also sorted
by size:

Mp1=hyn = Ao

The internal variables for the principal stretches are named
solid.stchp1, solid.stchp2, and solid.stchp3, respectively. The
elastic principal stretches are named solid.stchelpt,
solid.stchelp2, and solid.stchelp3, respectively.

[

The different invariants of the strain tensor form are useful for constitutive modeling

and result interpretation. The three fundamental invariants for any tensor are

I, (g) = trace(g)
Iy(e) = %(tracc(s)2 - trace(sz))

I5(g) = det(e)

The invariants of the strain deviator tensor is also useful.
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dev(e) =e- %trace(s)[
J () = trace(dev(e)) = 0

Jy(e) = %dev(s):dev(e) = %Il(s)z ~I,(e)

Jy(e) = det(dev(e)) = %11(8)3 - %Il(s)lz(s) +14(e)

As defined above Jg 2 0. I represents the relative change in volume for infinitesimal

strains and /5 represents the magnitude of shear strain.
In tensor component notation, the invariants can be written as
trace(€) = g,
3
)

1
Iy(e) = é(siiejj - sijeji

Jo(e) = %dcv(e)ijdcv(e)ji

The volumetric strain is defined as

€, = trace(e).

El The internal variable for the volumetric strain is solid.evol.

In terms of the principal strains, the stress invariants can be written as

Ii(e) =g, +epp+eyg
Iy(e) = ep18,0 + €08 3 + €183
I(e) = &,18,08,3

The principal stresses are the roots of the characteristic equation (Cayley-Hamilton

theorem)

3 2
€, —11€p +12£p—13 =0
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STRAIN RATE AND SPIN

The spatial velocity gradient is defined in components as

L, = aixlvk(x, t)

where v, (x, t) is the spatial velocity field. It can be shown that L can be computed in

terms of the deformation gradient as

-1
- dFp

Ldt

where the material time derivative is used.

The velocity gradient can be decomposed into symmetric and skew-symmetric parts
L=Ls+L,
where
1 T
Ly = Q(L +L7)
is called the rate of strain tensor, and

1 T
L _2@—L)

w

is called the spin tensor. Both tensors are defined on the spatial frame.

It can be shown that the material time derivative of the Green-Lagrange strain tensor

can be related to the rate of strain tensor as

de

T
= FLF
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The spin tensor L, (X,t) accounts for an instantaneous local rigid-body rotation about

an axis passing through the point x.

Components of both Ly and L, are available as results and analysis

variables under the Solid Mechanics interface.

e The components of the rate of strain tensor are named solid.Ldx,

I

solid.Ldxy, and so on.

e The components of the spin tensor are named solid.Lwx,

solid.Lwxy, and so on.

Inelastic Strain Contributions

Many of the material models in COMSOL Multiphysics will compute a stress based on
an elastic strain. The elastic strain tensor is obtained after removing any inelastic
deformation contribution from the total deformation from the displacements. There
are several possible inelastic strain contributions:

* Initial strain, €g

* External strain, €4y

e Thermal strain, &g,

* Hygroscopic strain, €

* Plastic strain, €
* Creep strain, €,

* Viscoplastic strain, &,

ADDITIVE DECOMPOSITION
In a geometrically linear analysis, the elastic strain is computed by a straightforward

subtraction of the inelastic strain:

€e = E—Ejpe)

where

€inel = €0t Eex T Eh TR T EQ T € T &y

Additive decomposition of strains can also be used in a geometrically nonlinear

analysis. In this case, it can however only be justified as long as the strains are small. In
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the case of large deformations, the different strain contributions may not even be

commutative.

You can choose to use additive decomposition also for geometric nonlinearity by
selecting the Additive strain decomposition check box in the settings for Linear Elastic

Material or Nonlinear Elastic Material.

MULTIPLICATIVE DECOMPOSITION

In the finite deformation case, the inelastic strain is instead removed using a
multiplicative decomposition of the deformation gradient tensor. The elastic
deformation gradient tensor is the basis for all strain energy formulations in
hyperelastic materials, and also for the elastic strain in linear and nonlinear elasticity. It
is derived by removing the inelastic deformation from the total deformation gradient

tensor.

The total deformation gradient tensor is defined as the result of two successive

operations, an inelastic deformation followed by an elastic deformation:

F=F,F (3-4)

inel

The order is important here, multiplication from the left makes the elastic

deformation act on the inelastically deformed state.

Since a deformation gradient tensor describes a mapping from one frame

to another, there are actually three frames involved in this operation. The

[

F tensor is defined by the displacements as usual and describes the
mapping from the material frame to the spatial frame. The F},¢) tensor,
however, describes a mapping from the material frame to an intermediate
frame, and the F tensor describes a mapping from the intermediate

frame to the spatial frame.

CHAPTER 3:

When the inelastic deformation gradient tensor is known, the elastic deformation
gradient tensor is computed as

F, = FF,,

inel

(3-5)

so the inelastic deformations are removed from the total deformation gradient tensor.

The elastic right Cauchy-Green deformation tensor is then computed from Fy;.

T
c =FelFel

el
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and the elastic Green-Lagrange strain tensor is computed as:
1
€el = E(CeY_I)

The inelastic deformation tensor Fj,) is derived from inelastic processes, such as
thermal expansion or plasticity. When there are several inelastic contributions, they are

applied sequentially to obtain the total inelastic deformation tensor Fyq)-

Finer = F1FoF3Fy
where F; is the inelastic strain contribution from subnode ¢ under a Linear Elastic

Material, Nonlinear Elastic Material, or Hyperelastic Material.

e The order is important when deformations are finite. The
contributions are applied in the same order as the subnodes appear in
the model tree. If a Thermal Expansion node appears before a Plasticity
node, then the physical process can be viewed as a thermal expansion
followed by a plastic deformation.

]
ril e When a certain inelastic strain contribution is small, the order is not
significant.

» Ifthe inelastic strain is a pure isotropic volume change, as is often the
case for thermal expansion and hygroscopic swelling, the order is not

significant.

The internal variables for the elastic right Cauchy-Green deformation
tensor in the local coordinate system are named solid.Cell1,

!

solid.Cel12, and so on; and for the elastic Green-Lagrange tensor in
local coordinates solid.eel11, solid.eel12, and so on.

The elastic, inclastic, and total volume ratios are related as

det(F) = det(F)det(Fy,,p) or J = J J;

inel

. The internal variables for the elastic, inelastic, and total volume ratio are
I_E| named solid.Jel, solid.Ji, and solid.J.
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Large strain plasticity
In case of large strain plasticity, the plastic strains are primarily not represented as

strains, but as the plastic deformation gradient tensor, Fp.

The plastic Green-Lagrange strain tensor is computed from the plastic deformation
gradient tensor as

1.7
ept = 3(FpiFp1-1)

As opposed to the small strain formulation, the total, plastic, and elastic

Green-Lagrange strain tensors are related as

T 1
gq = Fpy(e—g,)Fy

Axial Symmetry and Deformation

The axially symmetric geometry uses a cylindrical coordinate system. Such a coordinate

system is orthogonal but curvilinear, and you can choose between a covariant basis

eq, €9, eg and a contravariant basis el, e2, e when formulating the theory.

The metric tensor is
100

&1 = 10,20
001

in the coordinate system given by el, e2, e3, and
100
Lj = _2
[ g J 0r -0
001
in €1, €9, €3.
The metric tensor plays the role of a unit tensor for a curvilinear coordinate system.

For any vector or tensor A, the metric tensor can be used for conversion between

covariant, contravariant, and mixed components:

A/ = Z(Aimg’"j)
m
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ALJ - z (Anmgmg )
m.n

In both covariant and contravariant basis, the base vector in the azimuthal direction
has a nonunit length. To cope with this issue, the so-called physical basis vectors of unit

length are introduced. These are

3

[
N =

2
e, =e =e,e =-e,=re,e,=e; =¢e

The corresponding components for any vector or tensor are called physical.

For any tensor, the physical components are defined as

phys _ i
AT = BigiA
where no summation is done over repeated indices.

MIXED COMPONENTS AND PRINCIPAL INVARIANTS

The mixed tensor components are given by

A= 3@ Amj)

m

The principal invariants are

I,(A) = trace[Aj] = 3'A; = Ay, + Ay + Ay
- r

12

IyA) = %[(II(A»Z —ZAjA{]

i.j
I5(A) = det[A]]

DISPLACEMENTS AND AXIAL SYMMETRY ASSUMPTIONS

The axial symmetry implementation in COMSOL Multiphysics assumes independence
of the angle, and also that the azimuthal component of the displacement is identically
zero. The physical components of the radial and axial displacement, u and w, are used

as dependent variables for the axially symmetric geometry.
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STRAINS

The right Cauchy-Green deformation tensor is defined as

C = ((Vu)T+ Vu + (Vu)TVu) +g

and the Green-Lagrange strain tensor is
1
e=5C-8)
Under the axial symmetry assumptions, the covariant components of C are
du (Bu)z (Bw)z
Cll_zar [; +\57 }+1
Cig = Cg3 =0

_du, ow [@a_uﬁ_wa_w}
1379z or drodz or oz

Cyy = 2ru+ [(u)2]+r2

Cas = 1[5 o]

0 = 252+ (3 ]2

For geometrically linear analysis, drop the nonlinear terms inside square brackets in the
above expressions.

The physical components of € are
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1
g, =g = 5(Cy3-1)

4

The volumetric strain is

€ —Il(e) =€g.+¢€

vol — +€,

¢

Generalized Plane Strain

One possible extension of the plane strain formulation is to assume that the strains are

independent of the out-of -plane coordinate z, i.c.
& = Eij(x,y)

Under the small strain assumption, the above equations have the following 3D

solution:

<
|

2
= uo(x,y)—%z

b 2
v= vo(x,y)—éz

S
I

(ax +by +c¢)z

where a, b, and ¢ are constants. Thus, at the cross-section z = 0, one has

u=uyx,y)
U =04(x,y)
w=0

and

e, =ax+by+c
€y, =€), = 0
The above conditions differ from the plane strain state only by the fact that the normal
out-of -plane strain component can vary linearly throughout the cross section. This
approximation is good when the structure is free to expand in the out-of-plane
direction, and the possible bending curvature is small with respect to the extents of the
structure in the xy-plane.
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At the cross section z = 0, the deformation is in-plane and fully characterized by the

in-plane displacement components z(x,y) and v(xy).

In COMSOL Multiphysics, the coefficients @, b, and ¢ in the expression for the €,
strain are modeled as extra degrees of freedom that are constant throughout the model

(global variables).

GEOMETRIC NONLINEARITY

In case of geometric nonlinearity, the strains are represented by the Green-Lagrange

strain tensor:

e = =[(Vu)! + Vu + (Vu) ' Vu]

DN | =

Consider the following displacement field expressed in terms of the material

coordinates:

u(X, Y)—%ZQ
v v(X, Y)-gz2
[a(X+u)+b(Y+v)+clZ

Coecfficients a, b, and ¢ are assumed to be small. Then, using the above displacement
field in the strain tensor expression and dropping quadratic and higher order terms in
the coefficients, one obtains:
w22
exx =Ux+ 2(uX+ Uy)
o Lo o
€yy =Uy+ 2(uY+ vy)
g,y=aX+u)+b(Y+v)+c
1
Exy = 2(uY+ Uy +uUxly+ UxVy)
€xz =8€yz =0

Thus, in the leading order approximation, the strains become independent of the

out-of-plane coordinate Z.
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Out-of-plane and Circumferentinl Modes

OUT-OF-PLANE WAVES
If a 2D plane strain model represents a cross-section of the structure that has a
significant uniform extension in the out-of-plane Z-direction, the following 3D

solution can be sought in form of the amplitude expansion:
uX, Y, Z,t) = uy(X,Y)+u (X, Y)exp(iot - ik,Z)

The first term represents a static in-plane prestress solution:

uO(Xi Y)
Uy = |vy(X,Y)
0

This can be obtained by a standard static analysis using 2D geometry for the cross

section with the corresponding boundary conditions.

The second part of the solution presents a time-harmonic linear perturbation with an
amplitude that can be a function of the in-plane coordinates. Such a perturbation can
be seen as an out-of -plane wave, with a small amplitude that propagates in the

Z-direction, and has a wavelength L and phase velocity c:

ky;=2n/L
C = (D/kZ

w,(X,Y) exp[ZTni(ct —Z)}

Note that in contrast to the prestress, the perturbation amplitude can have nonzero

values in all three displacement components:

u(X,Y)
u; = Ul(X, Y)
wl(Xr Y)

There are two alternative approaches. The wavelength, and thus the wave number k7,
can be considered as a parameter. Then, o can be computed by an eigenfrequency
analysis for the 2D cross section with all three displacement components taken as

dependent variables. As a result, one obtains
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o= 2nf
f = f(L’ u())
c(h, uy) = LAL, uy)

Thus, the wave speed for the out-of-plane wave is computed as a function of the
wavelength and possible prestress in the material. The dependence of the wave speed
on the wavelength is often called dispersion.

Alternatively, the frequency f (and thus ) can be taken as a parameter. Then, the
solution can be computed via eigenvalue analysis with respect to the wave number &y,

using the 2D cross section geometry. Hence,

ky=2n/L
L =L(f,ay)
c(f, uy) = fL(f, u,)

which determine the wavelength and speed for the wave that can propagate
out-of-plane for a given frequency under given in-plane prestress condition. Such

interpretation of the perturbation solution is sometimes called a signaling problem.

CIRCUMFERENTIAL MODES

A standard 2D axially symmetric representation of the structure geometry assumes
zero twist displacement component together with independence of the circumferential
position ¢ . The following 3D solution form represent an extension of these

assumptions:
u(R,9,Z,t) = uy(R,Z) +u (R, Z)exp(int —imo)

where m is a circumferential mode number (or azimuthal mode number) that can
only have integer values to obey the axially symmetric nature of the corresponding 3D
problem. Thus,

ulR,0+2n,2,t) = u(R, 0,2, t)
The circumferential wave number can be introduced as k,, = m/R .

The static prestress solution u, has zero twist component
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ug(R,Z)
u, = 0
wy(R,Z)

and it can be obtained using a standard static analysis in 2D axially symmetric
geometry.

The displacement vector u; can have nonzero values in all three components, which
are functions of the radial and axial positions. For a given circumferential mode
number m, it can be found using an ecigenfrequency analysis in a 2D axially symmetric

geometry. Hence,

o =2nf
f=f(m, u())

and the perturbation solution becomes
u, (R, Z)exp[2nif(m, uy)t —im¢]
This represents eigenmodes in the corresponding 3D structure, which can be

computed assuming certain constraints on the axis and possible static prestress without

twist and independent off the position along the axis.
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Stresses

In this section:

¢ Defining Stress

¢ Invariants of the Stress Tensor

¢ Plane Strain and Plane Stress Cases
e Initial Stresses and Strains

¢ Axial Symmetry and Stresses

Defining Stress

This section summarizes the definition of different stress measures, stress invariants,

and other important definitions.

Three different stress measures are used in COMSOL Multiphysics:

* Cauchy stress ¢ defined as force /deformed area in fixed spatial directions not
following the body. This is a symmetric tensor.

* First Piola-Kirchhoff stress P. The forces in the spatial directions are related to the

area in the original (material) frame. This is an unsymmetric two-point tensor.

¢ Second Piola-Kirchhoff stress S. Both force and area are represented in the material
configuration. For small strains the values are the same as Cauchy stress tensor but

the directions are rotating with the body. This is a symmetric tensor.
The stresses relate to each other as
S=F'pP
o =J'PF" = J'FSF"

In a geometrically linear analysis, the distinction between the stress measures disappear,
and they all converge to the same values.

In the documentation, the symbol ¢ is used to denote not only Cauchy
stress, but stress in general. The symbols P and S are used whenever it is
n necessary to make a distinction. In geometrically nonlinear analysis, the

stress should in general be interpreted as second Piola-Kirchhoff stress.
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* The internal variables for the Cauchy stresses are named solid.sx,
solid.sxy, and so on.

e The internal variables for the first Piola-Kirchhoff stresses are named
solid.PxX, solid.PxY, and so on.

!

e The internal variables for the second Piola-Kirchhoff stresses are
named solid.SX, solid.SXY, and so on.

SIGN CONVENTIONS
A positive normal stress in COMSOL Multiphysics acts in tension. This is the most

widely used definition in general physics and engineering.

Within the field of geomechanics it is however common to let compressive stresses be
positive, since compression is almost always dominant in that field of science. When
working with the material models intended for soils and rocks, you must be aware of
that the “positive in tension” convention is used also there in order to maintain

consistency within the software.

Specifically, the ordering of Principal Stresses is such that 6, 26,9 2 65 (including

p2= "p3
signs). In geotechnical applications the dominant principal stresses will usually be
compressive, so the third principal stress will the be the one which you may consider

as “largest”.

The convention used in Ref. 1 refers to the hydrostatic pressure (trace of the stress
Cauchy tensor) with a positive sign. The use of the first invariant of Cauchy stress
tensor I1(0) is preferred in this document where there is a risk of confusion. The
pressure in COMSOL Multiphysics is always defined as positive under compression, or

equivalently, it has the opposite sign of the Cauchy stress tensor’s trace.

Invariants of the Stress Tensor

The different invariants of the stress tensor form an important basis for constitutive
models and also for interpretation of stress results. The three fundamental invariants
for any tensor are
I,(0c) = trace(o)
1 2 2
Iy(0) = é(tracc(c) —trace(o)) (3-6)
I3(0) = det(o)
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In many cases, the invariants of the deviatoric stress tensor are also useful.

dev(o) =0 - %tracc(c)]

J;(0) = trace(dev(c)) =0

1 1 9 (3-7)
Jqo(0) = édcv(c):dev(c) = gll(c) —-I,(0)

J4(0) = det(dev(o)) = 23711(0)3 - %Il(c)lz(o) +14(0)

As defined above JJ5 2 0. In many material models, the most relevant invariants are I7,
Jg, and J3. I represents the effect of mean stress, J represents the magnitude of shear
stress, and JJ3 contains information about the direction of the shear stress.

In tensor component notation, the invariants can be written as

trace(0) = GO,

OLp
dev(o);; = cij—%?iij

1
I,(0) = é(ciicjj—cijcji)

Jy(0) = %dev(c)ijdev(c)ﬁ

The pressure is defined as

_ —trace(o) _ -I,(0)
- 3 -3

and is thus positive in compression.

[

The internal variables for the invariants Iy, Iy, and I3 are named
solid.I1s, solid.I2s, and solid.I3s, respectively.

The internal variables for the invariants Jy and J3 are named

s0lid.II2s and solid.II3s, respectively.

The internal variable for the pressure is solid.pm.

PRINCIPAL STRESSES

The principal stresses are the eigenvalues of the stress tensor, computed from the
eigenvalue equation.
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(o- GpI )vp =0
The three principal stresses are ordered so that
6,12 0p22 03

This ordering is true also for the 2D cases. The corresponding principal directions vy,

are orthonormal.

¢ The internal variables for the principal stresses are named solid.sp1,
solid.sp2, and solid.sp3 respectively.

e The internal variables for the components of the directions of the first

I

principal stress are named solid.sp1x, solid.sp1y, and
solid.sp1z. The direction vectors for the other two principal stresses

are named analogously.

In terms of the principal stresses, the stress invariants can be written as

I,(6) =0, +0p9+0

p p3
I5(6) = 6,109 + G pp90p3 + 0,10

I3(0) = 6,106,903

p3

The principal stresses are the roots of the characteristic equation (Cayley-Hamilton
theorem)
?4I,0,-I, = 0

2%p 3~

3
o, —-I0

P P

OTHER STRESS INVARIANTS
Itis possible to define other invariants in terms of the primary invariants. One common

auxiliary invariant is the Lode angle 6.

cos30 = - —_— (3-8)

(%]
ol
Q
w

The Lode angle is bounded to 0 < 68 < 7/3 when the principal stresses are sorted as
Gpl 2> Gp2 2 Gp3 (RCf 1)

Following this convention, 8 = 0 corresponds to the tensile meridian, and 6 = /3

corresponds to the compressive meridian. The Lode angle is part of a cylindrical
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coordinate system (the Haigh—-Westergaard coordinates) with height (hydrostatic
axis)§ = Il/A/g and radius 7 = /2, .

The Lode angle is undefined at the hydrostatic axis, where all three
principal stresses are equal (Gp1 = O = Opg = I1/3) and J5 = 0. To avoid

division by zero, the Lode angle is actually computed from the inverse

[

tangent function atan2, instead of the inverse cosine, as stated in
Equation 3-8.

The Lode angle and the effective (von Mises) stress can be called in user
defined yield criteria by referencing the variables solid.thetal and
solid.mises, where solid is the name of the physics interface node.

The octahedral plane (also called n-plane) is defined perpendicular to the hydrostatic
axis in the Haigh-Westergaard coordinate system. The stress normal to this plane is

Goct = 11/3, and the shear stress on that plane is defined by

Toee = 2/3J9

The functions described in Equation 3-6 and Equation 3-7 enter into expressions that
define various kind of yield and failure surfaces. A yield surface is a surface in the 3D

space of principal stresses that circumscribe an elastic state of stress.

The principal stresses (0p1, Opg, and 6p3) can, when sorted as 61 2 Opg 2 O3, be
written by using the invariants I1 and J9 and the Lode angle (Ref. 1):

1 4,
Cp1 = 511+ —3—c059
1 [4J, on
Opy = §11+ ?COS(G—?)
_ 1, A 2n
Opg = 3Il+ —3-c0s(6+ 3)

Plane Strain and Plane Stress Cases

For two-dimensional problems, there are two possible approximations: plane strain

and plane stress. The selection is made in the settings for the Solid Mechanics node.
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In the plane stress formulation in COMSOL Multiphysics, the plane stress conditions

0,,=0,,=0,,=0 (3-9)
are not enforced through a modified constitutive relation, as is common in many
textbooks. Instead, an extra set of degrees of freedom for the out-of-plane strains are

introduced, and Equation 3-9 is enforced by solving for the strains.

For a general anisotropic linear elastic material in case of plane stress, COMSOL
Multiphysics solves three equations. For isotropy and orthotropy, only one extra

degree of freedom is needed since all out-of-plane shear components of both stress are

Zero.
¢ For isotropic and orthotropic materials, the extra degree of freedom is
w
named wZ, and represents = .
l_il_ > p BYA
= ¢ For anisotropic materials, two more degrees of freedom area added, uz
u v
and vZ. They represent =% and = .
vrep oz " oz

Initial Stresses and Strains

Initial stresses and strains refer to a stress and strain state that would exist even without
the external loads. Initial stresses and strains are not initial values in the mathematical
sense. They apply all through the solution, and may even vary with time or solution

parameters. They should rather be considered as an offset to the stress and strain state

in the constitutive relation.

The initial strain is subtracted from the total strain, before the constitutive law is
applied for computing the stresses. The initial stress is added to the stress computed by
using the constitutive law. As an example, linear elasticity including both in initial strain

€ and an initial stress s( can be written as
§ =85+C:(e—-gg)

It can also be noted that the effect of the initial strain is analogous to that of a for

example a thermal strain.

A common case is when you have results from another analysis or another physics
interface, which you want to incorporate as initial stresses or strains. You should then

use either the strain or the stress, but not both.
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The Initial Stress and Strain node can be added to Linear Elastic Material, Nonlinear
Elastic Materials, Piezoelectric Material, Elastoplastic Soil Models, Magnetostrictive

Material, or Shape Memory Alloy.

Both the initial stress and strains are tensor variables defined via components in the

local coordinate system for each domain.

In case of nearly incompressible material (mixed formulation), the components of the
total initial stress (that is, without volumetric-deviatoric split) are still input. The initial

pressure in the equation for the pressure help variable py, is computed as
1
po = —311(s9)

In the case of geometric nonlinearity, the initial stress represents the second
Piola-Kirchhoft stress, not the Cauchy stress. The initial strain is interpreted as a

Green-Lagrange strain.

OTHER POSSIBLE USES OF INITIAL STRAINS AND STRESSES

Many inelastic effects in solids mechanics (for example creep, plasticity, damping,
viscoelasticity, poroelasticity, and so on) are additive contributions to either the total
strain or total stress. Then the initial value input fields can be used for coupling the
elastic equations (solid mechanics) to the constitutive equations (usually General
Form PDEs) modeling such extra effects. When adding stress contributions, you may

however find it more convenient to use the External Stress concept.

External Stress

The external stress is a stress contribution which has a source other than the
constitutive relation. It is similar to the initial stress described in the previous section,

and the two features can to a large extent be used interchangeably.

There is however one large difference: using the External Stress, you can also prescribe
a stress contribution that only acts as a load on the structure but is not added into the
stress tensor. The typical case is when there is a pore pressure in a porous material, a
common case in geotechnical engineering. The stress carried by the solid material,
excluding the pore pressure, is often called the effective stress. So the load from the
pore pressure helps to balance the external loads, while not contributing to the stress
tensor of the solid. The contribution to the virtual work of the external stress is then

W = jV-Se:c dv

ext
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The External Stress subnode can be added to Linecar Elastic Material, Nonlinear Elastic

Materials, Piezoelectric Material, or Elastoplastic Soil Models.

Axial Symmetry and Stresses

The physical stress components are defined on the global coordinate system:

_o1n
G,=0
2 22
G(p—T'G
_ 33

GZ—
13

o =

The first invariant of the stress tensor is

II(G) = Z(thgij) = Gr+($q)+02

i.i
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Equation of Motion

CHAPTER 3:

The first Piola-Kirchhoff stress P is calculated from the second Piola-Kirchhoff stress
as P =FS. The first Piola-Kirchhoft stress relates forces in the present configuration

with areas in the reference configuration, and it is sometimes called the nominal stress.

Using the first Piola-Kirchhoft stress tensor, the equation of motion can be written in
the following form:
3 2
poa—;l =F,-Vy P (3-10)
t

where the density corresponds to the material density in the initial undeformed state,
the volume force vector Fy has components in the actual configuration but given with
respect to the undeformed volume, and the tensor divergence operator is computed
with respect to the coordinates on the material frame. Equation 3-10 is the strong
form that corresponds to the weak form equations within the Solid Mechanics
interface (and many related multiphysics interfaces) in COMSOL Multiphysics. Using

vector and tensor components, the equation can be written as

azux Vx_(a_PxX a_PxY a_sz)

Po—s = + +
052 X 9Y oZ
2
Ju oP oP oP
Y _ yX yY vZ
9087 Vy_(aT( sy Tz )
2
du, P,y P,y P,
Poa? = Vz‘(aT( sy Yoz )

The components of the first Piola-Kirchhoff stress tensor are non symmetric in the

general case, thus
P, # Plj

because the component indices correspond to different frames. Such tensors are called

two-point tensors.
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The boundary load vector Fp in case of geometric nonlinearity can be related to the

first Piola-Kirchhoft stress tensor via the following formula:
Fy =P n,

where the normal ng corresponds to the undeformed surface element. Such a force

vector is often referred to as the nominal traction. In components, it can be written as
Fpy=Puxnx+Poyny+Pyzny
FAy =P xny+ PyYnY+PyZnZ
Fp,=Pxny+Pyny+P,zny
The Cauchy stress, o, can be calculated as
1 T 1 T
c=J PF =dJ FSF

The Cauchy stress is a true stress that relates forces in the present configuration (spatial
frame) to areas in the present configuration, and it is a symmetric tensor.

Equation 3-10 can be rewritten in terms of the Cauchy stress as

2

pa—u =f,-V, o

at2

where the density corresponds to the density in the actual deformed state, the volume
force vector fy has components in the actual configuration (spatial frame) given with
respect to the deformed volume, and the divergence operator is computed with respect

to the spatial coordinates.

The pressure is computed as

p = —%trace(c)

which corresponds to the volumetric part of the Cauchy stress. The deviatoric part is
defined as

04 = o+pl

The second invariant of the deviatoric stress

1
Jy(0) = 5%4:%4
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is used for the computation of von Mises (effective) stress

mises — A/ 3J2(G)

o
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Material Models

There are many material models available for structural analysis in COMSOL

Multiphysics. In this section, theory for all material models is presented. The material

models available, and also some detailed aspects of them, depend on which licenses you

have. The material models, grouped by families, are as follows:

Linear Elastic Material
Nonlinear Elastic Materials
- Ramberg-Osgood

- Power Law

- Bilinear Elastic

- Uniaxial Data

- Hyperbolic Law

- Hardin-Drnevich

- Duncan-Chang

- Duncan-Selig

- User Defined

Linear Viscoelastic Materials

- Generalized Maxwell Model
- Standard Linear Solid Model
- Kelvin-Voigt Model

MATERIAL MODELS |
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* Hyperelastic Material Models

Neo-Hookean

St Venant-Kirchhoft
Mooney-Rivlin, Two Parameters
Mooney-Rivlin, Five Parameters
Mooney-Rivlin, Nine Parameters
Yeoh

Ogden

Storakers

Varga

Arruda-Boyce

Gent

Blatz-Ko

Gao

Murnaghan

User Defined

Mullins Effect

¢ Elastoplastic Material Models

von Mises Criterion

Tresca Criterion

Shima-Oyane Criterion

Gurson Criterion
Gurson-Tvergaard-Needleman Criterion
Fleck-Kuhn-McMeeking Criterion
FKM-GTN Ciriterion
Mohr-Coulomb Criterion
Drucker-Prager Criterion
Matsuoka-Nakai Criterion
Lade-Duncan Criterion

Hill Orthotropic Plasticity
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Failure Criteria for Concrete, Rocks, and Other Brittle Material

Bresler-Pister Criterion
Willam-Warnke Criterion
Ottosen Criterion

Original Hoek-Brown Criterion

Generalized Hoek-Brown Criterion

Elastoplastic Soil Models

Creep and Viscoplasticity

Norton Law (Power law)
Norton-Bailey Law

Garofalo Law (Hyperbolic Sine Law)
NaBarro-Herring Creep (Dittusional Creep)
Coble Creep (Diffusional Creep)
Weertman Creep (Dislocation Creep)
Anand Viscoplastic Model

Chaboche Viscoplastic Model
Perzyna Viscoplastic Model

Creep Potential

Volumetric Creep

Deviatoric Creep

User Defined Creep

Piezoelectric Material

Magnetostrictive Material

Rigid Domain Model

Damage Models

Safety Factor Evaluation
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You can also add a material model which you have coded yourself and made available

as a binary library file using an External Stress-Strain Relation.

In the COMSOL Multiphysics Reference Manual:

@l * Working with External Materials

e External Material

Linear Elastic Material

For a linear elastic material, Hooke’s law relates the stress tensor to the elastic strain

tensor:
G =0, +Cig = 0y +C:(E—g) (3-11)

where C is the 4th order elasticity tensor, “:” stands for the double-dot tensor product
(or double contraction). The elastic strain €] is the difference between the total strain
€ and all inelastic strains €;,0. There may also be an extra stress contribution 6, with
contributions from initial stresses and viscoelastic stresses. In case of geometric

nonlinearity, the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain

tensor are used.

The elastic strain energy density is

1 1
W, = 5t (C 18y +200) = 5e, : (0+0() (3-12)
This expression assumes that the initial stress contribution is constant during the

straining of the material.

TENSOR VS. MATRIX FORMULATIONS

Because of the symmetry, the strain tensor can be written as the following matrix:

€y Exy €z

xy 83’ Syz

€ €

€
€z yz Tz

A similar representation applies to the stress tensor:
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Q

x Cxy

A q
0

Oz
xy Gyz
S,

Q
Q

xz “yz

Due to the symmetry, the elasticity tensor can be completely represented by a
symmetric 6-by-6 matrix as:

' ] 1111 1122 1133 1112 1123 _1113]
Dy Dyg Dy3 D1y Dy5 Dy c c c c C C
D1y Dgg Dyg Dyy Dgs Dy cl122 (2222 2233 2212 2223 2213
D Dy3 Dy Dyg Dy Dys Dyg| _ 1133 (2233 3333 3312 3323 3313
D,y Dy, Dy D,y Dys Dy cll12 (2212 (3312 1212 1223 1213
Dys Dy Dgs Dys Dy D cl123 2223 (3323 1223 2323 2313
D16 D2g D36 Dy Dsg Dl c1113 2213 3313 1213 2313 1313
which is the elasticity matrix.
ISOTROPIC MATERIAL AND ELASTIC MODULI
In this case, the elasticity matrix becomes
1-v v v 0 0 0
v 1-v v 0 0 0
v v 1-v 0 0 0
___E o o o E® o o
(1+v)(1-2v) 2
o 0o o o = o
2
0 0 o0 o o
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Different pairs of elastic moduli can be used, and as long as two moduli are defined,

the others can be computed according to Table 3-1.

TABLE 3-1: EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,v) DE.G) DKK.,G) D(A,0)
Young’s E-= E E 9KG 3A+2u
modulus 3K+G e u
Poisson’s V= v £ 4 1 3G A
ratio 2G 5( _3K+G) 2(h+ 1)
Bulk K= E EG K 3 2M
modulus 3(1-2v) 3(3G-E) "3
Shear G= E G G n
modulus 2(1+v)

Lamé A= Ev GE-2G) . 2G A
parameter (L+v)(1-2v) 3G-E "3

A

Lamé u= E G G n
parameter 2(1+v)

u

Pressure- ¢y = J E(1-v) JG(ALG—E) K+4G/3 I+ 20
wave speed p(1+Vv)(1-2v)N p(3G-E) p P
Shear-wave cg = JT JG/p JG/p S/ p
speed 2p(1+v)

According to Table 3-1, the elasticity matrix D for isotropic materials is written in
terms of Lamé parameters A and W,

A+20L A A 000
A A+20 A 000
D = A A A+20000
0 0 0 pnoo
0 0 0 Opo
Y 0 0 00

or in terms of the bulk modulus K and shear modulus G:
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K+ _2G 2G

4G
3K 3K—3000
2G 4G 2G
—3K+3K—3000
D = 2G 2G 4G
K—SK—3K+3OOO
0 0 0 GOO
0 0 0 0GO

0 0 0 00G

K

ORTHOTROPIC AND ANISOTROPIC MATERIALS
There are two different ways to represent orthotropic or anisotropic data. The
Standard (XX, YY, ZZ, XY, YZ, XZ) material data ordering converts the indices as:

11 1 x

22 2 y

33 o 3 PN 4
12,21 4 xy
23, 32 5 yz
113,31 |6 |xz]

thus, Hooke’s law is presented in the form involving the elasticity matrix D and the

following vectors:

Oy Oy &y &y

o, — %, +D € _ €,

Oy Oy 2£xy 2sxy

Sy, Oy, 2e,,| |28,
_ch_ _G.X'Z_ ex _2 8JCZ_ _2 ng_ inel

COMSOL Multiphysics uses the complete tensor representation internally to perform

the coordinate system transformations correctly.

Beside the Standard (XX, YY, ZZ, XY, YZ, XZ) Material data ordering, the clasticity
coefficients can be entered following the Voigt notation. In the Voigt (XX, YY, ZZ, YZ,
XZ, XY) Material data ordering, the sorting of indices is:
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11 1 x

22 2 y

3B | L5138 l?
23,32 4 yz
13, 31 5 xz
112, 21] 6] | xy]

The last three rows and columns in the elasticity matrix D are thus swapped.

Orthotropic Material
The elasticity matrix for orthotropic material in the Standard (XX, YY, ZZ, XY, YZ, XZ)

Material data ordering has the following structure:

D11D12D13 0
D12D22D23 0
D13D23D33 0
0 0 0 Dy 0
0 0 0 0 Dg
0 0 0 0 0 Dg

S o o

0
0
0
0
0

where the components are as follows:

2 2
Do = E (E,v, -E) D = _E E (Eszszz+Enyy)
1 Ddenom ’ 12 Ddenom
D.. - ExEyEz(nyVyz+V ) Do - E? (Ezvxz E)
13 D denom 22 D denom
2
B Z(Ey vy xZ+ExvyZ) _ EE, (E\v, -E)
23 ~ D D33 - D
denom denom
D44=ny’ D55=Gyz’ and D66=ze

where

DdenoszE EE +2v_ v, v EFE +EEV +Eyvxy

yzxz xy yz xz "y z x~zVyz
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The values of Ey, Ey, E, Vyy, Vyzs Vaz, Grys Gyzs

fields in the physics interface. COMSOL Multiphysics deduces the remaining

and G, are supplied in designated

components—yvyy, V., and v, —using the fact that the matrices D and D lare

symmetric. The compliance matrix has the following form:

1 Vox Ve
E, "E, E,
Vay 1 Ve
E, E, E,
Yoz Vye 1
1 _|'E, E, E,
0 0 0
0 0 0
0 0 0

ooo_
0 0 0
0 0 0
Gixyoo
1
oé—y;o
1
OOG_xz_

The values of v, and v, are different for an orthotropic material. For a

certain set of given material data, you must make sure that the definition

of the indexes is consistent with the definition used in COMSOL

Multiphysics.

The elasticity matrix in the Voigt (XX, YY, ZZ, YZ, XZ, XY) Material data ordering changes

the sorting of the last three elements in the elasticity matrix:

Dy =G,

Anisotropic Material

In the general case of fully anisotropic material, you provide explicitly all 21

z>

Dgs =G

xz>

and Dgg = ny

components of the symmetric elasticity matrix D, in either Standard (XX, YY, ZZ, XY, YZ,
XZ) or Voigt (XX, YY, ZZ, YZ, XZ, XY) Material data ordering.

AXIAL SYMMETRY

For the linear elastic material, the stress components in coordinate system are

ij

ij ijkl
" = Oy +C (€7~ Einel 21)
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For anisotropic and orthotropic materials, the 4th-order elasticity tensor is defined

from D matrix according to:

G, o, e, €,
S| _ |%| ,pl| % |_| %
GZ GZ 82 82
Grz Grz ex 287'2 287'2 inel

The user input D matrix always contains the physical components of the elasticity

tensor

phys
ijkl

and the corresponding tensor components are computed internally according to:
phys
ikl Ciinl

ng@ gkk«/lgTI

For an isotropic material:

ikl ij kl kgl il jk
c* = agYg" v g + 8" g

where A and W are the first and second Lamé elastic parameters and g is the metric

tensor.

For a hyperelastic material, the second Piola-Kirchhoff stress tensor is computed as

which is computed as the contravariant components of the stress in the local

coordinate system:

SY — 9 s
9C;;

The energy variation is computed as

S : test(e) = ZSijtest(sij)

i
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which can be also written as

S, test(e,) + S(ptest(e(p) + S, test(e,) + 25, test(e

I‘Z)

ENTROPY AND THERMOELASTICITY

The free energy for the linear thermoelastic material can be written as
F = pfo(T)+ Wy(e,T)

where the strain energy density W (e, T) is given by Equation 3-12. Hence, the stress
can be found as

G = (%)T = (g_?)T =C:(e-¢gpy)

and the entropy per unit volume can be calculated as

0.
_(aiT')g = pCplog(T/TO) +8 last

where Tg is a reference temperature, the volumetric heat capacity pCp, can be assumed

to be independent of the temperature (Dulong-Petit law), and the elastic entropy is

Selast = *: 0
where o is the thermal expansion coefficient tensor. For an isotropic material, it

simplifies into

S elast = (0, + o, + G,)

The heat balance equation can be written as

aT
LEY

d

pC — + Tgselast = V- (kVT)+Q,

where & is the thermal conductivity matrix, and the heat source caused by the

dissipation is
Q=r1: €

where £ is the strain-rate tensor and the tensor T represents all possible inelastic stresses

(for example, a viscous stress).
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Using the tensor components, the heat balance can be rewritten as:

pCpg—f+ > T(an%cmn = V- (kVT)+ @, (3-13)

m.n

In many cases, the second term can be neglected in the left-hand side of Equation 3-13
because all T'o,,,,,, are small. The resulting approximation is often called uncoupled

thermoelasticity.

Mixed Formulation

Nearly incompressible materials can cause numerical problems if only displacements

are used in the interpolating functions. Small errors in the evaluation of the volumetric
strain, due to the finite resolution of the discrete model, are exaggerated by the high
bulk modulus (or low bulk modulus to shear modulus ratios). This leads to an unstable
representation of stresses, and in general, to a underestimation of the deformation, as

spurious volumetric stresses might balance applied shear and bending loads.

When the Pressure formulation is sclected in the Use mixed formulation list, the

volumetric stress py, is treated as an additional dependent variable. The resulting mixed
formulation is also known as u-p formulation. This formulation removes the effect of
the volumetric strain from the original stress tensor and replaces it with an interpolated
pressure, py,. A separate equation constrains the auxiliary pressure variable to make it

equal (in a finite-element sense) to the original pressure calculated from the strains.

When the Strain formulation is selected in the Use mixed formulation list, the volumetric

strain €, is treated as an additional dependent variable.

Select this setting when the material data is close to incompressibility. For an isotropic

material, this happens when Poisson’s ratio approaches 0.5.

The mixed formulation is useful not only for linear elastic materials but
also for elastoplastic materials, hyperelastic materials, and viscoelastic

materials.

CHAPTER 3:
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The order of the shape function for the auxiliary pressure variable should
be one order less than that for the displacements. Thus, it is not
recommended to use linear elements for the displacement variables in
n domains where the mixed formulation is turned on. Also note that some
iterative solvers do not work well together with mixed formulation

because the stiffness matrix becomes indefinite.

When the Pressure formulation is sclected for isotropic linear elastic materials, the stress
tensor s, computed directly from the strains, is replaced by a modified version:
s =s+(p-pl

where I is the unit tensor and the pressure p is calculated from the stress tensor

p= —§ trace(s)

this is equivalent to define

; = dev(s)-p, I

The auxiliary dependent variable py, is set equal to p using the equation

Pw p _ .
e K_() (3-14)

where K is the bulk modulus. Scaling by the bulk modulus is necessary, since typical

values for the auxiliary pressure py, are in the order of 10° to 10° Pa, while typical

values for the displacement degrees are orders of magnitude smaller.
The modified stress tensor s is then used then in calculations of the energy variation.

When the Strain formulation is selected for isotropic linear elastic materials, the
auxiliary volumetric strain € is used instead of the auxiliary pressure py,, and it is the

set equal to the volumetric strain €, using the equation

—K(e,—g,) = 0 (3-15)

w

the modified stress tensor then reads

; =s+K(e,—e, DI = dev(s) + Ke I
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The advantage of using the Strain formulation is that the values for the auxiliary strain

€, are of the same order of magnitude than the displacement degree of freedom.

For orthotropic and anisotropic materials, the auxiliary pressure equation is scaled to
make the stiffness matrix symmetric. Note, however, that the stiffness matrix in this

formulation is not positive definite and even contains a zero block on the diagonal in
the incompressible limit. This limits the possible choices of direct and iterative linear

solver.

In case of linear elastic materials without geometric nonlinearity (and also

for hyperelastic materials), the stress tensor s in the above equations is

replaced by the 2nd Piola-Kirchhoft stress tensor S, see Nearly

Incompressible Hyperelastic Materials.

CHAPTER 3:

Nonlinear Elastic Materials

As opposed to hyperelastic materials, where the stress-strain relationship becomes
significantly nonlinear at moderate to large strains, nonlinear elastic materials present

nonlinear stress-strain relationships even at infinitesimal strains.

Here, nonlinear effects on the strain tensor are not as relevant as the nonlinearity of
the elastic properties. Important materials of this class are Ramberg-Osgood for

modeling metal and other ductile materials, and the Duncan-Chang soil model.

The nonlinear elastic materials as such do not include strain-rate nor stress-rate in the
constitutive equations. It is however possible to add linear viscoelasticity to these

materials.

For a nonlinear material to be “energetically sound” it should be possible to take any
path in stress-strain space and return to the undeformed state without producing or
dissipating any net energy. A requirement is then that the bulk modulus depends only
on the volumetric strain, and the shear modulus depends only on the shear strains.

The splitting into volumetric and deviatoric components of the stress tensor helps

ensuring the “path independent” restriction for isotropic nonlinear elastic materials.

For isotropic linear elastic materials, the stress tensor follows Hooke’s law:
G =0,+C:€g  =0,+C:(e-g.)

1

For a more detailed discussion, see Equation 3-11.
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It is possible to split the stress and elastic strain tensors into the deviatoric and

volumetric contributions
1
6 = dev(o) + §tracc((5)[
and
1
g, = dev(e,) + gtracc(ecl)l

Assuming only elastic stresses in linear isotropic elastic medium, Hooke’s law simplifies

to
6 = dev(o) + %tracc(c)[ = 2Gdev(e,) + Ktrace(g )]

where K is the bulk modulus and G is the shear modulus. By using the convention that

the pressure is the mean stress defined as positive in compression,
1
p= —gtracc(c)

The volumetric strain (positive in tension) is
€lvol = trace(g)

The linear relation between pressure and volumetric elastic strain is thus

p = -Ke

el,vol

The deviatoric stress and deviatoric elastic strain tensors are related by the shear

modulus
dev(o) = 2Gdev(ey)

By using the contraction of the deviatoric stress and strain tensors, we can alternatively

relate the invariants of these tensors
1 ) 2
Jo(0) = édcv(c).dcv(c) = (2G)"Jy(gy)

For a body subject to pure torsion on the plane 12, the stress tensor components are
zero except the shear stress 619 = 091 = T, and also the elastic strain tensor has zero

components beside the shear strains on that plane €19 = €91 = Yo1/2.
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We can then write
1 2
Jy(0) = édev(c):dcv(c) =1
and
1 12
Jo(ey) = édev(sel):dcv(ed) = 7Y

The shear stress on the plane T = ,/J,(0) is then related to the elastic shear strain
Yo = 2819 = 2,/J5(g,) by the shear modulus

T = Gy,

Nonlinear Moduli
For nonlinear elastic materials, there is a nonlinear relation between shear stress and

shear strain and/or a nonlinear relation between pressure and volumetric strain.

For the purpose of this discussion, T = ,/J4(0) and v, = 2,/J4(g,) are used

alternatively as variables.

In the most general case:
p = p(gel,vol) and 7 = T(Yep)

Tangent and secant moduli
The tangent shear modulus G(Y]) and the secant shear modulus G4(Ye)) in the most
general case depend nonlinearly on the shear strain, and are defined as
G, =L andG, = =~
aYel Yel
The tangent bulk modulus Ki(g,] vo1) and the secant bulk modulus Ky(&g] yo1) depend
on the elastic volumetric strain, and are defined as

Ktz——aL and K, = ——£—
e s

el,vol E':cl,vol

For linear elastic materials, it is clear that Gy = G = G and K = K = K, but this is not

the case for nonlinear elastic materials.

At zero strain, the secant and shear moduli are equal to each other G4(0) = Gy (0) and
K,(0) = K, (0).
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The nonlinear elastic materials described in the next sections are represented by

introducing nonlinear secant shear and/or bulk moduli.

Geometric nonlinearity

The nonlinear elastic material models are primarily intended for small strain analysis.
When used in a geometrically nonlinear study step, the strains will be interpreted as
Green-Lagrange strains and the stresses will be interpreted as second Piola-Kirchhoff
stresses. This is relevant for a situation with large rotations but small strains. If the
strains become larger than a few percent, then you must be careful when interpreting
input parameters and results since the strain and stress tensors also have a nonlinear

dependence on the displacements.

RAMBERG-0SGOOD

Ramberg-Osgood material model (Ref. 1) is a nonlinear elastic material commonly
used to model plastic deformation in metals, but it also often used in soil engineering.
As it is an elastic model, it can only represent plasticity during pure on-loading
conditions.

For uniaxial extension, the stress-strain curve is defined by the expression

Here, E means the initial Young’s modulus, and &..¢ is the strain at a reference stress
Oref- The parameter n is the stress exponent. It is common to use €.o¢ = 0.002, 50 Gpof
is the stress at 0.2% strain, typically denoted by the symbol 6 9. This parameter has
several names depending on the literature: 0.2% offset yield strength, 0.2% proof stress,
0.2% proof strength, or 0.2% yield stress. Typical values for stainless steel are E =200
GPa, 6y 9 = 600 GPa, and n =4.8.

The linear strain is given by

and the nonlinear strain by

The total strain is the sum of linear an nonlinear strains

MATERIAL MODELS |

301



302 |

CHAPTER 3:

£ = e +e, = 2+4¢ {i)n
— %el nl — ref
E O ref

In order to avoid a circular dependence of internal variables, the nonlinear strain €] is

defined with an auxiliary degree of freedom, so the stress reads 6 = E(e — €).

Ramberg-Osgood material in soil engineering
In soil engineering, it is common to write Ramberg-Osgood material with the

stress-strain cxprcssion
o O f c \"
£ = = +0— (_) (3-16)

so at the reference stress Gef, the strain is € = (1 + 0)G,f/E. It is common to use o = 3/
7, s0 Gperrepresents the stress level at which the secant Young’s modulus has been
reduced to 70% its initial value: Eq 7 = E/(1 + o)) = 0.7E. At this reference stress the
strain is € = Gpep/Eq 7.

POWER LAW
For this type of material the shear stress is related to the shear strain by the strain

exponent n and a reference shear strain Yo (Ref. 2)

T = Goyret(i)n

The secant shear modulus is given by the power law relation

G, = Go(i—)”'l

The strain exponent controls the nonlinear deformation:

e For n > 1 the material behaves as a dilatant (shear-thickening) solid
e For n =1 the material is linear elastic
¢ For 0 < n< 1 the material behaves as pseudoplastic (shear-thinning) solid

¢ For n = 0 the material is perfectly plastic

BILINEAR ELASTIC
The most commonly mentioned model of “bilinear elastic” material is defined with

two different bulk moduli for either tension and compression. Commonly, brittle
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materials like graphite and ceramics exhibit this behavior. The secant bulk modulus

reads:

K = K, for gg v >0
and

K = K forgg 4o <0

where €g] v is the volumetric strain, K is the bulk modulus for compression, and Kj

the bulk modulus for tension.

UNIAXIAL DATA
Many nonlinear stress-strain curves are measured in a tensile test, for which a nonlinear

curve of force vs displacement is obtained.

If only the uniaxial behavior is measured, the measurements do not fully define the
material behavior. An extra assumption is needed. The Uniaxial data material model
allows you to assume either a constant Poisson’s ratio, or a constant bulk modulus.
Also, if only uniaxial extension data is available, further assumptions are needed for

covering the uniaxial compressive behavior of the material.

For the uniaxial tensile test, the axial stress corresponds to the principal stresses

Oax = 01 = Omiges> a0d the other two principal stresses are equal to zero, 69 = 63 = 0.

The principal (axial) strain is positive in tension, €,5 = €1, and the other two strains

(transverse) are negative and related by the Poisson’s ratio €9 = €5 = —ve;.

For uniaxial compression, the axial strain is negative, and it corresponds to the third
principal strain, €, = €3, when the principal strains are sorted as €1 > €9 > €3. The other
two strains (transverse) are positive and related by the Poisson’s ratio €1 = €9 = —veg.
Also, the axial stress is negative in compression, and it corresponds to the third
principal stress G,y = O3 = -Opises- L he other two transverse stresses are zero

01 =09 = 0.

Other two strain measures can be obtained from the strain tensor or its principal values,

the volumetric strain
€, = trace(g) = €+ &5 +€4

and the shear strain,
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Y = J2dev(e):dev(e) = A/g((a1 - 32)2 + (€9 — 83)2 + (g1 - 83)2) .

These are used to define the axial strain variable for multiaxial loading.

The uniaxial test defines then the relation between the axial stress and axial strain as
Gax = ESSaX

here, Ej is the secant Young’s modulus, and the axial stress 6,4 is considered as a
function of axial strain €,5. Thus

At zero strain, the secant Young’s modulus is defined as

do,,
ES = —
dsax
e =0
ax

Assuming a constant Poisson’s ratio, the secant shear modulus is then defined as

ES
G. .= ——
S 2(1+v)
and the secant bulk modulus as
K By
s T 3(1-2v)

Furthermore if only tensile stress-strain data is available, the axial strain for multiaxial

loading is computed from the shear strain and Poisson’s ratio as

e = a3y
ax — 2(1+v)

When nonsymmetric stress-strain data is available, the axial strain for multiaxial loading

is computed from the volumetric strain and Poisson’s ratio

_ €yol
ax  1-2v

as this expression captures the change of sign in the axial strain when changing from a

tensile to a compressive state.
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When using a constant bulk modulus assumption, only the symmetric part from the

stress-strain data is taken into account. The secant shear modulus is instead defined as

3KE,

% = 9k _E,

and the axial strain is defined from both shear volumetric and shear strain

3

See also the description of the Uniaxial Data material model in the Solid

E}t Mechanics interface documentation.

HYPERBOLIC LAW
An hyperbolic relation between shear stress and shear strain is obtained by setting the

secant shear modulus

° 1+(?1—)n

where the strain exponent n and a reference shear strain y,.o¢ control the shape of the

hyperbola.

For hyperbolic material models, the maximum shear modulus is occurs at zero shear
strain, so practitioners might call G the “maximum shear modulus” and use the

notation G,y Sometimes it is also called “small strain shear modulus”.

HARDIN-DRNEVICH
The Hardin-Drnevich model (Ref. 3) is an hyperbolic soil model (with n = 1) defined

by two input parameters: the initial shear modulus G and a reference shear strain Yy

G, = G—
1+-L
Vref

This nonlinear soil model is commonly used for modeling soil dynamics in earthquake

engineering problems.

Since T = Gy, the shear stress is bounded by Ty, .4 = GYper as the shear strain increases.
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The hyperbolic Hardin-Drnevich model is normally used for quantifying stiffness
reduction curves in soils. Commonly, the reference shear strain y,..¢ is replaced by the
reference shear strain at which the secant shear modulus has been decreased to 70% its

initial value. Calling this shear strain value Yq 7, the reference strain is written as

7
Yref = 30,7

and the secant shear modulus as

GS = G#
145

+
o7

so that when y =Yg 7 the secant shear modulus is Gg=0.7G.

DUNCAN-CHANG

The original model was originated by Kondner to fit triaxial test data for undrained
soils. Duncan and Chang (Ref. 4) and other coworkers (Ref. 5) developed this
hyperbolic model to its current state. The material model is written in terms of the axial
and radial stresses 67 and o3 and the axial strain €, and it describes the stress-strain

curve by fitting the hyperbola

€
a+be

0;-03 =

here @ and b are material parameters obtained by curve fitting data from the triaxial

test. The parameter a is related to the initial Young's modulus E

and the parameter b defines the asymptote of the hyperbola, which is related to the
ultimate value of 67 — 03 denoted g,

[u—y

7 = (01-03), = Qe

S

The ultimate value g is related to the strength of the soil.

For the triaxial test, the axial strain € is related to the shear strain y by the Poisson’s

ratio as
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/3

E=3a+v)!

and the axial and radial stresses are related to the shear stress as 6, - 05 = J3T.

It is possible then to write the relation between shear stress and shear strain as

1
_ 2g1+vgy
1,1 B
E q,2(1+v)

Since the initial shear modulus is related to the initial Young’s modulus as
G = E/2(1+ V), we can alternatively write this stress-strain relation as

S
B
=+
G 9yl

which is an hyperbolic law with a secant shear modulus of

G

1+ Qﬁy
9 it

G, =

DUNCAN-SELIG

The Duncan-Selig model is a combination of the Duncan’s hyperbolic material model
(Ref. 4, Ref. 5) and Selig’s model to describe nonlinear bulk modulus behavior. Selig
(Ref. 6) further developed the model of Duncan et al. in order to include a nonlinear

volumetric response in soils.
The model defines the nonlinear volumetric response for the pressure as
p = _K eel}vol

1— 8el,vol

Eult

where €] yo1 is the volumetric strain, and €y is the asymptote of the hyperbola, the
maximum value for the volumetric compression. Note that K represents the bulk

modulus at zero strain.

The secant (nonlinear) bulk modulus is defined for this material model as
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1- el,vol

ult

USER DEFINED
This option allows you to write explicitly how the pressure depends on the elastic

volumetric strain. This could be an analytic function or data interpolated from a table.

The elastic volumetric strain €

elvol €an be called in user defined

expressions by referencing the variables solid.eelvol, where solid is
the Name of the physics interface node.

CHAPTER 3:

Linear Viscoelastic Materials

Viscoelastic materials have a time-dependent response even if the loading is constant
in time. Many polymers and biological tissues exhibit this behavior. Linear
viscoelasticity is a commonly used approximation where the stress depends linearly on
the strain and its time derivatives (strain rate). Also, linear viscoelasticity deals with the
additive decomposition of stresses and strains. It is usually assumed that the viscous
part of the deformation is incompressible so that the volumetric deformation is purely

elastic.

GENERALIZED MAXWELL MODEL
For isotropic linear elastic materials in the absence of inelastic stresses, Hooke’s law in

Equation 3-11 reduces to
c=C:¢

el

where the elastic strain tensor €,] = € — €;,¢] represents the total strain minus initial and

inelastic strains, such as thermal strains.

The stress tensor can be decomposed into a pressure and a deviatoric stress:
6 = -pl+oy

The pressure, mean stress, or volumetric stress, is given with a positive sign in

compression

p = —%trace(c)
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and the deviatoric stress is computed from the total stress minus the volumetric

contribution
04 = dev(o) = 6 +pl

The elastic strain tensor €] can in the same way be decomposed into volumetric and

deviatoric components

€ L +egq

-1
el — 3€el,vo
with the volumetric elastic strain given by

€elvol = tracc(sel)

and the deviatoric contribution by
gq = dev(ey)

For isotropic linear elastic materials, the pressure is then related to the volumetric

elastic deformation by the bulk modulus K

p = _%tracc(c) = —Ktrace(g,) = _Ksel,vol

and the deviatoric stress tensor is linearly related to the deviatoric elastic strain tensor
by the shear modulus G

04 = dev(o) = 2Gdev(gy) = 2Gey
The total stress in Equation 3-11 is then
0 = Keg ol +2Gegy

In case of geometric nonlinearity, ¢ represents the second Piola-Kirchhoff stress tensor

and g the elastic Green-Lagrange strain tensor.

For viscoelastic materials, the deviatoric stress G4 is not linearly related to the deviatoric
strain €4 but it also depends on the strain history. It is normally defined by the
hereditary integral:

t

LO8q

64 = 2jr(t—t)§dt
0
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The function I'(¢) is called the relaxation shear modulus function (or just relaxation
function) and it can be found by measuring the stress evolution in time when the

material is held at a constant strain.
The relaxation function is often approximated by a Prony series:
v
t
T'(t) = G+ G exp(——)
2. Gmexpl—
m=1

A physical interpretation of this approach, often called the generalized Maxwell
model, is shown in Figure 3-1

G4

Gq

Figure 3-1: Generalized Maxwell model.

Hence, G is the stiffness of the main elastic branch, G,,, represents the stiftness of the
spring in branch m, and 1,,, is the relaxation time constant of the spring-dashpot pair

in branch m.

The auxiliary strain variable g, is introduced to represent the extension of the
corresponding abstract spring, and the auxiliary variables v,, = € — q,,, represent the

extensions in the dashpots.

The shear modulus of the elastic branch G is normally called the long-term shear
modulus, or steady-state stiffness, and is often denoted with the symbol G, . The

instantaneous shear modulus Gy is defined as the sum of the stiffness of all the branches
Pl
Gy =G+ Z G,
m=1

This is the stiffness when the external load is applied much faster than the shortest

relaxation time of any viscous branch.
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The relaxations time T, is normally measured in the frequency domain, so the viscosity
of the dashpot is not a physical quantity but instead it is derived from stiffness and
relaxation time measurements. The viscosity of each branch can be expressed in terms

of the shear modulus and relaxation time as

The stress per branch can be written either in terms of the strain in the spring q,,, or
the strain in the dashpot vy,,

o, =2G,q,, =2n,Yn = 2G, (-7,

The sum of the stresses in the viscoelastic branches is then computed from

1V

o, = Z G,, = Z 2G,,(e-v,,)
-1

m=1

The total stress in Hooke’s law (Equation 3-11) is then augmented by the viscoelastic

stress Gq
G =0p+C:gy+0, (3-17)

Computing the Stress on Each Branch

The auxiliary variable v,, is a symmetric strain tensor, which has as many components
as the number of strain components of the problem class. Since the stress per branch
is written as

6, = 2G,q,, = 20,Ym = 2G, (-7,
the auxiliary variables vy,, can be computed by solving the ODE
MY = Gp(€ =Yy, (3-18)
The relation between viscosity and relaxation time is
Mm = Gy
so that Equation 3-18 can equivalently be written as
T Ym + ¥y, = € (3-19)

The viscoelastic strain variables 7, are treated as additional degrees of freedom. The

shape functions are chosen to be one order lower than those used for the displacements
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because these variables add to the strains and stresses computed from displacement
derivatives. The viscoelastic strain variables do not require continuity so discontinuous

shape functions are used.

The viscoelastic strain variables 7,, are called solid.lemmi.vis1.ev,
where solid is the Name of the physics interface node, and 1emm1 is the
name of the elastic material node.

Energy Dissipation
The dissipated energy density rate (SI unit: W/ ms) in each branch m is

Wm = Gml'.Ym

The rate of total dissipated energy density in the Generalized Maxwell material is then
v
Wy = z W
=1

In order to compute the dissipated energy density, the variable Wv is integrated over
time. For frequency domain studies, the dissipation of viscous forces averaged over a

time period 21/ is computed from the shear loss modulus G” as

W, = wG"s~d : conj(s~d)
STANDARD LINEAR SOLID MODEL
The standard linear solid model, also called SLS model, Zener model, or
three-parameter model, is a simplification of the generalized Maxwell model with only
one spring-dashpot branch:

Od

G1 lql
el G o

1

q

G4

Figure 3-2: Standard linear solid (SLS) model.
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The stress in the single branch is computed as
Oy = 2G197 = 2111 = 2G4(e-71q)
where the relaxation time is related to the stiffness and relaxation time as 17 = 1G1.

The auxiliary strain tensor y; is computed after solving by the ODE
TtV =€

and the dissipated energy density rate of the single branch is calculated from
Wy =0 ql"Yl

KELVIN-VOIGT MODEL

The Kelvin—Voigt viscoelastic model is represented by a spring connected in parallel

!

el G Nl o

St

04

with a damper:

Odq

Figure 3-3: Kelvin-Voigt model.
The stress tensor in the viscous branch is computed from the elastic strain rate

Oy = 2ne = 2G1e (3-20)

so there is no need to add the extra DOFs to compute the auxiliary strain tensor .

The relaxation time relates the viscosity and shear modulus by 1 =1G. The equivalent

shear modulus is used in case of a anisotropic linear elastic material.

The dissipated energy density rate of the Kelvin-Voigt model is then computed from
its rate
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BURGERS MODEL
The Burgers model, consists of a spring-dashpot branch in series with a Kelvin-Voigt
branch:

Gq

G 18—7
3 __
Go<Z M2t Y2

St

G4

Figure 3-4: Burgers model.

The strain in the fist dash-pot follows the ODE
21,71 = dev(o) = 2G(e-7)
where the shear modulus G is taken from the parent Linear Elastic material.
The strain in the second dash-pot follows the ODE
2NgYe = dev(6) - 2G5y,
The total strain in the dampers is computed from
Y="1+7

Combing these equations, it is possible to recover a second-order ODE for the strain

tensor v,

GZ
2nyn,

T (0 S IR UL T
Yo = (2ﬂ1+2ﬂ dev(c)—n2y+ dev(o)
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Note that Burgers viscoelastic material has two relaxation times related to the stiffness
and viscosity in the springs and dash-pots. The relaxation times T and 19 are related to

the stiffness and viscosities as Ty =11/G and 19 =N9/ Go.

TEMPERATURE EFFECTS

For many polymers, the viscoelastic properties have a strong dependence on the
temperature. A common assumption is that the material is thermorheologically simple
(TRS). In a material of this class, a change in the temperature can be transformed

directly into a change in the time scale. The reduced time is defined as

t
- I_dt'_
0OtT(T(t'))

r

where op(T) is a temperature-dependent shift function.

The implication is that the problem can be solved using the original material data,

provided that the time is transformed into the reduced time.

Think of the shift function ovp(T') as a multiplier to the viscosity in the dashpot in the
Generalized Maxwell model. This shifts the relaxation time, so Equation 3-19 for a
TRS material is modified to

(T, Ym + Yy, = €
For the SLS model, the shift applies to a single branch
ap(T)Tyy1+7, = €
and for the Kelvin-Voigt model, it applies to the viscosity in the damper.

Williams-Landel-Ferry Shift
One commonly used shift function is defined by the WLF (Williams-Landel-Ferry)

equation:

-C(T-Ty

log(or) = 77,

where a base-10 logarithm is assumed. This shift is only valid over a certain range of
temperature, typically around the glass transition temperature.

The first step to compute the shift factor o consists of building a master curve based
on experimental data. To do this, the curves of the viscoelastic properties (shear
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modulus, Young’s modulus, and so forth.) versus time or frequency are measured at a
reference temperature T\y. Then, the same properties are measured at different

temperatures.

The shift value of each curve with respect to the master curve obtained at the
temperature Ty defines the shift factor op(T'). The constants Cq and Cg are material
dependent and are calculated after plotting log(cy) versus T'— T .

op(Tgy) = 1 so that T is the temperature at which the master curve is

4 given. If the temperature drops below Ty — Cg, the WLF equation is no

longer valid.

CHAPTER 3:

Since the master curve is measured at an arbitrary reference temperature T, the shift
factor oup(T') can be derived with respect to any temperature, and it is commonly taken
as the shift with respect to the glass transition temperature. The values Cq = 17.4 and
C5 = 51.6 K are reasonable approximations for many polymers at this reference

temperature.

Arrhenius Shift
Below the Vicat softening temperature, the shift factor in polymers is normally
assumed to follow an Arrhenius law. In this case, the shift factor is given by the

here, a base-e logarithm is assumed, @ is the activation energy (SI unit: : J/mol), and

equation

R is the universal gas constant.

STATIONARY ANALYSIS
For stationary analysis it is possible to select either the long-term stiffness, in which
case the stiffness of the viscoelastic branches is neglected, or the instantaneous stiffness,

in which case the contribution from all branches is used.

The instantaneous shear modulus G is defined as the sum of the stifthess of all the

branches

Gy =G+ Y G,
m=1
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FREQUENCY DOMAIN ANALYSIS AND DAMPING

For frequency domain analysis, the frequency decomposition is performed as
Cq = real(;dejm)
gq = real(sNdejwt)
Equation 3-17 and Equation 3-19 are then simplified to
<~5d = 2(G +jG")£~dl

where the shear storage modulus G’ and the shear loss modulus G” are defined for the
generalized Maxwell model as

IV 2 1V

ot ot
G =G+ ZGm (@) and G" = ZGm—mz
1 1+ (o1, — 1+ (o1,,)

and for the SLS model as
(o1))? ot
G =G+G—— and G" = G;——;
1+ (01;) 1+ (o1;)

and for the Kelvin-Voigt model as
G =G and G" = no = Gt

The internal work of viscous forces averaged over a time period 2n/® is computed as

Q, = a)G"£~d : conj(e:l)

See also the description of Viscoelasticity in the Solid Mechanics interface

documentation.

Large Strain Viscoelasticity

The implementation for large strain viscoelasticity follows the derivation by Holzapfel
(Ref. 1).
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The generalized Maxwell model is based on the splitting of the strain energy density
into volumetric, isochoric and the contribution from the viscoelastic branches

v
Ws = Wiso + Wvol + Z Y
m=1

The strain energy in the main hyperelastic branch is normally denoted with the

superscript e to denote the long-term equilibrium (as ¢ — oo ).

The second Piola-Kirchhoff stress is computed from
aWs iV
S = 23_ = Sis0+Svol+ Z Qm
m=1

where the auxiliary second Piola-Kirchhoft stress tensors @, are defined as

oy
Qm = Em

The time evolution of the auxiliary stress tensor @, in each viscoelastic branch is given
by the rate

Qm +;1—Qm = Siso,m

m

here, Sigo p, is the isochoric second Piola-Kirchhoff stress tensor in the branch m.
These tensors are derived from the strain energy density in the main hyperelastic
branch and the energy factors B, as

oW, ow.

Siso,m = za_CISO,m = ZBma—CISO = BmSiso

so the time evolution of the auxiliary stress tensor @), is given by

. 1 .
Qm + ‘C_Qm = BmSiso

m

This equation is not well suited for modeling prestressed bodies. Applying the change

of variables
9Qm = BmSiso_ Qm

the time evolution of the auxiliary stress tensor q,,, reads
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TQO +qm = BmSiso
TEMPERATURE EFFECTS

The same options for defining Temperature Eftects as described for Linear Viscoelastic

Materials are available for large strain viscoelasticity.

Hyperelastic Material Models

A hyperelastic material is defined by its elastic strain energy density W, which is a
function of the elastic strain state. It is often referred to as the energy density. The
hyperelastic formulation normally gives a nonlinear relation between stress and strain,

as opposed to Hooke’s law in linear elasticity.

Most of the time, the right Caunchy-Green deformation tensor C is used to describe
the current state of strain (although one could use the left Cauchy-Green tensor B, the
deformation gradient tensor F', and so forth), so the strain energy density is written as

Ws(C).

For isotropic hyperelastic materials, any state of strain can be described in terms of
three independent variables—common choices are the invariants of the right
Cauchy-Green tensor C, the invariants of the Green-Lagrange strain tensor, or the

principal stretches.

Once the strain energy density is defined, the second Piola-Kirchhoff stress in the local

coordinate system is computed as

In the general case, the expression for the energy Wy is symbolically evaluated down to

the components of C using the invariants definitions prior to the calculations of the
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components of the second Piola-Kirchhoff stress tensor. The differentiation is

performed in components on the local coordinate system.

In Equation View, the definition of the stress components are shown as

solid.S111 = 2*d(solid.Ws,solid.Cl11),
s0lid.S112 = d(solid.Ws,s0lid.C112) etc.
n The factor 2 in front of the differentiation operator for the shear stresses

is omitted, since the symmetry in the Cauchy-Green tensor will cause two

equal contributions.

@l Modeling Geometric Nonlinearity

THERMAL EXPANSION
If thermal expansion is present, a stress-free volume change occurs. This is a pure
volumetric change, so the multiplicative decomposition of the deformation gradient

tensor in Equation 3-4 implies

o letd) _ J
el dCt(Fth) Jth

Here, the thermal volume ratio, Jy,, depends on the thermal stretch Ay, which for
linear thermal expansion in isotropic materials can be written in terms of the isotropic

cocflicient of thermal expansion, 0, and the absolute change in temperature

Jth = 7\4{‘:3}1 and }Lth =1+a (T_Tref)

1S0

Here, the term 04o(T-Tyep) is the thermal strain. The isotropic thermal gradient is

therefore a diagonal tensor defined as
F th = xthl

When the coefficient of thermal expansion a is anisotropic, the thermal strain is

computed from
€h = T - Tref)

and the anisotropic thermal gradient is defined as
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Fth = I+8th

The internal variables for the thermal stretch and the thermal volume
= ratio are named solid.stchth and solid.Jth.

HYGROSCOPIC SWELLING
Hygroscopic swelling is an internal strain caused by changes in moisture content. This

strain depends linearly on the moisture content

€hs = Bh(cmo_cmo,ref)

where By, is the coefficient of hygroscopic swelling, ¢, is the moisture concentration,
and ¢pq rer is the strain-free reference concentration. The coefficient of hygroscopic
swelling can represent isotropic or anisotropic swelling. The anisotropic hygroscopic
gradient is defined as

Frg =T+g

HYPERELASTICITY WITH PLASTICITY

It is possible to combine the hyperelastic material models with plasticity. Since these
models are primarily used for large strain applications, only the large strain plasticity
formulation is available. The decomposition between elastic and plastic deformation is

made using a multiplicative decomposition of the deformation gradient tensor,
Fy=FF
el = pl

Here, the plastic deformation tensor Fp,y depends on the plastic flow rule, yield

function, and plastic potential.

e Multiplicative Decomposition

@,

* Plastic Flow for Large Strains

ISOCHORIC ELASTIC DEFORMATION

For some classes of hyperelastic materials it is convenient to split the strain energy
density into volumetric (also called dilatational) and isochoric (also called
distortional or volume-preserving) contributions. The elastic deformation tensor is

then multiplicatively decomposed into the volumetric and isochoric components
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Fo, =F el,volFiel

el

with Fg) yo1 as the volumetric elastic deformation (a diagonal tensor) and F,) the
isochoric elastic deformation gradient. Isochoric deformation means that the volume
ratio is kept constant during deformation, so the isochoric elastic deformation is
computed by scaling it by the elastic volume ratio. The elastic volume ratio is defined

by
Jel = det(Fel) = det(Fel,vol)
and the volumetric deformation as

Foo = JY3I

el,vol
By using J it is possible to define the isochoric-elastic deformation gradient

-1/3
el

F,=J,"°F

el

the isochoric-elastic right Cauchy-Green tensor

and the zsochoric-elastic Green-Lagrange strain tensor
J— 1 J—
€ = Q(Cel_l)

This scaling changes the eigenvalues of the tensor, but not its principal directions, so

the original and isochoric tensors remain coaxial to each other.

Some authors call FTel and CTcl the modified tensors. Note that

det(F,)) = det(C,)) = 1

The internal variables for the isochoric-elastic Cauchy-Green deformation
tensor in local coordinate system are named solid.CIell1,
s0lid.CIel12, and so on.

[

The other two invariants normally used together with Jg) are the first and second

invariant of the isochoric-elastic right Cauchy-Green deformation tensor
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I,(Cy) and I,(Cy)
In these equations:

I,(Cy) = trace(Cy) = It *I,(Cy)

el

__ 1 _ __9
Iy(Cy) = 5UL(Cy) —trace(Cy ) = Iy *Iy(Cy)

Since 13(C_e1) = det(C_el) = 1, the third invariant is never explicitly used.

The internal variables for the invariants Jg, I I(C—el) ,and I Q(C—el) are
= named solid.Jel, solid.I1CIel, and solid.I2CIel.

The invariants of the isochoric (modified) elastic Green-Lagrange strain tensor are
related to the invariants of the isochoric-elastic right Cauchy-Green deformation

tensor

I,(g,) = trace(e,) = %(Il(c_d)—:%)
— 1 2 — — 1, — —
Iy(ey) = é(ll(sel)—trace(sel )) = ;(Iz(Cel)—211(Cel)+3)

Iy(eg) = det(zy) = 213 (Cy) ~Iy(Ca)) s

The internal variables for the invariants of the isochoric elastic
Green-Lagrange strain tensor are named solid.I1elel,solid.I2elel,
and solid.I3elel.

!

NEARLY INCOMPRESSIBLE HYPERELASTIC MATERIALS
If the Nearly incompressible material is sclected in the Compressibility list in the
Hyperelastic Material node, the total strain energy density Wy is split into two parts:

Ws = Wiso + Wvol

here, Wi, is the isochoric strain energy density and Wy, is the volumetric strain energy
density.
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The isochoric strain energy density can be entered as an expression involving the

following:

* Components of the isochoric elastic right Cauchy-Green tensor Ciel in the local

coordinate system.

* Principal invariants of the isochoric elastic right Cauchy-Green tensor C .

* Principal invariants of the isochoric elastic Green-Lagrange strain € .

The volumetric strain energy density, Wy, can only be defined as an expression of the
elastic volumetric deformation /. The quadratic volumetric strain energy density is
defined as:

1 2
Wvol(Jel) = EK(Jel_ 1) (3-21)
and Harmann-Neff (Ref. 10) volumetric strain energy as:
1 5 5
Woda) = gk +Je —2) (3-22)

where x is the bulk modulus. From here, the volumetric stress (pressure) is calculated
as

anOl
T

When the expression in Equation 3-21 is used, the pressure becomes linearly related

to the volume change:
Py = —K(J-1)

but if he expression in Equation 3-22 is used instead of the quadratic function, the

pressure becomes a nonlinear function of the volume change:
1 4 6
Py = 10 k(J —dJ )

Then, an auxiliary variable, py, is added to map the pressure when computing stresses.

The second Piola-Kirchhoff stress is then given by

S=-p got s o Wie (3-23)
w aC

and the Cauchy stress tensor by
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oW,
o = JIUFSFT = —p I +2J ' F—22FT

INCOMPRESSIBLE HYPERELASTIC MATERIALS

When the Incompressible material is selected in the Compressibility list in the
Hyperelastic Material node, the volumetric strain energy density Wy, is not defined as
for Nearly Incompressible Hyperelastic Materials, but instead, a weak constrain is
added to account for the incompressibility condition

J1=1

e

The auxiliary variable, py,, acts as Lagrange multiplier to enforce the constrain Jg =1,

this variable is then used as the pressure when computing stresses.

The strain energy density W consists only of the isochoric strain energy density Wi,

contribution
Ws = Wiso

The second Piola-Kirchhoff stress is then given by

S=-p got o Wi (3-24)
w aC

and the Cauchy stress tensor by

W,
o = JUFSFT = —p I +2J ' F—22FT (3-25)

THE LOCKING PROBLEM

A numerical scheme is said to exhibit Jocking if the accuracy of the approximation
deteriorates as a parameter tends to a limiting value (Ref. 12). Finite elements in solid
mechanics are said to “lock” when exhibiting an unphysical response to deformation
(Ref. 13). Locking can occur for many different reasons. For linear elastic materials,
this typically happens as Poisson’s ratio tends to 0.5, or the bulk modulus is much
larger than the shear modulus. Numerical errors arise because the shape functions are

unable to properly describe the volume preserving deformation.

To avoid the locking problem in computations, the mixed formulation replaces p,, in
Equation 3-23 with a corresponding interpolated pressure help variable py,, which

adds an extra degree of freedom to the ones defined by the displacement vector u.
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The general procedure is the same as done in the Linear Elastic Materials node.

THEORY FOR THE PREDEFINED HYPERELASTIC MATERIAL MODELS
Different hyperelastic material models are constructed by specifying different elastic
strain energy expressions. This module has several predefined material models and also

has the option to enter user defined expressions for the strain energy density.

NEO-HOOKEAN

The strain energy density for the compressible version of the Neo-Hookean material is
written in terms of the elastic volume ratio J¢ and the first invariant of the elastic right
Cauchy-Green deformation tensor I7(Cg)) (Ref. 11).

W. = %u([l -3)-uln(J,) + %Mln(Jel)]2

s

Here, A and p are the Lamé parameters.

The nearly incompressible version uses the isochoric invariant I;(Cy;) to define the

isochoric strain energy density Wi,
1 —
Wiso = 5“(11 -3)

and the elastic volume ratio JJ; and the bulk modulus x to define the volumetric strain
energy density Wy, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition g = 1, see Incompressible Hyperelastic Materials.

See also the description of the Neo-Hookean material model in the Solid

Mechanics interface documentation.

CHAPTER 3:

ST VENANT-KIRCHHOFF
One of the simplest hyperelastic material models is the St Venant-Kirchhoff material,

which is an extension of a linear elastic material into the hyperelastic regime.

The elastic strain energy density is written with two parameters (the two Lamé

coefficients) and two invariants of the elastic Green-Lagrange strain tensor, I1(€g)) and
Io(ee)
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1
W, = §(k+2u)l%—2ulz

Here, A and [ are Lamé parameters. The bulk modulus « is calculated from the Lamé
parameters K = A + 2/3.

The nearly incompressible version uses the isochoric invariants I 1(8_91) and 1. 2(8_91) to

define the isochoric strain energy density

1
Wiso = 5

(A +20)1,% - 20,

The elastic volume ratio /) and the bulk modulus k are used to define the volumetric
strain energy density Wy, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition Jg) = 1, see Incompressible Hyperelastic Materials.

See also the description of the St Venant-Kirchhoff material model in the
Solid Mechanics interface documentation.

MOONEY-RIVLIN, TWO PARAMETERS
For the nearly incompressible version, the isochoric strain energy density is written in

terms of the two isochoric invariants of the elastic right Cauchy-Green deformation
tensors I(Cy;) and I,(C,)

Wi = C1oI1-3)+Co1(I3-3)

The material parameters C1 and Cy; are related to the Lamé parameter (shear
modulus) p=2(Cyg + Cgq). The elastic volume ratio J and the bulk modulus x are
used to define the volumetric strain energy density Wy, see Nearly Incompressible
Hyperelastic Materials. The incompressible option uses the same isochoric strain
energy as when selecting the nearly incompressible option, but an extra variable is
added to enforce the incompressibility condition J = 1, see Incompressible
Hyperelastic Materials.

See also the description of the Mooney-Rivlin, Two Parameters material

model in the Solid Mechanics interface documentation.
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MOONEY-RIVLIN, FIVE PARAMETERS

Rivlin and Saunders (Ref. 2) proposed a phenomenological model for small
deformations in rubber-based materials on a polynomial expansion of the first two
invariants of the elastic right Cauchy-Green deformation, so the strain energy density

is written as an infinite series

W, = Z z C,..(Ii-3)"I,-3)"
m=0n=0
with Cgg = 0. This material model is sometimes also called polynomial hyperelastic

material.

In the first-order approximation, the material model recovers the Mooney-Rivlin strain

energy density
W, =CyI;-3)+Cy;I,-3)
while the second-order approximation incorporates second-order terms
W, = Cio(I1-3)+Cpy(Ig—3) + Coy(I; = 3)2 + Cyo(I5-3)2+ Cy;(I; -3)(Iy - 3)

The nearly incompressible version uses the isochoric invariants of the elastic right
Cauchy-Green deformation tensors I I(C_el) and 1 Z(CTeI) to define the isochoric strain
energy density

Z 1

Wiso = Z Z Cmn(l_1_3)m(1_2_3)n
m=0n=0

The elastic volume ratio J) and the bulk modulus « are used to define the volumetric
strain energy density W, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition ) = 1, see Incompressible Hyperelastic Materials.

See also the description of the Mooney-Rivlin, Five Parameters material

@. model in the Solid Mechanics interface documentation.

CHAPTER 3:

MOONEY-RIVLIN, NINE PARAMETERS
The Mooney-Rivlin, nine parameters material model is an extension of the polynomial

expression to third order terms and the strain energy density is written as
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Wiso = Z z Cmn(I_]__g)m(I_z_?’)n
m=0n=0

where 1 1(C_el) and 1 2(C_el) are the isochoric invariants of the elastic right
Cauchy-Green deformation tensors. The elastic volume ratio Jg) and the bulk modulus
K to are used to define the volumetric strain energy density, see Nearly Incompressible
Hyperelastic Materials. The incompressible option uses the same isochoric strain
energy as when selecting the nearly incompressible option, but an extra variable is
added to enforce the incompressibility condition J = 1, see Incompressible

Hyperelastic Materials.

See also the description of the Mooney-Rivlin, Nine Parameters material

model in the Solid Mechanics interface documentation.

YEOH
Yeoh proposed (Ref. 1) a phenomenological model in order to fit experimental data of
filled rubbers, where Mooney-Rivlin and Neo-Hookean models were to simple to
describe the stiffening effect in the large strain regime. The strain energy was fitted to
experimental data by means of three parameters, and the first invariant of the elastic
right Cauchy-Green deformation tensors I71(Cyp)

W, = ci(I1-3) +cgl;-3)2+cg(I;-3)3

S
The shear modulus depends on the deformation, and it is calculated as

Z[BWS oW
M =

__S4__ 8| = _ —_3)2
T, +BI2] 2¢q +4cy(I{-3)+6c5(11-3)

This imposes a restriction on the coefficients ¢, ¢y, c5, since u>0.

The nearly incompressible version uses the isochoric invariant of the elastic right
Cauchy-Green deformation tensor I l(C_el) to define the isochoric strain energy
density
T T 2 T 3
Wi = c1(I1-3)+coI; —3)" +c3(l; - 3)

180

The elastic volume ratio J and the bulk modulus x are used to define the volumetric
strain energy density Wy, see Nearly Incompressible Hyperelastic Materials. The

incompressible option uses the same isochoric strain energy as when selecting the
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nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition Jg) = 1, see Incompressible Hyperelastic Materials.

See also the description of the Yeoh material model in the Solid

'El. Mechanics interface documentation.

CHAPTER 3:

OGDEN
The Neo-Hookean material model usually fits well to experimental data at moderate
strains but fails to model hyperelastic deformations at high strains. In order to model
rubber-like materials at high strains, Ogden adapted (Ret. 1) the energy of a
Neo-Hookean material to
v
Up .o, o o
— )
Wo= 3 "1+ Ay +hef3=3)

p=1 P
Here o1, and p, are material parameters, and A1, Ael2, and Agjg are the principal clastic
stretches such as Jg = Ag11Ae1oels-

The Ogden model is empirical, in the sense that it does not relate the material
parameters 0O, and Wy, to physical phenomena. The parameters oy, and L, are obtained
by curve-fitting measured data, which can be difficult for N > 2. The most common

implementation of Ogden material is with N =2, so four parameters are needed.

The nearly incompressible version uses the isochoric elastic stretches

heti = hi/ I

so the isochoric strain energy density is defined as
v
Wy ~a, —a, —a,
Wiso = Z —B(}"elpl + 7\‘61172 + 7\'CIP3 - 3)
%p
p=1

The isochoric elastic stretches define a volume preserving deformation, since
Aet1heizhets = AepAepphez/Jey = 1

The shear modulus is then defined from
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P
k=1
The elastic volume ratio /) and the bulk modulus k are used to define the volumetric
strain energy density Wy, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition Jg) = 1, see Incompressible Hyperelastic Materials.

Sometimes a slightly different definition of the strain energy function for
the Ogden material is used. If you have material data for an Ogden
n material given, be careful that the definitions used are the same. If not,

you will need to rescale the . coefficients.

See also the description of the Ogden material model in the Solid
@l Mechanics interface documentation.

STORAKERS
The Storakers material (Ref. 13 and Ref. 16) is used to model highly compressible

foams. The strain energy density is written in a similar fashion as in Ogden material:

iV

20/ a o o 1
Ws = Z _2[7\'611 + 7\’c12 + 7\'(:13 -3+

~ou By
(g -1)
(Xk Bk el )

k=1

The initial shear and bulk moduli are computed from the parameters . and Py as

u = Z M, and x = z 2”k03k+%)

k=1 k=1

for constant parameters By = B, the initial bulk modulus becomes ¥ =2u(p + 1/3), so a
stable material requires | > 0 and § > —1/3. In this case, the Poisson's ratio is given by
v = B/(2B+2/3), which means that for a Poisson’s ratio larger than -1, B > —2/9 is
needed.

See also the description of the Storakers material model in the Solid

Mechanics interface documentation.
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VARGA

The Varga material model (Ref. 1) describes the strain energy in terms of the elastic
stretches as

Wy = c1(hgq + Ay + Az = 3) + (A1 Aen + Aoz + Agpr e —3)

s

The nearly incompressible version uses the isochoric elastic stretches defined as

- 1/3
Aeli = kcli/Jel
so the isochoric strain energy density is defined as

Wi, = c1(hei1 + ka2 + ket — 3) + co(Ret1hel2 + Ael2hel3 + Ael1hel3 — 3)

180

The simplest Varga model is obtained by setting ¢; =1 and ¢9 =0:
Wi = W(Rei1 + Aei2 + Atz —3)

The elastic volume ratio J) and the bulk modulus x are used to define the volumetric
strain energy density W, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition Jg) = 1, see Incompressible Hyperelastic Materials.

See also the description of the Varga material model in the Solid

'El. Mechanics interface documentation.

CHAPTER 3:

ARRUDA-BOYCE
The other hyperelastic materials described are phenomenological models in the sense
that they do not relate the different material parameters (normally obtained by

curve-fitting experimental data) to physical phenomena.

Arruda and Boyce (Ref. 3) derived a material model based on Langevin statistics of
polymer chains. The strain energy density is defined by

oo

Wo =1 Y ¢,(13-3")

p=1

STRUCTURAL MECHANICS THEORY



Here, L is the initial macroscopic shear modulus, I7(Cy)) is the first invariant of the
clastic right Cauchy-Green deformation tensor, and the coefficients ¢, are obtained by

series expansion of the inverse Langevin function.

Arruda and Boyce truncated the series and used only the first five terms of the series.

The coefficients Cp are listed in Table 3-2:

TABLE 3-2: FIRST FIVE COEFFICIENTS OF ARRUDA-BOYCE MATERIAL MODEL

<1 2 C3 C4 S5
112 1120 N 11/1050 N2 19/7000 N3 519/673750 N*

Other authors (Ref. 1) use only the first three coeflicients of the series. The number of
segments in the polymeric chain is specified by the parameter N so the material model
is described by only two parameters, [y and N. This material model is sometimes also
called the eight-chain model since it was derived for N = 8.

The nearly incompressible version uses the isochoric invariant I 1(C_e1) to define the
isochoric strain energy density
I
Wi, = e, ;" -3
iso = Mo z p\l
p=1
The elastic volume ratio /) and the bulk modulus k are used to define the volumetric
strain energy density Wy, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the

nearly incompressible option, but an extra variable is added to enforce the

incompressibility condition JJg) = 1, see Incompressible Hyperelastic Materials.

See also the description of the Arruda-Boyce material model in the Solid

Mechanics interface documentation.

GENT
Many hyperelastic material models are difficult to fit to experimental data. Gent
material (Ref. 14 and Ref. 15) is a simple phenomenological constitutive model based

on only two parameters, [ and j,,, which defines the strain energy density as:

I,-3

W, = —gjmlog[l - ]—]

m
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Here, p is the shear modulus and j, is a limiting value for I1— 3, which takes care of

the limiting polymeric chain extensibility of the material.

Since the strain energy density does not depend on the second invariant Iy, Gent
model is often classified as a generalized Neo-Hookean material. The strain energy

density tends to be the one of incompressible Neo-Hookean material as j, — oo .

The nearly incompressible formulation uses the isochoric invariants I 1(C_el) to define

the isochoric strain energy density

_ b _ 11_‘3j
Wi, = 2]mlog[1 i
The elastic volume ratio J) and the bulk modulus « are used to define the volumetric
strain energy density Wy, see Nearly Incompressible Hyperelastic Materials. The
incompressible option uses the same isochoric strain energy as when selecting the
nearly incompressible option, but an extra variable is added to enforce the
incompressibility condition g = 1, see Incompressible Hyperelastic Materials. Gent

material is the simplest model of the limiting chain extensibility family.

See also the description of the Gent material model in the Solid

@l Mechanics interface documentation.

CHAPTER 3:

BLATZ-KO
The Blatz-Ko material model was developed for foamed elastomers and polyurethane

rubbers, and it is valid for compressible isotropic hyperelastic materials (Ref. 1).

The elastic strain energy density is written with three parameters and the three

invariants of the elastic right Cauchy-Green deformation tensor, I7(Cq)), I5(Cyg), and
I3(Cep

W, = ¢%((11_3)+ %(rf_ 1)) +(1_¢)'§(G—§_3) +%(1§_ 1))

Here, ¢ is an interpolation parameter bounded to 0 < ¢ < 1,the parameter [ is the shear

modulus, and B is an expression of Poisson’s ratio.

When the parameter § — oo, the strain energy simplifies to a similar form of the

Mooney-Rivlin material model
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_ ol u(ls
W, = ¢2(11—3)+(1—¢)2(13_3)

In the special case of ¢ = 1, the strain energy reduces to a similar form of the

Neo-Hookean model

B 2B
W, = 54 3)+2B(f 1)

See also the description of the Blatz-Ko material model in the Solid

Mechanics interface documentation.

GAO
Gao proposed (Ref. 17) a simple hyperelastic material where the strain energy density
is defined by two parameters, @ and n, and two invariants of the elastic right

Cauchy-Green deformation tensors Cy:
n n
W, =al]+I_))
Here, the invariant I_{(Cg)) is calculated as:

12(Ce1)
I3(Cy)

I, = trace(C;II) =

Gao proposed that the material is unconditionally stable when the parameters are
bounded to 1 <n <3 and 0 < @, and related these parameters under small strain to the
Young’s modulus and Poisson’s ratio by:

3"n"8a and v = n-1
2n+1 T 2n+1

Since n = (1+v)/(1-2v) and it is bounded to 1 < n < 3, this material model is stable for

materials with an initial Poisson’s ratio in the range of 0 <v <2/7.

See also the description of the Gao material model in the Solid Mechanics

interface documentation.
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MURNAGHAN

The Murnaghan potential is used in nonlinear acoustoelasticity. Most conveniently it
is expressed in terms of the three invariants of the elastic Green-Lagrange strain tensor,
I1(ga)), Io(ge1), and I3(gq)

W, = 200+ 2013-2ul, + 20+ 2m)I{ - 2m T, +
Here, [, m, and n are the Murnaghan third-order elastic moduli, which can be found

experimentally for many commonly encountered materials such as steel and aluminum,
and A and p are the Lamé parameters.

See also the description of the Murnaghan material model in the Solid

@l Mechanics interface documentation.

USER DEFINED

Itis possible to define the strain energy density for compressible, nearly incompressible

or incompressible hyperelastic materials when selecting the user defined option.

For Compressible hyperelastic materials, enter an expression for the elastic strain energy

Wy, which can include any expressions involving the following:

¢ Components of Cy, the elastic right Cauchy-Green deformation tensor in the local

material coordinate system.

¢ Principal invariants of Cg;

I,(C,) = trace(Cy)
1,(Cy) = S(I3(Cy) ~ trace(CE)

I5(Cy) = det(Cy)

. The internal variables for these invariants are named solid.I1Cel,
= solid.I2Cel, and solid.I3Cel.

e Components of the elastic Green-Lagrange strain tensor € in the local coordinate
system.
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* DPrincipal elastic stretches Ag1, Aelg, and Ag 3, which are the square-root of the
eigenvalues of the elastic right Cauchy-Green deformation tensor Cg.

The internal variables for the principal elastic stretches are named
= solid.stchelpi, solid.stchelp2, and solid.stchelp3.

¢ Invariants of the elastic Green-Lagrange strain tensor. Since

1
€1 = é(cel -

the invariants of g are written in terms of the invariants of Cy:

I,(g,) = trace(e,) = %(Il(Cel)—3)
I 1.2 2., _ 1
o(€g) = 5(11(881)—trace(8e1)) = Z(Iz(cel)_le(Cel)"'S)

Iy(eg) = det(ey) = (I5(Cq)~I,(Cq) +1,(Cq) - 1)

The internal variables for these invariants are named solid.Ileel,

= solid.I2eel, and solid.I3eel.

When the Nearly incompressible material option is selected for the Hyperelastic Material

node, the elastic strain energy is decoupled into the volumetric and isochoric

components.:

e The volumetric strain energy Wy, which can be an expression involving the elastic
volume ratio J = det(Fy))

* The isochoric strain energy, Wi, as an expression involving the invariants of the
isochoric elastic right Cauchy-Green tensor! l(C_el) and I Q(C—el) ; the invariants of
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the isochoric elastic Green-Lagrange strain I 1(8_91) i 2(8_61) yand 1 3(€_el) ; or the

principal isochoric elastic stretches defined as Xelj = i/ gl/ 3

The internal variables for J, 1 l(Ciel) ,and I 2(@) are named
solid.Jel, solid.I1CIel, and solid.I2CIel.

[

The internal variables for Il(s_el) . Iz(e_el) ,and 13(8_61) are named
solid.I1elel, solid.I2elel, and solid.I3elel.

When the Incompressible material option is selected, enter an expression for the
isochoric elastic strain energy Wi, as done for the Nearly incompressible material
option. An extra variable is added to enforce the incompressibility condition Jg =1,

see Incompressible Hyperelastic Materials.

The strain energy density must not contain any other expressions
involving displacement or their derivatives. Examples of such expressions
are components of the displacement gradient Vu and deformation

n gradient F'= Vu + I tensors, their transpose, inversions, as well as the
global material system components of C and €. If they occur, such

variables are treated as constants during symbolic differentiations.

See also the description of the User defined material model in the Solid

'El. Mechanics interface documentation.

CHAPTER 3:

MULLINS EFFECT

Some nonlinear effects observed in rubbers, such as hysteresis in stress-stretch curves,
residual strains, and stress softening effects, are not accounted in the formulation of
common hyperelastic materials. The Mullins effect (Ref. 21-23) describes the
stress-softening phenomenon observed under cyclic loading in elastomers and

biological materials.

Ogden and Roxburgh (Ref. 24) used an additional state variable to model the Mullins
effect. The state variable n is introduced to memorize the microstructural damage on
reinforced rubber after repeated loading-unloading cycles. The modified isochoric

strain energy density reads

Wiso = NWig, +0(1)
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here, Wi, is the isochoric strain energy of the undamaged material, and ¢(n) is
referred as the damage function. The choice of the damage function ¢(n) is
completely arbitrary as long as the some constrains are fulfilled. The authors proposed
a state function based on the error function, which defined how the state variable n

varies as a function of the isochoric strain energy

= 1- Lo T i)

here, erf(.) is the error function, r and m are positive parameters, and Wy, is the

maximum attained value of the isochoric strain energy density on the loading path.

The associated microstructural damage is computed from
d=1-n-= lerf(w)
r m

and the isochoric strain energy modified by the Mullins effect reads
Wiso = (1- d)WiSO

Over the years others authors (Ref. 25-26) have proposed different flavors of
Ogden-Roxburgh model, the version implemented in COMSOL Multiphysics uses the
hyperbolic tangent function instead of the error function, and a parameter to define
the maximum allowed damage d.,=1/r. The microstructural damage is then computed

from

W -W.
d = dwtanh(W)

sat max

here, d.,, o and W, are positive parameters.

Miehe (Ref. 27) proposed an exponential expression for the damage variable in order
to model the Mullins effect

d = dw(l _e’Wmax/Wsat)

where Wy, and d,, are positive parameters.
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Elastoplastic Material Models

In this section:

¢ Introduction to Small and Large Plastic Strains
e Plastic Flow for Small Strains

* Isotropic Plasticity

* Yield Function

e Hill Orthotropic Plasticity

* Isotropic Hardening

¢ Plastic Flow for Large Strains

e Numerical Solution of the Elastoplastic Conditions

INTRODUCTION

Many materials have a distinct elastic regime, in which the deformations are
recoverable and path independent. When the stresses exceed a certain level, the yield
limit, permanent plastic strains will appear.

The elastic part of the constitutive relation can be described by either a Linear Elastic

Material, Nonlinear Elastic Materials, or by Hyperelastic Material Models.
Elastoplastic material models are common, both when modeling metals and soils.

In geotechnical applications it is common to define compressive stresses as having
positive signs. In COMSOL Multiphysics, the convention is however to always use
positive signs for tensile stresses.

@ See also Sign Conventions.

DEFINING THE YIELD SURFACE

Avyield criterion serves to define the stress condition under which plastic deformation
occurs. Stress paths inside the yield surface result in purely recoverable deformations

(elastic behavior), while paths intersecting the yield surface produces both recoverable

and permanent deformations (plastic strains).

In general, the yield surface can be described as

F = f(6)~f. = 0
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where f, can be a constant value (for perfectly plastic materials), or a variable for
strain-hardening materials. The yield surface F is a surface in the space of principal

stresses, in which the elastic regime (F < 0) is enclosed.

For brittle materials, the yield surface represents a fazlure surface, which is a stress

level at which the material collapses instead of deforms plastically.

Some authors define the yield criterion as f () = f,, while the yield
A surface is an isosurface in the space of principal stresses F' = 0, which can

be chosen for numerical purposes as F= f(6)2 - fg =0.

ISOTROPIC PLASTICITY
For isotropic plasticity, the plastic potential @p, is written in terms of at most three

invariants of Cauchy’s stress tensor
Q,(0) = Q,(I1(0). J5(0). J5(0))
where the invariants of the stress tensor are
I,(0) = trace(o)
Jqo(0) = %dcv(c):dev(o)
J3(0) = det(dev(o))
so that the increment of the plastic strain tensor €, can be decomposed into

. .0Q 9Q.0I, 9Q.3J, 0Q dJ;
— ) —P _ —_~p__ 1, _*p__ & _*p__ 9
&= A5 = x(all 96 " 9d, 00 | o, ac)

The increment in the plastic strain tensor ép includes in a general case both deviatoric

and volumetric parts. The tensor €, is symmetric given the following properties

oI,
90 -1

3,

T2 _ (3-26)
o dev(o)

95 _ dev(o)d 27,1

Fy ev(o) CV(G)—3 9
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The trace of the incremental plastic strain tensor, which is called the volumetric plastic
strain rate épvol , is only a result of dependence of the plastic potential on the first

invariant I1(0), since dJo/ 96 and deJ3/0G are deviatoric tensors

. . 0 e)
Epvol = trace(gp) = A tracc(%) = 37»—QE

A common measure of inelastic deformation is the effective plastic strain rate, which

is defined from the plastic shear components

épe = /%dev(ép):dcv(ép) (3-27)

For metal plasticity under the von Mises or Tresca criteria, the volumetric plastic strain
rate épvol is always zero because the plastic potential is independent of the invariant
11(0). This is known as J2 plasticity.

Incompressible plastic deformation is experimentally observed in metals, but this is not
the case for most materials used in geotechnical applications. For instance, a nonzero
volumetric plastic strain is explicitly used in Porous Plasticity and Elastoplastic Soil
Models.

* The effective plastic strain and the volumetric plastic strain are available
in the variables solid.epe and solid.epvol.

g e In a time dependent analysis, rates of plastic strains can be computed
with expressions like d (solid.epe, TIME).

CHAPTER 3:

YIELD FUNCTION

When an associated flow rule is applied, the yield function must be smooth, that is,
continuously differentiable with respect to the stress. In COMSOL Multiphysics, the
following form is used:

Fy = ¢(0) -0y

where Oy is the yield stress. The scalar function ¢(o) is called effective stress. The

default form of the effective stress is the von Mises stress, which is often used in metal

plasticity:
3
Opmises = /3J2(0) = édCV(C):dCV(G)
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Other expressions can be defined, such as Tresca stress, Hill orthotropic plasticity, or

a user defined expression.

The Tresca effective stress is calculated from the difference between the largest and the

smallest principal stress

(&) (&)

tresca Gpl “%ps3
A user defined yield function can by expressed in terms of invariants of the stress tensor
such as the pressure (volumetric stress)
1
p = —§I 1(0)
the effective (von Mises) stress Gppjges, OF Other invariants, principal stresses, or stress
tensor components.

von Mises Criterion
The von Mises criterion suggests that the yielding of the material begins when the
second deviatoric stress invariant JJ9 reaches a critical value. This criterion can be

written in terms of the elements of Cauchy’s stress tensor (Ref. 1)
1 2 2 2 2 2 2 2
Jo = (011 099)" + (099 —Gg3)" +(033-011)") + 071+ 03+ 073 = k

or equivalently E =k.
The von Mises criterion is implemented as
F = /3Jy-06,, =0

where 0, is the yield stress level (yield stress in uniaxial tension).

The effective or von Mises stress (G, ;505 = /39 ) is available in the
variable solid.mises, where solid is the name of the physics interface

node.

Tresca Criterion
The Tresca yield surface is normally expressed in terms of the principal stress

components

1
émax(‘cl—o'z

G, -0y, 02—03|) =k

s

MATERIAL MODELS |

343



344 |

The Tresca criterion is a hexagonal prism with its axis equally inclined to the three
principal stress axes. When the principal stresses fulfill 61 > 69 > 03, this criterion is

written as

1
5(01—03) =k

By using the representation of principal stresses in term of the invariants /g and the

Lode angle 0 <6 < /3, this criterion can alternatively be written as

%@(cos(e)—cos(mzf)) = @sm(mg) =k

or equivalently

@cos(e—g) =k

The maximum shear stress is reached at the meridians (6 = 0 or 6 = /3). The Tresca
criterion can be circumscribed by setting the Lode angle 6 = 0, or equivalently, by a

von Mises criterion

[3J, = 2k

The minimum shear is reached at 6 = 1/6, so the Tresca criterion can be inscribed by

setting a von Mises criterion

When dealing with soils, the parameter % is also called undrained shear strength.

Tresca criterion can be used with either an associated or nonassociated flow rule, in

which case von Mises stress is applied in order to get better numerical performance.

The Tresca effective stress, Gipegea = 01 — O3, Is implemented in the
variable solid.tresca, where solid is the name of the physics interface

node.

CHAPTER 3:
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lower limit

Tresca criterion
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Ve

Figure 3-6: Classical yield critevia for metals. Tresca criterion (left) and von Mises
craterion (vight).

The von Mises and Tresca criteria are independent of the first stress invariant I7 and
are mainly used for the analysis of plastic deformation in metals and ductile materials,
though some researchers also use these criteria for describing fully saturated cohesive
soils under undrained conditions. The von Mises and Tresca criteria belongs to what
researchers call volume preserving or J2 plasticity, as the plastic flow is independent

on the mean pressurc.
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CHAPTER 3:

POROUS PLASTICITY

The modeling of plastic deformation in soils, porous metals and aggregates has a main
difference with respect to traditional metal plasticity; the yield function and plastic
potential are not only defined in terms of the deviatoric stress tensor (or the deviatoric
stress invariant /), but also include dependencies on the hydrostatic pressure.

A key concept for porous plasticity models is the evolution of the relative density,
which is the solid volume fraction in a porous mixture. The relative density is related

to the porosity (or void volume fraction) ¢ by
Pres = (1-0)

When compacting a mixture of metal particles, the porosity tends to zero and the
relative density tends to one. There are different porous plasticity models to account

for the mechanism of compaction and void growth.

Shima-Oyane Criterion

Shima and Oyane (Ref. 14) proposed a yield surface for modeling the compaction of
porous metallic structures fabricated by sintering. The criterion can be applied for
powder compaction at both low and high temperatures. The yield function and
associated plastic potential is defined by an ellipsoid in the stress space. The plastic
potential @, is written in terms of both von Mises effective stress and mean pressure,
and it also considers isotropic hardening due to changes in porosity. The plastic
potential is defined by

(56 2 ¥ P 2
Q,(0) = (_0) +a(1_prcl) (_> _pZ:Ll
p c (e
here, o, is the effective stress, G is the yield stress, py, is the pressure, and p,¢] is the

relative density. The material parameters o, v, and m are obtained from curve fitting

experimental data. Typical material parameter values for copper aggregates are o = 6.2,
v=1.03,and m = 5.

Gurson Criterion

Gurson criterion (Ref. 15) consists in a pressure dependent yield function to describe
the constitutive response of porous metals, this yield function is derived from the
analytical expression of an isolated void immersed in a continuum medium. The void
volume fraction, or porosity ¢, is chosen as main variable. The yield function and
associated plastic potential is not an ellipse in the stress space, as in Shima-Oyane
Criterion, but it is defined in terms of the hyperbolic cosine function. The plastic
potential for Gurson criterion reads
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Qp(o) = (00) + 2¢ cosh 25, -(1+¢9)
here, o, is the effective stress, G is the initial yield stress, p, is the pressure, and ¢ is
the porosity.

Gurson-Tvergaard-Needleman Criterion

Tvergaard and Needleman modified Gurson Criterion for porous plasticity to include
parameters to better fit experimental data (Ref. 16-17). The resulting criterion is called
in the literature Gurson-Tvergaard-Needleman (GTN) criterion. The plastic potential
for GTN criterion reads

6.2 3q
Q,(c) = (G—Z) +2q1¢ecosh( Zizm]_(l+q3¢ez)

here, o, is the effective stress, 6 is the initial yield stress, p, is the pressure, and ¢, is
the effective void volume fraction (effective porosity). Typical correction parameter
values are g1 = 1.5, g9 = 1.03, and q5 = q12.

The effective void value fraction (or effective porosity) ¢, used in the plastic potential

e
is a function of the current porosity ¢ and other material parameters:

0] for ¢ <o,
0. = Om =0,
C 0+ T—(0-0,) for ¢ <0 <oy
0p— 0.
here ¢, is the critical void volume fraction (critical porosity) at which void coalescence
begins, and ¢, is the void volume fraction at failure. When the porosity increases up
to the value of failure, the effective porosity takes a maximum value of ¢, and the
porous material loses the capacity to carry stresses. The maximum porosity value is

derived from other parameters

_ Gt Ja-as

q)ll’l q3

Since typical values for the parameters are gg = q12, the maximum porosity value is
given by ¢, = 1/q;.

Fleck-Kuhn-McMeeking Criterion
The Fleck-Kuhn-McMeeking criterion (Ref. 19), also called FKM criterion, was
developed to model the plastic yielding of metal aggregates of high porosity. The yield
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function and associated plastic potential is derived from expressions for randomly
distributed particles. The criterion is considered relevant for aggregates with porosity
between 10% and 35%. The plastic potential for FKM criterion reads

here, o, is the effective stress and py, is the pressure. The flow strength of the material

under hydrostatic loading, py, is computed from

20, -0
b 0

pe = 2.97(1-0)

here, o is the initial yield stress, and ¢ is the void volume fraction (porosity). The
maximum void volume fraction ¢, typically takes the value of 36%, the limit of dense

random packing of sintered powder.

FKM-GTN Criterion

The FKM-GTN criterion is a combination of the Fleck-Kuhn-McMeeking Criterion
and Gurson-Tvergaard-Needleman Criterion, intended to cover a wider range of
porosities (Ref. 20-21). The GTN model is used for low void volume fractions
(porosity lower than 10%), and for void volume fractions higher than 25%, the FKM

criterion is used. In the transition zone, a linear combination of both criteria is used.

Void growth
For all the porous plasticity criteria, the change in relative density is by default

computed from the change in plastic volumetric strain
Prel = —Prel€p,vol

Since the relative density is related to the porosity ¢ by p.e1 =1 — ¢, the change in
porosity is also controlled by the change in plastic volumetric strain

d) = (1- ¢)ép,vol

and the change in volumetric plastic strain ép’vol is given by the porous plasticity

model.

Other mechanism that can trigger a increase of porosity are nucleation and shear

growth. The increment in porosity based on growth nucleation is given by
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. s .
Onucleation = e v €pm for p<0
SyN2T

[\

here, €pis the mean strain for nucleation, fjy is the void volume fraction for nucleating
particles, and sp; is the standard deviation. Typical values for these parameters are
gy = 0.04, spy = 0.1, and fy = 0.04. It is assumed that nucleation appears only in tension,

and that there is no nucleation in compression.
The other possible mechanism to change the porosity is the so-called void growth in
shear

Dshear = kww¢nD38p1

here, &, is a material parameter, ¢ is the current porosity, n® is a deviatoric tensor
coaxial to the stress tensor, and épl is the plastic strain rate, which depends on the

porous plasticity model. The weight w is computed from stress invariants as

J2
w=1-2023 _ gin? (30)

4 3

Jy

where 6 is the Lode angle. The weight variable has a value of w = 0 at the compressive

and tensile meridians (6 = 0 and 0 = w/3), and it attains its maximum w = 1 for 6 = 7/6.

SOIL PLASTICITY

Mohr-Coulomb Criterion

The Mohr-Coulomb criterion is the most popular criterion in soil mechanics. It was
developed by Coulomb before the Tresca and von Mises criteria for metals, and it was
the first criterion to account for the hydrostatic pressure. The criterion states that
failure occurs when the shear stress and the normal stress acting on any element in the

material satisfy the equation

|1l + ctand—c = 0

here, T is the shear stress, ¢ the cohesion, and ¢ denotes the angle of internal friction.

With the help of Mohr’s circle, this criterion can be written as

%(01 —-0g)+ %(G1 +0g)sin¢—ccos¢ = 0
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The Mohr-Coulomb criterion defines an irregular hexagonal pyramid in the space of

principal stresses, which generates singularities in the derivatives of the yield function.

Figure 3-7: The Mohr-Coulomb critevion. The cone opens toward the compressive axis.

The Mohr-Coulomb criterion can be written in terms of the invariants I and Jy and
the Lode angle 0 <6 < /3 (Ref. 1, Ref. 9) when the principal stresses are sorted as
01 = 0y =2 03. The yield function then reads

o

Fy = %Ilsin¢+A/t§g((l+sin¢)cos6—(1—sinq))c0s(6+ 3)) —ccosd =0

The tensile meridian is defined when 6 = 0 and the compressive meridian when 8 = /3.
Rearranging terms, the Mohr-Coulomb criterion reads

F, = JTom(0) + ol —k = 0
where

m(9) = ﬁ((l + sind)cos0 — (1 — sin(]))cos(e + 2?1'5)) , 00 = sin$/3, and

k = ccoso

In the special case of frictionless material, (¢ = 0, o= 0, & = ¢), the Mohr-Coulomb
criterion reduces to a Tresca’s maximum shear stress criterion, (67 — 63) = 2k or

equivalently
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Fy = @cos(ﬁ—%’)—k =0

See also the description of the Mohr-Coulomb material model in the

Solid Mechanics interface documentation.

Drucker-Prager Criterion

The Mohr-Coulomb criterion causes numerical difficulties when treating the plastic
flow at the corners of the vield surface. The Drucker-Prager model neglects the
influence of the invariant J/3 (introduced by the Lode angle) on the cross-sectional
shape of the yield surface. It can be considered as the first attempt to approximate the
Mohr-Coulomb criterion by a smooth function based on the invariants I7 and Jy
together with two material constants (which can be related to Mohr-Coulomb’s

coefficients)
F,= [HJy+al;-k =0

This is sometimes also called the extended von Mises criterion, since it is equivalent to

the von Mises criterion for metals when setting o = 0.

Figure 3-8: The Drucker-Prager criterion. The cone opens toward the compressive axis.

The coefficients in the Drucker-Prager model can be matched to the coefficients in the

Mohr-Coulomb criterion by
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The symbol = is related to either matching the tensile meridian (positive sign) or the

compressive meridian (negative sign) of Mohr-Coulomb’s pyramid.

The matching at the tensile meridian (6 = 0) comes from setting

m(0) = (3 +sin0)/(2./3)

in the Mohr-Coulomb criterion, and the matching at the compressive meridian (6 = w/

3) from setting

m(n/3) = (3-sind)/(2./3)

compressive meridian tensile meridian

Figure 3-9: The Drucker-Prager critevion showing the tensile and compressive meridians
(inner and outer circles), and the Lode angle compared to the cross section of
Mohr-Coulomb criterion in the m-plane.

In the special case of frictionless material, (¢ =0, =0, & = 2¢/ /3 ), the

Drucker-Prager criterion reduces to the von Mises criterion

/\/eTz = 2c/.3

When Drucker-Prager criterion is matched to the Mohr-Coulomb criterion in 2D
plane-strain applications, the parameters are

o = tan and k=

3c
2 2
N9 +12tan"¢ N9 +12tan"¢
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when matching the criteria in 2D generalized plane-strain, the matching parameters

are:

__2sing and _%_

k= - ccoso

* " /33_sino) 3_sing

and when matching the criteria in 2D plane-stress, the matching parameters are:

. 2
o= -sin¢ and %k = —-ccos
o 7 ¢

L
3
Dilatation Angle

The Mohr-Coulomb yield criterion is sometimes used with a nonassociated plastic
potential. This plastic potential could be either a Drucker-Prager criterion, or the same
Mohr-Coulomb yield function but with a different slope with respect to the
hydrostatic axis, in which case the angle of internal friction is replaced by the dilatation

angle, which is normally smaller (Ref. 5).

Also, when using a Drucker-Prager criterion matched to a Mohr-Coulomb criterion,
the plastic potential could also be nonassociated, in which case the difference between
the dilatation angle and the angle of internal friction would result in a yield surface and
plastic potential portrayed by two cones with different angles with respect to the
hydrostatic angle.

Elliptic Cap

The Mohr-Coulomb and Drucker-Prager criteria portray a conic vield surface which
opens in the hydrostatic axis direction. Normally, these soil models are not accurate

above a given limit pressure because real-life materials cannot bear infinite loads and
still behave elastically. A simple way to overcome this problem is to add an elliptical

end-cap on the compressive side to these models.

The elliptic cap is an elliptic yield surface of semi-axes as shown in Figure 3-10. The
initial pressure p, (SI units: Pa) denotes the pressure at which the elastic range
circumscribed by either a Mohr-Coulomb pyramid or a Drucker-Prager cone is not

valid any longer, so a cap surface is added. The limit pressure py, gives the curvature of
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the ellipse, and denotes the maximum admissible hydrostatic pressure for which the

material starts deforming plastically. Pressures higher than py, are not allowed

Ry |

Figure 3-10: Elliptic cap model in Haigh—Westergaard coordinate system.

Note that the sign convention for the pressure is taken from the Structural Mechanics
Module: positive sign under compression, so p, and py, are positive parameters.

Figure 3-10 shows the cap in terms of the variables p and q

q = ,/3Jy(c) and p = -I(c)/3

In terms of these variables, the equation for the elliptic cap reads

(7o)« (9 =

the point (p,, q4) in the Haigh-Westergaard coordinate system is where the elliptic cap
intersects either the Mohr-Coulomb or the Drucker-Prager cone.

Elliptic Cap With Hardening

It is also possible to add isotropic hardening to the cap surface. In this case, the center
of the ellipse is shifted as the volumetric plastic strain increases, also, the size of the
ellipse’s semi-axes grow as hardening evolves. The intersection of the elliptic cap with

the pressure axis is given by

log(l + _Epvol

pvol,max

Py, = Ppo—Kig,
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here, py is the initial value for the limit pressure py, Kiq, is the isotropic hardening
modulus, ;4] the volumetric plastic strain, and €py4] max the maximum volumetric
plastic strain. Instead of providing the value for the initial pressure p, (SI units: Pa),

the ellipse’s aspect ratio R is entered.

Note that the volumetric plastic strain €p,] is negative in compression, so the limit

pressure py, is increased from py, as hardening evolves.

See also the description of the Drucker-Prager material model in the Solid

Mechanics interface documentation.

Matsuoka-Nakai Criterion
Matsuoka and Nakai (Ref. 3) discovered that the sliding of soil particles occurs in the
plane in which the ratio of shear stress to normal stress has its maximum value, which

they called the mobilized plane. They defined the yield surface as
F,=(9+ uAI;-1,1, = 0

where the parameter 1 = (t/0,)gTp equals the maximum ratio between shear stress
and normal stress in the spatially mobilized plane (STP-plane), and the invariants are
applied over the effective stress tensor (this is the Cauchy stress tensor minus the fluid

pore pressure).

The Matsuoka-Nakai criterion circumscribes the Mohr-Coulomb criterion in dry soils,
when

2./2

n = Ttanq)
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and ¢ denotes the angle of internal friction in Mohr-Coulomb criterion.

Figure 3-11: The Matsuoka-Nakai criterion and Mohr-Coulomb critevion in the
principal stress space.

See also the description of the Matsuoka-Nakai material model in the

Q@

Solid Mechanics interface documentation.

CHAPTER 3:

Lade-Duncan Criterion
The Lade-Duncan criterion was originally developed to model a large volume of

laboratory sample test data of cohesionless soils. This criterion is defined as
3
Fy =kI;-1I] =0

where I and I3 are the first and third stress invariants respectively, and % is a parameter
related to the direction of the plastic strain increment in the triaxial plane. The

parameter £ can vary from 27 for hydrostatic stress conditions (67 = Gg = G3), up to a
critical value &, at failure. In terms of the invariants I1, Jg,and /3, this criterion can be

written as

1 1 1),3
F, = J3—§IIJ2+(2—7—;J11 =0

The Lade-Duncan criterion can be fitted to the compressive meridian of the

Mohr-Coulomb surface by choosing

k = (3-sin¢)3/(cosh2- (1 - sind))
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with ¢ as the angle of internal friction in Mohr-Coulomb criterion

Lade-Duncan | Matsuoka-Nakai

Mohr-Coulomb
\
\ 7

Figure 3-12: Comparing the Mobr-Counlomb, Matsuoka-Nakai, and Lade-Duncan
crateria when matching the tensile meridian.

The Lade-Duncan criterion does not match the Mohr-Coulomb criterion
= (nor the Matsuoka-Nakai criterion) at the tensile meridian.

See also the description of the Lade-Duncan material model in the Solid

Mechanics interface documentation.

Tension Cut-Off
It appears that the Mohr-Coulomb and Drucker-Prager criteria predict tensile
strengths larger than the experimental measurements on soil samples. This discordance

can be mended by the introduction of the Rankine or tension cut-off criterion.

The Rankine criterion states that a material stops deforming elastically when the
biggest principal stress 61 reaches a maximum tensile stress, also called tension cut-off

limit Oy.
In terms of the principal stress, Rankine criterion reads
F=06,-0,=0
For soils and clays, the maximum tensile stress can be estimated from the material

parameters, such as the cohesion c and the friction angle ¢ . For instance, the tip of the

cone in Mohr-Coulomb criterion is reached when

Gl — cCOSQ

sind
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therefore, the tension cut-oft should be chosen such as

o, < C_QCOS
t

sin

The Mohr-Coulomb criterion together with a tension cut-off is sometimes called
modified Mohr-Coulomb criterion (Ret. 19).

Tension cut-off is also available with Concrete material models.

B

CHAPTER 3:

HILL ORTHOTROPIC PLASTICITY
Hill (Ref. 12, Ref. 13) proposed a quadratic yield function (and associated plastic

potential) in a local coordinate system given by the principal axes of orthotropy a;

Qp = F (09— 033)2+ G(0g5-677)2 + H(0,; — Gg9)% + (3-28)
2Lc§3 + 2MG§1 + 2NG%2 -1

The six parameters F, G, H, L, M, and N are related to the state of anisotropy. As with
isotropic plasticity, the elastic region @, < 0 is bounded by the yield surface @, =0.

Hill demonstrated that this type of anisotropic plasticity is volume preserving, this is,

given the associated flow rule

the trace of the plastic strain rate tensor is zero, which follows from the expressions for

the diagonal elements of ép

. 0Q
€p11 = XEEPI = 2M(-G(033-617) + H(G11 — Og9))

. Q
€p2o = xgﬂ = 2M(F(Cgg — 045)-H (011 — Og9))
22

) Q
€p33 = Ka—csi = 2M-F (099 —033) + G(033-011))

so the plastic volumetric strain rate is zero
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€pvol = tracc(sp) = €p11t€p22 +Ep33 = 0

Hill plasticity is an extension of J2 (von Mises) plasticity, in the sense that
itis volume preserving. Due to this assumption, six parameters are needed

to define orthotropic plasticity, as opposed to orthotropic elasticity, where
nine elastic coefficients are needed.

m

Expressions for the Coefficients F, G, H, L, M, N
Hill noticed that the parameters L, M, and N are related to the yield stress in shear with
respect to the axes of orthotropy a;, thus they are positive parameters

L-—1 -1 n__1
262 26> 26>
Oys23 ys31 ys12

Here, 6yg;; represents the yield stress in shear on the planc /.

The material parameters Gyg1, Oyg9, and O3 represent the tensile yield stress in the
direction, aq, &g, and ag, and they are related to Hill’s parameters F, G, and H as

—;— =G+H
Gysl

1
T=H+F

Gys 2

1
—2- =F+QG
0-ys?y

or equivalently

Gys2 csysS csysl

1 1 1

2G = >+ -
Gys3 Gys 1 GysQ

1 1 1

2H=——+—5"-73
Gysl Gys2 Gys3
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Note that at most one of the three coefficients F'; G, and H can be negative.

In case of hardening, these coefficients (either Hill’s coefficients or the
|_E| shear and tensile yield stresses) are renamed with the “initial” prefix.

In order to define a yield function and plastic potential suitable for isotropic or
kinematic hardening, the average initial yield stress Gy is calculated from the Hill’s

parameters F, G, and H (this is equivalent to the initial yield stress Oy in von Mises

plasticity)
3 = 2F+GH) - %[%+%+% (3-29)
GysO Gysl GysZ Gys

Defining Hill’s effective stress as (Ref. 13)

2 _ 2 2 2 2
Ol = Oys0(F (099 — 033)% + G(033 - 611)* + H(G1 — Og)

+ 2(L(5§3 +MG§1 +NG§2))

makes it possible to write the plastic potential in a similar way to von Mises plasticity.

Isotropic hardening is then applied on the average yield stress variable 6y, by using
the plastic potential

Qp = O — Gys
Here, the average yield stress
Gy = Oy + ch(epe)

now depends on the initial yield stress Gy, the hardening function 6y, and the

cffective plastic strain gp.

ISOTROPIC HARDENING

Plasticity implements seven different kinds of isotropic hardening models for
elastoplastic materials:

* DPerfect Plasticity (no isotropic hardening)

* Linear Isotropic Hardening

e Ludwik
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* Swift

* Voce

* Hockett-Sherby
e User defined

Perfect Plasticity

For perfect (or ideal) elastoplastic materials, the yield surface is fixed in the space of
principal stresses, and therefore, plastic deformations occur only when the stress path
moves on the yield surface (the regime inside the yield surface is elastic, and stress paths

beyond the yield surface are not allowed).

In this case the plasticity algorithm solves either the associated or nonassociated flow

rule for the plastic potential @,

with the yield function
F = ¢(c)-0y

In the settings for plasticity you specify the effective stress ¢(c) for the yield function
from von Mises stress, Tresca stress, Hill effective stress, or a user defined expression;

and Oy is the initial yield stress that defines the onset of plastic deformation.

When Large plastic strain is selected as the plasticity model for the
El" Plasticity node, either the associate or nonassociated flow rule is applied

as written in Equation 3-35.

Linear Isotropic Hardening
In this case the plasticity algorithm solves either the associated or nonassociated flow

rule for the plastic potential @,

with the yield function
Fy = 0(0) -0y (g,e)

where the yield stress 6y¢(€p) now depends on the effective plastic strain €ye.
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The yield stress 6yg(€pe) is then a function of the effective plastic strain and the inizial
yield stress Gygo

Gys(gpe) = Oys0 +Eiso€pe

here, the isotropic hardening modulus E;y, is calculated from

11
Eiso ETiso

1
“E
For linear isotropic hardening, the isotropic tangent modulus Emg, is defined as
(stress increment / total strain increment). A value for Emyg, is entered in the isotropic
tangent modulus section for the Plasticity node. The Young’s modulus E is taken from
the parent material (Linear Elastic, Nonlinear Elastic or Hyperelastic material model).
For orthotropic and anisotropic elastic materials, E represents an effective Young’s

modulus.

Ludwik
In Ludwik model for nonlinear isotropic hardening, the yield stress oyg(€p,e) is defined
by a nonlinear function of the effective plastic strain. Ludwik equation (also called

Ludwik-Hollomon equation) for isotropic hardening is given by the power-law

n
Gys(epe) = GysO+k£pe

here, % is the strength coefficient and n is the hardening exponent. Setting n = 1 would

result in linear isotropic hardening.

Swift
For nonsaturating materials, the Swift power-law equation relates the initial yield stress
Oyso and the isotropic hardening oy, to the effective plastic strain as
- =k n
oys(spe) = Oyt ch(spe) = k(gy+ spe)

here, £ is the strength coefficient, n is the hardening exponent and € is a reference
strain. Noting that at zero plastic strain the initial yield stress is related to the strength

coefficient and hardening exponent as
0) = = kel
Gys( ) = Gys0 = kg

the yield stress is written as
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Epe)”
0},80(1+ . )

0\,5(8
’ 0

pe) =
Voce

The Voce rule for nonlinear isotropic hardening is intended for materials that exhibit
a saturating evolution of hardening. The isotropic hardening 6}, is exponentially
related to the effective plastic strain as

On(epe) = Ou1-¢  P°)

The yield stress oyg(€pe) is then defined as

_nge
Gys(epe) = Oy + Gh(Spe) = Oy + Gsat(l —e )

The value of the saturation exponent parameter B determines the saturation rate of
the hysteresis loop for cyclic loading. The saturation flow stress Ggqy characterizes the
maximum distance by which the yield surface can expand in the stress space. For values
€pe >> 1/B, the yield stress saturates to

0-ys - GysO * Oar

Hockett-Sherby
The Hockett-Sherby rule for nonlinear isotropic hardening is also intended for
materials which yield stress saturates as effective plastic strain increases. It is similar to
Voce rule, but it includes an exponential dependency of the form
ey
Gys(Spe) = Gyso+(($w—6yso)(1—e )
where G,. is the steady-state flow stress, m the saturation coefficient and n the

saturation exponent. For values mepen >> | the yield stress saturates to

o, —0

Vs oo

User defined
The yield stress versus the effective plastic strain can be specified with the help of a

hardening curve that could also depend on other variables, such as temperature.

In this case, define the (usually nonlinear) hardening function 6y, (€p,e) such that the
yields stress reads
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Oys(Epe) = Oyig+ Oh(Epe)

The internal variable for the effective plastic strain is named solid.epe.
The effective plastic strain evaluated at Gauss points is named
solid.epeGp.

[

When Large plastic strain is selected as the plasticity model for the

Plasticity node, either the associate or nonassociated flow rule is applied

[

as written in Equation 3-35.

CHAPTER 3:

KINEMATIC HARDENING

There are few options for computing either linear or nonlinear kinematic hardening
for plasticity:

* No kinematic hardening (default)

¢ Linear kinematic hardening

e Armstrong-Frederik

* Chaboche

For any of the kinematic hardening models, the algorithm solves either the associated

or nonassociated flow rule for the plastic potential @,

. ad
L

d0
with the yield function defined as

Fy = ¢(G_Gback)_cys

Here, 0y is the yield stress (which may include a linear or nonlinear isotropic
hardening model), and the effective stress ¢(o) is either the von Mises, Tresca, or Hill
stress; or a user defined expression. The stress tensor used in the yield function is

shifted by what is usually called the back stress, Opgek-

Linear Kinematic Hardening
The back stress is generally not only a function of the current plastic strain but also of
its history. In the case of linear kinematic hardening, the back stress Gy, is a linear

function of the plastic strain tensor &, this is also known as Prager’s hardening rule.

STRUCTURAL MECHANICS THEORY



The implementation of linear kinematic hardening assumes a linear evolution of the

back stress tensor with respect to the plastic strain tensor:

2
Oback = gcksp

where the kinematic hardening modulus Cy is calculated from

1 _ 1
K

Cx

SIS

The value for Ey is entered in the kinematic tangent modulus section and the Young’s
modulus E is taken from the linear or nonlinear elastic material model. For orthotropic
and anisotropic elastic materials, E represents an averaged Young’s modulus. Note that

some authors define the kinematic hardening modulus as Hy, = 2/3Cy,.

When kinematic hardening is added, both the plastic potential and the
yield surface are calculated with effective invariants, that is, the invariants
of the tensor defined by the difference between the stress tensor minus

the back-stress, 6 4 = O — O, - The invariant of effective deviatoric

!

tensor is named solid.II2sEff, which is used when a von Mises, Tresca
or Hill orthotropic plasticity is computed together with kinematic
hardening.

Armstrong-Frederik Hardening Model

Armstrong and Frederick (Ref. 7) added memory to Prager’s linear kinematic
hardening model. This nonlinear kinematic hardening model allows to capture the
Bauschinger effect and nonlinear behavior by non symmetrical tension-compression
loading.

The nonlinear evolution of the back stress 6y, is governed by the rate
Oback = 3 k&p ~ Yk€peOpack

here, Cy is the kinematic hardening modulus, ¥ is a kinematic hardening parameter,
and €, the effective plastic strain. Setting Y, = 0 recovers Prager’s rule for linear
kinematic hardening.

To solve this rate, internal degrees of freedom are added to account for the back stress

components. In order to have the same units as used for the plastic strain, the
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algorithm solves for the back strain €44 as proposed in (Ref. 8), which is related to
the back stress as

_ 2
Oback = 3 kEback
The nonlinear evolution for the back strain reads
€back = €p ~ VkEpe€pack

Chaboche Hardening Model
Chaboche (Ref. 8) proposed a nonlinear kinematic hardening model based on the
superposition of N back stress tensors

iV

Oback = Zcback,i

1

each of these back stress tensors Oy ; follows a nonlinear Frederick-Armstrong

kinematic hardening rule
Oback,i = 3i€p = Vi€peOpack,i

Practitioners would normally select v = O for one of the back stress equations, thus

recovering Prager’s linear rule for that branch

2
Oback,0 = §COSp

The back stress tensor Gy, is then defined by the superposition of N back stress
tensors

iV
2
Oback = §Cosp + Z Oback,i
i=1

As done for Armstrong-Frederik kinematic hardening, the algorithm solves for the

back strain tensors €y, ; instead of the back stress tensors. The change of variables is

2
Gback,i = gcieback,i

and the nonlinear evolution for the back strain tensors reads
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€back,i = €p— ’Yispeeback,i

INTRODUCTION TO SMALL AND LARGE PLASTIC STRAINS

There are two implementations of plasticity available in COMSOL Multiphysics. One
is based on the additive decomposition of strains, which is the most suitable approach
in the case of small strains, and the other one is based on the multiplicative
decomposition of the deformation gradient, which is more suitable when large plastic
strains occurs. The additive and multiplicative decomposition of strains is described in
Inelastic Strain Contributions.

When small plastic strain is selected as the plasticity model, an additive
decomposition is used. If the elastic or plastic strains are large, the additive
decomposition might produce incorrect results. As an example, the volume
preservation, which is an important assumption in metal plasticity, will no longer be
respected. The additive decomposition of strains is however widely used both for metal
and soil plasticity.

When Small plastic strain is selected as the plasticity model for the
Plasticity node, and the Include geometric nonlinearity check box is
selected on the study Settings window, a Cauchy stress tensor is used to
evaluate the yield function and plastic potential. The components of this

!

stress tensor are oriented along the material directions, so it can be viewed
as a scaled second Piola-Kirchhoff stress tensor. The additive
decomposition of strains is understood as the summation of

Green-Lagrange strains.

When large plastic strain is selected as the plasticity model, the total deformation
gradient tensor is multiplicatively decomposed into an elastic deformation gradient
and a plastic deformation gradient.

PLASTIC FLOW FOR SMALL STRAINS

The flow rule defines the relationship between the increment of the plastic strain
tensor ép and the current state of stress, o, for a yielded material subject to further
loading. When Small plastic strain is sclected as the plasticity model for the Plasticity

node, the direction of the plastic strain increment is defined by

2Q,

épzkac
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Here, A is a positive multiplier (also called the consistency parameter or plastic
multiplier), which depends on the current state of stress and the load history, and @,
is the plastic potentinl.

The “dot” (for €, ) means the rate at which the plastic strain tensor
. changes with respect to 0@,/ 9. It does not represent a true time
[=] derivative. Some authors call this formulation rate independent
plasticity.

CHAPTER 3:

The direction of the plastic strain increment ép is perpendicular to the surface (in the

hyperspace spanned by the stress tensor components) defined by the plastic potential
@p.

The plastic multiplier A is determined by the complementarity or Kubn-Tucker
conditions

A20,F <0 and AF =0 (3-30)

where Fy is the yield function. The yield surface encloses the clastic region defined by
Fy <0. Plastic flow occurs when Fy = 0.

If the plastic potential and the yield surface coincide with each other (Qp =F ), the
flow rule is called associated, and the rate in Equation 3-31 is solved together with the
conditions in Equation 3-30.

. _9F,
ép = A5 (3-31)

For a nonassociated flow rule, the yield function does not coincide with the plastic
potential, and together with the conditions in Equation 3-30, the rate in
Equation 3-32 is solved for the plastic potential @}, (often, a smoothed version of Fy).
. oQ
&, = )\,—E 3'32
p e (3-32)
The evolution of the plastic strain tensor ép (with either Equation 3-31 or
Equation 3-32, plus the conditions in Equation 3-30) is implemented at Gauss points
in the plastic element elplastic.

STRUCTURAL MECHANICS THEORY



PLASTIC FLOW FOR LARGE STRAINS

When Large plastic strain is sclected as the plasticity model for the Plasticity node, a
multiplicative decomposition of deformation (Ref. 9, Ret. 10, and Ref. 11) is used,
and the associated plastic flow rule can be written as the Lie derivative of the elastic
left Cauchy-Green deformation tensor Bg:

2B, = 1228, (3-33)

The plastic multiplier A and the yield function @ (written in terms of the Kirchhoff
stress tensor T) satisty the Kuhn-Tucker condition, as done for infinitesimal strain

plasticity

A20,®<0 and A® =0

The yield function @ in Ref. 9 and Ref. 10 was written in terms of
Kirchhoff stress T and not Cauchy stress 6 because the authors defined the

!

plastic dissipation with the conjugate energy pair T and d, where d is the

rate of strain tensor.

The Lie derivative of B is then written in terms of the plastic right Cauchy-Green rate
L(B,) = FC;'FT (3-34)

By using Equation 3-33 and Equation 3-34, the either associated or nonassociated

plastic flow rule for large strains is written as (Ref. 10)
Lopciipr - 229
—2FCp Ft =) 3 B (3-35)

together with the Kuhn-Tucker conditions for the plastic multiplier A and the yield
function Fy,

A=20,F <0 and kFy =0 (3-36)

For the associated flow rule, the plastic potential and the yield surface coincide with
cach other (@, = Fy), and for the nonassociated case, the yield function does not

coincide with the plastic potential.

In COMSOL Multiphysics, the elastic left Cauchy-Green tensor is written in terms of
the deformation gradient and the right Cauchy-Green tensor, so By = F! Cp_lF T The

flow rule then reads
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. )
Clgl = —2%F*1£BFC*1 (3-37)
0T p

The plastic flow rule is then solved at Gauss points in the plastic element elplastic
for the inverse of the plastic deformation gradient F' p_l, so that the variables in
Equation 3-37 are replaced by

-1 _ p-1p-T (-1 — p-15-T -17-T _ ~17-TET
Cp _Fp Fp ,Cp _Fp Fp +Fp Fp andBel_FFp FpF

After integrating the flow rule in Equation 3-37, the plastic Green-Lagrange strain

tensor is computed from the plastic deformation tensor
1.1
e, = Q(Fpr—I)

and the elastic Green-Lagrange strain tensor is computed from the elastic deformation
gradient tensor Fg) = FF, p_l

1 .1
€ = é(FelFel_I)

When Large plastic strain is selected as the plasticity model for the

Plasticity node, the effective plastic strain variable is computed as the t7ue

i

effective plastic strain (also called Hencky or logarithmic plastic strain).

When cither Large plastic strain or Small plastic strain is selected as the
. plasticity model for the Plasticity node, the out-of-plane shear strain
ril components are not computed in 2D, neither for plane stress nor plane

strain assumption.

CHAPTER 3:

NUMERICAL SOLUTION OF THE ELASTOPLASTIC CONDITIONS
A backward Euler discretization of the pseudo-time derivative is used in the plastic flow
rule. For small plastic strains, this gives

Q

A—2P

8p - sp, old = Jo

where “old” denotes the previous time step and A = AA¢, where At is the pseudo-time
step length.
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For large plastic strains, Equation 3-37 is numerically solved with the so-called
exponential mapping technique

0Q
c;l = Fflexp(—ZA%E)FCE}OId

-1 - p-1p-T -1 - F-1 -T
where C04 = FAFCE and Cptgg = FoogFp ol -
For each Gauss point, the plastic state variables (g, or F| p_l, depending on whether
small strain or large strain plasticity is selected) and the plastic multiplier, A, are
computed by solving either of the above time-discretized flow rules together with the

complementarity conditions

A20, F.<0, AF =0

v y
This is done as follows (Ref. 9):
I Elastic-predictor: Try the clastic solution &, =€, ;14 (or Fgl = F;_ylold )and A=0.
If this satisfies Fy <0 it is done.

2 Plastic-corrector: If the clastic solution does not work (this is Fy, > 0), solve the
nonlinear system consisting of the flow rule and the equation Fyy = 0 using a damped

Newton method..

The numerical tolerance to fulfill the condition Fy = 0 is given in SI units
of Pascals, and it depends on the initial yield stress (in case of plasticity and

porous plasticity) or it is defined in terms of other material parameter (for

[

soil plasticity). This numerical tolerance is 0.1% the value defined in the

variable item.tol., where item is the name of the node.

ENERGY DISSIPATION

Since plasticity is an inelastic process, the dissipated energy density can be calculated

by integrating the pseudo-rate given by

Wp = o:&, = ho: ==
P b d0

As plasticity is rate independent, the plastic dissipation density Wy is obtained after

integrating an extra variable in the plastic flow rule.
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The total energy dissipated by plasticity in a given volume can be calculated by a

volume integration of the plastic dissipation density Wp,.

When the Calculate dissipated energy check box is selected, the plastic

|'i-|' dissipation density is available under the variable solid.Wp and the total

plastic dissipation under the variable solid.Wp_tot.

CHAPTER 3:

Failure Criteria for Concrete, Rocks, and Other Brittle Material

In this section:

¢ Bresler-Pister Criterion

¢ Willam-Warnke Criterion

¢ Ottosen Criterion

* Original Hoek-Brown Criterion

¢ Generalized Hoek-Brown Criterion

BRESLER-PISTER CRITERION

The Bresler-Pister criterion (Ref. 2, Ref. 17) was originally devised to predict the
strength of concrete under multiaxial stresses. This failure criterion is an extension of
the Drucker-Prager Criterion to brittle materials, and it can be expressed in terms of

the stress invariants as
F, = [Jy+hkL+holy + kg (3-38)

here, k1, kg, and k3 are parameters obtained from the uniaxial compressive strength

O, the uniaxial tensile strength oy, and the biaxial compressive strength oy,

0,0.+26.6,-30,0,

k =
17 B(6.+6)(20,-6.)(26, +G,)
B = (6,—-06.)(o,(6.+0,—-46,)-0.0,)
27 B(0.+6,)(20,-0.)(20, +0,)
-6.6,,6,(6,+86, -30,)
kg

B Jg(cc +0,)(20,-0.)(20, +0,)
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All the strengths are considered with a positive sign. Note that for typical strength

values, the parameters k1 and kg are positive while kg is negative.

WILLAM-WARNKE CRITERION

The Willam-Warnke criterion (Ref. 10) is used to predict failure in concrete and other
cohesive-frictional materials such as rock, soil, and ceramics. Just as the Bresler-Pister
Criterion, it depends only on three parameters. It was developed to describe initial
concrete failure under triaxial conditions. The failure surface is convex, continuously

differentiable, and it is fitted to test data in the low compression range.

The original “three-parameter” Willam-Warnke failure criterion was defined as

F, = ﬁ%-“ + r(e)((cl - gl—b) Ot — 1) (3-39)

t

where 6 is the uniaxial compressive strength, 6; is uniaxial tensile strength, and oy, is
the biaxial compressive strength (all parameters are positive). The octahedral normal
and shear stresses are defined as usual; see Other Stress Invariants

6oe=11/3,and 1 = /2J,/3

so the criterion in Equation 3-39 can be written in term of stress invariants as

R = [T fBros((2-2)30)

The dimensionless function r(0) describes the segment of an ellipse on the octahedral

plane as a function of the Lode angle 6

2r (r2-r2)cos®+r.(2r - rc)A/4(r§ - rtz)cos29 +5r2—4rr,

r(0) = 5
4(r2-r2)cos"0+ (r.—2r)?

Here, the tensile and compressive meridian r and 7., are defined in terms of the
strengths o, O}, and oy:

” _JE l 0,0,
' A5 ©6.20,+0,
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r _F Gbct
.=
5 30,0, + 6,0.-0.0,

The function r(6) can be interpreted as the friction angle which depends on the Lode
angle 0 (Ref. 10).

Figure 3-13: The deviatoric section of Willam-Warnke failurve criterion.

OTTOSEN CRITERION

The Ottosen criterion is a four-parameter failure criterion proposed for short-time
loading of concrete. It corresponds to a smooth convex failure surface with curved
meridians, which is open in the negative (compressive) direction of the hydrostatic
axis. The curve in the pi-plane changes from almost triangular to a more circular shape
with increasing hydrostatic pressure. The criterion agrees with experimental results
over a wide range of stress states, including both triaxial tests along the tensile and the
compressive meridian and biaxial tests (Ref. 18).

The Ottosen criterion is commonly written as (Ref. 17, Ref. 18):

y

F, = (%J2+7\4(9)//c72+b11—6c

Here, 6, > 0 is the uniaxial compressive strength of concrete, and >0 and 5>0 are
dimensionless parameters. The dimensionless function A(8) depends on the Lode angle

0 and the dimensionless parameters k1 > 0 and kg > 0.
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klcos(%acos(kzcos(&’»ﬁ))) Jg>0

A(O) =

klcos(g—%acos(—kQCOS(SB))) J3<0,

The parameter k7 is called the size factor. The parameter kg (also called shape factor)
is positive and bounded to 0 < kg < 1(Ref. 17, Ref. 18).

Typical values for these parameters are obtained by curve-fitting the uniaxial
compressive strength G, uniaxial tensile strength 6;, and from the biaxial and triaxial
data (for instance, a typical biaxial compressive strength of concrete is 16% higher than

the uniaxial compressive strength). The parameters 6., 6y, and G; are positive.

TABLE 3-3: TYPICAL PARAMETER VALUES FOR OTTOSEN FAILURE CRITERION (RCf. 18)

Gi/ O, a b Ry ko At Ae

0.08 1.808  4.096 14486  0.991 14472  7.783
0.10 1.276 3.196 11.736  0.980 11.711 6.531
0.12 0.922 2.597 9.911 0.965 9.872 5.698

The compressive and tensile meridians (as defined in the Willam-Warnke Criterion) are

The ratio r./r. = A./A, normally lies between 0.54~0.58 for concrete.

. The Ottosen criterion is equivalent to Drucker-Prager when @ = 0 and A
= independent of the Lode angle.

ORIGINAL HOEK-BROWN CRITERION

The Hoek-Brown criterion is an empirical type of model which is commonly used
when dealing with rock masses of variable quality. The Hoek-Brown criterion is widely
used within civil engineering and is popular because the material parameters can be
estimated based on simple field observations together with knowledge of the uniaxial
compressive strength of the intact rock material. The Hoek—Brown criterion is one of
the few nonlinear criteria widely accepted and used by engineers to estimate the yield

and failure of rock masses. The original Hoek-Brown failure criterion states (Ref. 5)

MATERIAL MODELS |

375



376 |

CHAPTER 3:

- 2
G = O3+ /MG, O, +507

where 61 = 09 = 63 > 0 are the principal stresses at failure (as defined in geotechnical
engineering; that is, an absolute value), o, is the uniaxial compressive strength of the
intact rock (positive parameter), and m and s are positive material parameters.

If the expression is converted into to the sign convention for principal stresses in the

Structural Mechanics Module, it becomes

- / 2
Gy = O3+ —7’)’l(56(51+8(5C

with 6., m, and s positive material parameters. (In this case, note that 61 < s6,./m).

As developed originally, there is no relation between the parameters m and s and the
physical characteristics of a rock mass measured in laboratory tests. However, for intact

rock, s =1 and m = m;, which is measured in a triaxial test.

For jointed rock masses, 0 <s <1 and m < m;. The parameter m usually lies in the
range 5 <m < 30 (Ref. 7).

TABLE 3-4: CHARACTERISTIC VALUES FOR DIFFERENT ROCK TYPES

m ROCK TYPE

5 Carbonate rocks, dolomite, limestone
10  Consolidated rocks, mudstone, shale
15  Sandstone

20  Fine-grained rocks

25  Coarse grained rocks

The Hoek-Brown criterion can be written in terms of the invariants I7 and Jg and the
Lode angle 0 <6 <m/3, so

F'y = 2JeTzsin(0 + g) -0,

GENERALIZED HOEK-BROWN CRITERION

The generalized Hoek-Brown criterion was developed in order to fit the Geological
Strength Index (GSI) classification of isotropic rock masses (Ref. 6). A new
relationship between GSI, m, s and the newly introduced parameter a was developed,
to give a smoother transition between very poor quality rock masses (GSI < 25) and

stronger rocks
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01—0q =0.|S—m
1 3 c bcc

In terms of the invariants J5 and the Lode angle 0 <0 <n/3 this equals

Fy = 2@sin(9+§)—cc(s—mb§—?a =0

where 61 = 069 > 03 are the principal stresses (using the Structural Mechanics Module
conventions) of the effective stress tensor (this is, the stress tensor minus the fluid pore
pressure).

The positive parameter my, is a reduced value of the material constant m;:

_ GSI — 100
My = M\ 98" 14D

s and a are positive parameters for the rock mass given by the following relationships:

s = exp

(589

a = 2+ g(exp( ) - ep(22))

The disturbance factor D was introduced to account for the effects of stress relaxation
and blast damage, and it varies from 0 for undisturbed in situ rock masses to 1 for very
damaged rock masses.

TABLE 3-5: DISTURBANCE FACTOR IN ROCK MASSES

D DESCRIPTION OF ROCK MASS

0 Undisturbed rock mass
0~0.5 Poor quality rock mass
0.8 Damaged rock mass

1.0 Severely damaged rock mass

Elastoplastic Soil Models

In this section:

e The Modified Cam-Clay Soil Model
e The Modified Structured Cam-Clay Soil Model
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¢ The Extended Barcelona Basic Soil Model
e The Hardening Soil Model

THE MODIFIED CAM-CLAY SOIL MODEL

The Cam-Clay material model was developed in the 1970s at the University of
Cambridge, and since then it has experienced different modifications. The modified
Cam-Clay model is the most commonly used model due to its smooth yield surface,

and it is the one implemented in the Geomechanics Module.

The modified Cam-Clay model is a so-called critical state model, where the loading
and unloading of the material follows different trajectories in stress space. The model
also features hardening and softening of clays. Different formulations can be found in
textbooks about the model (see Ref. 13, Ref. 14, and Ref. 15).

The yield function is written in terms of the stress invariants

q = ,/3J5(c) and p = -I(c)/3
Following the Structural Mechanics Module sign convention (the pressure is positive
in compression), the yield function reads:

F,=q?>+M%pp-p)p =0

This is an ellipse in p-q plane, with a cross section independent of the Lode angle. Note

that p, q, and p. are positive variables.

The parameter M > 0 defines the slope of the critical state line in the p-q space. This
parameter can be related to the angle of internal friction ¢ in the Mohr-Coulomb

criterion as

65sin(¢)
3 - sin(¢)
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oV

p‘c/2 pc

Figure 3-14: Modified Cam-Clay ellipse in the pg-plane. The ellipse civcumscribes a
nonlinear elastic region.
In the modified Cam-Clay model, hardening is controlled by the consolidation

pressure pe, which depends on the volumetric plastic strain €p o as

_(1 +eep)

DPc = P D Epvol (3-40)

The volumetric plastic strain is available in the variable solid.epvol and

g the consolidation pressure in the variable item.pc.

The evolution of the consolidation pressure depends on the values for the reference
void ratio eyer, the swelling index x, and the compression index N, which are positive

parameters that fulfill

O<x<X and e >0

The void ratio e is the ratio between pore volume and solid volume. It can

g be written in terms of the porosity ¢ as e = ¢/(1-¢).
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The compression index A is the slope of the virgin isotropic consolidation line, and
the swelling index x is the slope of the rebound-reloading line (also called

loading-reloading line) in the e versus In(p) plane.

L

In(prep)  In(pep)  In(p)

Figure 3-15: Slopes of the virgin isotropic consolidation line and rvebound-veloading line
in the e vs. In(p) plane. The reference void ratio e ¢ is measured at the vefevence pressuve

Dref

If an Initial Stress and Strain feature is added to the Cam-Clay material,

the initial consolidation pressure p.o must be made equal or bigger than

[

one third of minus the trace of the initial stress tensor, otherwise the

initial stress state is outside the Cam-Clay ellipse.
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Volumetric elastic deformation
The stress-strain relation beyond the elastic range is of great importance in soil

mechanics. For additive decomposition of strains, Cauchy’s stress tensor is written as

6-0y = Ci(e—g;)

Here, o is the stress tensor, € is the total strain tensor, €;,,¢] is the inelastic strain tensor,
G is the initial or external stress tensor, and C is the fourth-order elasticity tensor.
Assuming only elastic stresses in a linear isotropic elastic medium, Hooke’s law

simplifies to
6 = Ktrace(e ) +2Gdev(e)

where K is the bulk modulus and G is the shear modulus. By using the convention that
the pressure is the mean stress defined as positive in compression, the trace of the stress
tensor is linearly related to the volumetric elastic strain &g v, (the trace of the elastic

strain tensor) by the bulk modulus
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p = -1,(c)/3 = -Kg

el,vol

here, the pressure p is positive in compression, but the elastic volumetric strain €] yo]

is positive in tension.

The elastic volumetric strain is available in the variable solid.eelvol.

As opposed to a Linear Elastic Material, the modified Cam-Clay soil model introduces
a nonlinear relation for the hydrostatic pressure as a function of the volumetric elastic
strain:

-B_e 1
el el,vol . + eref
Pmec = Pref® with Bel =T <

here, the reference pressure p,ris the pressure at which the reference void ratio e
was measured, and x is the swelling index.

The initial bulk modulus is then given by the expression Ky = Bgjpref, and the tangent
bulk modulus by the expression K = Bgpee. See also the section Tangent and secant

moduli.

In order to have zero stress at zero volumetric strain, the reference pressure is removed

from the stress tensor, so the total pressure finally reads
P = DPmec ~Pref
The stress tensor is then computed from

6 = (Pref—Pme)] +2Gdev(ey)

Hardening and softening
The yield surface for the modified Cam-Clay model reads
F,=q*>+M*(p-p)p

The yicld surface and the associated flow rule (@, = Fy) give the rate equation for the
plastic strains. The plastic strain tensor €, is calculated from the plastic multiplier A,

and the derivatives of the plastic potential @, with respect to the stress tensor 6
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BQ ~ (BQ ol BQ BJZ)

& = A3 = I, 96 ' 9J, 00

Here, A, stands for the plastic multiplier, see Plastic Flow for Small Strains

=
|_i| and Isotropic Hardening.
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The plastic strain rate tensor ép includes both deviatoric and isotropic parts. Note that
0,706 =1 and 9J,/96 = dev(0)

These relations can be used for writing the plastic flow as

(10 99,3
€ = KP(—3 P I+—2F 37 2q deV(G))

since the associated flow rule implies a plastic potential such as
— - 02 2
Q,=F,=q*+M*(p-p)p

the plastic flow rule simplifies to
=\ ( SM2(2p -p )T+ 3d€V(G))

The trace of the plastic strain rate tensor (the volumetric plastic strain rate €pyo| )

then reads
Epvol = trace(gp) = ?LPM2(pc—2p)

This relation explains the reason why there is zsotropic hardening when the pressure
isp > p./ 2 and isotropic softening when p < p./2. As opposed to what happens in J2
plasticity, in the modified Cam-Clay soil model the volumetric plastic strain can either

increase or decrease as plastic deformation occurs.

In the modified Cam-Clay model, hardening is controlled by the consolidation

pressure p, as a function of volumetric plastic strain, as described in Equation 3-40.

Hardening introduces changes in the shape of the Cam-Clay ellipse, since its major
semi-axis depends on the value of the consolidation pressure p.. The initial
consolidation pressure p.y defines the size of the ellipse before plastic deformation

occurs.
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Including pore pressure
When an external pore pressure pyis added to the modified Cam-Clay material, the

yield function is shifted on the p axis, and the yield function reads:
F,=q*+M*(p-p;~p,)(P-pp

The quantity p — pris normally regarded as the effective pressure, or eftective stress,
which should not be confused with von Mises stress. To add the effect of a fluid
pressure in the pores pr to the Modified Cam-Clay material, add an External Stress
feature.

See also the description of the Elastoplastic Soil Material materials in the

Solid Mechanics interface documentation.

THE MODIFIED STRUCTURED CAM-CLAY SOIL MODEL

The structured Cam-Clay model (SCC) was developed (Ref. 20, Ref. 21) to
circumvent the limitations of the Cam-Clay model when applied to structured soils and
clays. The SCC model, however, does not considered the influence of the soil structure
neither on strength characteristics (especially cohesion) nor in the softening behavior,
and it is also not suitable to model cemented clays.

The modified structured Cam-Clay model (MSCC) was further developed to model
destructured, naturally structured and artificially structured clays (Ref. 20), and it is

the one implemented in the Geomechanics Module.

In the MSCC model, the reduction of mean effective stress due to structure
degradation, py, depends on the shear plastic strain €, gey- The destructuring
mechanism is the process of reducing structure strength due to the degradation and
crushing of the structure. The structure degradation is given by

= ~Epdev if -
Py = Ppie ™ if Ep,dcvS 8p,dcvf (3-41)

—d _ (€. — Epdeve .
Py, = Ppse s (Ener = Epae) otherwise
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here, py, is the initial structural strength, pyy the failure structural strength, €p geye 18
the effective plastic strain at failure, and dj is the destructuring index due to shear

deformation.

The effective deviatoric plastic strain at which the crushing of the
El' structure begins, €, geve, has a typical value between 0.15 and 0.3 for
most clays.

CHAPTER 3:

Structured clays show a higher void ratio than destructured clays at the same effective
mean stress. The virgin compression behavior during the destructuring process is

expressed by

d
v
e =e*+Ae(pyy/P,)

where is e void ratio of the structured clay, e* is void ratio of the destructured clay at
the same stress state, Ae; is the additional void ratio at consolidation pressure, and d,

is the destructuring index due to volumetric deformation.
The yield surface for the modified structured Cam-Clay model reads
F, = q>+M(8)*(p +py) (P -P.)

The nonassociated plastic potential reads

0y - e () )

here, ¢ is a parameter to smooth the shape of the plastic potential.

As opposed to The Modified Cam-Clay Soil Model, the slope of the critical state line,
M, depends on both the Lode angle 6 and the angle of internal friction ¢

_ (_6sin(9) 20 174 _ (3—sin
M®) = (3—sin(¢))(1+0)—sin(36)(1—co)) where © = 3+s1n((1)))

In the modified structured Cam-Clay soil model, hardening is controlled by the

consolidation pressure p as a function of volumetric plastic strain, as described in
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Equation 3-40 and the contribution to the mean stress due to the structure, py,, as

written in Equation 3-41.

The MSCC and MCC models are equivalent when Ae; =0, ¢=2, and
= pp=0.

The relationship between hydrostatic pressure and volumetric elastic strain is the same
as the one outlined in The Modified Cam-Clay Soil Model

_ 7Belge],v()l ith B _ 1+ eref
Pmsce = Pref® wit el ©

In order to have zero stress at zero volumetric strain, the reference pressure is removed

from the stress tensor, so the total pressure finally reads
P = Pmscc ~Pref
The stress tensor is then computed from

6 = (Drefr—Prscc) ] +2Gdev(e,)

THE EXTENDED BARCELONA BASIC SOIL MODEL

The Barcelona Basic model (BBM) was developed to simulate unsaturated and
partially saturated soils, by incorporating an extra state variable for the pore suction.
Suction affects the flow in porous soils, as well as the stress distribution and

deformation.

The suction value depends on the amount of water in the soil. The BBM uses the
concepts of plasticity theory, incorporating the critical state model (Ref. 22). This soil
model matches the results obtained with the Modified Cam-Clay Model in fully
saturated soils.

The so-called extended Barcelona Basic model (BBMx) was further developed to
overcome the numerical limitations of the original BBM model (Ref. 23). The BBMx
model presents a smooth yield surface with respect to both stress and suction, and it is

the one implemented in the Geomechanics Module.

The yield surface for the extended Barcelona Basic Model reads
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b(s—s,) —bs,

F, = q>+M(8)*(p-p )P +ps)+pfef[e Pref —ep“’f]

here, p. is the consolidation pressure at current suction, b is a dimensionless
smoothing parameter, and sy is the yield value at current suction. The tensile strength
due to current suction, pg, is linearly related to the suction level as pg = ks, where & is

the tension to suction ratio.

The associated plastic potential for the BBMx model reads
Q= F,

but the plastic strain increments are computed from the derivatives of the plastic

potential with respect to stress only.

As described in the modified Cam-Clay model, hardening is controlled by the
consolidation pressure pe, which depends on the volumetric plastic strain €p ] as

. (1+e,.p)
Pc = _T_%_pcgp,vol (3-42)

The evolution of the consolidation pressure depends on the values for the reference
v0id 7ati0 eref, the swelling index x, and the compression index h, which are positive

parameters.

The evolution of the yield value at current suction sy is also governed by the volumetric

plastic strain €] yo1 as

(1 + eref)
_—Xs —

sy = (sy +patm)ép"’°1 (3-43)

where A4 is the compression index at current suction and p,yy, is the atmospheric
pressure. Note that Equation 3-42 and Equation 3-43 are normally given with
opposite sign, but here we use Structural Mechanics convention so the increments in

consolidation pressure and suction are positive in compression.

The consolidation pressure at current suction p.g is given by

=
Pes = pref(lze_)
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where A is the compression index at saturation and the compression index at current

suction, A, is given by
Ay = h((L—w)e™™ ™ +w)

where w and m are weighting and soil stiffness parameters.

In the BBMx model, the suction s is linearly related to the volumetric elastic strain

€el,vol 2nd the pressure

- B
§ =5+ Kc(ecl,vol _K
here K is the bulk modulus, K the stiffness to suction, and s is the initial value of
suction. The pressure p is positive in compression, but the elastic volumetric strain

€el,vol 1S positive in tension.

The relationship between hydrostatic pressure and volumetric elastic strain is the same
as given in the The Modified Cam-Clay Soil Model

-Be1g 1+
el*elvol . €ref
Pbbm = Pref® with Bel = .

In order to have zero stress at zero volumetric strain, the reference pressure is removed

from the mean stress, so the total pressure finally reads
P = Ppbm ~Pref
The stress tensor is then computed from

o = (pref_pbbm)l+ ZGdCV(Ecl)

THE HARDENING SOIL MODEL

The Hardening Soil model is a nonlinear elastic material model with stress dependent
and stress path dependent stiffness approach. It is a so-called double stiffness model,
which has different stiffness during primary loading and unloading/reloading cases
(Ref. 24). The yield surface for th Hardening Soil model is combination of a conical
surface and a elliptic cap surface in stress space. The failure in shear occurs according

to Mohr-Coulomb criterion.

The stiffness modulus for primary loading, denoted by Ej5, and for unloading/

reloading, denoted by E|,,, are given by the expressions
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_ poref] m "
Eyy = 50(CCOt((¢)+pref))

B - Ercf[ ceot(¢p) -0\ ™
ur = uri e cot () +pre)

f f . . .
here Egco and Effr are reference stiffness moduli at reference pressure ppef, ¢ is the
cohesion, phi is the angle of internal friction, and m is the stress exponent. From the
Mobhr-Coulomb criterion, the ultimate deviatoric stress, gy, and the stress to failure g,

are defined as

kol and g, = e
L=
R

q¢ =

C
where Ryis failure ratio.

The yield function and plastic potential for the shear hardening cone are written in

terms of stress invariants as

q,.J3J 2 ./3J
F, = qa[ : = 2_'Yp

Ego(q,- B3Iy Eur

3J 1 J
Q= =2 +(§1—J§)sin<wm>

here, y, is the accumulated plastic shear strain, and yy, is the mobilized dilatancy angle.

The yield function, and associated plastic potential, for the elliptic cap is written in

terms of stress invariants as

2
3RJ 2
F = - T2, p
v =@ b T P

here, R, is ellipse aspect ratio.

The evolution of the internal variables p and y, are governed by the volumetric plastic

strain €] vo1 and the plastic strain invariant /g (gp)) as

Pc = _Hepl,vol

:YP =2 J2(£pl)
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here, H is the hardening modulus, which is derived from the bulk modulus in
compression (for primary loading) K, and the bulk modulus in swelling (for

unloading and reloading) K.

1 1 1 ref
1i_1 1 R S
H-K ke oT 5aey

The dilatancy cut-offis implemented by setting the mobilized dilatancy angle y,, equal

to zero when the void ratio reaches the critical void ratio ey .

For additive decomposition of strains, Cauchy’s stress tensor is written as
-0y = Ci(e—g;, )

1

where C is a function of the stiffness modulus E ;. and Poisson’s ratio v.

Creep and Viscoplasticity

ABOUT CREEP

In the literature, the terms viscoplasticity and creep are often used
I'i-l" interchangeably to refer to the class of problems related to
rate-dependent plasticity.

Creep is an inelastic time-dependent deformation that occurs when a material is
subjected to stress (typically much less than the yield stress) at sufficiently high

temperatures.

The creep strain rate, in a general case, depends on stress, temperature, and time,

usually in a nonlinear manner:
r = FC‘,(G, T? t)
It is often possible to separate these effects as shown in this equation:

F (0,1, T) = f1(0)fo(T)f3(t)
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Experimental data shows three types of behavior for the creep strain rate at constant
stress as function of time. Researchers normally subdivide the creep curve into three

regimes, based on the fact that many different materials show similar responses:

* In the initial primary creep regime (also called transient creep) the creep strain rate

decreases with time to a minimum steady-state value.

e In the secondary creep regime the creep strain rate is almost constant. This is also

called steady-state creep.

* In the tertiary creep regime the creep strain increases with time until a failure

occurs.

When this distinction is assumed, the total creep rate can be additively split into

primary, secondary, and tertiary creep rates
€ = Fcr1+Fcr2+Fcr3

In most cases, F.q and F..3 depend on stress, temperature and time, while secondary
creep, Fp9, depends only on stress level and temperature. Normally, secondary creep
is the dominant process. Tertiary creep is seldom important because it only accounts

for a small fraction of the total lifetime of a structure.

primary creep

tertiary creep

secondary creep

01 >0y

log time

Figure 3-16: Uniaxial creep as o function of logarithmic time.
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Creep and Viscoplastic Material Models
Despite the fact that the creep response of a given material is related to its atomic
structure, a macroscopic (continuum mechanics) description is normally appropriate

for modeling scientific and engineering problems.

In COMSOL Multiphysics, there are several creep models. These models can be split
into two main groups. One set of models are more general, and you will have to
express the creep rate yourself, based on other variables as a stress tensor and
temperature. These models are:

e Creep Potential

* Volumetric Creep

e Deviatoric Creep

e User Defined Creep

In addition to the basic models for creep described above, there are also predefined
material models for creep in metals and crystalline solids:

* Norton Law (Power law)

e Norton-Bailey Law

* Garofalo Law (Hyperbolic Sine Law)

¢ NaBarro-Herring Creep (Diftusional Creep)

e Coble Creep (Diffusional Creep)

e Weertman Creep (Dislocation Creep)

¢ Anand Viscoplastic Model

* Chaboche Viscoplastic Model

* Perzyna Viscoplastic Model

All creep models are contributing subnodes to a basic material model like Linear Elastic
Material and they can be combined with any other subnodes, such as Plasticity or

Thermal Expansion to create more advanced models. They can also be combined with
each other to model several creep mechanisms acting at the same time.

CREEP POTENTIAL
Some authors use a creep potential to describe the secondary creep rate, so that the
creep rate is written in a way similar to the flow rule for plasticity:

: cr
Er =M 0

and >0
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Here, @, is a user defined creep potential, which is normally written in terms of

invariants of the stress tensor.

Volumetric creep is obtained when the creep potential depends only on the first

invariant of Cauchy stress tensor, I1(c), since

anr _ anr

06 8]11

This is equivalent to that the creep potential would depend on the pressure p =—-I;/3.

When the creep potential depends only on the second deviatoric invariant of Cauchy

stress tensor, Jo(0), the deviatoric creep model is obtained since

aQCf aQCr
Fo 97, @

This is equivalent to that the creep potential would depend on the effective stress
Op = \/3J 2-
When (in ST units) the creep potential, @, is given in units of Pa, the rate multiplier

7 is given in units of 1/s.

VOLUMETRIC CREEP

The creep strain rate is calculated by solving the rate equation

. 1.
€ = §€cr,voll

so that the creep rate tensor is a diagonal tensor. The trace of the creep strain rate

tensor, the volumetric creep strain rate, equals the user input écr,vol
trace(gc) = Ecryol

The volumetric creep strain rate usually depends on the first invariant of Cauchy stress
I1(o) or the pressure p =—I¢/3, in addition to the temperature and other material

parameters.

Volumetric creep is not generally used to model creep in metals, but it is commonly

used to model creep in soils or other geological materials.

DEVIATORIC CREEP

The creep strain rate is calculated by solving the rate equation
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8cr - Scrcn
Here, n® is a deviatoric tensor coaxial to the stress tensor.

The effective creep strain rate , €q. , normally depends on the second deviatoric
invariant of the stress Jo(0) or the effective or von Mises (effective) stress G, in

addition to the temperature and other material parameters.

The deviatoric tensor nD is defined as

2 o,

The resulting creep strain rate tensor is also deviatoric, since trace(n?) =0
trace(€c) = Ecretrace(nP) = 0

Given the property

w

nP:nD = =

[\

the effective creep strain rate equals the absolute value of the user input

) 2. .
Ecre = gecr-ecr

Deviatoric creep is very popular to model creep in metals and alloys. For example,

Norton’s law is a deviatoric creep model.

The effective creep strain and the effective creep strain rate are available in
= the variables solid.ece and solid.ecet.

USER DEFINED CREEP
The creep strain tensor is calculated by time-integration the user defined symmetric

creep strain rate tensor € .

NORTON LAW (POWER LAW)
The most common model for secondary creep is the Norton equation where the creep
strain rate is proportional to a power of the effective stress, Gg:

. n
Ecr < O,
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This is normally true at intermediate to high stress levels and at absolute temperatures
of T/Ty, > 0.5, where T}, is the melting temperature (that is, the temperature in the
solid is at least as high as half the melting temperature T',). An “Arrhenius type”
temperature dependency can also be included. It is defined by

b oo VBT
where @ is the activation energy (SI unit: J/mol), R is the gas constant, and T is the
absolute temperature (SI unit: K).

Norton creep is a deviatoric temperature-dependent creep model, with a creep rate

equation written as

: Sc\" "RT
i = A(—C) e ETpD (3-45)
ref
Here, A is the creep rate coefficient (SI unit: 1/s), n is the stress exponent
(dimensionless), O era reference stress level (SI unit: Pa), and n™ is a deviatoric tensor

coaxial to the stress tensor as defined in Equation 3-44.

* For a discussion about how to convert common creep data equations
into the form used in COMSOL Multiphysics, see Converting
@l Between Different Creep Data Representations

* See also the description of the Norton material model in the Solid

Mechanics interface documentation.

CHAPTER 3:

NORTON-BAILEY LAW
A common model for modeling primary and secondary creep together is the so-called
Norton-Bailey (or Bailey-Norton) model. Here, the creep strain is proportional to a

power of time and to a power of the effective stress
n
m
€,<0, 1

which for the creep strain rate becomes a time hardening formulation of Norton’s law.

Differentiating with respect to time will give the rate form.

b n
€ O mEm =1
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Norton-Bailey creep is a deviatoric temperature-dependent creep model, furbished
with either a time-hardening or a strain-hardening primary creep model. The creep
rate equation for the time-hardening model used in COMSOL Multiphysics is written
as

. t+t, . \m-1
b = Fm(t—h“) n? (3-46)

ref

where n? is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-44,

and F, is expressed as in the Norton model:

Q
n -
Fo= A(&) e ©T (3-47)

re

Here, A is the creep rate coefficient (SI unit: 1/s), n is the stress exponent
(dimensionless), O eris a reference stress level (SI unit: Pa), £,.o¢ and ;s are the
reference and shift times (SI unit: s), and m is the time-hardening exponent

(dimensionless).
The strain-hardening variant of this creep law is implemented as

m-1

* €ohifi

. gcr,e t m D
§p = F_m| e _shiff| (3-48)
u trcf cr

where €,  is the effective creep strain, and egp;g is the effective creep strain shift.

The time and frequency shifts in Equation 3-46 and Equation 3-48 serve two

purposes:

* They can be used to initialize a study where some hardening has already taken place.

¢ The strain rate expressions actually predicts an infinite creep rate at ¢ = 0, unless a

shift is used. This singularity is weak in the sense that the time integral is well
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defined, but it will cause problems for the numerical solution. You can then add a

small shift to overcome this problem.

* For a discussion about how to convert common creep data equations
into the form used in COMSOL Multiphysics, see Converting
.ﬂ Between Different Creep Data Representations

* See also the description of the Norton-Bailey material model in the

Solid Mechanics interface documentation.

CHAPTER 3:

GAROFALO LAW (HYPERBOLIC SINE LAW)

At very high stress levels, the creep rate is proportional to the exponential of the
effective stress

. oc
Ecroce

Garofalo showed (Ref. 8, Ref. 9) that the power-law and exponential creep are limiting
cases for the general empirical expression

€¢ o< (sinh(ao,))"
This equation reduces to a power-law (Norton law) for oo, < 0.8 and approaches
exponential creep for oo, > 1.2, where 1/a is a reference effective stress level.

Garofalo creep is also a deviatoric creep model with a creep rate proportional to the
hyperbolic sine function. It can also be augmented by an “Arrhenius type” temperature
dependency such that

: -Q/RT

Eroce ?
where @ is the activation energy (SI unit: J/mol), R is the gas constant, and T is the

absolute temperature (SI unit: K). The complete creep rate equation as used in
COMSOL Multiphysics then reads
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where, A is the creep rate (SI unit: 1/s), n is the stress exponent (dimensionless), and
0o a reference effective stress level (SI unit: Pa). nP is a deviatoric tensor coaxial to
the stress tensor as defined in Equation 3-44.

* For a discussion about how to convert common creep data equations
into the form used in COMSOL Multiphysics, see Converting
,E}‘ Between Different Creep Data Representations

* Sce also the description of the Garofalo (hyperbolic sine) material
model in the Solid Mechanics interface documentation.

NABARRO-HERRING CREEP (DIFFUSIONAL CREEP)
At low stress levels and high temperatures, Nabarro and Herring (Ref. 6, Ref. 7)

independently derived an expression for the creep rate as a function of atomic diffusion

7D, b3
kyTd?

€ = c.n
Here, d is the grain diameter, Dy, is the volume diftusivity through the grain interior,
b is Burgers vector, kg is the Boltzmann’s constant, and 7' is the absolute temperature.

n® is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-44.

See also the description of the Nabarro-Herring material model in the

Solid Mechanics interface documentation.

COBLE CREEP (DIFFUSIONAL CREEP)

Coble creep (Ref. 6, Ref. 7) is closely related to Nabarro-Herring creep but takes into
account the ionic diftusivity along grain boundaries Dy,

4
i 50D b 5 nD
car = 3 Oc
kyTd
El" Coble creep is more sensitive to grain size than Nabarro-Herring creep.
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See also the description of the Coble material model in the physics

@l interface documentation.

WEERTMAN CREEP (DISLOCATION CREEP)

At intermediate to high stress levels and temperatures T/T,,, > 0.5, the creep
mechanism is assumed to be diffusion-controlled movements of dislocations in the
crystal lattices (Ref. 7)

fom oo (2] w0
(S ref
kyT O
where and nD is a deviatoric tensor coaxial to the stress tensor as defined in

Equation 3-44. Generally, the stress exponent n takes values between 3 and 5.

A general relation between creep rate and several material parameters is the
Mukherjee-Bird-Dorn equation (Ref. 6)

_ -Q/RT
a2 R(5) (e

Here, T is the temperature, d is the grain size, b is the Burgers vector, D is the self

—Q/RT .

diffusion coefficient, G is the shear modulus, and e is an “Arrhenius” type of

temperature dependency.

For high temperatures, Mukherjee-Bird-Dorn equation describes Weertman creep
when setting p = 0. Setting n = 0 and p = 2 describes Nabarro-Herring, and setting
n =0 and p = 3 describes Coble creep. Harper-Dorn creep is obtained by settingn = 1
and p =0.

See also the description of the Weertman material model in the Solid

@l Mechanics interface documentation.

ANAND VISCOPLASTIC MODEL
The Anand viscoplasticity (Ref. 9) is a deviatoric creep model suitable for large,

isotropic, viscoplastic deformations in combination with small elastic deformations.

The viscoplastic strain rate equation reads

Lo D
gr = F.n
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where n? is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-44,

and the creep rate is calculated from

1

_ -Q/RT[ . o\
F. = Ae {smh(&sa)}
h

Here, A is the creep rate coefficient (SI unit: s™ ), @ is the activation energy

(SI unit: J/mol), m is the stress sensitivity, & is the multiplier of stress, R is the gas

constant, and 7 is the absolute temperature (SI unit: K).

The internal variable, s,, is called deformation resistance (SI unit: Pa) and is calculated

from the rate equation

1- 5

~
Sa

s = h,

a-1 s
Sa

with the initial condition s4(0) = sjn;;. Here, A is the hardening constant

(ST unit: Pa), and a is the hardening sensitivity.

The variable s, * is the saturation value of the deformation resistance s,, which is

calculated from the expression

where s is the deformation resistance saturation coefficient (SI unit: Pa), and n is

the deformation resistance sensitivity.

CHABOCHE VISCOPLASTIC MODEL
The viscoplastic strain rate tensor is given by
. F, n
Ep = A<_L> n?
Oef

Here, A is the viscoplastic rate coefficient (SI unit: 1/s), n is the stress exponent

(dimensionless), G.ora reference stress level (SI unit: Pa), and n® is a deviatoric tensor

coaxial to the stress tensor. The Macaulay brackets are applied on the yield function,

which is defined as done for plasticity

F, = ¢(c)-0y
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The effective stress 0(0) is either the von Mises, Tresca, or Hill stress; or a user defined
expression, and Gy is the yield stress (which may include a linear or nonlinear Isotropic
Hardening model). The stress tensor used in the effective stress ¢(c) is shifted by what
is usually called the back stress, 6y, when Kinematic Hardening is included.

The deviatoric tensor n® is computed from the plastic potential @,

a0 = 9%
J0

When von Misses effective stress is used, the associated flow rule reads Qp =F ¥ and

the deviatoric tensor n® is defined as done for deviatoric creep

mises

Given the property

w

nP:nD =<

[\

the effective viscoplastic strain rate is equivalent to

. 2. . F,n
Eype = gevpzevp = A<(T_t>
re

PERZYNA VISCOPLASTIC MODEL
Perzyna viscoplastic model is similar to the Chaboche model, with the exception than

the stress exponent is set equal to one. The viscoplastic strain rate tensor is then given

by

. A
SVP = (T&(F})IID

Some authors denote the viscosity as the quotient 1| = G..r/A.

See also the description of Viscoplasticity in the physics interface
a documentation.
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ENERGY DISSIPATION
Since creep and viscoplasticity are inelastic processes, the dissipated energy density can

be calculated by integrating the creep dissipation rate density (SI unit: W/ms) given
by

Wedr = G:écr

In case many creep sub-nodes are added, the creep dissipation rate density is calculated

from the cumulative creep strain rate tensor €, .

The total energy dissipated in a given volume can be calculated by a volume integration

of the dissipated creep energy density W, (SI unit: I/m3).

When the Calculate dissipated energy check box is selected, the dissipation
rate density due to creep is available under the variable solid.Wecdr and
the dissipation rate density due to viscoplasticity is available under the

variable solid.Wvpdr. The dissipated energy density due to creep is

I

available under the variable solid.Wc and due to viscoplasticity under the
variable solid.Wvp. Here solid denotes the name of the physics
interface node.

CONVERTING BETWEEN DIFFERENT CREEP DATA REPRESENTATIONS
The equation forms described in for the different creep models above differ from the
forms most commonly found in the literature. The difference lies in the introduction
of normalizing reference values such as the reference stress 6, and reference time tf.
These values are in a sense superfluous, and can in principle be chosen arbitrarily. The
choice of reference values will however affect the numerical values to be entered for

the material data. This system has two advantages

* Itis possible to use the built-in unit management system in COMSOL Multiphysics.

* You do not need to do any difficult unit conversions when creep data are available
in units other that the model units. Since many creep models contain the stress or

time raised to a noninteger power, such conversions are error prone.

Norton Law
Material data for a Norton law is often available as the parameters Ay and 7 in the

equation

- n
€ = ANOC,
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The coefficient Ay has a physical dimension which depends on the value of n and the
unit have an implicit dependence on the stress and time units. Converting the data to
the form used in COMSOL Multiphysics (Equation 3-45) requires the introduction

of the reference stress Gyef. It is here convenient to use the implicit stress unit for which
Ay is given as reference stress. The creep rate coefficient A will then have the same

numerical value as Ay, and you do not need to do any conversions.

The physical dimension of A is however (time)'l, whereas the physical dimension of

Ay is (stress)'n(time)'l.

Another popular way of representing creep data is to supply the stress giving a certain
creep rate. As an example, 6,7 is the stress at which the creep strain rate is 1077 /h. Data
on this form is also easy to enter: You set the reference stress to the value of 6.7, and
enter the creep rate coefficient as 1e-7[1/h].

Example

Assume that a carbon steel has the following two equivalent descriptions of its creep

properties at a certain temperature:

* G.7 =70 MPa, and stress exponent n = 4.5.

o Ay = 4.98-10716 with respect to units MPa and hours, and stress exponent n = 4.5.
In the first case, enter:

® Opefras 70[MPa]
e nas4.5

e Aasite-7[1/h].
In the second case, enter:

® Operas 1[MPa]
* nas4.5

e Aas4.98e-16[1/h]

These two sets of data describe the same material.

Norton-Bailey law
Material data for a Norton-Bailey law usually is usually written in terms of the creep

strain, rather than the creep strain rate, so that the form of the constitutive relation is

n,m
€ = ANBGe ¢
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In this case, the coefficient Axg has implicit dimension and units which depend on the

values of n and m, and on the stress and time units.

Converting the data to the form used in COMSOL Multiphysics (Equation 3-46 and
Equation 3-47) requires the introduction of an both an arbitrary reference stress Gpof

and an arbitrary reference time te. If you use the implicit units for which Axg is given

as the reference values, then the constant A will have the same numerical value as Axp.

Garofalo Law
Since the stress inside in the Garofalo law appears as an argument to a sinh() function,

it must necessarily be nondimensionalized. Most commonly this is however written as
- . n
€ o< (sinh(ao,))

Comparing with the expression in COMSOL Multiphysics,
. AN
€ o< (smh(—))

GIC

it is evident that the reference stress should be chosen as

Opef =

R I

In this case, there is no arbitrariness in the choice of Gef, since o is an actual material

parameter.

Shape Memory Alloy

The term shape memory alloy (SMA) normally refers to alloys that can undergo large
strains, effect called superelasticity or psendoelasticity; and also to materials that after
undergoing large deformations can remember their original shape when heated above

a certain temperature.

These alloys are mixtures of metals such as copper, aluminum, nickel, titanium and

other. Nickel-Titanium (NiT1) alloys have applications in many industries due to their
thermal and mechanical properties. Most of the industrial applications of NiTi alloys
take advantage of the different mechanical properties of the two crystalline structures

found around room temperature: austenite and martensite.

Cold NiTi alloys are composed by 100% of martensite volume fraction, &py. The
austenite phase develops upon heating the material above the austenite start

temperature, Ag. If the alloy is heated above the austenite finish temperature, Ag, the
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alloy microstructure becomes 100% of austenite. The reverse process has different
transition temperatures: If a 100% austenite alloy is cooled below the martensite start
temperature, Mg, the martensite volume fraction &y will develop until the cooling
temperature reaches the martensite finish temperature, My, below which the alloy

microstructure will be pure martensite.

Many industrial application take advantage of this hysteresis loop, as the transition

temperatures are not the same in a heating-cooling cycle.

There are two shape memory alloy models available with the Nonlinear Structural
Material Module: the Souza-Auricchio model and the Lagoudas model. These material

models differ in the expression for the free energy density.

SOUZA-AURICCHIO MODEL
For the Souza-Auricchio model, Helmholtz free energy density depends on two state
variables: the total strain tensor € and the temperature 7. An additional internal variable

is used to compute the transformation strain tensor €;.(Ref. 18-19)
T.e,) = peT(1-In(T)) + 52 + G 2 e R 41
v(e Toey) = peT(1-In(T) + 5oy + Gle—g)" + 5 (8,)" +A(T)[ey] +1(e,,)

here, ¢ is the heat capacity at constant pressure, K and G are the bulk and shear moduli,
€01 1s the volumetric strain, Hy is the hardening modulus, and I(g,.) is the indicator
Sfunction for the strain limit constraint.

The indicator function is defined by

0 for |£tr| <€y max

oo otherwise

I(e,) = {

The term y, = f( T)|£tr‘ in the free energy density is denoted as the chemical energy
density due to the thermally induced martensite transformation. The function f{(T')
corresponds to the temperature-dependent martensite to austenite equilibrium stress,

define from the slope of the limit curve B and the martensite finish temperature My
f(T) = B<T-M>

Here, the operator <. > denotes the Macaulay brackets.

The conjugated thermodynamic stress Gy, associated to the transformation strain

variable is
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d
c,. = Y = dcv(c)—Hstr—f(T)—J&rl—iI-

tr —
0, dg,. Ot

The evolution of the transformation strain €, is given by the so-called limit function,

which takes the same form as the yield function for metal plasticity.

F = |Gtr| - GysO
The evolution equation for the transformation strain €, is computed from the flow
rule

oF

étr = A o
Poc,,

where the plastic multiplier Ay, is solved with the Kuhn-Tucker conditions, as done for

plasticity, see Plastic Flow for Small Strains.

LAGOUDAS MODEL
For Lagoudas model, Gibbs free energy density depends on two state variables: the
total stress tensor ¢ and the temperature field 7. Additional internal variables are used

to compute the transformation strain tensor &;, and the martensite volume fraction &
(Ref. 20)

T 1 1 1
G(o,T, ¢, &) = c((T— Ty - Tln(T—,OD—sOT—BG:S:G - 5(5:(8th —g,)+Uy+ Bf(F,)

Here, c is the heat capacity at constant pressure, s is the specific entropy at reference
state, S is the compliance matrix, &, is the thermal strain tensor, €, is the
transformation strain tensor, u is the specific internal energy at reference state, and
f(E) is the transformation hardening function. The compliance matrix S, is obtained

by averaging the elastic properties of martensite and austenite
SE€) = &8y +(1-8)Sy = S, +EAS
where AS = S;,-S, . Also, other material parameters are averaged this way.

As opposed to Souza-Aurichio model, the evolution equation for the transformation

strain €. is computed from the flow rule
€ = &A

where the normalized transformation tensor A changes principal directions

depending on the direction of the martensitic transformation.
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The variable for the direction of the martensitic transformation, & , is calculated from
the previous state to determine the expected increment or decrement of the
transformation strain tensor &,.. This calculation is computational expensive and it can
lead to convergence issues. Since in many applications the transformation direction &
is known a priori (for instance, mechanical loading or unloading, or temperature
increment/decrement) a user input enables to set the transformation direction

manually to 1 or -1, thus speeding up the computational time.

For Lagoudas model, it is possible to choose from different transformation hardening
functions f(&)

¢ Quadratic

* Cosine

* Smooth

e User defined
The quadratic hardening function is defined as

Lob,,” for £>0

5P uS + (g +pp)€  for &>

&=,
ipbAg +(Uy—Hp)E forE<0
where the parameters bys and by are computed from
by = Asg(M—M) and b, = Asy(As-A)),

and the parameters [y and pg from

1 1
ny = épASO(MS"'Af)_pAuO and Lo = ZpASO(AS_Af_Mf-‘—MS)

The smooth hardening function is defined with four smoothing parameters 1, ng, ng,

and ny

n,+1

] for £>0

gl oa-g

ni+1 ng+1

%pr[a +
&) =

l §n3+1 (1—§)n4+1 ~
2pbA(Ev,+n3+1+ et 1 for £<0
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Piezoelectric Material

THE PIEZOELECTRIC EFFECT

The piezoelectric effect manifests itself as a transfer of electric to mechanical energy
and vice versa. It is present in many crystalline materials, while some materials such as
quartz, Rochelle salt, and lead titanate zirconate ceramics display the phenomenon

strongly enough for it to be of practical use.

The direct piezoelectric effect consists of an electric polarization in a fixed direction
when the piezoelectric crystal is deformed. The polarization is proportional to the
deformation and causes an electric potential difference over the crystal.

The inverse piezoelectric effect, on the other hand, constitutes the opposite of the
direct effect. This means that an applied potential difference induces a deformation of

the crystal.

PIEZOELECTRIC CONSTITUTIVE RELATIONS
It is possible to express the relation between the stress, strain, electric field, and electric

displacement field in either a stress-charge form or strain-charge form:

Stress-Charge

T =cpS—e'E

D =eS+¢egE
Strain-Charge

S =s;T+d" E

D = dT +epE

In the above relations, the naming convention used in piezoelectricity theory is
assumed, so that the structural strain is denoted by S, and the stress is denoted by T
Thus, the naming convention differs in piezoelectricity theory compared to structural

mechanics theory.

The Piezoelectric Material uses the structural mechanics nomenclature.
The strain is named € (instead of S) and the stresses are denoted by either
n o or S (instead of T'). This makes the names consistent with those used in

the other structural mechanics interfaces.
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The constitutive relation using COMSOL Multiphysics symbols for the different

constitutive forms are thus:

STRESS-CHARGE

T
6 =cpe—e E (3-50)
D= e£+80£rSE

The Stress-Charge form is always used in the variational formulation (weak equation

form) which COMSOL Multiphysics uses for discretization and computation.

STRAIN-CHARGE

€= sE(5+dTE (3-51)
D = do+egpe L E

Most material data appears in the strain-charge form, and it can be easily transformed
into the stress-charge form. In COMSOL Multiphysics both constitutive forms can be
used; simply select one, and the software makes any necessary transformations. The

following equations transform strain-charge material data to stress-charge data:

-1
CE = SE
e=dsy (3-52)

You find all the necessary material data inputs within the Piezoelectric Material feature
under the Solid Mechanics interface, which are added automatically when you add a
predefined Piezoelectric Devices multiphysics interface. Such node can be also added
manually under any Solid Mechanics interface similar to all other material model
features. The piezoelectric material uses the Voigt notation for the anisotropic material
data, as customary in this field. More details about the data ordering can be found in

Orthotropic and Anisotropic Materials section.

GOVERNING EQUATIONS
The equations of Piezoelectricity combine the momentum equation Equation 3-78

with the charge conservation equation of Electrostatics,

V.D = py (3-53)
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where the py is the electric charge concentration. The electric field is computed from

the electric potential V as
E=-VV

In both Equation 3-53 and Equation 3-78, the constitutive relations Equation 3-50
are used, which makes the resulting system of equations closed. The dependent

variables are the structural displacement vector u and the electric potential V.

WAVE PROPAGATION
In case of geometric linearity, the governing equations are linear and have the

following time-harmonic wave solutions:

u= ljlexp[ik(r +ct)]

V = Vexplik(r + ¢t)]

where Kk is the wave number vector that determines the direction of the wave

propagation, and e is the phase velocity (or wave speed).

The expressions for the wave speed can be computed analytically for waves of different
types, polarizations and directions of propagations. For example, the pressure wave

propagating in the X-axis direction is a particular solution, for which

u= z;exp[ikX(X+ cxt)]
v=0

w=0

V =Vexplikx(X +cxt)]

The corresponding pressure wave speed is given by
2 1/2
l{c + €x1 }
c = - P —
X E 11
P p ofrs, xx

The shear wave propagation in the X-axis direction and with XY-plane polarization is
a solution such that
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u=0
v =vexpliky(X +cxt)]
w=0

V =Vexplikx(X + cxt)]

and the corresponding wave speed is computed as

2 1/2

1{0 + €x6 }
c = = S —
sXY E, 66

p €09 xx

COMSOL Multiphysics provides predefined variables for the waves speeds for waves
of different types and polarizations propagating in the X, Y, and Z directions.

PIEZOELECTRIC DISSIPATION
In order to define dissipation in the piezoelectric material for a time-harmonic analysis,
all material properties in the constitutive relations can be complex-valued matrices

where the imaginary part defines the dissipative function of the material.

Complex-valued data can be defined directly in the fields for the material properties,
or a real-valued material X and a set of loss factors Ny can be defined, which together

form the complex-valued material data
X = X(1£jny)

The sign in the complex damping terms are defined as

cp=(1+in, )eg
sg=(1-in)sg
ers = (1 —ing JErg
err=(1 —inarT)erT
; =(1+in,)e

d= (1+iny)d
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In the four first expressions, the choice of sign is a result of the single physics

observations that

 Strain lags behind stress.

* Electric displacement (or polarization) lags behind the electric field.

For these cases, it is thus necessary that nx is positive in order for the material to be

thermodynamically stable with the chosen signs.

The sign of the coupling losses requires more considerations, and the chosen sign must
be considered as a definition. All values of 1, and g does not necessarily have to be
positive. For some simple theoretical cases with isotropic loss factors, it can however

be shown that the definition above is reasonable:

* Consider a material which in strain-charge form only has mechanical damping.
Thus, d is real, and the second transformation law in Equation 3-52shows that e
must have a positive loss factor.

* Consider a material with only coupling loss. Then the second transformation law in

Equation 3-52 shows that d and e must have the same loss factor multiplier. From

the third transformation law it can be inferred that ng and ng in this case must be

positive in order for the material to have an appropriate phase lag between D and E.

In a real material, all types of losses occur simultaneously. Then, the criteria for
allowable values of the loss factors become complicated, particularly if they are not

isotropic.

It is also possible to define the electrical conductivity of the piezoelectric material, .
Electrical conductivity appears as an additional term in the variational formulation
(weak equation form). The conductivity does not change during transformation

between the formulations.

The energy dissipation modeling is also available in time domain. The options are:
dielectric dispersion for the electrical part, and Rayleigh damping for the mechanical
and coupling parts of the problem. The total dissipated energy can be computed as a

function of time.

E}‘ Piezoelectric Losses
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INITIAL STRESS, STRAIN, AND ELECTRIC DISPLACEMENT

Using the functionality available under the Piezoelectric Material feature and Solid
Mechanics interface, one can define initial stress (Sg), initial strain (€g), and remanent
electric displacement (D,) for models. In the constitutive relation for piezoelectric
material these additions appear in the stress-charge formulation:

T
c =cgp(e—¢gy)—-e E+o,
D =e(e-gy+ £O’Vac£rsE +D,
When solving the model, the program does not interpret these fields as a constant
initial state, but they operate as additional fields that are continuously evaluated. Thus

use these initial field to add, for example, thermal expansion or pyroelectric effects to

models.

Muagnetostrictive Material

MAGNETOSTRICTION

Magnetostriction describes the change in dimensions of a material due to a change in
its magnetization. This phenomenon is a manifestation of magnetoelastic coupling,
which is exhibited by all magnetic materials to some extent. The effects related to
magnetoelastic coupling are described by various names. The Joule effect describes the
change in length due to a change in the magnetization state of the material. This
magnetostrictive effect is used in transducers for applications in sonars, acoustic

devices, active vibration control, position control, and fuel injection systems.

The inverse effect accounts for the change in magnetization due to mechanical stress
in the material. This effect is also known Villari effect. This eftect is mostly useful in

SCNsors.

Magnetostriction has a quantum-mechanical origin. The magneto-mechanical
coupling takes place at the atomic level due to spin-orbit coupling. From a system level,
the material can be assumed to consist of a number of tiny ellipsoidal magnets which
rotate due to the torque produced by the externally applied magnetic field. The
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rotation of these elemental magnets produces a dimensional change leading to free

strain in the material.

Magnetic
flux density

s

g I Sensor |
g

@

o

&

A

Bias point ’/// Bias point
Magnetic field Stress

LINEAR MAGNETOSTRICTION MODEL

The magnetostriction has a nonlinear dependence on the magnetic field and the
mechanical stress in the material. However, the effect can be modeled using linear
coupled constitutive equations if the response of the material consists of small

deviations around an operating point (bias point).

It is possible to express the relation between the stress S, strain €, magnetic field H,
and magnetic flux density B in either a stress-magnetization form or
strain-magnetization form:
Stress-Magnetization
T
S = cye—eggH

B = epge + Mokt gH

Strain-Magnetization
£ = syS+dhH
- °H HT

B = dyrS+pgn o H

where U is the magnetic permeability of free space, ¢y and sy are respectively the
stiffness and compliance matrices measured at constant magnetic field, and p,g and g
are the relative magnetic permeabilities measured at constant strain and constant stress,

respectively. The matrices dggr and eyg are called piezomagnetic coupling matrices.
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In COMSOL Multiphysics, both constitutive forms can be used; simply select one, and
the software makes all necessary transformations. The following equations transform
strain-magnetization material data to stress-magnetization data:
_ -1
‘g = SH
— d -1
eHs = ¢HTSH

1 -1,T
Mpg = Hyp— H_OdHTsE dyr

You find all the necessary material data inputs within the Magnetostrictive Material
node under the Solid Mechanics interface, which are added automatically when you
add a predefined Magnetostriction multiphysics interface. Such a node can be also
added manually under any Solid Mechanics interface similar to all other material model
features. The Magnetostrictive Material uses Voigt notation for the anisotropic
material data. More details about the data ordering can be found in Orthotropic and

Anisotropic Materials section.

For a crystalline material with tetragonal symmetry, the strain-magnetization form of

the constitutive relations is the following:

€11 8118192813 0 0 0 Sy, 0 —§d33
€92 S19811513 0 0 0 Sos o o 1y .
1
€33 _ [S13 513 S33 0 0 0 S33 tlo o Z 33 o
253 0 0 03540 0 Sgs 33 ||72
2 0 dis 0 ||H3
€13 0 0 0 0 sy 0 Sis
2, [0 0 0 0 0 2spy-spy)|[Sy |G O 0
. 1o 0 o0
Sll
S
B, 0 0 0 0 dyo0 322 o o]lH
Bf=| 0 O 0d1500833+“00u110 Hy
1 1 23
By | -3d,,5d,,ds3s 0 00 0 0 H
g 2733 2 33 33 Si Ma3| [H3
_Sl2_

The following material data corresponds to Terfenol-D at 100 kA /m bias and 30 MPa
prestress (Ref. 5):
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44 -1.1-1650 0 0
1.1 44 -1650 0 0
s = 107117165 -1.65 3.8 0 0 0/ py

0 0 0 2400

0 0 0 0240

Lo o 0 o0 011
L, |0 0 0 0 1650 81 0 0
dyr=10"-1 0 0 0 165 0 0|[m/A] Hr=|0 810
~43-4386 0 0 0 0 0 3

NONLINEAR MAGNETOSTRICTION

A commonly accepted micromagnetic description of the magnetostriction is as follows
(Ref. 2):

All domains have magnetization of the same magnitude M| = Mg, but the
magnetization can have different orientations characterized by the corresponding
direction vector m = M/M for each domain. The applied magnetic field changes the

domain orientation.

In this section, the term domain refers to a small part of magnetic
material. This is typical for micromagnetics literature, and it should not

n be mistaken with the concept of domain as part of the model geometry,
the latter is often used in COMSOL Multiphysics documentation.

For a single crystal with cubic symmetry, the magnetostrictive strain tensor can be

written as the following quadratic form:

3 1
e, = é{kwo(m ®m - 21) + (yyy —hygo) Y (e, © ej)J (3-54)
i#7
where (m @ m),; = mm,. Note that the magnetostrictive strain is represented by a
deviatoric tensor, that is, tr(€,,e) = 0. This is because the deformation is related to the

magnetic domain rotation, and such process should not change the material volume.

The strain in any direction given by the directional cosines ; can be written as
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_ AL
r=7

= D BiBsey

The notation lambda is used for strain in this section, which is typical for
micromagnetics literature. This should not be mistaken with the same

n notation used for stretch in other parts of the theory in COMSOL
Multiphysics documentation.

CHAPTER 3:

Using Equation 3-54, one gets

3 2,2 2,2 2,2 1
n=3n (mis}emips+mips-3) +

3hy11(mymgP,Bg + momsByPs +mymyBiBs)

(3-55)

When both magnetization and measurement direction are parallel to the same crystal

direction [100], one has mq = 1 =1 and all other components are zero, so that
A=% = Moo
In a similar way for the [111] direction, one has for all components

= Bi = ]./A/é and 7\,=7\.111.

If the strain is measured in [100] direction, while all the magnetization vectors are
aligned perpendicular to it, one has only the following two nonzero components:

mgy = B; =1 and consequently:

1
A=k =-3 100

In many applications, such alignment of the domains is achieved by applying a
compressive prestress. Thus, the maximum usable magnetostriction is achieved via a

90-degree rotation of the domains

_3
Mi—Ay= 27L100

For an isotropic material, Ajgp = Aq11 = A, and Equation 3-54 becomes

e = g%(m@m—é)

me 2
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For a polycrystalline material without preferred orientation, the following

approximation can be used (Ref. 1):

3

2 4
s 100 5 111

In COMSOL Multiphysics, this description of the magnetostriction is modeled using

the following equation for the magnetostrictive strain:

31
Eme = 5 E{Moodev(l"[ ®M) + (Ay11 ~hgo) Y MM (e; ® ej)J (3-56)

s i#]

The strain field is deviatoric, and Equation 3-56 exhibits the same properties as

Equation 3-54 at saturation, that is, when |M

r= 302 ) (g2 1)« 0663 )

s

— M. Equation 3-55 is replaced by

A
3;“21(M1M2[31[32 + MyM3B,Bs + M M B Bs)

S

Note that the strain vanishes when |M| — 0, which makes the model applicable in the

whole range from full demagnetization to saturation.

For isotropic materials, the magnetostrictive strain is modeled as the following

quadratic isotropic form of the magnetization field (Ref. 3):

3% tovMeM
€6 = §—2dev( ®M) (3-57)
MS

The stress in the magnetostrictive material is modeled as
S = cyle—g,(M)]

For isotropic materials, the stiffness matrix cg can be represented in terms of two
parameters, for example, using the Young’s modulus and Poisson’s ration. Cubic

materials possess only three independent components: €11, €19, and Cyy.

Using Equation 3-57, one can derive a linear response around a given bias state
characterized by a premagnetization vector M. Thus,

M=M,+M, = [M, .My o, My 51+ M;
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where Mj is a perturbation, and

2]‘40,1 _MO,Z _M0,3
_MO,l 2M0,2 _M0,3
Ay =My 1 -My 5 2M 5
¢ M?| 0 3My43M,,
8Myy 0 3Mg,
3My 4 3M,, 0

If one assumes a unidirectional state, for example

M, = [0,0,M]
it will further simplify into

00-1
00-1

AMoylo 0 2
" M2 1030
300
00 0]

MAGNETIZATION
Nonlinear magnetization in the magnetostrictive material is found from the following

nonlinear implicit relation (Ref. 4):
Heff
‘Heff{

M = M L(|H,ef)

where L is the Langevin function

3Xm|Heff|) Ms

M

L = coth -
( s 3xm|Hefd

with ,, being the magnetic susceptibility in the initial linear region.

Other possible choices of the L function are a hyperbolic tangent

L = tanh(x——mglefd)

S
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and a linear function

The latter option will make it possible to find an explicit expression for the
magnetization. However, such model does not have a proper saturation behavior, and
thus it should be used only in the operating range far from saturation. Both the
Langevin function and hyperbolic tangent models requires the magnetization vector

components to be treated as extra dependent variables.
For cubic crystals, the effective field in the material is given by

3
Heff =H+ m\fuloosed + (7\.111 — 7\.100)2 (Sed)ij(ei ® ej)JM (3-58)
0""s

i#]

where H is the applied magnetic field. The second term in Equation 3-58 represents
the mechanical stress contribution to the effective magnetic field, and thus to the
material magnetization, which is called the Villari effect. The deviatoric stress tensor
is related to the strain as

Sed = deV(CHS)

For isotropic materials, the effective magnetic field expression simplifies into

H H —S}Ls S M
eff = H+ X ed
HOMS

In addition, the magnetization and magnetic field are related to each other and to the
magnetic flux density (also called the B-field) by

B = uo(H+M)

COMSOL Multiphysics solves for the magnetic vector potential A whose curl yields
the vector B-field. The H-field is then obtained as a function of the B-field and

magnetization.

Rigid Domain Model

A Rigid Domain, or a rigid body, is an idealization of a body in which the deformation
is neglected. In other words, the distance between any two given points of a rigid body
remains constant in time regardless of any external forces acting on it. An object can
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be assumed to be perfectly rigid if its flexibility can be neglected in comparison with
other flexibilities in the system, and when there is no need to compute the stress in the

object.

Rigid Domain is available as a material model both in the Solid
Mechanics, Shell, Beam, and Multibody Dynamics interfaces. This theory
section applies to all interfaces. There are some minor differences between

the versions of the Rigid Domain which will be described as they appear.

A Rigid Domain can consist of a selection of several geometrical domains.

[

These domains will act as a single rigid object, irrespective of whether

they are geometrically connected or not.

Adjacent geometrical objects selected in different Rigid Domains nodes
are independent, and can even penetrate each other.

The rigid domain is a material model, which is mutually exclusive to all other material

models. The only material property needed is the mass density.

RIGID DOMAIN KINEMATICS

When a body is rigid, it is sufficient to describe the motion of at least three
non-collinear particles. It is then possible to reconstruct the motion of all other
particles in the body. Usually a mathematically more convenient, but equivalent,

approach is used. The motion of the whole body is represented by:

¢ The linear motion of the body. The motion of one of the particles of the body,
chosen as a reference point (often coinciding with the center of mass).
e The angular motion (also known as orientation or attitude) of the body.

The degrees of freedom needed to represent the linear and angular motion are known

as rigid body translation and rigid body rotation degrees of freedom.

In 2D axisymmetric interfaces, the rigid domain has only a single degree
| of freedom: translation along the Z axis. The following theory sections
only describe the more general cases. The axisymmetric formulation is a

trivial specialization where all rotational parts of expressions are dropped.

In 2D, this is represented by two in-plane translations and the rotation around the

Z-axis.
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In 3D the situation is more complex. Six degrees of freedom are necessary. They are
usually selected as three translations and three parameters for the rotation. For finite
rotations any choice of three rotation parameters is however singular at some specific
set of angles. For this reason, a four-parameter guaternion representation is used for
the rotations in COMSOL Multiphysics. Thus, each rigid domain in 3D actually has
seven degrees of freedom: three for the translation, and four for the rotation. The
quaternion parameters are called a, b, ¢, and d, respectively. These four parameters are

not independent, so an extra equation stating that
2 2 2 2
a"+b " +c"+d" =1
is added.

The connection between the quaternion parameters and the rotation matrix R is:

(12+b2—02—d2 2bc-2ad 2ac +2bd
R = 2ad +2bc  a’-b2+c®—d®  2cd-2ab
2bd-2ac 2ab + 2cd a2—b2—02+d2

For the geometrically linear case, the quaternion constraint and the rotation matrix

definition are reduced to:

1 -2d 2¢
R=]2q 1 -2b
-2¢c 2b 1

a=1

In 2D, the rotational degree of freedom is the angle of rotation about the z-axis ¢,

and its relation with the rotation matrix R is:

cosd —sin¢ 0
R = sin¢ cos¢d O
0 0 1

For the geometrically linear case, the 2D rotation matrix is reduced to:

=
Il
oo ~

(=
= o o
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Under translation and rotation of a rigid domain, the complete expression for the

displacement of any point on the rigid body is given by:
u; =u+R-I)- X-Xy)

where X are the material coordinates of any point in the rigid domain, Xy is the center
of mass of the rigid domain, w is the translation vector at the center of mass, and I is

the identity matrix.

The rigid body displacement at the center of mass (u) are degrees of freedom. Thus
the rigid body translational velocity and acceleration can be evaluated by directly taking

the time derivatives of u. In the time domain it can be expressed as:

by T

In the frequency domain, they can be expressed in terms of frequency ():

u=(io)u i = (io)u = -o’u

The same is true for the rotation in 2D since the rigid body rotation ¢ is the degree
of freedom. The rigid body angular velocity and acceleration can be evaluated by

directly taking the time derivatives of ¢ .

In 3D, the situation is different and the total rotation of the rigid domain can be

presented as a function of quaternion:

o = 2acos(a) b

c
A/b2+c2+d2 d

The parameter a can be considered as measuring the rotation, while b, ¢, and d can be
interpreted as the orientation of the rotation vector. For small rotations, this relation

simplifies to:
b
0 =2,
d

The angular velocity of the rigid domain is computed as:
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. Q2 _ ¢
o= |q, Q=-2q®¢ q=1°
C

Q4 p

Here q is the conjugate of g, and ®  denotes quaternion multiplication.
The angular acceleration of the rigid domain can be evaluated by taking the time

derivative of the angular velocity.

RIGID DOMAIN DYNAMICS

The governing equation for a rigid domain can be written as a balance between the
inertial (internal) forces and applied external forces. A rigid domain has only one
internal force, the inertial force. This means that only the mass density of a domain is

required to define the rigid domain material model.

The inertial forces and inertial moments about the center of mass are:
F = mu M =10

where u and © are the linear and angular accelerations of a rigid domain.

The inertial properties mass (m) and moment of inertia tensor (I) of a rigid domain

are computed as:

m=jpdv
ijdV
Xy = =

I= (X=X - (X-Xy)E5 - (X-Xp) - X=Xy )pdV

where Eg and Xy are the identity matrix and the center of mass of a rigid domain,
respectively. The special case for the Shell interface is described in Rigid Domain for
Shells.

In 2D, the expressions for inertial forces, inertial moments, and moment of inertia

reduce to:
F = mu M =10

I, = [(X-Xy) - (X-Xy))ph dA
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where the volume integration has been replaced by an area integration multiplied by

the out-of-plane thickness A.

The equations of motion for the rigid domain are:

mu+>Fp=3'F

and
RIR"©+0Ox (RIR'©)+ Y M; = 3" M,

Here, the subscripts ‘I’ and ‘ext’ denotes inertial and external forces respectively, and
R is the current rotation matrix. The inertial forces are contributions from Mass and

Moment of Inertia nodes.

In 2D, the moment equations are simplified to the scalar equation
Iz(.ll) + ZMI = ZMext

INITIAL VALUE
As a Rigid Domain is a separate material model, it overrides the default Linear Elastic
Material model and its default Initial Values node. The initial values are given in a

separate Initial Values subnode for each Rigid Domain.

In the Multibody Dynamics interface version of the Rigid Domain, it is
also possible to get initial values for all domains from the interface level
Initial Values section. This is the default option. The Initial Values subnode

is only present under Rigid domain if Locally defined has been selected.

[

If many rigid domains are present in a system and the have the same initial
values, then it is often better to define initial values at the interface level

once and to reference it in all features.

CHAPTER 3:

The initial values for the rigid body translation, rigid body rotation, and the first time
derivatives can be prescribed about any point—a center of rotation—in a selected
coordinate system. The center of rotation can be defined using

e The center of mass of the rigid domain

* Global coordinates of the center of rotation

* The centroid of a set of selected entities (boundaries, edges, or points)

STRUCTURAL MECHANICS THEORY



Given the initial values of translation (u), rotation (¢ ), translational velocity (ﬂl )and
angular velocity () about a center of rotation (X,), the rigid body displacement and

quaternion degrees of freedom are initialized as:

u0=u+ur

u, =(-r+Q(Q- -r))(l-cosp)+ (£A2 X r)sind

r=Xy-X,
Ju Ju
(m)oz(wx(r+ur))+§
*} ) cosg
L0 singQ
_aa
ot 1|0 a

==Y ®

e fl)
19t |

In 2D, the expressions for the initial values reduce to:

U, =u+u,

u,=-r(l-cosd)+(e,xr)sind

r=Xy-X,

Ju) _ dd  du
(E)O—(ezx(r+ur))g+m
¢o=¢

The variable wu, is the translation at the center of mass due to a rotation around the
center of rotation, and is thus zero when the two points coincide. In the case that you
are entering the data using a separate center of rotation, you must pay special attention
to how the initial displacement and velocity are composed if initial rotations and

rotational velocities are present.
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Figure 3-17: Initial displacement of a rigid body

MASS AND MOMENT OF INERTIA

Sometimes a rigid domain needs the added effect of an associated abstract rigid object,
which is physically not modeled and where the inertial properties are known. You can
model this using Mass and Moment of Inertia, where the inertial properties of this
abstract domain (center of mass, mass, and moment of inertia tensor) can be directly

entered.

The formulation for an abstract rigid object is similar to the physical rigid domain with

these exceptions:

e The inertial properties of the abstract rigid object are input by the user instead of

being computed from a physical domain.

* No extra degrees of freedom are created. The inertial forces generated by this
feature will be computed based on the distance from the center of gravity of the rigid

domain to which it belongs, and the values of the degrees of freedom there.
The inertial force contributions are
d2
F; = m?(u +(R-EX )

where X[, is the vector from the center of mass of the rigid domain (Xyy) to the center

of mass of this contribution (X,),
ch = Xm - XM

The inertial moment contributions are
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M, = RIR"0+ 0 x (RIRT0)+X__ x F,

In 2D, there is only a scalar moment contribution:

M; =Lo+ (X, . xF) e,

CONSTRAINTS

The constraints for a rigid domain are different in nature than those applied to flexible
domain. In a flexible domain, a constraint can be applied at various entity levels:
domains, boundaries, edges, or points. Since the degrees of freedom of the rigid
domain are global and present only at the center of mass, boundary conditions are used

to constrain these global degrees of freedom, which is why a global selection is needed.

The constraints used for a flexible domain, for example Fixed Constraint,
Prescribed Displacement, Rigid Connector, or Attachment, are not applicable

to a rigid domain.

I

In a rigid domain the Prescribed Displacement/Rotation or Fixed Constraint

subnode is used instead to constrain its degrees of freedom.

The Prescribed Displacement/Rotation node can be used to:

* DPrescribe the displacement components in arbitrary directions at a given point.
* Constrain rotations in arbitrary directions.

* Prescribe a nonzero rotation around an arbitrary axis.

The displacement and rotation can be prescribed in a selected coordinate system about

an arbitrary center of rotation. The center of rotation can be defined using

e The center of mass of the rigid domain.
¢ Global coordinates of the center of rotation.

¢ The centroid of a set of selected entities (boundaries, edges, or points).

The displacement at the center of rotation is computed as:

u, =u+R-I) X, -Xy) (3-59)

c

The components of this displacement vector are prescribed individually in the selected

coordinate system. Through Equation 3-59, a constraint on a translation will impose

MATERIAL MODELS | 427



428 |

CHAPTER 3:

a relation between translational and rotational degrees of freedom if the center of

rotation differs from the center of mass.

To prescribe the rotation in 3D, the imaginary part of the quaternion is prescribed as:

b = Qsin%)

where Q and ¢ are the axis of rotation and angle of rotation respectively.

In 2D, the out-of-plane rotation angle is directly constrained to the prescribed value

of the rotation.

LOADS

The loads available for a flexible domain can also be used for a rigid domain. In
addition to these boundary conditions, a rigid domain also has global subnodes for
applying forces and moments. If you use Applied Force, a force and its location can be
prescribed in a selected coordinate system. A force implicitly also contributes to the
moment unless it is applied at the center of mass of a rigid domain. If an Applied

Moment node is used, a moment can be prescribed in a selected coordinate system.

CONNECTING TO OTHER BODIES
When a rigid domain and a flexible domain share a boundary (Shell: edge, Beam:
point), the connection is automatic. All displacements on the flexible domain are

controlled by the degrees of freedom of the rigid domain, so that

U, = (R-I)- X-Xpp+u
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where X is a coordinate on the boundary. If rotational degrees of freedom are present,
which is the case in the Shell and Beam interfaces, the rotations are set equal to those

of the rigid domain.

In the Multibody Dynamics interface, a rigid domain can be also be
connected to another rigid or flexible domain using joints. A rigid
component can be directly selected in the joints to establish a connection.
This stands in contrast to a flexible component, which needs an
attachment.

m

A Rigid Domain which contains a selection of several geometrical

domains will act as a single rigid object.

Adjacent domains selected in different Rigid Domains nodes are

independent objects.

Damage Models

The deformation of quasi-brittle materials under mechanical loads is characterized by
an initial elastic deformation. If a critical level of stress or strain is exceeded, a nonlinear

fracture phase will follow the elastic phase.

As this critical value is reached, cracks grow and spread until the material fractures. The
occurrence and growth of the cracks play an important role in the failure of brittle
materials. There are a number of theories to describe such behavior. In the continuum
damage mechanics formalism, a damage variable represents the amount of
deterioration due to crack growth. This damage variable controls the weakening of the

material’s stiffness, and it produces a nonlinear relation between stress and strain.

For a linear elastic material, Hooke’s law relates the undamaged stress tensor 6, to
the elastic strain tensor:

Oun = Oex t C: €¢ = Oex T C: (S_Sincl) (3-60)

here, C is the fourth order elasticity tensor, “:” stands for the double-dot tensor
product (or double contraction). The elastic strain &g is the difference between the
total strain € and all inelastic strains €;,,). There may also be an extra stress contribution

Oex», With contributions from initial, external or viscoelastic stresses.

For the scalar damage models, the damaged stress tensor 64 is computed from the

undamaged stress as
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6, = (1-d)o,, (3-61)

This damaged stress is then used in weak formulation. There are different ways to
compute the scalar damage variable d that controls the material weakening. These are

listed in the following sections.

The undamaged stress tensor G, is used when combining the Damage

= feature with Creep or Viscoelasticity.

CHAPTER 3:

DAMAGE MODELS
The strain-based formulation for the damage model is based on the loading function f'

such as
f=¢.-x<0 (3-62)

here, ¢ is the equivalent strain, a scalar measure of the elastic strain; and K is a state
variable. The evolution of the state variable x follows the Kuhn-Tucker loading/

unloading conditions
f<0,x>0,and xf = 0

In this formulation, K is the maximum value of €4 in the load history. The damage

variable d is then computed as a function of the state variable k¥ and other parameters.

EQUIVALENT STRAIN
Different damage models use different definitions for the equivalent strain €q4. The
Rankine damage model defines the equivalent strain from the largest undamaged

principal stress 6,1 as

e, = (Opp? (3-63)

e«q - E
here, the symbol “<>” are the Macaulay brackets, and E is Young’s modulus. The
Macaulay brackets are used since in this formulation only tensile (positive) stresses

cause damage.

The Smooth Rankine damage model defines the equivalent strain from the three

undamaged principal stresses

_ o2+ (0,)% + (0,

Eeq 7 (3-64)

STRUCTURAL MECHANICS THEORY



In both the Rankine and the Smooth Rankine damage models, by default only the
principal stresses in tension contribute to the damage evolution, but it is also possible
to activate damage in compression by including the compressive stresses in the

computation of the damaged stress tensor 6.

The Euclidean Norm of the elastic strain tensor can also be used as a measure for the

equivalent strain

€q = WEelEal (3-65)

The Euclidean norm considers both tensile and compressive strains.

For Mazars damage for concrete, it is also possible to select from Mazars or Modified

Mazars equivalent strain. For Mazars equivalent strain is defined as

€eq = (€D (€Y (3-66)

In the Modified Mazars equivalent strain (Ref. 2 and Ref. 3), a correction factor yis
added to improve the approximation of the failure surface of concrete in multiaxial

compression.

Eoq = YA (E () (3-67)

It is also possible to apply a User defined expression for defining the equivalent strain

as a function of undamaged stress, stress components or strains.

DAMAGE EVOLUTION
A key component in a scalar damage model is the definition of the damage evolution

law. The Linear strain softening law defines the damage variable from

d(“)z(l‘%(gf%‘;o) k2% (3-68)

d(x)=0 K<Eg

Here, £y denotes the onset of damage, computed from the tensile strength 645 and
Young’s modulus E, so that €y = 6,/ E. The parameter €¢is derived from parameters
such as the tensile strength, the characteristic element size A, and the fracture energy

per unit area Gy, or the fracture energy per unit volume gr.

2G; g

+ (3-69)
Gtshcb 2

g =
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The Exponential strain softening law defines the damage evolution from

d(x)=1 2 ( =% K>g
TP _sf—sg -0 (3-70)
d(x)=0 K<g
where
Gy g
€ = + = (3-71)
f Gtshcb 2

MAZARS DAMAGE FOR CONCRETE
The Mazars damage for concrete utilizes two different damage evolution laws, one for
tensile damage and another for compressive damage. These two damage functions are

combined as
d(x) = oc?dt(lc)+oc§dc(1<) (3-72)

here, 04 and o, are weight functions depending on the current stress state, and 8
determines the response in shear, i.e. the evolution of the combined damage function

in states where both damage functions are active.

To define the tensile damage evolution law di(k) (Ref. 3), it is possible to use either
Linear strain softening, Exponential strain softening, or the Mazars damage evolution

function, which is obtained by a combination of linear and exponential strain softening

€
d(x) = 1—(l—At)EO—AtCXp(—Bt(K—EO)) K>¢, (3-73)
d.(x)=0 K<g

Here, A; and B; are tensile damage evolution parameters, and €4 is the tensile strain
threshold.

The compressive damage evolution law d(x) is obtained by the Mazars damage

evolution function

€
d() = 1-(1-A) 2 -Aexp(-B (k—gg) K2 g (3-74)

d.(x)=0 K<gg
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Here, A, and B, are compressive damage evolution parameters, and €, is the
compressive strain threshold. Both the tensile and compressive damage evolution laws

can also be specified by User defined expressions.

REGULARIZATION

The most common application for the damage models is to describe strain localization,
due to for example cracking in quasi-brittle materials. In a damage model without
regularization, the deformation during strain softening will always localize in the
narrowest possible band, following the principle of least action. This means that large
strains will develop in a narrow band of elements (or even Gauss points). As a
consequence, the amount of dissipated energy during softening will decrease upon
mesh refinement. The results of a damage model without regularization will therefore
be mesh dependent and possibly unstable, hence there is the need for these models to

be regularized for the solution to maintain its mesh objectivity.

The simplest regularization method is to modify the stress-strain relation to account
for the mesh size. More advanced regularization techniques introduce length scales in
the constitutive equation, additional equations and variables acting as localization
limiters. These methods include non-local averaging of suitable variables, explicit or
implicit gradient methods, and phase-field and other variational methods. The

following sections describe the two methods available for regularization.

CRACK BAND METHOD

This simplest regularization technique is based on stress-strain curves (damage
evolution laws) that depend on the mesh and element characteristics. The method is
often called the Crack Band method (Ref. 4, Ref. 5). The method regularizes the
solution from a global viewpoint, which dissipates the correct amount of energy during
strain localization. The main difficulty in using the crack band method is to find the

correct width of the crack band, A, which can depend on the element size and shape
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as well as the order of the interpolation and the current stress state (i.e. inclination of

the crack with respect to the mesh).

hcb

-

- '\hcb

The length scale used in the crack band method is computed by using the volume to
area ratio in the mesh elements. By using the element volume v in 3D or the area a in
2D, the crack band width Ay, is defined as:

s hg, = 2a, for 2D triangles

e hy = Ja , for 2D rectangles

e hy = 3/6/.2v , for 3D tetrahedra
e hy = 3/6v/ /2 , for 3D pyramids
s hy = 320, for 3D wedges

e hy = 3/v , for 3D hexahedra

The crack band width Ay, is then used to modify the Damage evolution law in which
the damage variable d(x) is computed. Note that the damage evolution laws
(Equation 3-73 and Equation 3-74) are unaftected by the crack band method.

IMPLICIT GRADIENT METHOD

The Implicit Gradient method (Ref. 6) enforces a predefined width of the damage
zone through a localization limiter. This is achieved by adding a nonlocal strain
variable, the nonlocal equivalent strain €4, through an additional PDE where the
cquivalent strain €4 acts as source term. This PDE is solved simultancously with the
displacement field:

snl—cV2£nl =g, (3-75)

q

Here, the parameter ¢ controls the width of the localization band. This parameter is
defined from the Internal length scale lint, and the geometry dimension n (two or

three dimension)
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c ==X (3-76)

If the fracture energy per unit area is used to define the softening behavior, the size of
the damage zone also needs to be entered as an input. This is not necessarily the same

as Lipg.

The strain-based formulation for the damage model (Equation 3-62) is then redefined

by the nonlocal equivalent strain &y instead of the equivalent strain €4

f=¢,-k<0 (3-77)

Safety Factor Evaluation

There are many theories available in the literature for predicting material failure, these
can predict, for instance whether a ductile material will yield or not, or if a brittle

material will crack under a given set of loads.

Tsai and Wu (Ref. 13, Ref. 22) proposed a stress-dependent criterion intended at
modeling failure in composites. Under Tsai-Wu criterion, failure occurs when a given

quadratic function of stress is grater than zero. The failure criterion is given by
g(o) = o:(Fo)+fic-1

here, G is the stress tensor, F a fourth rank tensor (SI unit: 1,/Pa”2) and fis a second

rank tensor (SI unit: 1,/Pa). For Tsai-Wu criterion, failure occurs when g(c) 2 0.

Due to the symmetry of these tensors, the fourth rank tensor can be represented by a
symmetric 6-by-6 matrix, and the second rank tensor by a 6-by-1 vector (see Voigt

order in the section Tensor vs. Matrix Formulations).

Certain constraints ensure that the failure surface g(c) = 0 forms a closed ellipsoid in
the stress space. Also, thermodynamic considerations restrict the value of some
components of the fourth rank tensor to be positive only. These restrictions are

summarized as (no summation of the indexes)

2
F;;>0 and FiiFjj ZFij
The failure index is computed from the failure criterion as

fi =g(o)+1

so failure is predicted for a failure index greater than one, fi > 1.
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The damage index is given by a boolean expression based on the failure criterion

1 g(0)=20

0 otherwise

di =

here di = 1 means damage, and di = 0 represents a healthy material.

The safety factor, also called reserve factor or strength ratio, is computed by scaling

the stress tensor such as the failure criterion is equal to zero
g(so) =0

For a quadratic failure criterion, as the Tsai-Wu criterion, this means solving a

quadratic equation for the safety factor variable s¢
S?(G:(FG)) +5(fio)-1=0

the safety factor is then obtained from the smallest positive root.

For aisotropic criteria, such as von Mises criterion, g(6) = Opyjses/Ots — 1, and the safety

factor is given by Sf= Gts/Omises-
The margin of safety (Ref. 23) is then computed from the safety factor
ms = sg—1

Use the Safety subnode to set up variables which can be used to check the risk of failure
according to various criteria. It can be used in combination with Linear Elastic Material

or Nonlinear Elastic Materials.
Following Tsai-Wu formalism, different orthotropic criteria can be defined by setting

appropriate values for the coefficients in F and f tensors.

ANISOTROPIC TSAI-WU CRITERION
For this criterion, enter twenty one coefficients to define the 6-by-6 matrix F, and six

coeflicients to define the vector f. The failure criterion is evaluated from the expression
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_ t o4 rATe A
011 |F11 F1g Fig3 F1y Fi5 Figl|011| |f1] |11

Ogo| |F1g Fog Fog Foy Fo5 Fog||Ogg| |Fa| |02
2(6) = Og3| |F13 Fog Fa3 Fgy Fzg5 Fag)|033 + f3| |os3
Ogs| |F14 Foy Fay Fyy Fy5 Fug||Oos| |Fa] |O2s
O13| |Fi5 Fo5 Fa5 Fy5 Fg5 Fs||O13| |f5] |O13
012 |F16 Fa6 F6 Fag F56 Fes|[O12] |f5] |O12)

here, G;; are the stress tensor components given in the local coordinate system of the
parent node.

ORTHOTROPIC TSAI-WU CRITERION

For this criterion, enter nine coefficients corresponding to the tensile strengths Gy,
compressive strengths G, and shear strengths o4 given in the local coordinate
system of the parent node. Tsai-Wu coeflicients are then computed from

1 1 1
FH:G c » By 6.0 ’F33=0 .’
csl Vsl cs2Vs2 cs3V ts3
1 1 1
Fo=——,Fgp=——, Fg = ——
44 2 755 2 766 2
GSSZS cs5513 G5512
Fyy= -2 [FF  Fpy= - [FF.., Fp =2 [FoF
12 _2 117 292> 4 13 — _2 117 33>+ 23 _2 227 33
1 1 1 1 1 1
fl:c "o ’f2=c "o ’f3=G "o
tsl csl ts2 cs2 ts3 cs3

all the other coefficients in F and f tensors are set to zero.

ORTHOTROPIC TSAI-HILL CRITERION

For this criterion, enter six coefficients corresponding to the tensile strengths 64 and
shear strengths G5 given in the local coordinate system of the parent node. Tsai-Wu
coefficients are then computed from

1 1 1
Fqy = 2’F22= 2’F33= 9
Gis1 Gis2 Ots3
1 1 1
Fy = 2 » Fp = 2 » Fgg = 9
G23 O13 Os12
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1 1
Fig = 5(F11+Fgp—Fg3), F1g = 5(F11 + Fy3-Fyy),
1
Fog = —5(Fog + Fg3—Fqy)

all the other coefficients in F and f tensors are set to zero. See also Hill Orthotropic

Plasticity.

ORTHOTROPIC HOFFMAN CRITERION
For this criterion, enter nine coefficients corresponding to the tensile strengths Gy,
compressive strengths O, and shear strengths o given in the local coordinate

system of the parent node. Tsai-Wu coefficients are then computed from

1 1 1
F =—— F,=—— F,=——o
11 c .o .’ 22 c .g . 33 G .6 .~
csl Vsl cs2 52 cs37ts3
1 1 1
Fy = 2 » Fos = 2 » Fgg = 2
0523 0513 012

1 1
Fiy = —§(F11+F22—F33)’ Fi3 = —§(F11+F33—F22)’
1
Fo3 = 5(Fog+ Fy3—Fyq)

1 1 1 1 1 1
f1= - ,fzz—— ,f3=——

Ow1 Ol Ow2 Ocs2 Ow3 Ocs3

all the other coefficients in F' and f tensors are set to zero.

ORTHOTROPIC JENKINS CRITERION
Enter nine coefficients corresponding to the tensile strengths Gy, compressive
strengths g, and shear strengths G5 given in the local coordinate system of the

parent node. The failure criterion is then computed from

(&@@%&&)_1

b 9 b b b
051 Og2 653 65523 G5513 Ogs1

here, &g is either the tensile strength or the compressive strength depending whether
the stress in the i-direction, Gj, is positive or negative. The absolute value of the shear

stress Gy in the ij-plane is compared to the corresponding shear strength G5
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ORTHOTROPIC WADDOUPS CRITERION

Waddoups criterion is similar to Jenkins criterion, but the failure criterion is given in
terms of strains, not strengths. For this criterion, enter nine coefficients corresponding
to the ultimate tensile strains €, ultimate compressive strains €., and ultimate shear
strains Yggi; given in the local coordinate system of the parent node. The failure

criterion is then computed from

g(e) = max(ﬂ, 2] [es Yos i3 Lzz) 1
€1 &2 &3 Yes23 Yss13 Vsl

here, g is either the ultimate tensile strain or the ultimate compressive strain
depending whether the strain in the i-direction, g;, is positive or negative. The absolute
value of the shear strain v;; in the ij-plane is compared to the corresponding ultimate

shear strain Yggj;-

MODIFIED TSAI-HILL CRITERION

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress
problems (Ref. 23). It is available in 2D for the Pate interface and the Solid Mechanics
interface in plane stress, and for the Shell interface in 3D. Enter the coefficients
corresponding to the tensile strengths Gy, compressive strengths G, and shear
strengths Oggj; given in the local coordinate system of the parent node. The failure

criterion is then computed from the in plane stresses
— 2 2 2
8(0) = Fy107) + Fgy03; +2F 156,09y + Fe07; — 1

Tsai-Wu coeflicients are then computed from

1 1
FllzT f0r611>0,0rF11=T for 64, <0
Ots1 O¢s1
Foy = == foropy>0,0r Foy = =—  for 6yy<0
22 T 5 Or Ggg ) 22 T 5 Or Ogg
Ots2 Ocs2
11 11
Fiy = PN for 6,,6,,>0 or Fy, = 52 for 6;,06,,<0
Os1 01
1
F.. = —
66 2
Oss12

all the other coefficients in F and f tensors are set to zero.
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AZZI-TSAI-HILL CRITERION

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress
problems. It is available in 2D for the Plate interface and the Solid Mechanics interface
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding
to the tensile strengths Oy, compressive strengths G4, and shear strengths 05 given
in the local coordinate system of the parent node. The failure criterion is then

computed from the in plane stresses
— 2 2 2
8(0) = F1107) +Fyy0% + 2F 190109 + Fgg01; — 1

Tsai-Wu coefficients are then computed from

1 - 1
FIIZT forcsn>0,orF11=T for 6,, <0
Gtsl Gcsl
Fpy= - foroyy>0,0r Fpy = ——  for 6yy<0
99 = 3 or Ggq yor Fog = — or Ggq
GtsZ GcsZ
11 11
F, = 52 for 6;;,>0 or Fyy = o2 for 6, <0
Ots1 01
1
F =
66 2
Ogs12

all the other coefficients in F' and f tensors are set to zero.

NORRIS CRITERION

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress
problems. It is available in 2D for the Plate interface and the Solid Mechanics interface
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding
to the tensile strengths Oyg;, compressive strengths O, and shear strengths o5 given
in the local coordinate system of the parent node. The failure criterion is then

computed from the in plane stresses
8(0) = Fy0%) + Fpq03; + 2F 150,099 + Fg0f, - 1
Tsai-Wu coefficients are then computed from

Fi, == foro,>0,0r Fyy = =

2
01 csl

for ;<0
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1 1

F22=T for022>0,orF22=T for 699 <0
Ots2 Ocs2
1
F =
66 2
05512
F,, = -1 FF
12 — _2 11% 22

all the other coefficients in F' and f tensors are set to zero.

ISOTROPIC VON MISES CRITERION
Von Mises criterion is one of the simplest isotropic criteria to predict yielding in metals
and other ductile materials. The failure criterion is computed from the isotropic tensile

strength Gig

(o
miscs
glo) = Mg
GtS
The effective von Mises stress O;qes i defined from the deviatoric stress tensor, see
the section about plasticity and von Mises Criterion. For ductile materials the tensile
strength corresponds to the yield stress, while for brittle materials it corresponds to the

failure strength.

ISOTROPIC TRESCA CRITERION
Tresca criterion is similar to von Mises criterion. The failure criterion is computed from

the isotropic tensile strength G

o
tresca
—_—_1

g(o) = pe

ts
here, Tresca effective stress is defined in terms of principal stresses, Gipegea = 01 — O3,
see Tresca Criterion. For ductile materials the tensile strength corresponds to the yield

stress, while for brittle materials it corresponds to the failure strength.

ISOTROPIC RANKINE CRITERION

St. Venant criterion is similar to Tresca criterion, as the failure criterion is given in terms
of principal stresses. For this criterion, enter the tensile strength G, and the
compressive strength 6. The failure criterion is then computed from
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g(o) = max(|—0§—ll, ’E&@J, ‘Eéﬁl) -1
N N S

here, o is either the tensile strength or the compressive strength depending whether

the principal stress, G, is positive or negative. For ductile materials the tensile strength

pia
corresponds to the yield stress, while for brittle materials it corresponds to the failure

strength.

ISOTROPIC ST. VENANT CRITERION

The St. Venant criterion is similar to the Waddoups criterion, as the failure criterion is
given in terms of strains, not strengths. For this criterion, enter the ultimate tensile
strains €, and the ultimate compressive strains €.g. The failure criterion is then

computed from

€. € o E
g(e) = max(_Ll’ o2 _P_) 1
85 ES SS

here, & is cither the ultimate tensile strain or the ultimate compressive strain
depending whether the principal strain, €;, is positive or negative. For ductile materials
the ultimate tensile strain corresponds to the strain at yielding, while for brittle

materials it corresponds to the strain at failure.

MOHR-COULOMB CRITERION

The Mohr-Coulomb criterion is similar to the Tresca criterion, as the failure criterion
is given in terms of principal stresses, see Mohr-Coulomb Criterion for soil plasticity.
For this criterion, enter the cohesion ¢, and the angle of internal friction ¢. The failure

criterion is then computed from

~ JTom(8)

800) = a1,

and the failure index from

fi - JT3m(8)
L= k—ol,

where
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m(0) = J%((l + sind)cosO — (1 — sin(b)cos(e + %T'D , 00 = sind/3, and

k = ccoso

The cohesion and the angle of internal friction are related to the tensile and

compressive strengths by the expressions

(¢} (¢}
sin(¢) = =L —5L 4nd ccos(¢) =
es1 T 01 O1 + Ol

010151

DRUCKER-PRAGER CRITERION

The Drucker-Prager criterion approximates the Mohr-Coulomb criterion by a smooth
function (a cone in the stress space), see Drucker-Prager Criterion for soil plasticity.
The failure criterion is computed from the stress invariants 11 and JJ, and two material

parameters, o and &,

The material parameters o and % are related to the cohesion ¢ and angle of internal
friction ¢ in the Mohr-Coulomb criterion, see Drucker-Prager Criterion for details.
Also, the cohesion and the angle of internal friction can be related to the tensile and
compressive strengths, see Mohr-Coulomb Criterion for details. The failure index is
computed from

BRESLER-PISTER CRITERION

The Bresler-Pister criterion was originally devised to predict the strength of concrete
under multiaxial stresses. This failure criterion is an extension of the Drucker-Prager
Criterion to brittle materials. The failure criterion is computed from the stress
invariants I7 and Jy, and three parameters, k1, kg, and kg,
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The parameters k1, kg, and kg are computed from the uniaxial compressive strength
O, the uniaxial tensile strength oy, and the biaxial compression strength oy, see

Bresler-Pister Criterion for details. The failure index is computed from

WILLAM-WARNKE CRITERION

The Willam-Warnke criterion is used to predict failure in concrete and other
cohesive-frictional materials such as rock, soil, and concrete. Just as the Bresler-Pister
Criterion, failure is computed from the stress invariants /7 and /5, and the Lode angle

0, and three material parameters
T .
fr(e)c (1 + (i - 1)1—1)
2 ¢ o, 6/3

t

g(o) =

here, 6, is the uniaxial compressive strength, o; is uniaxial tensile strength, and oy, is
the biaxial compressive strength. The function r(0) describes the segment of an ellipse
on the octahedral plane, see Willam-Warnke Criterion for details. The failure index is

computed from

OTTOSEN CRITERION
The Ottosen criterion is a five-parameter failure criterion proposed for short-time
loading of concrete. It corresponds to a smooth convex failure surface with curved

meridians

ad, YCOND )
6.(c.-bl,)  o.-bl,

g(o) =

In this formulation, the parameters @ and b are positive and dimensionless, and G, is
the uniaxial compressive strength for concrete (also with a positive sign). The
dimensionless function A(6) depends on the Lode angle 6 and two positive parameters

k1 and kg, see Ottosen Criterion for details. The failure index is computed from

STRUCTURAL MECHANICS THEORY



ad, YONE

c.(c.-bly) " o.—-bl;

fi =

USER DEFINED

This option allows you to write explicitly how the failure criterion and the safety factor
depend on stress and /or strain. These could be analytic functions of stress or strain
tensor components, principal stresses, principal strains, stress or strain invariants, or

data interpolated from tables.

You can add any number of Safety nodes to a single material model. The contents of
this feature will not affect the analysis results as such, as this feature does not account
for post-failure analysis. You can add Safety nodes after having performed an analysis
and just do an Update Solution in order to access to the new variables for result

evaluation.
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Formulation of the Equilibrium
Equations

CHAPTER 3:

* Equation Implementation

Equation Implementation

The equilibrium equations for solid mechanics are given by Newton’s second law. It is

usually written using a spatial formulation in terms of the Cauchy stress tensor o:

Here fy is a body force per unit deformed volume, and p is the current mass density.
For the material frame formulation used in COMSOL Multiphysics, it is more
appropriate to use a Lagrangian version if the equation:

2
pogT; = VxPT 4 Fy,

Now that the first Piola-Kirchhoft stress tensor, P, is used. Fy is a body force with
components in the current configuration but given with respect to the undeformed
volume, and py is the initial mass density. Note the gradient operators are not the same:
in the first case the gradient is taken with respect to the spatial coordinates, and in the
second case with respect to the material coordinates. Using the more common second
Piola-Kirchhoff stress tensor, S, the same equation reads

2
pozT;l = Vx(FS)+Fy (3-78)

where F is the deformation gradient. The COMSOL Multiphysics implementation of
the equations in the Solid Mechanics interface is however not based on the equation

of motion directly, but rather on the principle of virtual work.

The principle of virtual work states that the sum of the internal virtual work and the
external virtual work are equal. The internal virtual work is the work done by the
current stress state on a kinematically admissible variation in strains. The external
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virtual work is the work done by all forces (acting on domains, boundaries, edges, or
points) when multiplied with the variation in displacements corresponding to the
variation in strains. The virtual displacements du are in the finite element formulation
represented by the test () operator in COMSOL Multiphysics. For a stationary case,
the virtual work 8W is written as

SW = J'V(—E‘Sa co+du-Fy)dv +

I(Su -Fg)ds +I(5u Fp)dl+Y (3u-F,)]
S L D
The strains are computed from the gradients of the displacements, and the stresses are

given by the constitutive relation.

In a dynamic analysis, the inertial forces are included in the volume forces, according
to d’Alembert’s principle.

W = [(-8e:0+du-Fy—pdu-u,)dv +
\4

j(su : Fs)ds+j(8u~FL)dl+Z(8u 'F,)
S L %)

(3-79)

Since the equations are formulated on the material frame, all integrals are taken over
the undeformed geometry. The stress and strain contributions must be interpreted

differently depending on whether the formulation is geometrically nonlinear or not.

» If the study step is geometrically linear, the strain € is the engineering strain. The
stress 6 could in principle be any of the stress measures, as they all converge to the

same engineering stress in this case.

* Ifthe study step is geometrically nonlinear, the strain € is the Green-Lagrange strain
and the stress ¢ is the second Piola-Kirchhoft stress.

The Solid Mechanics interface supports Stationary (static), Eigenfrequency, Time
Dependent (transient), Frequency Domain, and Modal solver study types as well as
linear buckling.
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Study types

Frequency-Domain Studies

In the frequency domain, the frequency response is studied when applying harmonic

loads. Harmonic loads are specified using two components:

e The amplitude value in direction m, F,,

* The corresponding phase, ¢,,

To derive the equations for the linear response from harmonic excitation loads

F,\ treq = Fn(f)cos(ot +9,,)
Fx, freq

Ffreq = Fy, freq
Fz, freq

Assume a harmonic response with the same angular frequency as the excitation load

u= uampcos(wt +9,)

<]
1}
S <o g

The relationship can also be described using complex notation with

u = Re(uampej¢“ejwt) = Re(;ejwt) whcrc; = uampej¢“
u = Re(;lejmt)
and
Fm’ freq = Re(Fm(w)ejq)meimt) — Re(I;mgjmt)
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The primary results, such as displacements, velocities, accelerations, and stress and

strain components are all complex valued.

Eigenfrequency Studies

The eigenfrequency equations are derived by assuming a harmonic displacement field,
similar as for the frequency response formulation. The difference is that this study type
uses a new variable jo explicitly expressed in the eigenvalue jo =—-A. The

eigenfrequency fis then derived from jo as

A
f= “omj

Damped eigenfrequencies can also be studied, so A is not necessarily a purely imaginary
number. Any damping included in the problem will automatically cause the

eigenfrequencies to become complex valued.

In addition to the eigenfrequency, the quality factor, @, and decay factor, 9, for the
model can be examined:

Q = Im(A)
~ 2Re(M)
5 = Re(A)

MODAL PARTICIPATION FACTORS

It is common to present modal participation factors in terms of the discretized system
of equations, that is on matrix form. For a discretized system, the modal mass for the
i-th mode can be defined as:

n.m

where M, is the mass matrix, and ¢, is the eigenmode in terms of a vector of degrees

of freedom. The modal participation factors are defined as
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1 n m
L= D0 M,
ln m

where er-n represent the unit rigid-body modes for translation and rotation.
The effective mass in direction j for mode i can the be computed as

eff 2
i = mly;

For physics interfaces with only displacements as dependent variables (for example
Solid Mechanics), each eigenmode is given by the solution vector u = [u v w} . The
rigid body modes y can be represented as columns of the following matrix:

Vrx Vry Vrz  VRx YRy Vrz
L 0 0 0 Z-Z, ~(Y-Y)
0 L 0 —«(Z-Zy 0 X-X,
0 0 L Y-Y, (X-X, 0

where L represents a unit length.

The translational and rotational participation factors can be computed as, respectively:

L
I, = [FTX Ty rTZ] = m—FJ' udm
and
Tg = [Tpy Try Ty = —1-I(r—r0) x udm
mp
where the normalization factor is computed as
mg = I(uT- u)dm

The integration involves the entire selection of the corresponding physics interface.
The definition of dm in the above formulas depends on the dimensions. For example,
one has dm = pdV for solid domains in 3D. Contributions to the structural mass come
not only from the mass density of the domains, but also from features like Rigid
Connector, Added Mass, Point Mass ctc. Thus, integrations are in general performed over
all selected domains, boundaries, and edges. Contributions from points are also added.
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If the mass matrix normalization was selected when computing the eigenmodes, then

mgp= 1.

Note that the rotational participation factor computed with respect to a certain
reference point rg can be expressed in terms of the participation factors computed with

respect to the origin as:
Tp(ry) = Tr(0)+Tpxr

For structural elements (and features) that also use rotational degrees of freedom as
dependent variables, there is also a direct contribution from these degrees of freedom.

In this case, the corresponding expressions are:

I'p = n—ll;.[(rxu+J9)dm

with
mgp = J(uT Su+ GTJG)dm

where matrix o presents the moment of inertia, and 6 = [GX By 6 Zj| are rotation
angles with respect to the corresponding axes. The angles can be computed at given
local position as certain functions of the actual rotational degrees of freedom which can

be different for different structural element types.

An alternative definition of the participation factors is:

where M denotes a unit mass. The advantage of such definition is independence of the

normalization type selected when computing the eigenmodes.

The effective modal mass for X-translation and rotation are defined, respectively, as

eff mg o norm, 2
mrx = 5 lpx = MTrx )
L
and

eff _ FZ
Mpx = Mpxl R

Similar definitions are used for other components.
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Response Spectrum Analysis Theory

Response spectrum analysis is used for computing an approximation of the structural
response to transient, nondeterministic events, such as earthquakes or shocks. The idea
is that the event is characterized by the peak response that it would give a single degree
of freedom (SDOF) oscillator having a certain natural frequency and relative damping.
This response value is provided as a function of the natural frequency of the oscillator.
The actual load history of the event is not known explicitly.

This theory section contains:

* Single Degree of Freedom System
¢ Definition of a Response Spectrum
¢ Solution Using Response Spectrum
* Mode Summation
- Partitioning Into Periodic and Rigid Modes
- Gupta Method
- Lindley-Yow Method
- Combining Periodic and Rigid Modes
- Summing the Periodic Modes
- SRSS Method
- Grouping Method
- Ten Percent Method
- Double Sum Method
- Der Kiureghian Correlation Coefficient (CQC)
- Absolute Value Sum
- Summing the Rigid Modes
- Rigid Mode Combination Method A
- Rigid Mode Combination Method B
- Missing Mass Correction

- Static ZPA Method
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e Summation Over Spatial Directions
- SRSS Method
- 100-40-40 Method (Percent Method)
- CQC3 Method
- SRSS3 Method

SINGLE DEGREE OF FREEDOM SYSTEM

Response spectrum analysis is based on the response of a set of single degree of
freedom (SDOF) systems.

Consider a mass-spring-damper system, attached to a moving base. The base

movement is b(¢).

The equation of motion for the mass can, if there are no external loads, be written as
mu+c(u-b)+k(u-b) =0
Dividing by the mass, and using customary notation,
. . 2 . 2
u+20ogu +ogu = 20web + wgb

Here, the undamped natural (angular) frequency is

k
o0- [F

and the relative damping is

C

2.Jkm

It can be seen that the support movement acts as a forcing term, and that the solution

¢ =

depends only on two parameters ®g and {, and not on the individual values of m, c,

and &.

STUDY TYPES | 453



454 |

CHAPTER 3:

Instead of using the absolute displacement as DOF, one can use the relative

displacement between the mass and the base,

u,=u->b

The equation of motion can then be stated as
U, + 200U, + (ngur =-b (3-80)

In practice, such approach means a frame transformation, where the support

movement appears as a gravity-like load.

DEFINITION OF A RESPONSE SPECTRUM
For given values of wg, §, and b(¢), it is a trivial task to solve Equation 3-80 for the
whole duration of the event plus some extra time to allow for the response to reach a

possible maximum. The acceleration, velocity, and displacement response spectra are
defined as

Sa(0g. &, b(2)) = max|ii(t, wg, O)|
S,(@, G, b(t)) = max|u(t, oy, O)|
Sq(mg, &, b()) = max‘u(t, 0, C)‘

These are absolute spectra. One can do a similar definition of the relative spectra by
using instead the relative displacement u,. It is clear from the definition that there is
not a one-to-one relation between the response spectrum and the base acceleration
history. The response spectrum gives information about the peak value, but not about

when it occurs.

The velocity and acceleration response spectra often are approximated by

S v (DOS a
2
S a”~ wOSd
Such spectra are called the pseudo-velocity spectrum and the pseudo-acceleration
spectrum, respectively. The expressions contain an assumption about harmonic

motion, so that the response is dominated by the homogeneous solution to the

equation of motion.

STRUCTURAL MECHANICS THEORY



SOLUTION USING RESPONSE SPECTRUM

Assume that one has a structure discretized by FEM, so that the equations of motion

on matrix form are

Mu + Cu + Ku = £(?) (3-81)

Now, let the structure be connected to a common “ground” at a number of points.

These points then have a base motion given by

b, (t)
b, (t)
b, (t)

ﬁ(t)
A

Let b(¢) be a vector that has the same size as the displacement vector u (the total

number of DOF), but it contains only three different values: b,(¢) in all x-translation
DOPFs, by(t) in all y-translation DOF, and b,(¢) in all z-translation DOF. The relative
displacement is now u, = u — b. With no external load, Equation 3-81 can be written

as

M(u,+b)+Cu,+Ku, = 0
or

Mu, + Cu, + Ku, = -Mb

Then, the fact that a rigid body motion does not give any elastic or viscous forces has

been used, so that
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Kb=0
Cb=0

By solving the undamped eigenvalue problem
2
K-0"M)p =0

with the grounded nodes being fixed, a set of eigenmodes that can represent the
relative displacements is obtained. Since the mode displacements are zero at the
support points, it is however clear that the modes cannot represent the absolute

displacements, for which the support points are moving.

By standard operations for mode superposition (and assuming mass matrix
normalization and a diagonalizable damping matrix) the decoupled modal equations
are

q;+2L0yq; + wpq; = 0, Mb (3-82)

The equation is similar to the standard SDOF system in Equation 3-80.

The assumption about mass matrix normalization is not essential, but
some expressions are simplified. In COMSOL Multiphysics, the

[

computed modal participation factors are consistent with the chosen mass

matrix normalization. See also Modal Participation Factors.

In Equation 3-82, g; is the modal coordinate for mode j, so that the relative
displacement can be written as a superposition of the eigenmodes 9;-

u, = Z‘ij i = ®q
i
The support motion can be written as
b(t) = b,(t)1,+b, (1)1, +b,(1)1, (3-83)
The notation 1, mean a vector that has the value 1 in all DOF representing
x-translation, and the value 0 in all other DOF. Inserting Equation 3-83 in

Equation 3-82 gives

. . 2 . . .
q;+ 2§m0qj +0q; = - l"ijx(t) - l"yjby(t) - szbz(t)
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The multipliers I'; are the modal participation factors defined as
T
Ty = 0; M1,

Thus, the maximum amplitude of mode j, when loaded by a base motion described by

a response spectrum in direction &, is

qkrj = Sd(ﬂ)j, Ci bk(t))rkj = Sd’k[‘kj
or, using the pseudo-acceleration spectrum

~ Sa((‘),', C,'y bk(t))rk,' Sa krk;’
qrj = D) = D)
©; 0;

In practice, several modes will have natural frequencies in the frequency range covered
by the Design Response Spectrum. This means that a superposition is needed. There
are several rules for how this superposition can be done, as will be described in detail

below.

MODE SUMMATION

The summation rules are nonlinear. Thus, all result quantities must be summed based
on its own modal response. For example, stress components are computed using the
modal stresses and cannot be recovered from the response spectrum superposition of

displacements.

The general approach is to consider the excitation in three directions, I, (I = 1,2,3)
separately. First all modal responses are summed for each direction, and then the results
for the three directions are summed. Some methods, however, do both combinations

in one sweep.

In a high frequency mode, the mass of the SDOF oscillator will mainly be translated
in phase with the support. Such modes constitute the 7igid modes. Their responses are
synchronous with each other (and with the base motion). This means that for rigid

modes, a pure summation should be used, since they are fully correlated.

Modes with a significant dynamic response constitute the periodic modes. The
maximum value for such modes will be more or less randomly distributed in time since
their periods differ. For this reason, the periodic part of the response requires more
sophisticated summation techniques. A plain summation of the maximum values will

in general significantly overestimate the true response.
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Modes which are in a transition region will partially contribute to the periodic modes,

and partially to the rigid ones.

In addition, it is sometimes necessary to add some static load cases, containing a
missing mass correction. The reason is that when only a limited set of eigenmodes is

used in the superposition, those modes do not represent the total mass of the structure.

In the following, Ry denotes any result quantity caused by excitation in direction I. Ry
can be for example be displacement, velocity, acceleration, strain component, tress
component, effective stress, or a beam section force. The periodic part of Ry is denoted

R, and the rigid part is denoted R,y. Similarly, Ry,7 ; and R, ; denote the results from

plj
an individual eigenmode j.

Not all analyses require a separation into periodic and rigid modes. In such case, all

modes are treated as periodic.

Partitioning Into Periodic and Rigid Modes

Velocity

f1l f2  |fZPA NG

Natural frequency

Figure 3-18: A schematic tripartite plot of a design vesponse spectrum. Both axes have
logarithmic scales.
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There are two different methods in use, by which the partitioning can be done. In

cither case, for mode j,

This definition has the property that
2 2
Ry; =Ry j+Ry;

The difference between the two methods lies in how the coefficients o; are
determined. For low frequencies, it should approach the value 0 (fully periodic
modes). And for high frequencies, the value is 1 (fully correlated rigid modes).

Gupta Method
In the Gupta method, o; is a linear function of the logarithm of the natural frequency.

ocj=0 fj£f1
10g(f'/f1)
-l o
%= logyy 1<l

(szl szfz

where f and f5 are two key frequencies. Thus, for eigenfrequencies below f7, the
modes are considered as purely periodic, and above fy as purely rigid. In the original

Gupta method, the lower key frequency is given by

S

fl a,max

= 2n8

v,max

where Sy max and Sy max are the maximum values of the acceleration and velocity
spectra respectively. In the idealized spectrum shown in Figure 3-18, this exactly
matches the point D.

The second key frequency should be chosen so that the modes above this frequency
behave as rigid modes. The frequency can be taken as the one where response spectra

for different damping ratios converge to each other.

Lindley-Yow Method
In the Lindley-Yow method, the cocfficient o; depends directly on the response
spectrum values, and not only on the frequency. As a consequence, it is possible that a
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certain mode can be considered as having a different degree of rigidness for different

(o2 2
S )-S
R = a 1) ZPAIp

plj = S, 1) L

excitation directions

The so called zero period acceleration (ZPA) is the maximum ground acceleration
during the event

Szpag = max,[5(t)|

This is the high frequency asymptotic value of the absolute acceleration (or
pseudo-acceleration). It also corresponds to the F-G part of the spectrum in
Figure 3-18.

Thus,

o . = Sypar
gL Sa,l(fj)

The value of o; must be in the range from 0 to 1, and it must increase with frequency.
For this reason, NRC RG 1.92 requires that oy must be sct to zero for any cigenmodes
below point C in Figure 3-18. For a general spectrum, this is implemented as a strict
requirement that o, has a monotonous decrease with decreasing frequency from fzpa.

As soon as an increase in 0y is found, the value is sct to zero for all lower frequencies.

Combining Periodic and Rigid Modes
Once the periodic and rigid responses have been summed up separately, they are

combined as
2 2
R; = RpI+RrI

Summing the Periodic Modes
All summation rules for periodic modes except Absolute Value Sum can be

summarized by the following expression:

iV iV
2
Ryp= > > CiuRu iRy
i=1i=1

Here, Ry is the total periodic response of some result quantity R with respect to

excitation in direction I (I=1,2,3). Ry ; is the result from an individual cigenmode j,
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and N modes are used in the summation. The interaction between the modes is
determined by the cocfficient C;; (0 < C; i < 1). The different evaluation methods vary
only in the definition of Cj;.

Since Cij is symmetric and Cij =1 when i =j, it is more efficient to use the expression

2 2
Ror= 2 Bori+23, 3 Ciltoriflor,
i=1 i=1lj=i+1
The result quantity R is computed using the ordinary definitions of how a variable is
obtained from the DOF fields. This can be expressed as R = g(w). The operator g is
however applied to the mode shape, multiplied by a scalar (spectrum value times

participation factor)
RI,J' = g(sd’jrjjq)j)
Next, the different evaluation methods are presented.

SRSS Method
In the SRSS method, it is assumed that the modes are statistically independent, so that

Grouping Method

The modes are grouped according to the following rule:

I Start a new group m, by inserting the lowest, not yet grouped cigenmode k.
2 Step up through the eigenfrequencies from k.

3 Aslongas f;<1.1f; , add mode i to the group.

4  When 3 is not fulfilled any longer, go back to I.

There are now a number of groups (where some could contain just a single

eigenmode), and the coupling coefficient are defined as

C;j= Sgn(RpI,iRp]’j) when the modes are in the same group

C;=0 when the modes are not in the same group
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The use of the sign function indicates that the term is always added with a positive sign,
that is a cross term can never decrease the total sum. There is also an option to allow

signed contributions, so that

C, ;=1 when the modes are in the same group

C, ;=0 when the modes are not in the same group

Ten Percent Method
The ten percent method is similar to the grouping method, and has the following
definition:

C;;=sgn(R, R

i o) fiSLf

0 else

i

As can be seen, the ten percent method will always give a higher value than the
grouping method, since all pairs that are inside a group will also fulfill the criterion for
including the cross term. As in the previous method, there is also an option to use

summation with signs, in which case

Cij=1 fisl.lfj

Cij =0 else

Double Sum Method

In the double sum method, the correlation between two modes depends on three
factors:

* The frequency spacing between the two modes

¢ The damping

e The duration of the event

Note that there exists two distinct versions of this method. In NRC Regulatory Guide

1.92 revision 1, the mode correlation coefficient is given by

C, = sgn(Rp,’iRpLj)[l . (_C%%i) 2]1

whereas in revision 2 and later version of the same Regulatory Guide the expression is
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fi'_f.' 2--1
Gy = [“(m) }

The latter expression should be considered as more correct and in line with the original
theory.

The modified frequency, f;', is defined as

fi= ful1-¢

where {; is the modal damping. In the implementation in COMSOL Multiphysics, all

modes are assumed to have the same damping.

The modified damping, C; , is defined as

S =0+
where 4 is a separate input, called the time of duration. The value of {; differs between

modes, even though the damping is constant.

Der Kiureghian Correlation Coefficient (CQC)

This method, which is often called complete quadratic combination (CQC), is similar
to the previous double sum method. The general expression contains modal damping
values. Given that a single damping value is used here, the mode correlation expression

can be simplified to

_ SR A,
B + 4+ 1)

i (3-84)

Absolute Value Sum
This is the most conservative method, where the peak responses for all modes are

summed

iV

Ryr= Y [Bpr;
i=1

This would happen only if all modes reached their peaks simultaneously.

STUDY TYPES |

463



Summing the Rigid Modes
There are two possible combination methods for summing the rigid modes. The

method is chosen implicitly, depending on other settings.

Rigid Mode Combination Method A
This is the more common method. The rigid modes are summed algebraically as

RrI = z RrI,i +Rmm I
i=1
where Ry, 7is the term for the missing mass correction, if used.
Rigid Mode Combination Method B
This method is only used when the Lindley-Yow method is used together with the

Static ZPA missing mass correction. In this case, the whole rigid mode contribution

comes from the static load case, so that

R, = RStaticZPA,I

Missing Mass Correction

In general, a mode superposition using a limited number of modes will miss some
mass. With the assumption that the higher order modes do not have any dynamic
amplification, it is possible to device a correction by solving some extra static load
cases, containing the acceleration excitation acting on the 'lost' mass. So called static
correction can be used for mode superposition in general. For the case of response

spectrum analysis, the expressions are somewhat simplified.

In terms of the assembled finite element equations, the static correction load f,, can be

written as
fC = f—zrk(Mq)k)
k

Here, f is the original load vector, M is the mass matrix, and ry, are the modal loads,

given by the projection of the load vector on the eigenmodes 0,
T
rk = ¢kf
In the base excitation context when response spectrum analysis is used,

f, = -Mb(t)1;

464 | CHAPTER 3: STRUCTURAL MECHANICS THEORY



so the modal load is

= ~Tp,b1(t)

Thus, the missing mass load is

fo1 = -Mbsl;+> T7,br(Moy)
k

For the rigid body modes, the maximum ground acceleration during the event is equal
to the ZPA. The static load is thus

f.r= SZPAML_ 1;+ Zrlkq)kJ (3-85)
%

The extra displacement correcting for the missing mass is then given by the standard

stationary problem
Kurc,l = fc,I

To actually compute the load in Equation 3-85, the participation factors from a
corresponding eigenfrequency study step are needed. The structure of the load is
similar to that of a gravity load, but with the acceleration of gravity replaced by the
space dependent field

ST, - 1 (3-86)
k

The load is implemented by using Gravity nodes in the Structural Mechanics interface.
The sum of the products between participation factors and mode shapes is performed
in a Combined Solutions study step.

Static ZPA Method

In this method, there is no need to deduce the actual missing mass. It can only be used
together with the Lindley-Yow method. According to the Lindley-Yow method, all
rigid modes have acceleration Syzpy. This acceleration is given to the whole structure.
The static load cases are thus just pure gravity loads, but scaled by Sypp instead of the
acceleration of gravity.
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SUMMATION OVER SPATIAL DIRECTIONS
The three orthogonal directions in which the design response spectrum is applied
cannot, in general, be chosen arbitrarily. The structure may be more susceptible to

excitation in a certain direction.

For earthquakes, it is usually assumed that the excitations in the three orthogonal
directions are statistically independent. In most cases, there is no reason to assume that
the excitations in the two horizontal directions have different spectral properties.
Thus, a single design response spectrum is used in the two horizontal directions, and

a different one is used in the third vertical (Z) direction.

Often, it is reasonable to assume that the excitations in the two horizontal directions
have different amplitudes, even though they share the same spectral properties. The
spectrum in the local Y-direction is then a scaled version of the spectrum in the local

X-direction.
Sy =vSy 0O<y<1

The X-direction is not a property of the geographical location, but should be chosen
as the one giving the worst case for a certain structure. The loading direction which
causes the highest response may however not be the same for different result
quantities, or for different locations in the structure. For some structures, there is an
obvious 'weak' direction which can the be chosen as X-direction. More often, this is
not the case. There are then three possible approaches:

e Use the same spectrum in both horizontal directions, that is Y = 1. This will be a
conservative approach.

¢ Run a number of separate analyses where the X-direction is rotated to different
orientations. If 15 degrees can be considered as a small enough rotation increment,

then seven analyses are needed.

¢ Use a combination rule (CQC3) which takes the possible rotation into account.

SRSS Method
In the SRSS (square root of sum of squares) method, the total resultant is computed as

3
R= |Y R}
I=1

This expression contains an assumption of a statistical independence between the peak
responses in three directions.
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100-40-40 Method (Percent Method)

In this method, the contribution from the worst direction is taken at full value, whereas
the two other contributions are reduced. There are two variants in commonly in use,
the 40% (100-40-40) method and the 30% (100-30-30) method. The interpretation
is clear: at the time when the peak values is reached in the worst direction, the values

in the other direction are not higher than 40% (or 30%) of their individual peak values.

Let the response for the three directions be reordered so that
[Ry] 2 [By| = |Rs|
The total response for the 40% method is then computed as
R = |Ry| +0.4|Ry| + 0.4|R;|

In some formulations of this rule, the renumbering is not done, and the expression is

written instead as

*[Ryx+0.4Ry*0.4R,], or
R =] #[Ry+0.4R,+0.4Ry], or
#[R;+0.4Rx+0.4Ry]

In practice, the same result is obtained as long as signs are properly taken into account

when summing the results for multiple responses.

The 40% method is mostly slightly conservative when compared to the SRSS
summation. The 30% method is significantly less conservative, and it will often give
lower predictions than the SRSS method.

The percent methods are not spatially isotropic. For a symmetric structure, members

which for symmetry reason should have the same level of loading will not experience

that. The orientation of the reference axes for the acceleration orientation will matter.

CQC3 Method
The CQC3 method extends the CQC principles also to the spatial combination. In the

CQC3 method, the modal and spatial combination are performed simultaneously. It

is however only formally applicable if only the periodic modes are taken into account.

As in the standard CQC method, the modal response for each loading direction is

summed as
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> > CiRpr By

1=1j=1
where the Der Kiureghian expression Equation 3-84 for Cj; is used.

In addition, a similar expression giving the cross coupling between the responses to the

spectra in the two horizontal directions is formed:

RpXY_ Z Zcz] le pYj
i=1j=1

It is now conceptually assumed that the response spectra are instead applied in a local
coordinate system X'-Y' which is rotated an angle 8 with respect to the X-Y

orientations. It can then be shown that

R . =R 5 .cos0+R_ .sind
pX,i pX,i pY,:

oY T RPY’icose —RpX’isme

Also, if the relation between the two spectra in the horizontal plane is such that
Sy = ¥5x
the same ratio y will apply to the responses. The peak response as function of the

rotation angle is obtained by an SRSS type summation

2 2552 2 2 252 1. 2
R(6) ={[Ryx+Y Ryylcos 0+ [R;y+Y R xlsin"6 +
. 2. 52 2 1/2
2sinBcosO(1 -y )R xy+ R, }

It can be seen that for y = 1, the standard SRSS expression is retrieved.

The angle 6,5 giving the maximum response R(6,,,,4) turns out to be independent
of'v, and it has the value

o 1o {LR;&}
max 2 R2 R2
pX ™ 'pY-

There are two roots for 8,4, both of which must be checked.
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The attractiveness of the CQC3 method is that the same spectrum can be applied to
an arbitrary pair of orthogonal axes. The scaling of the secondary spectrum, as well as

the orientation of the worst direction, is taken care of by the method.

Extending to rigid modes
As mentioned above, the original CQC3 method only deals with the periodic part of
the solution, so it is limited to cases dominated by such modes. It is however possible

to make an extension taking also the rigid (high frequency) modes.

Studying how the rigid modes enter the problem when using CQC (or any of the

similar combination rules) together with SRSS spatial combination gives some insight:

D) ) iV iV

R*= Y Ri = Y Ry+Rip = Y| S Y CyRyp Ry i+ Ry
I=1 I=1 I=1%=1j=1

Thus, the rigid responses enter the final results as an extra mode, not coupled to the

periodic modes. Define a cross term also for the rigid response

2
RrXY = RrXRrY
Now, it is possible to have the rigid modes too in a CQC3 context. Another way of
expressing this is that the rigid response is treated as mode N + 1, the summation in

the CQC3 rule is extended to N + 1, and

CN+1N+1=1
Ciy:1=0 when izN+1

In the GUI, this extension is selected by checking the Augment with rigid response
check box.

SRSS3 Method
The SRSS3 method is a special case of the CQC3 rule, in which the mode correlation
is ignored, that is
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It retains the property of selecting the worst orientation, through the search for 0,;,4.

The extension to rigid modes is the same as for CQC3.

For information about how to perform a response spectrum analysis, see
@l- Response Spectrum Analysis Study

Linear Buckling

The linear buckling analysis consists of two steps. First a stationary problem is solved
using a unit load of arbitrary size. The critical load is then obtained by solving an
eigenvalue problem, where the eigenvalue A is the multiplier to the original load that

would cause buckling.

@l For a general introduction, see Linearized Buckling Analysis

CHAPTER 3:

The formulation in terms of virtual work is
SW = jv<—ae £ 6-A8(egp,—€) : 67)dv = 0 (3-87)

Here € us the engineering strain, €, is the Green-Lagrange strain and o7 is the stress
caused by the unit load. In terms of stiffness matrices, this corresponds to

(Ky,+ AKyp(ug)u = 0

where K7, is the linear stiffness matrix, and Ky, is the nonlinear contribution to the
full stiffness matrix. The symbolic linearization point uy is the displacement vector
caused by the unit load.

Strictly speaking, this formulation assumes that geometric nonlinearity is not used in
the eigenvalue step. The Green-Lagrange tensor is inserted explicitly in the second
term of Equation 3-87, while the first term uses the linear (engineering) strain tensor.

If, however, geometric nonlinearity is selected in the linear buckling study step,
Equation 3-87 is replaced by

SW = IV(—58GL :0~(A-1)8(egy,—€): 61)dv = 0
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By using the term (A-1), the effect of using the Green-Lagrange strain tensor in the
first term is to a large extent removed. Unless the unit load is significantly larger than
the buckling load, the result will be the same as the intended, even if geometric

nonlinearity was inadvertently selected in the eigenvalue study step.
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Damping

CHAPTER 3:

For dynamic problems, the damping of the structure is usually an important property.
In this section:

¢ Rayleigh Damping Theory
¢ Loss Factor Damping Theory

* Viscous Damping Theory

Rayleigh Damping Theory

Rayleigh damping is described by two coefficients: the mass damping coefficient gy
and the stiffness damping coefficient Bggk. Rayleigh damping will give the following

contribution to the virtual work

_ g, oP du

8W = [(-8(Vu) : BoxB—orqpdu - 22 )dv
14

Here P is the first Piola-Kirchhoff stress tensor.

Since Rayleigh damping is added directly to the virtual work equation, it does not
affect the constitutive relation. As a consequence, the stresses and strains will for a
linear elastic material still be in phase. This stands in contrast to the other damping
models.
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Rayleigh damping can be used both in the time domain and in the frequency domain.

Rayleigh damping is not directly related to any physical property.
Historically, it was introduced since it was numerically attractive to have
a damping matrix which was a linear combination of the mass and stiffness

matrices
C = oM + BK

This operation is usually implied to be done at the global assembled

I

matrix level. Such an interpretation is however only meaningful for pure
structural mechanics problems, but not in a general multiphysics context.
For this reason, Rayleigh damping in COMSOL Multiphysics is a material
property, rather than a global property of the system of equations. If you
enter the same Rayleigh damping parameters for all materials, and solve a
pure structural mechanics problem, then the classical definition will be

retrieved.

Loss Factor Damping Theory

Loss factor damping is only applicable in frequency domain. When using loss factor
damping, a complex constitutive matrix is used. With an isotropic loss factor ng, this

means that
D® = (1+jny)D

where D is the constitutive matrix computed from the material data, and D€ is the
complex constitutive matrix used when computing the stresses. For a linear elastic
material, this would be equivalent to multiplying Young’s modulus by the factor

(1 +jng). For a nonlinear elastic material, this applies to the tangential stiffness.

It is also possible to give individual loss factors for each entry in the constitutive matrix,

so that

D, = (1+jng ,,)D,,

In the case of an orthotropic material, yet another option is available, where each
individual component of Young’s modulus and shear modulus can be given an

individual loss coefficient:

DAMPING
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E; =(1+jng E,,
C .
Gm = (1 +-]nG, m)Gm
m=1,2,3
The complex moduli are then used to form the constitutive matrix.

For hyperelastic materials, the loss information appears as a multiplier in the strain

energy density, and thus in the second Piola-Kirchhoft stress:
S =(1+j W
- ( +J ns) a E
For loss factor damping, the following definition is used for the elastic part of the

entropy:

Selast = 002 (s—jng(C:e))

note that Sg,6¢ here denotes the entropy contribution and not any stress.

This is because the entropy is a function of state and thus independent of the strain
rate, while the damping represents the rate-dependent effects in the material (for
example, viscous or viscoelastic effects). The internal work of such inelastic forces

averaged over the time period 2m/® can be computed as:
— 1 1 . 1 .
Qy = émﬂsRCa (e: Conj(C:¢))

@y, can be used as a heat source for modeling of the heat generation in vibrating
structures, when coupled with the frequency-domain analysis for the stresses and
strains.

Viscous Damping Theory

Viscous damping can be added to the material models. It will cause an extra stress Sy

proportional to the rate of elastic strain in the material,
Sq = Mpeel, vol + NyEel, dev

where ny, and 1 are the bulk and shear viscosity coefficients, respectively.

Viscous damping can be used in both frequency and time domain analyses.
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In case of geometric nonlinearity, the viscous stress is treated as being a Cauchy stress
acting in the actual configuration (spatial frame). The resulting contribution to the

second Piola-Kirchhoff stress is calculated as
2 | T- -1
Sq = (ny-2n,)JaCel +n,CféaCy]

-1 . . . . .
where Cy; is the inverse of the elastic Cauchy-Green tensor, and /] is the elastic

volume ratio.
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Loads and Boundary Conditions

In this section:

* Distributed Loads

* Rotating Frame and Gravity

¢ Spring Foundation and Thin Elastic Layer

e Added Mass

* Rigid Motion Suppression Boundary Condition
* Low-Reflecting Boundary Condition

¢ Cyclic Symmetry and Floquet Periodic Conditions
¢ Symmetry Condition with Translation

* Roller Boundary Condition

¢ Thermal Expansion of Constraints

¢ Fluid-Structure Interaction Theory

e Periodic Cell Theory

* Rigid Connector Theory

* Contact Analysis Theory

¢ Energy Quantities

Distributed Loads

The direction of an explicitly applied distributed load must be given with reference to
alocal or global coordinate system in the spatial frame, but its magnitude must be with
reference to the undeformed reference (or material) area. That is, the relation between
the true force f acting on the current area da and the specified distributed load F
acting on the material area dA is f da= FdA.

When the solid is subjected to an external pressure, p, the true force on a surface

element acts with magnitude p in the current area da in the normal direction n:
f = pnda

Therefore, the pressure load type specifies the distributed load as
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F=pnd—A

where both the normal n and area element da are functions of the current

displacement field.

Another view of how to interpret the load, is to express it in the first Piola-Kirchhoft

stress tensor P via the following formula:
F=P-ng
where the normal ng corresponds to the undeformed surface element. Such a force

vector is often referred to as the nominal traction.

Plane Stress
In a plane stress condition, the out-of-plane deformation causes the thickness to
change, and this area effect is included explicitly.

The equation transforms to

F = pnj—lll(l + g—lzu)

where [ and L are the current and original in-plane lengths of the boundary.

Axial Symmetry
To account for the radial deformation changing the circumference and therefore the

area element, the distributed load is applied as

_ __daR+u)
F =g

Rotating Frame and Gravity

You can add Retating Frame and Gravity nodes to create the loads caused by gravity or
accelerated frames. This gives load contributions from all nodes in the physics interface
which have a density or mass, such as Linear Elastic Material, Rigid Domain, Added
Mass, or Point Mass.

Only features which have a geometrical selection contribute to the mass
n forces. The Mass and Moment of Inertia nodes are global features and will

not get any contribution from Retating Frame and Gravity nodes.
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In the following, the mass density p should be considered as generalized. It can
represent mass per unit volume, mass per unit area, mass per unit length, or even mass,

depending on the dimensionality of the object giving the contribution.

ROTATING FRAME
Centrifugal, Coriolis and Euler forces are fictitious forces that need to be introduced
in a rotating frame of reference, since it is not an inertial system. They can be added as

loads.

Alternatively, the total acceleration in the rotating frame can be augmented to include

the frame acceleration effects:
a,, = u+ag
Ap = Aeen T Acor T Agy)
GRAVITY
The gravity acts in a fixed spatial direction e,. The intensity is
g = pse,

where g is the acceleration of gravity. The action of gravity can also be presented as a
linearly accelerated frame of reference. Thus, it can be accounted for as a contribution

into the total acceleration via the frame acceleration term given by:
af = —g
CENTRIFUGAL FORCE

A centrifugal force acts radially outward from the axis of rotation defined by the axial
direction vector egy. The rotation is represented by the angular velocity vector:

Q = Qe,,

where Q is the angular velocity. In vector form, the acceleration contribution and the

loads are:

a,, = Qx(Q xrp)

F = —PAcen

cen
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where 1y, is the rotation position vector that contains the coordinates with respect to
any point on the axis of rotation. The point is given by its radius vector in the global

coordinate system Fy,,.

SPIN-SOFTENING EFFECT
The structural displacement can be accounted for when computing the rotation

position, so that
r, =X+u-r,,

This results in a contribution from the extra acceleration terms caused by the
deformation into the system’s stiffness matrix. The effect is often called spin-softening.

CORIOLIS FORCE
For a Coriolis force to appear, the object studied must have a velocity relative to the

rotating frame. The acceleration contribution and the load are:

Ju
a,, = 2Q><§
Foor = —pag,

This gives a damping contribution since it is proportional to the velocity.

EULER FORCE
The Euler force occurs when the rate of rotation is not constant in time. The force acts
in the plane of rotation perpendicular to the centrifugal force. The acceleration

contribution and the load are:

0Q

Agyl = ot er

Fou = -Pagy

Spring Foundation and Thin Elastic Layer

In this section, the equations for the spring type physics nodes are developed using
boundaries, but the generalizations to geometrical objects of other dimensions are
obvious. Also, for cases where rotational springs are present, the relations between
moments and rotations are analogous to the relations between forces and

displacements described below.
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SPRING FOUNDATION
A spring gives a force that depends on the displacement and acts in the opposite
direction. In the case of a force that is proportional to the displacement, this is called

Hooke’s law. In a suitable coordinate system, a spring condition can be represented as
Y > A Spring P
f.=-K (u-u

where £ is a force /unit area, u is the displacement deforming the spring, and K is a
stiffness matrix. ug is an optional deformation offset, which describes the stress-free
state of the spring.

If the spring stiffness is not constant, then it is in general easier to directly describe the

force as a function of the displacement, so that
f. = f(u-uy

In the same way, a viscous damping can be described as a force proportional to the
velocity

f, = -D(u-up)

where D is a matrix representing the viscosity.

Structural (“loss factor”) damping is only relevant for frequency domain analysis and

is defined as
f, = -inK-(u-u)

where 1 is the loss factor and  is the imaginary unit. It is also possible to give individual

loss factors for each component in the stiftness matrix K.

If the elastic part of the spring definition is given as a force versus displacement
relation, the stiffness K is taken as the stiffness at the linearization point at which the
frequency response analysis is performed. Since the loss factor force is proportional to

the elastic force, the equation can be written as
f, = inf,
The contribution to the virtual work is

8W = [(£,+£,+1,) - SudA
A
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THIN ELASTIC LAYER BETWEEN TWO PARTS
A spring or damper can also act between two boundaries of an identity pair. The spring

force then depends on the difference in displacement between the two boundaries.
f;p = £, = —K(up -ug-uy)

The uppercase indices refer to “source” and “destination”. When a force versus

displacement description is used,

st =—f

sS = f(u_uO)

u=up-ug
The viscous and structural damping forces have analogous properties,

f,p = f,g = -D(up - us-up)

v
fip = fig = -inK(up -ug-u,)
or
fip = infp
The virtual work expression is formulated on the destination side of the pair as

SW = j (f.p +fip +£,p) - S(up —ug)dAp
Ap
Here the displacements from the source side are obtained using the src2dst operator

of the identity pair. If there is a difference in mesh density on the two sides of the pair,

you should select the side with the finer mesh as destination.

THIN ELASTIC LAYER ON INTERIOR BOUNDARIES
On an interior boundary, the Thin Elastic Layer decouples the displacements between

two sides of the boundary. The two boundaries are then connected by elastic and
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viscous forces with equal size but opposite directions, proportional to the relative

displacements and velocities.

If an interface which is active on boundaries (Shell or Membrane in 3D

for example) is added on the same interior boundary as a Thin Elastic
n Layer, then the virtual slit between the two sides of the boundary may be

closed again. This happens if the domain interface and the boundary

interface share the same displacement degrees of freedom.

CHAPTER 3:

The spring force can be written as

£, = £q = K(u,-ugug)
or
fsu =1d = f(u_uO)
u=u,-uy
The viscous force is
f,,=-f4= -D(uy —ug-ug)

and the structural damping force is
fiu = fig = -inK(u, -u4-u,)
or
f, = inf,

The subscripts ‘v’ and ‘d” denote the “up” and “down” sides of the interior boundary,
respectively.

The virtual work expression is formulated as

W = I (foq +fig+f,q) - O(u, —uy)dA,
A,

STIFFNESS FROM MATERIAL DATA
When the stiffness is given in terms of actual material data and layer thickness dg, the

stiffness in the normal direction is computed based on a state of plane strain, so that
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b = E(1-v)
DT d(1+v)(1-v)

The assumption of plane strain conditions is relevant when the material in the elastic

layer is softer than its surroundings, and this is normally the case.

The shear stiffness is isotropic in the tangential plane, having the value

Ro=9 - £
t 7 d, T 2d(1+v)

s

Since the layer thickness is known in this case, it is also possible to compute a strain in
the elastic layer. The strain tensor has the is stored in a variable with a name like
<interface>.<feature>.etelij,for example solid.tel1.etelxx for the normal
strain. The two shear strains are stored in the xy and xz components of the tensor. In
3D, the orientation of the two local directions ¥ and z used for the two shear strain

directions is obtained using the following scheme:

I Choose an auxiliary direction. Unless the normal to the layer is very close to the

global X direction, use e = ey . If the X direction cannot be used, the

aux
Y direction is instead used as the auxiliary direction, e, ., = ey.

2 The local y direction is obtained from the part of the auxiliary direction which is
orthogonal to the normal direction n:

e —(e

aux n)n

aux
‘n)n|

e =
Y |eaux - (eaux

3 The local z direction is orthogonal to the normal and the local y direction:

e, = nxey

ﬁ}‘ Springs and Dampers in the Structural Mechanics Modeling chapter.

Added Muass

The Added Mass node can be used for supplying inertia that is not part of the material
itself. Such inertia does not need to be isotropic, in the sense that the inertial effects
are not the same in all directions. This is, for example, the case when a structure
immersed in a fluid vibrates. The fluid is added to the inertia for acceleration in the

direction normal to the boundary, but not tangential to it.
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Other uses for added mass are when sheets or strips of a material that is heavy, but
having a comparatively low stiffness, are added to a structure. The data for the base
material can then be kept unaltered, while the added material is represented purely as

added mass.

The value of an added mass can also be negative. You can use such a negative value for
adjusting the mass when a part imported from a CAD system does not get exactly the

correct total mass due to simplifications of the geometry.

Added mass can exist on domains, boundaries, and edges. The inertial forces from

added mass can be written as

where M is a diagonal mass distribution matrix. For added mass on a boundary (and
for objects of other dimensions), the contribution to the virtual work is:

W = [f,,- dudA
A

Rigid Motion Suppression Boundary Condition

The Rigid Motion Suppression boundary condition is a convenient way to
automatically create a set of constraints which are sufficient to inhibit any rigid body
modes. The constraints are selected so that no reaction forces are introduced as long

as the external loads are in equilibrium.

3D WITH TRANSLATIONAL DEGREES OF FREEDOM

In this case, which includes the Solid Mechanics, Multibody Dynamics, Membrane,
and Truss interfaces, six degrees of freedom must be constrained. As it is not possible
to directly constrain rotations, this must be done by a proper selection of locations and

orientations for the constraints.
The following scheme is used:

I Select three points p1, p2, and p3 that are not located on a common straight line.
2 Compute the unit vectors from p1 to p2 and p3:
XZ ~ Xl

e =S <
12 ‘XZ _Xl‘
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e, = X3 — Xl
13 ‘Xg _ X1|
Compute the normal to the plane spanned by these two vectors.

_ eppXeys

®n1 = lejg X eqg|

This normal is perpendicular to the line between p1 and p2. Compute a second

perpendicular direction, orthogonal to e;.

€ho = €19X €y

Fix the first point is all three directions, so that there are no rigid body translations.

up1=0

Constrain the second point p2 in two directions, so that all possible rotations except

around the line e;4 are suppressed:

U,-e = 0

U,o €hg = 0

Constrain the third point p3 so that the remaining rotation is suppressed:

Uz €y = 0
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The body is now constrained against rigid body rotations, while still free to stretch in

any direction.

Figure 3-19: Selection of constraint ovientations: Pl is fixed, P2 is constrained so that it
can only move in the €19 divection, and P3 is constrained in the eq direction.

3D WITH ROTATIONAL DEGREES OF FREEDOM

In the Shell interface, the rigid body suppression is implemented using the translational

degrees of freedom in three points, using the same algorithm as above.

In the Beam interface, a single point is constrained in all six degrees of freedom.

2D WITH TRANSLATIONAL DEGREES OF FREEDOM

In this case, which includes the Solid Mechanics, Multibody Dynamics, and Truss
interfaces, three degrees of freedom must be constrained. As it is not possible to
directly constrain the rotations, this must be done by a proper selection of locations

and orientations for the constraints.

Two points, p1 and p2 are selected. The first point p1 is constrained in both directions
in order to suppress translational motion. The second point is constrained in the
direction orthogonal to the line joining the two points, so that rotation around the

out-of-plane direction is suppressed:

u,;=0
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X2_X1
€= o <
XXy

u,-(ejpxey) =0

2D WITH ROTATIONAL DEGREES OF FREEDOM

In the Plate interface, you can choose to use either three or six degrees of freedom.
When six degrees of freedom are used, the same approach as for 3D solids and shells
is used. In the case of three degrees of freedom, three points which are not located on

a straight line are constrained against out-of-plane translation.
In the Beam interface, a single point is constrained in all three degrees of freedom.
2D AXIALLY SYMMETRIC

For both the Solid Mechanics and Membrane interfaces, a single point is constrained

in the axial (Z) direction.

Low-Reflecting Boundary Condition

The low-reflecting boundary condition is mainly intended for letting waves pass out
from the model domain without reflection in time-dependent analyses. It is also
available in the frequency domain, but then adding a perfectly matched layer (PML) is

usually a better option.

As a default, the low-reflecting boundary condition takes the material data from the
adjacent domain in an attempt to create a perfect impedance match for both pressure

waves and shear waves, so that

c-n =-pc (au~n)n pc (au t)t
T Tr\ot “PTs\or
where n and t are the unit normal and tangential vectors at the boundary, respectively,

and ¢, and ¢; are the speeds of the pressure and shear waves in the material. This

approach works best when the wave direction in close to the normal at the wall.

In the general case, you can use
Ju
o-n = -d;(p, Cp cs)m

where the mechanical impedance d; is a diagonal matrix available as the user input, and
by default it is set to
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More information about modeling using low-reflecting boundary
@l‘ conditions can be found in Ref. 1.

CHAPTER 3:

Cyclic Symmetry and Floquet Periodic Conditions

These boundary conditions are based on the Floquet theory which can be applied to

the problem of small-amplitude vibrations of spatially periodic structures.

If the problem is to determine the frequency response to a small-amplitude
time-periodic excitation that also possesses spatial periodicity, the theory states that the
solution can be sought in the form of a product of two functions. One follows the
periodicity of the structure, while the other one follows the periodicity of the
excitation. The problem can be solved on a unit cell of periodicity by applying the

corresponding periodicity conditions to each of the two components in the product.

This section describes the theory for solids in 3D, but is equally applicable

to shells. In the case of shells, the periodicity condition is applied to edges,
n and the rotational degrees of freedom (displacements of the normal

vector) are treated in the same way as the translational displacements.

The problem can be modeled using the full solution without applying the above
described multiplicative decomposition. For such a solution, the Floquet periodicity
conditions at the corresponding boundaries of the periodicity cell are expressed as

= exp[-ik

W estination F (rdestination ~Tsource )] Wyource

where u is a vector of dependent variables, r is the position, and the vector kg

represents the spatial periodicity of the excitation.

The cyclic symmetry boundary condition presents a special but important case of
Floquet periodicity, for which the unit periodicity cell is a sector of a structure that
consists of a number of identical sectors. The frequency response problem can then be
solved in one sector of periodicity by applying the periodicity condition. The situation

is often referred to as dynamic cyclic symmetry.
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For an eigenfrequency study, all the eigenmodes of the full problem can be found by
performing the analysis on one sector of symmetry only and imposing the cyclic
symmetry of the eigenmodes with an angle of periodicity @ = m8 , where the cyclic
symmetry mode number m can vary from 0 to N/2, with N being the total number of
sectors so that 6 = 2m/N.

The Floquet periodicity conditions at the sides of the sector of symmetry can be
expressed as

T

_ 70
=e Reusource

Ugestination
where the u represents the displacement vectors with the components given in the

default Cartesian coordinates. Multiplication by the rotation matrix given by

cos(0) —sin(0) 0
Ry = sin(0) cos(6) 0
0 0 1

makes the corresponding displacement components in the cylindrical coordinate
system differ by the factor exp(—i¢) only. For scalar dependent variables, a similar

condition applies, for which the rotation matrix is replaced by a unit matrix.

The angle ¢ represents either the periodicity of the eigenmode for an eigenfrequency
analysis or the periodicity of the excitation signal in case of a frequency-response

analysis. In the latter case, the excitation is typically given as a load vector
F = -Fjexp[-imatan(Y/X)]

when modeled using the Cartesian coordinates. The parameter m is often referred to

as the azimuthal wave number.

@l Ref. 2 contains more information about cyclic symmetry conditions.

Symmetry Condition with Translation

A standard symmetry condition prohibits translation in the symmetry direction.

LOADS AND BOUNDARY CONDITIONS

489



490 |

CHAPTER 3:

The normal to the symmetry plane, ng, is either computed from the geometry, or given

as a user input.

When allowing translation of the symmetry plane, the constraint is modified to
u-n,-u, =0

Here, u,, is a single scalar displacement offset which is the same for all locations where

the symmetry constraint is applied.

If the selected normal direction condition is Prescribed displacement, then u, is the

given value.

If the selected normal direction condition is Free displacement or Prescribed force, then

uy is added as a degree of freedom to be determined during the solution.
The weak contribution for this equation is

F_test(u,)

where F, is the prescribed force. Note that in the Free displacement case, the force is
zero, so no weak contribution is added. This corresponds to a solution with zero

reaction force.

Roller Boundary Condition

The Roller boundary condition is similar to a Symmetry boundary condition, since it
constrains the displacement in a direction normal to the boundary. A Reller is however

intended to be used also on curved boundaries. The constraint can be formulated as

where the normal n,. is computed using different methods depending on the selection

in the Roller Constraint section.

When Normal orientation is sct to Automatic, the normal orientation is computed from
the mesh, or its underlying geometry. Consider for example a roller condition on a
planar surface. Theoretically, the normal at all mesh nodes should be parallel. But if
there are inaccuracies in the node locations, the computed normals may not be exactly
the same everywhere. They can differ not only between nodes, but also between
neighboring elements connected to the same node. Thus, there may be constraints

acting in somewhat different directions. Such constraints can make the boundary
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appear as fixed, rather than sliding. This potential problem can be reduced if you select

Nodal as Constraint method in the Constraint Setting section.

In the COMSOL Multiphysics Refevence Manual:

¢ Constraint Settings

@,

In the modeling section of the Structural Mechanics User’s Guide:

¢ Elemental and Nodal Constraints

Ifyou select one of the explicit shapes (Plane, Cylinder, or Sphere) as Normal orientation,
then the orientation of he normal n, is instead a user input, so there will be no problem

with numerical inaccuracies.
If you select Plane, the you give the direction explicitly as a constant vector.

If you select Cylinder, the normal is computed as being perpendicular to the cylinder
axis at each mesh node. The input defining the cylinder is a Point on axis, X, and the
vector along the cylinder axis, eg. For a node located at a an original coordinate X, the

normal orientation is computed as

X=X-X,
n=X-X"eje,

T

Here itis not necessary to normalize n,.. It is actually the radial vector from the cylinder

axis to the location X.

In the case of geometric nonlinearity, the orientation of the normal would change. This
is implemented as a nonlinear constraint, where the node is forced to maintain its
distance from the cylinder axis, while allowed to move freely in the axial and

circumferential directions. Thus, the normal orientation is not explicitly computed.

The constraint expression is
12 , 2 12 . 2
(X~ (x' - e) ")~ (X]" - (X' e))) = 0
where

X =X-X

x' =x-X
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The radius of the cylinder is not given explicitly, so each node will maintain its own

original distance from the cylinder axis.

If you select Sphere, the normal is computed as the direction from the center of the
sphere to each mesh node. The only input is a Center of sphere, X... For a node located

at a an original coordinate X, the normal (actually, the radial vector) is computed as
n, = X-X,

In the case of geometric nonlinearity, the orientation of the normal would change. This
is implemented as a nonlinear constraint, where the node is forced to maintain its
distance from the center of the sphere, while allowed to move freely in the two
directions on the sphere surface. Thus, the normal orientation is not explicitly

computed. The constraint is written as

2 2
x-X/| - X-X/ =0

The radius of the sphere is not given explicitly, so each node will maintain its own

original distance from the center.

Thermal Expansion of Constraints

Constraints like Fixed Constraint and Prescribed Displacement will in general cause
stresses near the constrained boundaries when the structure undergoes temperature
changes. The same is true also for rigid objects like Rigid Domain, Rigid Connector, and
Attachment. By adding a Thermal Expansion subnode to these features, you can allow

the constrained boundaries to have a thermal expansion displacement.

The thermal strains will in general have a spatial distribution give by
eX) = aX, T)Y(T-T,p

Note that this is the thermal expansion of the virtual surroundings of the structure

being analyzed, so it is unrelated to the thermal strains of the structure itself.

The strain field must be converted into a displacement field w(X) such that

_ 19 9y
&ij = 2(8Xj+ Bxi)

If the strain field fulfills the general compatibility relations, it is in principle possible to
integrate the above relation. The procedure is outlined in Ref. 3, giving
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J,X dg;; gy,
u,(X) = u,(Xg) + Xo(sﬂ + (X, —X‘k)(@ _ B—XLD ax,
Summation over double indexes is implied. The rigid body rotation term given in
Ref. 3 is omitted, since it cannot be derived from the strain field. The reference point
is chosen so that the displacement (caused by the strain field) is zero, so that the u;(X()
term can be omitted. The integral is path independent when the compatibility is
tulfilled. Since the constrained region is a virtual object, the integration path does not
have to be inside a domain. For simplicity, a straight line from X, to X is used for the

integration. Let p be the vector between the two points,
p = X-X

The distance along the integration path can then be parameterized by a parameter s

running from 0 to las

X =X,+sp
giving
1 de;; ot
u;(X) = J.O(sil+(1—s)pk(ﬁi—87k.l))plds (3-88)

This integral can be computed using the built-in integrate () operator as long as the

strain field is an explicit function of the material frame coordinates X.

For the physics interfaces which have rotational degrees of freedom (Beam, Shell and
Plate), not only the displacement, but also the rotation of the constraint is needed. For

a given displacement field u(X), the infinitesimal rotation vector © is given by

o= %qu

Applying the rotation operator to Equation 3-88 gives

2
Jg;; d g

1
((3 - 2s)aXn +(1 —s)pkanaXn]plds

1
G)m(x) = QsmniIO

where €,,,; is the permutation tensor.

Note that the general compatibility requirements will not be fulfilled for arbitrary

expressions for the thermal strain distribution. In such cases, the stresses caused by the
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constraints cannot completely be removed, but they will be significantly decreased.

The results will then depend on the choice of reference point.

Constraints and Thermal Expansion in the Structural Mechanics
@l- Modeling chapter.

CHAPTER 3:

Fluid-Structure Interaction Theory

Fluid-Structure Interaction multiphysics coupling combines fluid flow with structural
mechanics to capture the interaction between the fluid and the solid structure. A
structural mechanics interface (Solid Mechanics, Shell, Membrane, or Multibody
Dynamics) and a Single-Phase Flow interface model the solid and the fluid,
respectively. The Fluid-Structure Interaction (FSI) couplings appear on the boundaries
between the fluid and the solid. The physics interface uses an arbitrary
Lagrangian-Eulerian (ALE) method to combine the fluid flow formulated using an
Eulerian description and a spatial frame with solid mechanics formulated using a

Lagrangian description and a material (reference) frame.

The fluid flow is described by the Navier-Stokes equations, which provide a solution
for the velocity field ugy;q. The total force exerted on the solid boundary by the fluid
is the negative of the reaction force on the fluid,

f=n- {- pI+ (M(Vuﬂuid + (Vug,)7) - %u(v : uﬂuid)l)} (3-89)

where p denotes pressure, [ the dynamic viscosity for the fluid, n the outward normal
to the boundary, and I the identity matrix. Because the Navier-Stokes equations are
solved in the spatial (deformed) frame while the structural mechanics interfaces are
defined in the material (undeformed) frame, a transformation of the force is necessary.

This is done according to

dv
F=f0

where dv and dV are the mesh element scale factors for the spatial frame and the

material (reference) frame, respectively.

The coupling in the other direction consists of the structural velocitiy
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(the rate of change for the displacement of the structure), which acts as a moving wall

for the fluid domain.

The structural mechanics formulations support geometric nonlinearity (large
deformations). The spatial frame also deforms with a mesh deformation that is equal
to the displacements Wgy,. ¢t Of the solid within the solid domains. The mesh is free to
move inside the fluid domains, and it adjusts to the motion of the solid walls. This
geometric change of the fluid domain is automatically accounted for in COMSOL
Multiphysics by the ALE method.

ONE-WAY FLUID-STRUCTURE INTERACTION

For small values of the structural displacement and its rate of change, the
Fluid-Structure Interaction interface includes one-way coupled model formulations.
The one-way coupled models sequentially solve for the fluid flow, compute the load
from Equation 3-89, and then apply it in the solution for the solid displacement. Since
these methods are unidirectional, the mesh deformation is excluded from the solution.
When applicable, the one-way coupled versions offer computationally cheaper
alternatives to a fully coupled counterpart.

Stationary and Time Dependent one-way coupled studies are available for selection
from the Preset Studies branch when adding a study. These studies include a Fluid study
step and a Solid study step. When an additional physics interface is added to the model,
it is by default added to both study steps.

In this case the one-way coupled study steps display under Preset Studies for Some
Physics Interfaces branch since the Fluid study step does not solve for the solid
displacement and vice versa. When using a turbulence model requiring the distance to

the closest wall, the Preset Studies includes a Wall Distance Initialization study step.

When solving a transient one-way coupled FSI model, besides saving the solution from
the Fluid study step with adequate frequency, it is advisable to save the solution from
the Solid study step at the same times as the fluid solution. This way, all the information
from the Fluid study step is used in the Solid study step.

6] Studies and Solvers in the COMSOL Multiphysics Reference Manual
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Periodic Cell Theory

The heterogeneous micromechanics material properties cannot be directly used in a
macroscopic scale in which the structure is to be analyzed. There the need to use a

homogeneous material model with appropriate average properties.

The Cell Periodicity feature facilitates the evaluation of such average properties. It is
based on the idea of a representative volume element (RVE). The RVE is a domain

which represents the material microscopically.

The RVE typically is the smallest possible unit cell. If the material has a random
distribution of for example porosity, it should be large enough to be representative for

the average properties of the material on a macro scale.

The only requirement on the shape of the RVE is that it should be possible to fill space
with a repetitive pattern of RVEs. This means that there are a set of matching boundary

pairs, each of them having the same geometry, but offset by a given distance.

To model an RVE, you add the feature Cell Periodicity, and select the domains
representing the unit cell. For each pair of matching boundaries, add a Boundary Pair

subnode, and select the boundaries.

In principle, there are no limitations on the physics features you can use for modeling
the RVE, as long as the basic assumptions about periodicity are not violated. You
should however not add any displacement constraints, because the possible rigid body

motions are automatically constrained by the Cell Periodicity node.

HOMOGENIZATION METHOD

The homogenization method introduces two scales, a macro scale and a micro scale.
Macro scales are usually referred as homogenized continuous media and the micro
scale refers to the heterogeneous cell /RVE. The macro stress tensor ¢ and the macro

strain tensor € are derived by averaging the stresses and strains in the periodic cell

5= ‘—lljch and & = %,jsdv
\%4 \%4

where V is the volume of the cell. The macroscopic elasticity matrix of the

homogenized continuum is then defined from

c =D
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Rigid Connector Theory

The rigid connector is a special kinematic constraint, which can be attached to one or
several boundaries, edges or points. The effect is that all connected entities behave as

if they were connected by a common rigid body.

The only degrees of freedom needed to represent this assembly are the ones needed to
represent the movement of a rigid body. In 2D this is simply two in-plane translations,

and the rotation around the z-axis.

In 3D the situation is more complex. Six degrees of freedom, usually selected as three
translations and three parameters for the rotation, are necessary. For finite rotations,
however, any choice of three rotation parameters is singular at some specific set of
angles. For this reason, a four-parameter guaternion representation is used for the
rotations in COMSOL Multiphysics. Thus, each rigid connector in 3D actually has
seven degrees of freedom, three for the translation and four for the rotation. The
quaternion parameters are called a, b, ¢, and d, respectively. These four parameters are

not independent, so an extra equation stating that the following relation is added:
2 2 2 2
a"+b"+c"+d" =1

The connection between the quaternion parameters and a rotation matrix R is

a2+bz—c2—d2 2bc-2ad 2ac +2bd
R = 2ad +2bc  a’-b2+c?-d>  2cd-2ab
2bd—2ac 2ab + 2cd ¢12—b2—02+d2

Under pure rotation, a vector from the center of rotation (X_) of the rigid connector

to a point X on the undeformed object is rotated into
x-X, = R-(X-X))

where x is the new position of the point originally at X. The displacement is by

definition
u=x-X=(R-I) X-X))

where I is the unit matrix.

When the center of rotation of the rigid connector also has a translation u,, then the

complete expression for the rigid body displacements is

LOADS AND BOUNDARY CONDITIONS

497



498 |

CHAPTER 3:

u=(R-I) X-X,)+u,

The total rotation of the rigid connector can be also presented as a rotation vector. Its

definition is

o = 2acos(a) b

4
Jb% 4+ d? d

The parameter a can be considered as measuring the rotation, while b, ¢, and d can be
interpreted as the orientation of the rotation vector. For small rotations, this relation
simplifies to

The rotation vector is available as the variables thx_t ag, thy_t ag, and thz_t ag. Here
t ag is the tag of the Rigid Connector node in the Model Builder tree.

It is possible to apply forces and moments directly to a rigid connector. A force
implicitly contributes also to the moment if it is not applied at the center of rotation
of the rigid connector. The directions of the forces and moments are fixed in space and

do not follow the rotation of the rigid connector.

Contact Analysis Theory

In COMSOL Multiphysics you can model contact between a group of boundaries in
2D or 3D. There are two algorithms available: an augmented Lagrangian method
and a penalty method.

In the augmented Lagrangian method, the system of equations is solved in a

segregated way. Augmentation components are introduced for the contact pressure T},
and the components T}; of the friction traction vector T;. An additional iteration level
is added where the usual displacement variables are solved separated from the contact
pressure and traction variables. The algorithm repeats this procedure until it fulfills a

convergence criterion.
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In the penalty method, no extra degrees of freedom are needed for the contact pressure
or the friction traction vector. These results are just computed from the displacements

and the penalty stiffness. This means that no special solver strategies are necessary.

¢ Contact Modeling
¢ Documentation of the Contact, Friction and Adhesion features

¢ Identity and Contact Pairs in the COMSOL Multiphysics Reference
Mannal

@

In the following equations F is the deformation gradient matrix. When looking at
expressions evaluated on the destination boundaries, the expression map (£) denotes
the value of the expression E evaluated at a corresponding source point, and g is the

current gap distance between the destination and source boundary.

Both the contact map operator map () and the gap distance variable are defined by
the contact element elcontact. For each destination point where the operator or gap
is evaluated, a corresponding source point is sought by searching in the direction

normal to the destination boundary.

Source

Destination

Before the boundaries come in contact, the source point found is not necessarily the
point on the source boundary closest to the destination point. However, as the
boundaries approach one another, the source point converges to the closest point as

the gap distance approaches zero.

It is possible to add an offset value both to the source (0g), and to the destination
(0gst)- If an offset is used, the gap will be computed with the geometry treated as larger
(or smaller, in the case of a negative offset) than what is actually modeled. The offset
is given in a direction normal to the boundary. It can vary along the geometry, and

may also vary in time (or by parameter value when using the continuation solver).

The effective gap distance dg used in the analysis is thus
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o SIC

g = 8%~ Jq map(n))

The correction of the source side offset is necessary since the normal on the source side
is not necessarily pointing toward the current point on the destination. When in
contact, the normals will be exactly opposite.

In some cases, the discretization caused by the meshing of curved boundaries will give
small irregularities in the gap values. You can then choose to adjust the gap by the
computed gap value in the initial configuration, gj,;¢. In this case, the effective gap
distance is

OS['C

dg = g—ginit_odst_m

When including friction in the contact problem, it is important to keep track of not
only the gap in the normal direction, but also the slip between the boundaries in the

tangential direction. The slip s since the last converged step is defined as
s = map(F)(X, - Xm’ old)

where the index ‘m’ indicates that the coordinates are taken as the mapped coordinates

from the source side,

X = map(X)

m

and Xy, ¢1q is the value of X, in the last converged time or parameter step. The
coordinates are material (undeformed) coordinates. The slip vector is thus
approximated using a backward Euler step. The deformation gradient F contains

information about the local rotation and stretching.

AUGMENTED LAGRANGIAN METHOD
Using the special gap distance variable (solid.gap), the penalized contact pressure

T'p is defined on the destination boundary as

Tn—pnalg if ngO
Tnp = B M (3-90)
T e T otherwise

P is the user defined normal penalty factor.

The penalized friction traction Ty is defined on the destination boundary as:
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T, ..
Ty, = min{ == 1)T, (3-91)
tp (’Tt, el ) t, trial
where T i, is defined as
Ty wiar = Te-pys (3-92)

In Equation 3-92, py is the user defined friction traction penalty factor. The critical

sliding resistance, T ¢rit, is defined as

= min(p.Tnp +T T (3-93)

t, crit cohe’ * t, max)

In Equation 3-93, p is the friction coefficient, Ty}, is the user defined cohesion

sliding resistance, and T} 1.« is the user defined maximum friction traction.
:

In the following equation § is the variation (represented by the test () operator in
COMSOL Multiphysics). The contact interaction gives the following contribution to

the virtual work on the destination boundary:

j (T,p08 + Ty, - map(F)3X,)dA + j (W, 8T, +w,, - 8T,)dA
dst dst

where w,, and w are contact help variables defined as:

w, =T

cn np,i

T

ni+1
Wey = (Yfric(Ttp -(n- Ttp)n))i - Tt, i+1

where  is the augmented solver iteration number and g is a Boolean variable stating

if the parts are in contact or not.

PENALTY METHOD

The penalty algorithm is essentially based on the insertion of a stift spring between the
contacting boundaries. The penalty factor can be interpreted as the stiffness of that
spring. A high value of the stiftness fulfills the contact conditions more accurately, but
if'it is too high, it makes the problem ill-conditioned and unstable. The contact

pressure in the normal direction is computed as

—pndg+p0 if dg<po/pn
0 if angpO/pn
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where dg is the effective gap distance, py, is the penalty factor, and py is the pressure at
zero gap. The latter parameter can be used to reduce the overclosure between the
contacting boundaries if an estimate to the contact pressure is known. In the default
case, when p( = 0, there must always be some overclosure (a negative gap) in order for
a contact pressure to develop.

In case of friction, the tangential force T is computed as

_ . Tt crit
T, = mln(|Tt, ) 1)T

t, trial

where

T vial = —P¢S

This can be viewed as a tangential spring giving a force proportional to the sliding
distance. The penalty factor p; can be identified as the spring constant. The sticking
condition is thus replaced by a stiff spring, so that there is a small relative movement
even if the force required for sliding is not exceeded.

The definition of T} ¢4 depends on the algorithm used for computing the normal
contact.

min(uT,, + T augmented Lagrangian method

cohe’ Tt, max)

T

t, crit
t, max)

min(uT, + T penalty method

cohe’

The same notation as for the description of the augmented Lagrangian method above

is used.

The springs between the contacting boundaries are added using weak expressions on
the destination boundary.

j (T,,08 + Ty, - map(F)8X,)dA
dst

FRICTION MODELS

The friction model is either no friction or Coulomb friction.

The frictional coefficient W is defined as
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Hg + (pg— },Ld)exp(—ocdcdvs‘) if dynamic friction

U otherwise

where [ is the static frictional coefficient, pq is the dynamic frictional coefficient, vy is
the slip velocity, and ogr is a decay coefficient.

DIRECTIONS OF THE CONTACT FORCES

Since the contact model always makes use of the geometric nonlinearity assumption,
the contact pressure and the friction force represent, respectively, the normal and
tangential components of the nominal traction. This is the force density with
components in the current configuration (that is, on the spatial frame) but related to

the undeformed area of the corresponding surface element.

ADHESION

You can model a situation where two boundaries stick together once they get into
contact by adding an Adhesion subnode to Contact. Adhesion can only be modeled
when the penalty contact method is used. The adhesion formulation can be viewed as
if a thin elastic layer is placed between the source and destination boundaries when
adhesion is activated.

The adhesion starts acting when the adhesion criterion is met in the previous time or
parameter step. An auxiliary degree of freedom located at Gauss points is used as an

indicator of whether the adhesion criterion has been met or not.

When adhesion is active, the tensile stress 6, in the normal direction is computed from
the cffective gap dg as

o, = -K,d,

The default value for the stiffness in the normal direction K, is the penalty stiffness of
the contact condition, but you can also enter it explicitly. In compression, the penalty
stiffness is always used. This leads to a bilinear stiftness in the normal direction when

Normal stiffness is User Defined.

The shearing deformation is resisted using a shear stiffness K, related to the normal
stiffness by

K =nK

T ™p
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where n. is a coefficient with the default value 0.17. This coefficient can either be input
explicitly, or be computed from a Poisson’s ratio. A plane strain assumption is used for

this conversion, giving

n = 1-2v
T 2(1-v)

The shear traction is proportional to the relative deformation between the source and
destination boundaries measured from the position when the adhesion criterion was
first fulfilled, so that

t = K sF,
where s is the slip vector and F} is the deformation gradient on the boundary.

DECOHESION
When adhesion is active, it is possible to break the bond between the source and
destination boundaries by specifying a Traction separation law. Three different such

decohesion laws are available.

The decohesion behavior in both tension or shear is based on two quantities, the
maximum allowed stress and the energy release rate. Tearing in the normal direction
is called mode I, and shear is called mode II. In the theory below, a subscript 7 can take
the values I and II.

Up to the maximum stress, the adhesive layer is linearly elastic. At higher deformation,
the stress decreases, and a damage is assumed to have occurred. The damage function
is a scalar function of the maximum relative displacement which has occurred between
the two boundaries. The stiffness in the damaged state is permanently reduced, even

on unloading.

In general, the stress state is a combination of tension and shear, so the data for the
two modes must be combined into a multiaxial decohesion rule. For two of the

decohesion laws you can specify details of the multiaxial behavior.

As a measure of the displacement in the adhesive layer, the mixed mode relative
displacement u,, is defined as weighted combination of the normal direction
displacement u and the tangential displacement uyg.

2 2
uy, = J{up” +ug

In this expression, the notation
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(x) = { x, if x>0
0, if x<0

has been used. Thus, u,, is insensitive to compressive displacement. It is u,, which is

compared with the various mixed mode failure displacements described below.

Linear Separation Law
In the linear separation law, the decreasing part of the stress vs. displacement curve is

linear. The graph in Figure 3-20 is generic, and valid both for mode I and mode II.

o;

G A B0

Uio Uit

Figure 3-20: Stress vs. displacement curve for the linear separation law

The failure initiation displacement u;( for each mode is determined from the

maximum stress and the elastic stiffness, as

wor = e
0=
K,
_ O11c
Ui =

T

The decohesion displacement u;¢ for each mode is implicitly determined from the

given energy release rate (which is the area under the stress vs. displacement curve):

2Gic
Ui =

Ojc

The mixed mode failure initiation displacement is then defined as
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2

Um

Yo = Urolyyg 2 2 2 2
uy) Ui + Ui

The implication is that compressive displacements are ignored, and only tensile and
tangential displacements contribute.

The final mixed mode failure displacement depends on the selected Failure criterion.

The Power Law failure criterion is defined as
G\ G\
) G =1
GIC GIIC
whereas the Benzeggagh-Kenane failure criterion is defined as

Gy \"
Gy + (Gyp. - GIC)(GI " GII) = G+ Gy

The exponent 1 is called the Mode mixity exponent.

From these relations, the total decohesion failure displacement in the mixed mode can

be computed. For a power law criterion, the expression is

2 2 711
u= M((ﬁ)*‘ {B KJ 4150
Ug Gy, Gy,
Up=Uypp ur<0
Urg
p=—
Uy

For the Benzeggagh-Kenane criterion, the corresponding expression is

2
2uy, fided V1
up= ———— 5| Grc + (G — Gro)| ur>0
uOKp(uI +nuyp) up +niyg
Ug= Upps ur<0

The damage function can be described as
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D) = min(l, max(O, %(Z__‘___L;o@)))

The secant stiffness of the damaged adhesive layer (indicated by the red line in
Figure 3-20) is

K =(1-D)K,
Ky = (1-D)K,

When D > 0, this stiffness is relevant only when the displacement is below the
maximum experienced displacement, that it when moving on the red line in
Figure 3-20, Figure 3-21, and Figure 3-22.

In an onloading state with D > 0, the stiffness is negative. The negative slope of the

curve

Polynomial Separation Law

The polynomial separation law differs from the linear separation law in that the
decreasing part of the stress curve is represented by a cubic polynomial. This
polynomial is chosen so that it has zero slope in both ends, which means that the secant
stiffness does not have any discontinuities. The area under the cubic function is the
same as that of the linear function when the failure displacement u;¢is the same. That

is, for a given energy release rate Gy, the same u;¢ is obtained.

D=1

Ujo Uit

Figure 3-21: Stress vs. displacement curve for the polynominl separation lnw
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All expressions presented under Linear Separation Law are still valid except the damage

function, which now is

D(u) = min(l, maX(O, %{1 + (:f__z(;f@:f__zz - 3))))

Multilinear Separation Law

The multilinear separation law introduces a region of constant stress, similar to a

perfectly plastic material model, as shown in Figure 3-22.

Gy % 5 D=1
Ojc
Ui U uip Ui~

Figure 3-22: Stress vs. displacement curve for the multilinear separation law

This law requires one more material parameter A, describing the width of the “plastic”
region. The Shape factor A is the ratio between the plastic (constant stress) part of G;,
and the total “inelastic” part of Gy
- Gje(Ujn —Ujp) _ Siclip—Uio)
1 1
Ojc(tip = Ujg) + 50;c(Uip=Up)  Gic=50;clio

Note that the shape factor is assumed to be the same for both tension and shear. The

value A = 0 corresponds to the linear separation law.

The plastic displacement u;,, can thus be expressed as

ip
Uip = k% + uio(l —%)

149

The decohesion displacement is
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Uig

w20 e
if Ojc 2

&) G

In this model, a linear mixed mode failure law is assumed:

(GI GII) -1

The mixed mode plastic failure displacement u, is defined as
2
um

2 2 2 2
(up U + Uy,

Up = Urplryy
The mixed mode failure displacement is
2
1+
up = 2G1, Gy, 2 —(up—ug)
uo(Kp Gy + B KqGr)
The damage function can be written as
u
1--2 u<u,
D(u) = min| 1, max| O, u
Ug( Up—U
1- —( ) uzu
U \up—u p
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Stress Linearization

Stress linearization is a procedure in which the stress distribution along a line through
the thickness in a solid is approximated with an equivalent linear stress distribution,
similar to what would be the result of an analysis using shell theory. The line is

commonly referred to as a stress classification line, SCL.

First, the computed stresses are transformed into a local orthonormal coordinate
system x1-x2-x3, where the x1 direction is oriented along the SCL. In 3D, you must
specify the x2 direction, and thus implicitly the x3 direction. In 2D and 2D axial
symmetry, the x3 direction is in the out-of-plane direction — that is, the Z and

azimuthal directions, respectively.

The length of the SCL, which is assumed to be straight, start on one boundary, and
end on the opposite boundary, is denoted L.

The membrane stress tensor is the average of each local stress component along the
SCL:

L

1
Om,ij = ZIGijdxl
0

Each component of the bending stress tensor is assumed to have a linear variation along
the SCL, with the value being zero at the midpoint.

le
Op,ij = (1__L—)Gb(max), ij

The maximum bending stress is defined so that the linear stress distribution has the

same moment as the true stress distribution.

L

_ 60 (L g
Ob(max),ij = T3] %ij\g ~¥1)%%1
L

0

The linearized stress distribution is the sum of the membrane and bending stresses,
Omb, ij(X1) = O ;j+ Op (%)

Finally, the peak stress tensor is defined at the two endpoints of the SCL. It is the

difference between the actual stress tensor, and the linearized stress representation.
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Op(start).ij = [Oij = Omb, ijly, =0 = [9ijl;, =0 = Om,ij * Ob(max), ij

Op(end), ij = [0ij = Omb,ijly, = L = [0ijly, - L = Om,ij ~ Ob(max), ij

The stress intensity, also known as the Tresca effective stress, is often the ultimate goal
of a stress linearization. It is computed as a worst case of the effective stress at the two
ends of the SCL. The stress intensity is computed from the principal stresses as

Oint = Op1~Op3

When computing the principal stresses at the endpoints of the SCL, it is customary to
ignore the bending part of the through-thickness oriented stresses. The principal
stresses and the stress intensity variables are the endpoints are thus computed using the

following stress tensor:

011 Om, 11
Og2 Omb, 22
633| _ |%mb,33
O12 Om, 12
O13 Om, 13
23]  |Omb, 23

Section forces, similar to what would be computed in a shell or plate analysis, is another
type of result quantities available for each SCL. The in-plane forces are computed from

the membrane stresses as

The bending moments are computed from the bending stresses as

M22 2 Gb(max), 22
_ L
M3s| = & | Oh(max), 33

M23 Gb(max), 23

The out-of-plane shear forces are computed from the membrane stresses as

STRESS LINEARIZATION
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Q| _ L|Om. 12
Q3 Om, 13
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Energy Quantities

There are several energy quantities computed in the Structural Mechanics interfaces.
This section is a summary of these quantities and how to compute in different

situations.

In this section:

* Elastic Energy

e Kinetic Energy

* Dissipated Energy

* Mechanical Energy Flux

* Energy Variables
Elastic Energy

LINEAR ELASTIC MATERIALS
The elastic energy is defined as the recoverable energy stored in an elastic material or

spring. The elastic strain energy density in an elastic material is defined as

€
W, = [oide, (3-94)
0

If the linear elasticity is assumed, then
c =o0;+Cg,
where o is the initial stress. The integration can then be carried out analytically and

the result is

1 1
W, = c;:e4+ Q(C:eel):eel = §((5i +0):€q)
This expression is used for the Linear Elastic Material model in a Stationary or Time
Dependent analysis. An implication is that if you modify the linear elastic model in a
way that violates the assumption about stress-strain linearity above, then the computed
strain energy density may be wrong, for example, using a strain dependent Young’s

modulus or a nonconstant initial stress.
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In the case of Frequency Domain analysis, only the harmonic part is considered. That
is, a constant prestress does not contribute to the strain energy density. To emphasize
this, the concept of stored energyis used. The stored energy is the cycle average of the

elastic energy; that is,

T

11
W, = Tjéc(t):e(t) dt

0

The harmonic stress and strain components are generally not in phase with each other,

so the cycle average of the stored energy is computed as

1 -
W, = Zreal(o:e)
where the stress and strain are considered as complex quantities, and the overbar

denotes a complex conjugate.

HYPERELASTIC MATERIALS
For a Hyperelastic material, the strain energy density function is the fundamental
quantity from which stresses are derived. The form of the strain energy density

function is determined by the hyperelastic model used.

Nonlinear Elastic Materials

For a Nonlinear Elastic Material, the strain energy density is computed in different
ways depending on the material model selected. If the integration in Equation 3-94
can be performed analytically, then a closed form expression is used, similar to what is
done in the linear elastic material. If not, then the integral is actually computed using
the integrate() operator.

Structural Elements
For structural elements, the strain energy density is split into membrane, bending and

shear parts, which are then summed into a total strain energy density.

The strain energy density for all elastic domains are integrated to give a total elastic

strain energy, which contains all elastic energy stored in a certain physics interface.

Elastic boundary conditions, such as Spring Foundation, Thin Elastic Layer, and

Springs in joints in the Multibody Dynamics interface, also contribute to the total
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elastic strain energy variable. In these cases linearity is assumed, so if you enter

nonlinear data, you will probably need to adjust the strain energy expressions.

The Multibody Dynamics interface is available with the addition of the
g Multibody Dynamics Module.

Kinetic Energy

For all materials, a kinetic energy density is computed. For a Time Dependent study,

it is defined as
Wk = %pvz

where p is the mass density, and v is the velocity.

In Frequency Domain, the kinetic energy is defined as
1 2 2
Wy = 2P0 v
which represents the cycle average.

Dissipated Energy

There are many possible mechanisms for energy dissipation in a structure:

* Material damping (Loss factor, Rayleigh damping, or Viscous damping)
* Viscoelasticity

¢ Dissipation by plasticity or creep

* Viscous damping in boundary conditions, springs and joints

e Friction in mechanical contact

The general form of dissipation loss is
Q h = (o) E

The treatment of dissipated energy is fundamentally different depending on whether
the analysis is in frequency domain or not. For stationary or time dependent cases, the
dissipated energy must be accumulated over parameter ranges or time, which means

extra degrees of freedom must be added. For this reason, you must explicitly select to
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compute the mechanical dissipation in these cases. This is done in the Energy

Dissipation section of the material model.

In frequency domain, the dissipated energy per cycle is computed using a closed form

expression. It is always available as postprocessing variables. The expression used is

Q) = %real(c:(ime))
In the case of Rayleigh damping, the stresses are not directly affected by the damping,
since it is not part of the stress-strain relation. In a problem which is linear elastic

except for the Rayleigh damping, the stresses and strains are in phase with each other,
and does thus not give any damping contribution. This is handled by explicitly adding

an extra contribution to dissipation.

Mechanical Energy Flux

The mechanical energy flux is a vector formed by the multiplication of the stress tensor

and the velocity vector
I=-—-0-v

The reason for the minus sign in the definition is that if you put a pressure on an
external boundary, and it moves in the direction of the load, then a positive power

input in the direction of the load is obtained.

In the time domain, the expression above is used. In frequency domain, two versions
are supplied. The complex mechanical energy flux is the complex vector formed by

multiplying the stress tensor by the complex conjugate of the velocity:

I=-=—ov

The mechanical energy flux is in the frequency domain defined as a real quantity, the

cycle average of the complex mechanical energy flux.

I-= %real(—c . \~7)
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Energy Variables

The energy variables used in the Structural Mechanics interfaces are summarized in

Table 3-6.

TABLE 3-6: ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SIUNIT PHYSICS COMMENT
INTERFACE
phys.Ws Elastic strain J/m3 solid, mbd, shell,
energy density plate, mbrn,
beam, truss
phys.WsM Membrane strain J/m2 shell, plate Contributes to
energy density phys.Ws
phys.WsB Bending strain J/m2 shell, plate Contributes to
energy phys.Ws
phys.WsS Shear strain J/m2 shell, plate Contributes to
energy phys.Ws
phys.WsM Membrane strain  J/m beam Contributes to
energy density beam.WsL
phys.WsB Bending strain J/im beam Contributes to
energy beam.WsL
phys.WsS Shear strain J/im beam Contributes to
energy beam.WsL
beam.WsT Torsional strain Jim beam Contributes to
energy beam.WsL
phys.WsL Strain energy J/im beam, truss phys.Ws =
density per unit phys.Wsl/area
length
phys.Ws_tot Total elastic strain | solid, mbd, shell, Global variable
energy plate, mbrn, containing
beam, truss integration and
summation of all
phys.Ws
contributions in a
physics interface.
phys.Wk Kinetic energy j/m3 solid, mbd, shell,
density plate, mbrn,
beam, truss
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TABLE 3-6: ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE

DESCRIPTION

SI UNIT

PHYSICS
INTERFACE

COMMENT

phys.Wk_tot

phys.Wp

phys.Wp_tot

phys.Wc

phys.Wc_tot

phys.Wv

phys.Wv_tot

phys.Wed

Total kinetic
energy

Plastic dissipation
density

Total plastic
dissipation

Creep dissipation
density

Total creep
dissipation

Viscoelastic
dissipation density

Total viscoelastic
dissipation

Dielectric
dissipation density

J

Jim3

J/m3

Jim?

J

Jim3

solid, mbd, shell,
plate, mbrn,
beam, truss

solid

solid

solid

solid

solid

solid

solid

Global variable
containing
integration and
summation of all
phys.Wk
contributions in a
physics interface.

Energy density
dissipated by
plasticity

Global variable
containing
integration and
summation of all
phys.Wp
contributions in a
physics interface.

Energy density
dissipated by creep.

Global variable
containing
integration and
summation of all
phys.Wp
contributions in a
physics interface.

Energy density
dissipated by
viscosity.

Global variable
containing
integration and
summation of all
phys.Wv
contributions in a
physics interface.

Piezoelectric
electrical damping
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TABLE 3-6: ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SIUNIT PHYSICS COMMENT
INTERFACE
phys.Wed_tot  Total dielectric J solid Global variable
dissipation containing
integration and
summation of all
phys.Wed
contributions in a
physics interface.
phys.Wmd Damping J/m3 solid Piezoelectric
dissipation density mechanical damping
phys.Wmd_tot  Total damping J solid Global variable
dissipation containing
integration and
summation of all
phys.Wmd
contributions in a
physics interface.
phys.I* Mechanical Wim? solid, mbd
energy flux, *
coordinate
phys.lcomplex* Complex W/m?2 solid, mbd Frequency domain
mechanical only
energy flux,

*coordinate

IThe availability of physics interfaces is based on the license for a module.
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Solid Mechanics

This chapter describes the Solid Mechanics interface, which is found under the
Structural Mechanics branch (£53) when adding a physics interface.
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The Solid Mechanics Interface

The Solid Mechanics (solid) interface ( #=1 ), found under the Structural Mechanics
branch ( =5 ) when adding a physics interface, is intended for general structural
analysis of 3D, 2D, or axisymmetric bodies. In 2D, plane stress or plane strain
assumptions can be used. The Solid Mechanics interface is based on solving the
equations of motion together with a constitutive model for a solid material. Results

such as displacements, stresses, and strains are computed.

The functionality provided by the Solid Mechanics interface depends on the products
you are using. The Acoustics Module, MEMS Module, and Structural Mechanics
Module add several features, for example geometric nonlinearity and advanced

boundary conditions such as contact, follower loads, and nonreflecting boundaries.

The default material is a Linear Elastic Material. With either the Nonlinear Structural
Materials Module or the Geomechanics Module, the physics interface is extended with
more materials, for example, material models for plasticity, hyperelasticity, creep, and
concrete. You can also add your own material models using an External Stress-Strain

Relation

For a detailed overview of the functionality available in each product, visit

http://www.comsol.com/products/specifications,/

CHAPTER 4:

When this physics interface is added, these default nodes are also added to the Model
Builder — Linear Elastic Material, Free (a boundary condition where boundaries are free,
with no loads or constraints), and Initial Values. Then, from the Physics toolbar, you
can add other nodes that implement, for example, solid mechanics material models,
boundary conditions, and loads. You can also right-click Selid Mechanics to select

physics features from the context menu.

SETTINGS
The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics
interface. Refer to such physics interface variables in expressions using the pattern
<name>.<variable_name>. In order to distinguish between variables belonging to
different physics interfaces, the name string must be unique. Only letters, numbers, and

underscores (_) are permitted in the Name field. The first character must be a letter.
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The default Name (for the first physics interface in the model) is solid.

2D APPROXIMATION

From the 2D approximation list, sclect Plane strain (the default), Plane

stress, or Generalized Plane Strain.

Plane strain is relevant when the 2D model can be considered as a cut
through an object that is infinitely long in the out-of-plane direction or as
a soft object confined between rigid walls. The strain in the out-of-plane

direction is assumed to be zero.

Plane stress is relevant for structures that are thin in the out-of-plane
direction, such as a thin plate. When using plane stress, the Solid
Mechanics interface solves for the out-of-plane strain displacement

derivative in addition to the displacement field u, in order to fulfill

ow
> a—Z— >
the zero stress criterion.
The generalized plane strain condition is similar to plane strain but allows
for a nonzero out-of-plane strain. It is representative for the central parts

Q of a long object, which is stress free at the ends.
For more information see the theory section.

When combining Solid Mechanics with other types of physics, there is
often an assumption that the out-of-plane extension is infinitely long. This
is the case in, for example, Acoustic-Structure interaction problems. In

these cases, Plane strain is usually the correct choice.

Select Out-of-plane mode extension (time-harmonic) to prescribe an
out-of-plane wave number to be used in mode analysis, eigenfrequency,
and frequency domain studies. When selected, enter the Out-of-plane wave
number %,. Note that the input value will only be taken into account in
eigenfrequency and frequency domain studies. For mode analysis, the

out-of-plane wave number is computed as an eigenvalue.

For more information, see Out-of-plane and Circumferential Modes in

the Structural Mechanics Theory chapter.
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AXIAL SYMMETRY APPROXIMATION

Select Circumferential mode extension (time-harmonic) to prescribe a
circumferential wave number to be used in eigenfrequency or frequency

L domain studies. When selected, enter the Circumferential mode number m.

For more information, see Out-of-plane and Circumferential Modes in

the Structural Mechanics Theory chapter.

Eigenfrequency Analysis of & Free Cylinder: Application Library path

ﬂ:ﬂ] Structural_Mechanics_Module/Verification_Examples/free_cylinder.

THICKNESS

For 2D components, enter a value or expression for the Thickness d. The
default value of 1 m is suitable for plane strain models, where it represents
a unit-depth slice, for example. For plane stress models, enter the actual

thickness, which should be small compared to the size of the plate for the
plane stress assumption to be valid.

When manually combining Solid Mechanics with other physics interfaces,
® you must make sure that the same thickness assumption is used

everywhere. In most cases, the default settings will be correct since

interfaces which do not have an explicit thickness property will implicitly

assume unit thickness.

Use a Change Thickness node to change thickness in parts of the
geometry if necessary.

STRUCTURAL TRANSIENT BEHAVIOR

From the Structural transient behavior list, select Include inertial terms (the default) or
Quasi-static. Use Quasi-static to treat the dynamic behavior as quasi-static (with no mass
effects; that is, no second-order time derivatives). Selecting this option gives a more
efficient solution for problems where the variation in time is slow when compared to
the natural frequencies of the system. The default solver for the time stepping is

changed from Generalized alpha to BDF when Quasi-static is selected.
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For problems with creep, and sometimes viscoelasticity, the problem can be considered
as quasi-static. This is also the case when the time dependence exists only in some other

physics, like a transient heat transfer problem causing thermal strains.

REFERENCE POINT FOR MOMENT COMPUTATION

Enter the coordinates for the Reference point for moment computation X,.¢ (variable
refpnt). The resulting moments (applied or as reactions) are then computed relative
to this reference point. During the results and analysis stage, the coordinates can be

changed in the Parameters section in the result nodes.

TYPICAL WAVE SPEED

The typical wave speed c,eris a parameter for the perfectly matched layers (PMLs) if
used in a solid wave propagation model. The default value is solid.cp, the
pressure-wave speed. To use another wave speed, enter a value or expression in the

Typical wave speed for perfectly matched layers ficld.

Note: This section is only available with COMSOL products that include PMLs (see

http://www.comsol.com/products/specifications /)

DISCRETIZATION

In the Solid Mechanics interface you can choose not only the order of the
discretization, but also the type of shape functions: Lagrange or serendipity. For
highly distorted elements, Lagrange shape functions provide better accuracy than
serendipity shape functions of the same order. The serendipity shape functions will
however give significant reductions of the model size for a given mesh containing
hexahedral, prism, or quadrilateral elements.

The default is to use Quadratic serendipity shape functions for the Displacement field.
Using Linear shape functions will give what is sometimes called constant stress
elements. Such a formulation will for many problems make the model overly stiff, and

many elements may be needed for an accurate resolution of the stresses.

DEPENDENT VARIABLES

The physics interface uses the global spatial components of the Displacement field © as
dependent variables. The default names for the components are (¢, v,w) in 3D. In 2D
the component names are (u, v), and in 2D axisymmetry they are (z, w). You can
however not use the “missing” component name in the 2D cases as a parameter or

variable name, since it is still used internally.
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You can change both the field name and the individual component names. If a new
field name coincides with the name of another displacement field, the two fields (and
the interfaces which define them) share degrees of freedom and dependent variable
component names. You can use this behavior to connect a Solid Mechanics interface
to a Shell directly attached to the boundaries of the solid domain, or to another Solid
Mechanics interface sharing a common boundary.

A new field name must not coincide with the name of a field of another type (that is,
it must contain a displacement field), or with a component name belonging to some
other field. Component names must be unique within a model except when two

interfaces share a common field name.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links
to common sections and Table 2-4 to common feature nodes. You can
n also search for information: press F1 to open the Help window or Ctrl+F1

to open the Documentation window.

* Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics
@l ¢ Solid Mechanics Theory

* Seclecting Discretization

o Stresses in a Pulley: Application Library path COMSOL_Multiphysics/

Structural_Mechanics/stresses_in_pulley

Eigenvalue Analysis of a Crankshaft: Application Library path
COMSOL_Multiphysics/Structural_Mechanics/crankshaft

Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics

The Solid Mechanics Interface has these domain, boundary, edge, point, and pair
nodes and subnodes (listed in alphabetical order), which are available from the Physics
ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), or

right-click to access the context menu (all users).

In general, to add a node, go to the Physics toolbar, no matter what
operating system you are using. Subnodes are available by clicking the

parent node and selecting it from the Attributes menu.

CHAPTER 4:

SOLID MECHANICS



FEATURES AVAILABLE FROM SUBMENUS
Many features for the Solid Mechanics interface are added from submenus in the
Physics toolbar groups or context menu (when you right-click the node). The

submenu name is the same in both cases.

The submenus at the Domain level are Material Models, Volume Forces, Mass, Spring, and

Damper, and Domain Constraints.

The submenus at the Boundary level are Connections, Pairs, Mass, Spring, and Damper,

and More Constraints.
There are also the Edges and Points submenus.

Note: Some submenus are only present with certain COMSOL products.

FORCE LOADS
Note that you can add force loads acting on all levels of the geometry for the physics
interface. Add a:

¢ Body Load to domains (to model gravity effects, for example).

* Boundary Load to boundaries (a pressure acting on a boundary, for example).

* Edge Load to edges in 3D (a force distributed along an edge, for example).

¢ Point Load to points (concentrated forces at points).

If there are subsequent constraints specified on the same geometrical

entity, the last one takes precedence.

For 2D axisymmetric components, COMSOL Multiphysics takes the axial
| symmetry boundaries (at 7 = 0) into account and automatically adds an
i Axial Symmetry node to the component that is valid on the axial symmetry

boundaries only.
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¢ Added Mass * Magnetostrictive Material

e Antisymmetry * Nonlinear Elastic Material
e Attachment ¢ Periodic Condition

e Beam Connection e Diczoclectric Material

* Body Load » Point Load

* Bolt Pretension * DPoint Load (on Axis)

¢ Bolt Selection e Prescribed Acceleration

* Bolt Thread Contact e Prescribed Displacement

* Boundary Load e Prescribed Displacement/Rotation
* Boundary Pair e Prescribed Velocity

e Cell Periodicity * Rigid Motion Suppression
¢ Change Thickness ¢ Rigid Connector

¢ Contact * Rigid Domain

e Edge Load * Ring Load

* Elastoplastic Soil Material * Roller

¢ External Strain * Rotating Frame

e External Stress e Shape Memory Alloy

e External Stress-Strain Relation ¢ Shell Connection

* Fixed Constraint * Spring Foundation

¢ Free e Stress Linearization

e Gravity e Symmetry

* Hyperelastic Material ¢ Thin Elastic Layer
 Initial Values e Thin-Film Damping

e Linear Elastic Material ¢ Thread Boundary Selection

¢ Low-Reflecting Boundary

In the COMSOL Multiphysics Reference Manual, see Table 2-3 for links
to common sections and Table 2-4 for common feature nodes. You can
n also search for information: press F1 to open the Help window or Ctrl+F1

to open the Documentation window.
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These subnodes are available from main parent nodes as indicated in the

documentation:
e Activation * Mass and Moment of Inertia (Rigid
e Adhesion Connector)
« Applied Force (Rigid Connector) * Mass and Moment of Inertia (Rigid

* Applied Force (Rigid Domain) Domain)

* Applied Moment (Rigid
Connector)
 Applied Moment (Rigid Domain) * Plasticity

« Center of Mass Nodes (Boundary, ~ * Porous Plasticity

* Mechanical Damping
* DPhase

Edge, Point) * DPrescribed Displacement/Rotation
¢ Center of Rotation Nodes e Predeformation

(Boundary, Edge, Point) e Rocks
¢ Conduction Loss . Safety

(Time-Harmonic) e Soil Plasticity
e C
onerete * Spring Foundation (Rigid

* Creep Connector)

* Damage ¢ Spring Foundation (Rigid Domain)
* Damping e Thermal Expansion (for Constraints)
* Dielectric Loss * Thermal Expansion (for Materials)

¢ External Stress o

(
Thermal Expansion (Attachment)
(

* Fixed Constraint (Rigid Domain) e Thermal Expansion (Rigid

 Friction Connector)
* Hygroscopic Swelling * Viscoelasticity
e Initial Stress and Strain * Viscoplasticity

¢ Initial Values (Rigid Domain)
* Location Nodes (Boundary, Edge,
Point)
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Initial Values

The Initial Values node adds initial values for the displacement field and structural
velocity field that can serve as an initial condition for a transient simulation or as an
initial guess for a nonlinear analysis. In addition to the default Initial Values node always

present in the interface, you can add more Initial Values nodes if needed.

LAYER SELECTION

This section is only present in the in the Layered Shell interface, where it is described

in the documentation for the Initial Values node.

INITIAL VALUES
Enter values or expressions for the initial values of the Displacement field u (the

displacement components u, v, and w in 3D), and the Structural velocity field Ju/ot.

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Initial Values
Layered Shell>Initial Values
Membrane>Initial Values

Truss>Initial Values

Ribbon
Physics tab with Selid Mechanics selected:
Domains>Solid Mechanics>Initial Values

Physics tab with Layered Shell selected:
Boundaries>Layered Shell>Initial Values

Physics tab with Membrane selected:

Boundaries>Membrane>Initial Values

Physics tab with Truss selected:
Edges>Truss>Initial Values
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Change Thickness

Use the Change Thickness node to model domains with a thickness other than the
overall thickness defined in the physics interface’s Thickness section. The Change

Thickness node is available in:

* Domains in 2D for the Solid Mechanics and Multibody Dynamics interfaces.

* Boundaries in 3D for the Membrane and Shell interfaces. (See also Thickness and

Oftset in shell interface documentation).

¢ Boundaries in 2D axisymmetry for the Membrane interface.

CHANGE THICKNESS
Enter a value for the Thickness d. This value replaces the overall thickness for the

selected domains or boundaries.

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Change Thickness
Multibody Dynamics>Change Thickness
Membrane>Change Thickness

Ribbon

Physics tab with Selid Mechanics or Multibody Dynamics sclected:
Domains>Solid Mechanics>Change Thickness

Domains>Multibody Dynamics>Change Thickness

Physics tab with Membrane selected:

Boundaries>Membrane>Change Thickness

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic solid and an

interface for defining the elastic material properties.
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By adding the following subnodes to the Linear Elastic Material node you can

incorporate many other effects:

* Thermal Expansion (for Materials) * Viscoplasticity

* Hygroscopic Swelling * Porous Plasticity
* Initial Stress and Strain * Soil Plasticity

* External Stress * Concrete

e External Strain ¢ Rocks

e Damping * Damage

* Viscoelasticity e Activation

* Plasticity o Safety

¢ Creep

Note: Some options are only available with certain COMSOL products (see http://
www.comsol.com/products/specifications /). Also, the available options depend on
the physics interface in which the Linear Elastic Material is used.

LAYER SELECTION

This section is only present in the in the Layered Shell interface, where it is described
in the documentation for the Linear Elastic Material node. The way the Linear Elastic
Material node interacts with material definitions differ significantly between the

Layered Shell interface and the other physics interfaces.

COORDINATE SYSTEM SELECTION

The Global coordinate system is sclected by default. The Coordinate system list contains
all applicable coordinate systems in the component. The coordinate system is used for
interpreting directions of orthotropic and anisotropic material data and when stresses
or strains are presented in a local system. The coordinate system must have
orthonormal coordinate axes, and be defined in the material frame. Many of the

possible subnodes inherit the coordinate system settings.

LINEAR ELASTIC MATERIAL

Define the Solid model and the linear elastic material properties.

SOLID MECHANICS
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Solid Model

Select a linear elastic Solid model: Isotropic (the default), Orthotropic, or Anisotropic.
Select:

* Isotropic for a linear elastic material that has the same properties in all directions.

* Orthotropic for a linear elastic material that has different material properties in

orthogonal directions, so that its stiffness depends on the properties E;, v;;, and Gy;.

* Anisotropic for a linear elastic material that has different material properties in

different directions, and the stiffness comes from the symmetric elasticity matrix, D.

Note: The Orthotropic and Anisotropic options are only available with certain
COMSOL products (see http://www.comsol.com/products/specifications /)

In the Layered Shell interface, the chosen solid model applies to all
selected layers, irrespective of whether the material data is entered
n explicitly as User defined in the Linear Elastic Material node, or is obtained

from a Layered Material node using the default From material option.

¢ Material Models
@l e Linear Elastic Material

* Orthotropic and Anisotropic Materials

Density
The default Density p uses values From material. For User defined enter another value or

expression.

If any material in the model has a temperature dependent mass density, and From
material is selected, the Volume reference temperature list will appear in the Model Input
section. As a default, the value of T'¢¢is obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature

locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( 4 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The

default value is room temperature; 293.15 K.
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If you want to create a model input value which is local to your current selection, click

the Create Model Input button

_: . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given

in terms of wave speed. It is also used when computing mass forces for

= gravitational or rotating frame loads, and when computing mass

properties (Computing Mass Properties).

See also

'El, * Mass Density and Volume Reference Temperature.

* Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.
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Specification of Elastic Properties for Isotropic Materials

For an Isotropic Solid model, from the Specify list select a pair of elastic properties for

an isotropic material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear

modulus, Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and

shear-wave speeds. For each pair of properties, select from the applicable list to use the

value From material or enter a User defined value or expression.

Each of these pairs define the elastic properties and it is possible to convert from one

set of properties to another according to Table 4-1.

TABLE 4-1: EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION  VARIABLE D(E,V) DEG) DK,G) D\
Young’s E= E E 9KG 3A+2u
modulus 3K+G n n
Poisson’s V= v E 1 1 3G Y
ratio 2G 5(1_3K+G) 2(A+ 1)
Bulk K= E EG K 24 2M
modulus 3(1-2v) 3(3G-E) "3
Shear G= E G G n
modulus 2(1+v)

Lamé A= Ev GUE-2G) . 26 A
parameter A (1+v)(1-2v) 3G-E 3
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TABLE 4-1: EXPRESSIONS FOR THE ELASTIC MODULL.

DESCRIPTION  VARIABLE D(E,V) DE,G) DK.,G) D)
Lamé = E G G H
parameter [ 2(1+v)

Pressure- cp = A/ E(1-v) A/G(4G—E) K+4G/3 A+2u
wave speed p(1+Vv)(1-2v) N p(8G-E) Y P

Shear-wave ¢ = E JG7p JG7p
speed [m

~Nu/p

The individual property parameters are:

* Young’s modulus (elastic modulus) E.

* Poisson’s ratio v.

¢ Shear modulus G.

¢ Bulk modulus K.

¢ Lamé parameter A and Lamé parameter /L.

* Pressure-wave speed (longitudinal wave speed) cp,.

* Shear-wave speed (transverse wave speed) c,. This is the wave speed for a solid

continuum. In plane stress, for example, the actual speed with which a longitudinal

wave travels is lower than the value given.

Specification of Elastic Properties for Orthotropic Materials

When Orthotropic is selected from the Solid model list, the material properties vary in
orthogonal directions only. The Material data ordering can be specified in either

Standard or Voigt notation. When User defined is sclected in 3D, enter three values in

the fields for Young’s modulus E; Poisson’s ratio v, and the Shear modulus G. This

defines the relationship between engineering shear strain and shear stress. It is

applicable only to an orthotropic material and follows the equation

v;; is defined differently depending on the application ficld. It is casy to

]
I_il transform among definitions, but check which one the material uses.
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Specification of Elastic Properties for Anisotropic Materials

When Anisotropic is selected from the Solid model list, the material properties vary in
all directions, and the stiffness comes from the symmetric Elasticity matrix, D The
Material data ordering can be specified in either Standard or Voigt notation. When User

defined is selected, a 6-by-6 symmetric matrix is displayed.

Mixed Formulation

For a material with a very low compressibility, using only displacements as degrees of
freedom may lead to a numerically ill-posed problem. You can then use a mixed
formulation, which add an extra dependent variable for either the pressure or for the
volumetric strain, see the Mixed Formulation section in the Structural Mechanics

Theory chapter.

From the Use mixed formulation list, sclect None, Pressure formulation, or Strain

formulation.

GEOMETRIC NONLINEARITY
The settings in this section affect the behavior of the selected domains in a

geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. Select the Force linear strains check box to always use a

small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for
computing the stresses can be obtained in two different ways if inelastic deformations
are present: additive decomposition and multiplicative decomposition. The default is
to use multiplicative decomposition. Select Additive strain decomposition to change to

an assumption of additivity.
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Note: This section is only available with COMSOL products that support

geometrically nonlinear analysis (see http://www.comsol.com /products/

specifications /).

!

There are some cases when a small strain formulation could be useful
for a certain domain, even though the study step is geometrically
nonlinear. One such case is in contact analysis, where the study is always
geometrically nonlinear, but it is possible that a geometrically linear

formulation is sufficient in the material.

When a multiplicative decomposition is used, the order of the
subnodes to Linear Elastic Material matters. The inelastic deformation
are assumed to have occurred in the same order as the subnodes appear

in the model tree.

In versions prior to 5.3, only the additive strain decomposition method
was available. If you want to revert to the previous behavior, select
Additive strain decomposition. If the results then differ significantly,

probably the assumption of additivity is questionable, however.

In models created in a version prior to 4.2a, a check box named Include
geometric nonlinearity may be visible in this section. It is displayed only
if geometric nonlinearity was originally used for the selected domains.
Once the check box is cleared in this Settings window, it is permanently
removed and the study step assumes control over the selection of
geometric nonlinearity.

When Include geometric nonlinearity is sclected in this section, it
automatically also selects the Include geometric nonlinearity check box

in the study Settings window.

@,

Modeling Geometric Nonlinearity
Inelastic Strain Contributions

Studies and Solvers in the COMSOL Multiphysics Reference Manual

ENERGY DISSIPATION

You can select to compute and store various energy dissipation variables in a time

dependent analysis. Doing so will add extra degrees of freedom to the model.

To display this section, click the Show button (“& ) and select Advanced Physics Options.
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Select the Calculate dissipated energy check box as needed to compute the energy

dissipated by for example creep, plasticity, viscoplasticity, viscoelasticity, or damping.

* Dissipated Energy

Q

* Energy Variables

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Material Models>Linear Elastic Material
Layered Shell>Material Models>Linear Elastic Material

Multibody Dynamics>Linear Elastic Material

Ribbon
Physics tab with Selid Mechanics selected:

Domains>Material Models>Linear Elastic Material

Physics tab with Layered Shell selected:

Boundaries>Material Models>Linear Elastic Material

Physics tab with Multibody Dynamics selected:

Domains>Multibody Dynamics>Linear Elastic Material

Nonlinear Elastic Material

The Nonlinear Elastic Material feature is used to model stress-strain relationships which
are nonlinear even at infinitesimal strains. It is available in the Solid Mechanics and
Membrane interfaces. This material model requires either the Nonlinear Structural

Materials Module or the Geomechanics Module.
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By adding the following subnodes to the Nonlinear Elastic Material node you can

incorporate many other effects:

e Thermal Expansion (for Materials) e Creep

* Hygroscopic Swelling * Viscoplasticity

e Initial Stress and Strain e DPorous Plasticity
* External Stress * Soil Plasticity

* External Strain * Concrete

¢ Damping * Rocks

* Viscoelasticity e Safety

* Dlasticity

Note: Some options are only available with certain COMSOL products (see http://

www.comsol.com/products /specifications /)

COORDINATE SYSTEM SELECTION

The Global coordinate system is sclected by default. The Coordinate system list contains
any additional coordinate systems that the model includes (except boundary
coordinate systems). The coordinate system is used when stresses or strains are
presented in a local system. The coordinate system must have orthonormal coordinate
axes, and be defined in the material frame. Many of the possible subnodes inherit the

coordinate system settings.
NONLINEAR ELASTIC MATERIAL
The available material models depend on the COMSOL products you are using.

Nonlinear Structural Materials Module: Select a Material model: Ramberg-Osgood,

Power law, Uniaxial data, Bilinear elastic, or User defined.

Geomechanics Module: Select a Material model: Ramberg-Osgood, Hyperbolic law,

Hardin-Drnevich, Duncan-Chang, Duncan-Selig, or User defined.

Density
All nonlinear elastic material models have density as an input. The default Density p

uses values From material. For User defined enter another value or expression.

If any material in the model has a temperature dependent mass density, and From

material is selected, the Volume reference temperature list will appear in the Model Input
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section. As a default, the value of T'¢is obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature
locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( =4 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The
default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

the Create Model Input button 3=& . This will create a new Meodel Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given

in terms of wave speed. It is also used when computing mass forces for

= gravitational or rotating frame loads, and when computing mass
properties (Computing Mass Properties).

See also

'Ei * Mass Density and Volume Reference Temperature.

* Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

CHAPTER 4:

Mixed Formulation

For a material with a very low compressibility, using only displacements as degrees of
freedom may lead to a numerically ill-posed problem. You can then use a mixed
formulation, which add an extra dependent variable for either the pressure or for the
volumetric strain, see the Mixed Formulation section in the Structural Mechanics
Theory chapter.

From the Use mixed formulation list, sclect None, Pressure formulation, or Strain
formulation.

Ramberg-Osgood, Power law, Hyperbolic law, Hardin-Drnevich, Duncan-Chang, or
Duncan-Selig
Select from the applicable list to use the value From material or enter a User defined

value or expression.
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From the Specify list select a pair of elastic properties for an isotropic material —
Young’s modulus and Poisson’s ratio (the default for Ramberg-Osgood, Power law,
Duncan-Chang, and Duncan-Selig) or Bulk modulus and shear modulus (the default for

Hyperbolic law and Hardin-Drnevich).
Then depending on the selections, define the applicable parameters:

* Young’s modulus E.
* Poisson’s ratio v.
* Shear modulus G.
¢ Bulk modulus K.
¢ For Ramberg-Osgood:
- Reference stress Oy
- Reference strain &
- Stress exponent 1.
¢ For Power law and Hyperbolic law:
- Reference shear strain }..¢.
- Strain exponent n.
* For Hardin-Drnevich, define the Reference shear strain ...
¢ For Duncan-Chang, define the Ultimate deviatoric stress g ;.
¢ For Duncan-Selig:
- Ultimate deviatoric stress q.;.
- Ultimate strain &;y;.
Uniaxial Data
For Uniaxial data enter a value or expression for the Uniaxial stress function o,y as a
function of the uniaxial strain. The default expression is the linear function

(210[GPa])*solid.eax N/ m? , which corresponds to a linear elastic material with
Young’s modulus 210 GPa.

From the Specify list select how to specify the second elastic property for the material
— Bulk modulus or Poisson’s ratio. Then, depending on the selection, enter a value or
select from the applicable list to use the value From material or enter a User defined

value or expression:

¢ Bulk modulus K.

¢ Poisson’s ratio V.
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When you select Bulk modulus, the Young’s modulus is computed from the tensile part
of the Uniaxial stress function o,,. When you sclect Poisson’s ratio, you can cither use
the tensile part (default), or use the full tensile-compressive function by selecting the

check box Use nonsymmetric stress-strain data.

Bilinear Elastic
For Bilinear elastic enter a value or select from the applicable list to use the value From

material or enter a User defined value or expression.
* Bulk modulus in tension K.

¢ Bulk modulus in compression K.

¢ Shear modulus G.

User Defined

In the User defined material model, you specity the bulk modulus implicitly by entering
the relation between pressure and volumetric elastic strain. Enter a value or select from
the applicable list to use the value From material (the default) or enter a User defined

value or expression.
¢ Pressure p. The default expression is (-160[GPa])*solid.eelvol N/mz, which
corresponds to a linear elastic material with bulk modulus 160 GPa.

¢ Shear modulus G.

GEOMETRIC NONLINEARITY
The settings in this section affect the behavior of the selected domains in a

geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. Select the Force linear strains check box to always use a

small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for
computing the stresses can be obtained in two different ways if inelastic deformations

are present: additive decomposition and multiplicative decomposition. The default is
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to use multiplicative decomposition. Select Additive strain decomposition to change to

an assumption of additivity.

e There are some cases when a small strain formulation could be useful
for a certain domain, even though the study step is geometrically
nonlinear. One such case is in contact analysis, where the study is always
geometrically nonlinear, but it is possible that a geometrically linear

formulation is sufficient in the material.

e When a multiplicative decomposition is used, the order of the

subnodes to Nonlinear Elastic Material matters. The inelastic

!

deformation are assumed to have occurred in the same order as the

subnodes appear in the model tree.

¢ Inversions prior to 5.3, only the additive strain decomposition method
was available. If you want to revert to the previous behavior, select
Additive strain decomposition. If the results then differ significantly,

probably the assumption of additivity is questionable, however.

* Modeling Geometric Nonlinearity
& ¢ Inelastic Strain Contributions

e Studies and Solvers in the COMSOL Multiphysics Reference Manual

ENERGY DISSIPATION
To display this section, click the Show button (“& ) and select Advanced Physics Options.

Select the Calculate dissipated energy check box as needed to compute the energy

dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Material Models>Nonlinear Elastic Material

Membrane>Material Models>Nonlinear Elastic Material

Ribbon
Physics tab with Selid Mechanics selected:

Domains>Material Models>Nonlinear Elastic Material
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Physics tab with Membrane selected:
Boundaries>Material Models>Nonlinear Elastic Material

Elastoplastic Soil Material

The Elastoplastic Soil Material feature is used to model stress-strain relationships which
are nonlinear even at infinitesimal strains. It is available in the Solid Mechanics
interface. This material model requires a Geomechanics Module license (see http://

www.comsol.com/products/specifications /).

By adding the following subnodes to the Elastoplastic Soil Material node you can

incorporate other effects:

* Thermal Expansion (for Materials)
* Initial Stress and Strain

» External Stress

* Damping

* Safety

Add a External Stress feature in case you need to define a pore pressure in a porous soil.
The Pore pressure p is user-defined by default. The default value is 1 atm, but you can
change it to another value or expression for the pore fluid pressure. If there are other
physics interfaces (like Darcy’s law) in the model that make a pressure variable

available, such variables will be available in the list.

COORDINATE SYSTEM SELECTION

The Global coordinate system is sclected by default. The Coordinate system list contains
any additional coordinate systems that the model includes (except boundary
coordinate systems). The coordinate system is used when stresses or strains are
presented in a local system. The coordinate system must have orthonormal coordinate
axes, and be defined in the material frame. Many of the possible subnodes inherit the

coordinate system settings.

ELASTOPLASTIC SOIL MATERIAL
Select a Material model from the list: Modified Cam-Clay, Modified Structured Cam-Clay,

Extended Barcelona Basic, or Hardening Soil.
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Density
All elastoplastic soil models have density as an input. The default Density p uses values

From material. For User defined ecnter another value or expression.

If any material in the model has a temperature dependent mass density, and From
material is selected, the Volume reference temperature list will appear in the Model Input
section. As a default, the value of Teris obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature

locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( 34 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The
default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

the Create Model Input button 25 . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given
in terms of wave speed. It is also used when computing mass forces for

g gravitational or rotating frame loads, and when computing mass
properties (Computing Mass Properties).

See also

* Mass Density and Volume Reference Temperature.

e Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

@,

Modified Cam-Clay
The Modified Cam-Clay options adds the equations and interface for defining the

material properties for the modified Cam-Clay soil model.

See also The Modified Cam-Clay Soil Model in the Structural Mechanics
E}‘ Theory chapter.

From the Specify list, define the elastic properties either in terms of Peisson’s ratio or

Shear modulus.
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The defaults for the Poisson’s ratio 1 or the Shear modulus G, Density p, Slope of critical
state line M, Swelling index &, Compression index A, and Void ratio at reference pressure

erer are taken From material. For User defined cnter other values or expressions

Enter a value or expression for the Reference pressure p,..¢, and the Initial consolidation

pressure p.

For the Slope of critical state line you can alternatively select Match to

Mohr-Coulomb criterion which then matches the slope of the virgin

[

consolidation line to the angle of internal friction. Then select the Angle

of internal friction ¢ as From material (the default) or User defined.

Isotropic Compression with the Modified Cam-Clay Material Model:
il Application Library path Geomechanics_Module/Verification_Examples/

isotropic_compression

Modified Structured Cam-Clay
From the Specify list, define the elastic properties either in terms of Poisson’s ratio or
Shear modulus.

The defaults for the Poisson’s ratio 1 or the Shear modulus G, Density p, Slope of critical
state line /M, Swelling index for structured clay x;, Compression index for destructured
clay A4, Angle of internal friction ¢, Initial structure strength p},;, Destructuring index for
volumetric deformation d,, Destructuring index for shear deformation d, Plastic potential
shape parameter £, Void ratio at reference pressure for destructured clay ey, Additional
void ratio at initial yielding Je;, and Critical effective deviatoric plastic strain eg.P are

taken From material. For User defined enter other values or expressions.

Enter a value or expression for the Reference pressure p ..¢, and the Initial consolidation

pressure p.

See also The Modified Structured Cam-Clay Soil Model in the Structural
a Mechanics Theory chapter.

CHAPTER 4:

Extended Barcelona Basic
The defaults for the Shear modulus G, Density p, Swelling index for changes in suction x,
Compression index at saturation A, Angle of internal friction ¢, Weight parameter w, Soil

stiffness parameter m, Plastic potential shape parameter by, Tension to suction ratio %,
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Void ratio at reference pressure and saturation e,..r, and Initial yield value for suction s,

are taken From material. For User defined enter other values or expressions.

Enter a value or expression for the Initial suction s, the Reference pressure p,..r, and the

Initial consolidation pressure p .

See also The Extended Barcelona Basic Soil Model in the Structural
E}‘ Mechanics Theory chapter.

Hardening Soil

The defaults for the Reference stiffness for primary loading £ 50ref’ Reference stiffness for
unloading and reloading Eurref, Elastoplastic compression modulus K., Poisson’s ratio V,
Density p, Stress exponent m, Cohesion c, Angle of internal friction ¢, Dilatation angle v,
and Void ratio at reference pressure e..r are taken From material. For User defined enter

other values or expressions.

Enter a value or expression for the Failure ratio Ry, the Reference pressure p,.r, and the

Initial consolidation pressure p .

Select the Include dilatancy cut-off check box if needed. The defaults for the Maximum
void ratio e, . is taken From material. For User defined enter other value or expression.

Enter a value or expression for the Initial volumetric strain &]q.

See also The Hardening Soil Model in the Structural Mechanics Theory
Ia chapter.

GEOMETRIC NONLINEARITY
The settings in this section affect the behavior of the selected domains in a

geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. Select the Force linear strains check box to always use a

small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for
computing the stresses can be obtained in two different ways if inelastic deformations

are present: additive decomposition and multiplicative decomposition. The default is
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to use multiplicative decomposition. Select Additive strain decomposition to change to

an assumption of additivity.

[

There are some cases when a small strain formulation could be useful
for a certain domain, even though the study step is geometrically
nonlinear. One such case is in contact analysis, where the study is always
geometrically nonlinear, but it is possible that a geometrically linear

formulation is sufficient in the material.

When a multiplicative decomposition is used, the order of the
subnodes to Elastoplastic Soil Material matters. The inelastic
deformation are assumed to have occurred in the same order as the

subnodes appear in the model tree.

@, .

Modeling Geometric Nonlinearity
Inelastic Strain Contributions

Studies and Solvers in the COMSOL Multiphysics Reference Manual

CHAPTER 4:

ENERGY DISSIPATION
To display this section, click the Show button ("= ) and select Advanced Physics Options.

Select the Calculate dissipated energy check box as needed to compute the energy

dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

LOCATION

IN USER INTERFACE

Context Menus

Solid Mechanics>Material Models>Elastoplastic Soil Material

Ribbon

Physics tab with Selid Mechanics selected:

Domains>Material Models>Elastoplastic Soil Material

Hyperelastic Material

The Hyperelastic Material subnode adds the equations for hyperelasticity at large

strains. Hyperelastic materials can be suitable for modeling rubber and other polymers,

biological tissue, and also for applications in acoustoelasticity. The Hyperelastic Material
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is available in the Solid Mechanics and Membrane interfaces. This material model

requires the Nonlinear Structural Materials Module.

When a hyperelastic material is included in your model, all studies are geometrically
nonlinear. The Include geometric nonlinearity check box in the study settings is selected

and cannot be cleared.

By adding the following subnodes to the Hyperelastic Material node you can

incorporate many other effects:

e Thermal Expansion (for Materials) * Damping
* Hygroscopic Swelling * Viscoelasticity

Mullins Effect

e External Stress

e External Strain * Dlasticity

See also Hyperelastic Material Models in the Structural Mechanics
Q@ Theory chapter.

HYPERELASTIC MATERIAL
Select a hyperelastic Material model from the list and then go to the applicable section

for more information.

Compressibility

Hyperelastic materials can use a mixed formulation by adding the negative mean
pressure as an extra dependent variable, or a weak constrain to enforce the
incompressibility condition. Depending on the hyperelastic material model, select
from the Compressibility list:

* Compressible material

* Nearly incompressible material, quadratic volumetric strain energy

* Nearly incompressible material, Hartmann-Neff volumetric strain energy

¢ Incompressible material

Density

All hyperelastic material models have density as an input. The default Density p uses

values From material. For User defined enter another value or expression.
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If any material in the model has a temperature dependent mass density, and From
material is selected, the Volume reference temperature list will appear in the Model Input
section. As a default, the value of T'¢¢is obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature
locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( £ ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The

default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

the Create Model Input button 2% . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given
in terms of wave speed. It is also used when computing mass forces for
gravitational or rotating frame loads, and when computing mass

properties (Computing Mass Properties).

See also

'@l * Mass Density and Volume Reference Temperature.

* Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

* Neo-Hookean e Varga

¢ St Venant-Kirchhoff e Arruda-Boyce
* Mooney-Rivlin, Two Parameters * Gent

¢ Mooney-Rivlin, Five Parameters * Blatz-Ko

* Mooney-Rivlin, Nine Parameters * Gao

* Yeoh e Murnaghan

* Ogden » User defined

¢ Storakers
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Neo-Hookean

The default values for both Lamé parameter A and Lamé parameter L use values From
material. If the Nearly incompressible material option is selected from the
Compressibility list, enter the Bulk modulus  instead of the Lamé parameter A to define
the volumetric strain energy density. If the Incompressible material option is selected

from the Compressibility list, enter the Lamé parameter [ only.

St Venant-Kirchhoff
The default values for both Lamé parameter A and Lamé parameter L use values From
material. If the Incompressible material option is selected from the Compressibility list,

enter only the Lamé parameter |L.

Mooney-Rivlin, Two Parameters
For Mooney-Rivlin, two-parameters the Model parameters C1( and C(; both use values
From material. If the Nearly incompressible material option is selected from the

Compressibility list, enter the Bulk modulus x.

Mooney-Rivlin, Five Parameters
For Mooney-Rivlin, five-parameters the Model parameters C1(, Cy1, Cog, Cpg, and Cqq
all use values From material. If the Nearly incompressible material option is selected from

the Compressibility list, enter the Bulk modulus x.

Mooney-Rivlin, Nine Parameters
For Mooney-Rivlin, nine-parameters the Model parameters C1, Cy1, Cog, Ca, C11, C3p,
Cos, Ca1, and Cqg all use values From material. If the Nearly incompressible material

option is selected from the Compressibility list, enter the Bulk modulus x.

Yeoh
For Yeoh the Model parameters c1, co, and cg all use values From material. If the Nearly
incompressible material option is selected from the Compressibility list, enter the Bulk

modulus ¥.

Ogden
In the table for the Ogden parameters, enter values or expressions in each column: p,

Shear modulus (Pa), and Alpha parameter.

If the Nearly incompressible material option is selected from the Compressibility list,

enter the Bulk modulus x.

Storakers
For Storakers, in the table for the Storakers parameters, enter values or expressions in

each column: p, Shear modulus (Pa), Alpha parameter, and Beta parameter.
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Varga
For Varga the Model parameters c1, co, and cg all use values From material. If the Nearly
incompressible material option is selected from the Compressibility list, enter the Bulk

modulus K.

Arruda-Boyce
For Arruda-Boyce the default values for the Macroscopic shear modulus 1 and the
Number of segments [N usc values From material. If the Nearly incompressible material

option is selected from the Compressibility list, enter the Bulk modulus .

Gent
For Gent the default values for the Macroscopic shear modulus & and the model
parameter jp, is to use values From material. If the Nearly incompressible material option

is selected from the Compressibility list, enter the Bulk modulus x.

Blatz-Ko
For Blatz-Ko the Shear modulus |1 and the Model parameters 3 and ¢ all use values From

material.

Gao

For Gao the Model parameters a and n all use values From material.

Murnaghan
For Murnaghan the Murnaghan third-order elastic moduli constants /, m, and n and the

Lamé parameters A and L use values From material.

User defined
If Compressible material is sclected from the Compressibility list, enter an expression for
the Elastic strain energy density W

You can also use a mixed formulation by adding the negative mean pressure as an extra
dependent variable. In this case, select from the Compressibility list either Nearly

incompressible material or Incompressible material.

If Nearly incompressible material is sclected, enter the Isochoric strain energy density
Wiso and the Volumetric strain energy density W ;.
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If Incompressible material is sclected, enter the Isochoric strain energy density W, only.

An extra weak constrain is added to enforce the incompressibility condition JJg = 1.

For examples of:

* Mooney-Rivlin, two-parameters and Ogden, scc Inflation of a Spherical
Rubber Balloon. Application Library path
ﬂ:ﬂ] Nonlinear_Structural_Materials_Module/Hyperelasticity/balloon_inflation.

* Murnaghan, see Elasto-Acoustic Effect in Rail Steel. Application
Library path Nonlinear_Structural_Materials_Module/Hyperelasticity/

rail_steel.

ENERGY DISSIPATION

To display this section, click the Show button (“& ) and select Advanced Physics Options.

Select the Calculate dissipated energy check box to compute the energy dissipated by
Plasticity.

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Material Models>Hyperelastic Material
Membrane>Material Models>Hyperelastic Material

Ribbon
Physics tab with Selid Mechanics sclected:
Domains>Material Models>Hyperelastic Material

Physics tab with Membrane selected:

Boundaries>Material Models>Hyperelastic Material

Shape Memory Alloy

The Shape Memory Alloy feature is used to model stress-strain relationships which are

nonlinear even at infinitesimal strains. It is available in the Solid Mechanics interface.

This material model requires the Nonlinear Structural Materials Module.
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By adding the following subnodes to the Shape Memory Alloy node you can incorporate

other effects:

e Thermal Expansion (for Materials)
 Initial Stress and Strain
e External Stress

¢ External Strain

Note: Some options are only available with certain COMSOL products (see http://

www.comsol.com/products/specifications /)

See also Shape Memory Alloy in the Structural Mechanics Theory
@l‘ chapter.

CHAPTER 4:

MODEL INPUTS
From the Temperature T list, select an existing temperature variable from a heat transfer
interface (for example, Temperature (ht)), if any temperature variables exist, or select

User defined to enter a value or expression for the temperature.

If any material in the model has a temperature dependent mass density, and From

material is selected for the density, the Volume reference temperature list will appear in
the Model Input section. As a default, the value of T¢is obtained from a Common model
input. You can also select User defined to enter a value or expression for the reference

temperature locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( £ ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The

default value is room temperature; 293.15 K.
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If you want to create a model input value which is local to your current selection, click

the Create Model Input button 25 . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

See also

E}, e Mass Density and Volume Reference Temperature.

e Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

COORDINATE SYSTEM SELECTION

The Global coordinate system is sclected by default. The Coordinate system list contains
any additional coordinate systems that the model includes (except boundary
coordinate systems). The coordinate system is used when stresses or strains are
presented in a local system. The coordinate system must have orthonormal coordinate
axes, and be defined in the material frame. Many of the possible subnodes inherit the

coordinate system settings.

SHAPE MEMORY ALLOY

Select a Shape memory alloy model from the list: Lagoudas or Souza-Auricchio.

Lagoudas
For Lagoudas enter the Shape memory alloy reference temperature T|y. The defaults for
the Poisson’s ratio vand Density p, are taken From material. For User defined enter other

values or expressions.

For Austenite, select a material from the list. The Young’s modulus E 5 and the Heat
capacity at constant pressure Cp, A are taken from the selected material. For Martensite,
select a material from the list. The Young’s modulus Eyf and the Heat capacity at
constant pressure Cp ) are taken from the selected material. For User defined enter

other values or expressions.

Under Phase transformation parameters, enter the Martensite start temperature M, the
Martensite finish temperature My, the Slope of martensite limit curve Cy, the Austenite
start temperature A, the Austenite finish temperature A, the Slope of austenite limit

curve Cp, and the Maximum transformation strain ;. .

Under Phase transformation kinetics, sclect the Transformation function from the list:

Quadratic, Cosine, Smooth or User defined.

For Smooth, enter the smoothing parameters 11, Mg, N3, and Ny4.
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For User defined, enter the Yield stress G, the Forward transformation law, and the

ys»
Reverse transformation law.

Under Phase transformation direction, sclect the Transformation direction from the list:

Automatic or User defined.

Souza-Auricchio
For Souza-Auriccio the defaults for the Poisson’s ratio vand Density p, are taken From

material. For User defined enter other values or expressions.

For Austenite, sclect a material from the list. The Young’s modulus E  is taken from the
selected material. For Martensite, select a material from the list. The Young’s modulus
Ey is taken from the selected material. For User defined enter other values or

expressions.

Under Phase transformation parameters, cnter the Martensite finish temperature M, the
Slope of limit curve 3, the Maximum transformation strain €tr,max> the Initial yield stress

Oys0, the Hardening modulus Hy, and the Indicator function coefficient .

Initial Transformation State
For Laogudas model, enter the Initial martensite volume fraction, the Initial

transformation strain tensor and the Initial transformation strain tensor at reverse point.

For Souza-Auricchio model, enter the Initial transformation strain tensor.

GEOMETRIC NONLINEARITY

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. There are, however, some cases when the use of a small
strain formulation for a certain domain is needed. In those cases, select the Force linear
strains check box. When selected, a small strain formulation is always used,
independently of the setting in the study step. The check box is not selected by default
to conserve the properties of the model.

When a geometrically nonlinear formulation is used, the elastic deformations used for
computing the stresses can be obtained in two different ways if inelastic deformations
are present: additive decomposition and multiplicative decomposition. The default is
to use multiplicative decomposition. Select Additive strain decomposition to change to

an assumption of additivity.

ENERGY DISSIPATION
You can select to compute and store various energy dissipation variables in a time

dependent analysis. Doing so will add extra degrees of freedom to the model.
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To display this section, click the Show button (“& ) and select Advanced Physics Options.

Select the Calculate dissipated energy check box as needed to compute the energy

dissipated.

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Material Models>Shape Memory Alloy

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Shape Memory Alloy

Piezoelectric Material

The Piezoelectric Material node defines the piezoelectric material properties either in
stress-charge form using the elasticity matrix and the coupling matrix, or in
strain-charge form using the compliance matrix and the coupling matrix. It is normally
used together with a Piezoelectric Effect multiphysics coupling node and a
corresponding Charge Conservation, Piezoelectric node in the Electrostatics interface.
This node is added by default to the Solid Mechanics interface when adding a
Piezoelectric Devices interface.

This material model requires the Structural Mechanics Module, MEMS Module, or
Acoustics Module.

By adding the following subnodes to the Piezoelectric Material node you can
incorporate many other effects:

e Initial Stress and Strain

* Thermal Expansion (for Materials)

e Mechanical Damping

* Coupling Loss
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¢ Dielectric Loss

¢ Conduction Loss (Time-Harmonic)

When the Piezoelectric Material node is added to the structural mechanics
interface in the absence of an active Piezoelectric Effect multiphysics
coupling node the material behaves similarly to a Linear Elastic Material
-&- node, with elastic properties as corresponding to the elasticity or
compliance matrix entered (see below). The piezoelectric effect is then

not included in the corresponding equation system.

See also Piezoelectric Material in the Structural Mechanics Theory

@l‘ chapter.

PIEZOELECTRIC MATERIAL PROPERTIES

Select a Constitutive relation — Stress-charge form or Strain-charge form. For cach of the

following, the default uses values From material. For User defined enter other values in

the matrix or field as needed.

* For Stress-charge form, sclect an Elasticity matrix (ordering: xx, yy, 2z, yz, xz, xy) (cg).

* For a Strain-charge form, sclect a Compliance matrix (ordering: xx, yy, 7z, yz, Xz, xy)
(sE)-

¢ Select a Coupling matrix (ordering: xx, yy, zz, yz, xz, xy) (d).

e Sclect a Relative permittivity (e.q or e,7).

¢ Enter values for the Remanent electric displacement D.,..

e Select a Density (p).

For entering these matrices, use the following order (Voigt notation),
n which is the common convention for piezoelectric materials: xx, yy, 2z, yz,
Xz, zy.

CHAPTER 4:

Density

If any material in the model has a temperature dependent mass density, and From
material is sclected, the Volume reference temperature list will appear in the Model Input
section. As a default, the value of T.o¢is obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature
locally.
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When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( 4 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The
default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

the Create Model Input button 2z . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given
. in terms of wave speed. It is also used when computing mass forces for
g gravitational or rotating frame loads, and when computing mass
properties (Computing Mass Properties).

See also

'E}. e Mass Density and Volume Reference Temperature.

e Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

GEOMETRIC NONLINEARITY

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. There are, however, some cases when the use of a small
strain formulation for a certain domain is needed. In those cases, select the Force linear
strains check box. When selected, a small strain formulation is always used,
independently of the setting in the study step. The check box is not selected by default
to conserve the properties of the model.

* Modeling Piezoelectric Problems

* Modeling Geometric Nonlinearity

@,

e The Electromagnetics Interfaces in the COMSOL Multiphysics
Reference Manunl

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Material Models>Piezoelectric Material
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Ribbon
Physics tab with Selid Mechanics selected:

Domains>Material Models>Piezoelectric Material

Muagnetostrictive Material

The Magnetostrictive Material node defines the magnetostrictive material properties.

In case of linear magnetostriction model, the material data can be entered either in the
strain-magnetization form using the elasticity matrix and the coupling matrix, or in
stress-magnetization form using the compliance matrix and the coupling matrix. It is
normally used as part of Magnetostriction multiphysics interface together with a
Magnetostriction multiphysics coupling node and Ampére’s Law, Magnetostrictive node
in the corresponding Magnetic Fields interface. Magnetostrictive Material node is added
by default to the Solid Mechanics interface when adding a Magnetostriction
multiphysics interface. The interface requires the AC/DC Module and at least one of
the following modules: Structural Mechanics, MEMS, Acoustics.

When the Magnetostrictive Material node is added to the Structural
Mechanics interface in the absence of an active Magnetostriction
multiphysics coupling node, the material behaves similarly to a Linear
A. Elastic Material node with some limitations on the format for the elastic
material data input. All the magnetic material data and coupling data will
have no effect. The magnetostrictive effect is then zot included in the

corresponding equation system.

By adding the following subnodes to the Magnetostrictive Material node you can
incorporate other effects:

e Initial Stress and Strain

¢ Thermal Expansion (for Materials)

e Mechanical Damping

See also Magnetostrictive Material in the Structural Mechanics Theory

@l‘ chapter.

CHAPTER 4:

SOLID MECHANICS



LINEAR MAGNETOSTRICTIVE MATERIAL PROPERTIES
Select a Constitutive relation — Strain-magnetization form or Stress-magnetization form.
For each of the following, the default uses values From material. For User defined, enter

other values in the matrix or field as needed.

¢ For Strain-magnetization form, sclect a Compliance matrix (ordering: xx, yy, 7z, yz, xz,
xy) (sp)-

¢ For a Stress-magnetization form, sclect an Elasticity matrix (ordering: xx, yy, 2z, yz, xz,
xy) (cq)-

¢ Seclect a Piezomagnetic coupling matrix (ordering: xx, yy, zz, yz, xz, xy) (dygT or egs).

* Select a Relative permeability (1, or [L.g).

¢ Seclect a Density (p).

For entering these matrices, use the following order (Voigt notation),
n which is the common convention for magnetostrictive materials: xx, yy,

22,92, X2, 2.

Density

If any material in the model has a temperature dependent mass density, and From
material is selected, the Volume reference temperature list will appear in the Model Input
section. As a default, the value of T..¢is obtained from a Common model input. You can
also select User defined to enter a value or expression for the reference temperature

locally.

When using Common model input, you can see or modify the value of the volume
reference temperature by clicking the Go To Source button ( 4 ). This will move you
to the Common Model Inputs node under Global Definitions in the Model Builder. The

default value is room temperature; 293.15 K.

If you want to create a model input value which is local to your current selection, click

the Create Model Input button 2=5 . This will create a new Model Input node under

Definitions in the current component, having the same selection as in the current node.

The density is needed for dynamic analysis or when the elastic data is given
in terms of wave speed. It is also used when computing mass forces for
g gravitational or rotating frame loads, and when computing mass

properties (Computing Mass Properties).
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See also

'Ei * Mass Density and Volume Reference Temperature.

* Common Model Inputs and Model Input in the COMSOL
Multiphysics Reference Guide.

NONLINEAR MAGNETOSTRICTIVE MATERIAL PROPERTIES

See the corresponding the theory section Nonlinear Magnetostriction.

GEOMETRIC NONLINEARITY

If a study step is geometrically nonlinear, the default behavior is to use a large strain
formulation in all domains. There are, however, some cases when the use of a small
strain formulation for a certain domain is needed. In those cases, select the Force linear
strains check box. When selected, a small strain formulation is always used,
independently of the setting in the study step. The check box is not selected by default

to conserve the properties of the model.

e Magnetostriction

* Modeling Magnetostrictive Materials
* Modeling Geometric Nonlinearity

e Ampere’s Law, Magnetostrictive

* The Magnetic Fields Interface in the COMSOL Multiphysics

Reference Manunl

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Material Models>Magnetostrictive Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Magnetostrictive Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to an elastic material

model. This material model is available in the Solid Mechanics, Membrane, and

570 | CHAPTER 4: SOLID MECHANICS



Layered Shell interfaces, and can be used together with Linear Elastic Material,

Nonlinear Elastic Material, and Hyperelastic Material.

See also Linear Viscoelastic Materials and Large Strain Viscoelasticity in
.& the Structural Mechanics Theory chapter.

LAYER SELECTION
This section is only present in the in the Layered Shell interface, where it is described

in the documentation for the Viscoelasticity node.

THERMAL EFFECTS

Viscoelastic properties have a strong dependence on the temperature. For
thermorheologically simple materials, a change in the temperature can be transformed
directly into a change in the time scale. Thus, the relaxation time is modified to

ap(T)t,,, where ap(T) is a shift function.

Select a Shift function — None (the default), Williams-Landel-Ferry, Arrhenius, or User
defined.

* When the default, None, is kept, the shift function ap(7) is set to unity and the
relaxation time is not modified.

* For Williams-Landel-Ferry enter values or expressions for these properties then the
shift function ap(T) is computed from these parameters and the relaxations time is

shifted according to it:
- Reference temperature Ty The default is 293.15 K.
- WLF constant | Cywpp. The default is 17.44.
- WLF constant 2 Cowyp. The defaultis 51.6 K.
* For Arrhenius enter values or expressions for these properties then the shift function

ap(T) is computed from these parameters and the relaxations time is shifted

according to it:
- Reference temperature Ty. The default is 293.15 K.

- Activation energy Q.

* For User defined enter a value or expression for the shift function ar.
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VISCOELASTICITY MODEL
Select a Material model — Generalized Maxwell (the default), Standard linear solid, or

Kelvin-Voigt. Then see the settings for each option that follows.

For any material model, you can select the shear modulus to use when solving a
stationary problem. Choose the Static stiffness for the material model — Long-term

(the default) or Instantaneous.

Generalized Maxwell
For Generalized Maxwell in the table enter the values for the parameters that describe

the viscoelastic behavior as a series of spring-dashpot pairs.

For linear viscoelasticity, in each Branch row enter the stiffness of the spring G,,, in the
Shear modulus (Pa) column and the relaxation time constant T, in the Relaxation time

(s) column for the spring-dashpot pair in branch m.

For large strain viscoelasticity, in each Branch row enter 3,,, (the energy factor of the
branch) in the Energy factor (1) column and the relaxation time constant T, in the

Relaxation time (s) column for the spring-dashpot pair.

¢ Use the Add button ( = ) to add a row to the table and the Delete button ( =) to

—Xx

delete a row in the table.

* Using the Load from file button ( = ) and the Save to file button ( [] ) load and
store data for the branches in a text file with three space-separated columns (from
left to right): the branch number, the shear modulus or energy factor, and the

relaxation time for that branch.

Standard Linear Solid
For Standard linear solid enter the values for the parameters that describe the
viscoelastic behavior of the single spring-dashpot branch.

For linear viscoelasticity, select an option from the Relaxation data list and edit the

default as needed:

* Relaxation time T,. The default is 3000 s.

* Viscosity 1, of the dash-pot. The default is 6-1013 Pass.
In the Shear modulus field, enter the stiffness of the spring Gy,.. The default is 2-1010 pa.

For large strain viscoelasticity, enter the Relaxation time T, which defaultis 3000 s, and
the Energy factor B, of the dash-pot. The default is 0.2.
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Kelvin-Voigt
For Kelvin-Voigt enter the values for the parameter that describes the viscous behavior

of the single dash-pot.

For linear viscoelasticity, select an option from the Relaxation data list and edit the
default as needed:

* Relaxation time T,. The default is 3000 s.
* Viscosity 1, of the dash-pot. The default is 6-1013 Pas.

For large strain viscoelasticity, enter the Relaxation time T,. The default is 3000 s.

Burgers
For Burgers enter the values for the parameter that describes the viscous behavior of

the spring dash-pot in series with a second spring-dash-pot pair.

For linear viscoelasticity, select an option from the Relaxation data list and edit the
default as needed:

* Relaxation time. The default is 3000 s for both dash-pots 1,7 and Ty9.

* Viscosity. Enter the viscosity of the dash-pots. The defaultis 6- 1013 Pa:s for both Nyl
and Nyo.

In the Shear modulus field, enter the stiffness of the second spring G . The default is
10
2-107" Pa.

DISCRETIZATION

Select a Shape function type — Discontinuous Lagrange (default) or Gauss point data for
the components of the auxiliary viscoelastic tensor. When the discontinuous Lagrange
discretization is used, the shape function order is selected as one order less than what
is used for the displacements. This results in that fewer extra degrees of freedom are
added to the model than when using Gauss point data. The accuracy does in general
not differ much. If you want to enforce that the constitutive law is fulfilled at the
integration points, select Gauss point data.

To compute the energy dissipation caused by viscoelasticity, enable the
Calculate dissipated energy check box in the Energy Dissipation section of

the parent material node.
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» Viscoelastic Structural Damper: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency

Viscoelastic Structural Damper—Transient Analysis: Application
Library path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_transient

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Linear Elastic Material>Viscoelasticity
Solid Mechanics>Nonlinear Elastic Material>Viscoelasticity
Solid Mechanics>Hyperlastic Material>Viscoelasticity
Layered Shell>Linear Elastic Material>Viscoelasticity
Membrane>Linear Elastic Material>Viscoelasticity
Membrane>Nonlinear Elastic Material>Viscoelasticity

Membrane>Hyperlastic Material>Viscoelasticity

Ribbon

Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperelastic
Material node selected in the model tree:

Attributes>Viscoelasticity

Mullins Effect

Use the Mullins effect subnode to define the properties for modeling the
stress-softening phenomenon under cyclic loading. The Mullins effect can be used

together with Hyperelastic Material.

Damage function
The Damage function defines the model for Mullins effect.

For Ogden-Roxburgh enter the following settings:

¢ Maximum damage d.,.The default is 1.
* Damage saturation W,;. The defaultis 1 M]/m3.
¢ Deformation dependence coefficient . The default is 0.

For Miehe enter the following settings:

¢ Maximum damage d... The default is 1.
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¢ Damage saturation W ;. The defaultis 1 MJ/ mS.

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Hyperelastic Material>Mullins Effect
Membrane>Hyperelastic Material>Mullins Effect

Ribbon
Physics tab with Hyperelastic Material node selected in the model tree:
Attributes>Mullins Effect

Plasticity

Use the Plasticity subnode to define the properties for modeling elastoplastic materials.
This material model is available in the Solid Mechanics, Membrane and Truss
interfaces, and can be used together with Linear Elastic Material, Nonlinear Elastic

Material, and Hyperelastic Material.

The Nonlinear Structural Material Module or the Geomechanics Module are required
for this material model, and the available options depend on the products used. For

details, see http://www.comsol.com/products/specifications/.

See also Elastoplastic Material Models in the Structural Mechanics
.& Theory chapter.

PLASTICITY MODEL

Use this section to define the plastic properties of the material.

Plasticity Model
Select Small plastic strains or Large plastic strains to apply either an additive or

multiplicative decomposition between elastic and plastic strains.

* When using plasticity together with a hyperelastic material, only the option Large
plastic strains is available.
* When using plasticity in the Membrane and Truss interfaces, only the option Small

plastic strains is available.

Yield Function F
The Yield function F defines the limit of the elastic regime F(o, Oys) < 0.
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Select a Yield function F criterion — von Mises stress, Tresca stress, Hill orthotropic

plasticity, or User defined.

The default is von Mises stress with associate plastic potential.

Select Tresca stress to use a Tresca yield criterion. The plastic potential can be an

Associated or non associated flow rule with the von Mises stress as plastic potential.

Select Hill orthotropic plasticity to use Hill’s criterion. For Hill orthotropic plasticity
from the Specify list select cither the Initial tensile and shear yield stresses 0y;; or

Hill’s coefficients F', G, H, L, M, and N. The default for either selection uses values
From material (if it exists) or User defined. The principal directions of orthotropy are

inherited from the coordinate system selection in the Linear Elastic Material node.

For User defined enter a different value or expression. Write any expression in terms

of the stress tensor variables or its invariants in the ¢(c) field.

- For User defined also select the Plastic potential @ related to the flow rule —
Associated (the default), von Mises, or User defined (non associated). Enter a User
defined value in the @ field as needed.

Initial Yield Stress
For all yield criteria, the default Initial yield stress oygo uscs values From material and

represents the stress level where plastic deformation starts.

Isotropic Hardening Model

For all yield criteria, select the type of linear or nonlinear isotropic hardening model

from the Isotropic hardening model list.

Select Perfectly plastic (ideal plasticity) if the material can undergo plastic

deformation without any increase in yield stress.

For Linear the default Isotropic tangent modulus E; ., uses values From material (if
it exists) or User defined. The yicld level 6y is modified as hardening occurs, and it
is related to the effective plastic strain €p, as

11
iso“pe -
P Eiso ETiso

_1
E
For the linear isotropic hardening model, the yield stress increases proportionally to

the effective plastic strain €,,. The Young’s modulus E is taken from the elastic

material properties.

Select Ludwik from the list to model nonlinear isotropic hardening. The yield level

Oys is modified by the power-law
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n
Gys(spe) = Oyg0+ kepe

the Strength coefficient 2 and the Hardening exponent 7 use values From material (if

it exists) or User defined.

For Swift nonlinear isotropic hardening, the Reference strain € and the Hardening
exponent 7 usc valucs From material (if it cxists) or User defined. The yicld level oy

is modified by the power-law
€pe)”
cys(spe) = GysO(]‘ + 80)

Select Voce from the list to model nonlinear isotropic hardening. The yield level oy

is modified by the exponential law
—Be
pe
Gys(spe) = GysO + Gsat(l -e )

the Saturation flow stress G, and the Saturation exponent [3 use values From material

(if it exists) or User defined.
For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress G,
the Saturation coefficient m, and the Saturation exponent 7 use values From material
(if it exists) or User defined. The yicld level 6y is increased by the exponential law
mep
Oys(€pe) = Oygo+ (cw—cyso)(l—e )
For User defined isotropic hardening the Hardening function Gy,(€p,) uses values From

material. The yield level 6y is modified as

Gys = Oyso+ On(€

ys pe)

This definition implies that the hardening function 6y,(€pe) must be zero at zero
plastic strain. In other words, Oy = 6y¢0 When €, = 0. With this option it is
possible to fit nonlinear isotropic hardening curves. The hardening function can
depend on more variables than the effective plastic strain, for example the

temperature.
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Kinematic Hardening Model
For all yield function criteria, select the type of kinematic hardening model (not

available for hyperelastic materials) from the Kinematic hardening model list.

¢ Select No kinematic hardening (when either ideal plasticity or an isotropic hardening
model is selected as isotropic hardening model) if it is a material that can undergo

plastic deformation without a shift in the yield surface.

e If Linear is sclected as the Kinematic hardening model, the default Kinematic tangent
modulus Ey uses values From material. This parameter is used to calculate the back

stress O}, as plasticity occurs:

2 . 1 1 1
Op = Ck'gsp WlthCTk = E—,k—E

This is Prager’s linear kinematic hardening model, so the back stress o}, is

collinear to the plastic strain tensor €,

e If Armstrong-Frederick is sclected from the list, the default Kinematic hardening
modulus Cy and Kinematic hardening parameter 7 use values From material. These

parameters are used to calculate the back stress 6}, from the rate equation
Gb = 3C%Ep ~ TkEpeOp

This is Armstrong-Frederik nonlinear kinematic hardening model.

* When Chaboche is sclected from the Kinematic hardening model list, the default
Kinematic hardening modulus C|y uses values From material. Add branches as needed

to solve N rate equations for the back stresses:
Obi = 3%i€p = Vi€peOp

The total back stress o}, is then computed from the sum

1V
2
o = 3Co8p + D O
i=1
For each Branch row, enter C; (the hardening modulus of the branch ) in the

Hardening modulus (Pa) column and v; (the hardening parameter of the branch i) in

the Hardening parameter (1) column.

Use the Add button ( == ) and the Delete button ( :=) to add or delete a row in the
table. Use the Load from file button ( [i= ) and the Save to file button ( [=] ) to load
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and store data for the branches in a text file with three space-separated columns
(from left to right): the branch number, the hardening modulus for that branch, and

the hardening parameter for that branch.

To compute the energy dissipation caused by plasticity, enable the

Calculate dissipated energy check box in the Energy Dissipation section of

the parent material node.
o Sheet Metal Forming: Application Library path
Nonlinear_Structural_Materials_Module/Plasticity/sheet_metal_forming
[ e For an example of Large plastic strains, scec Necking of an Elastoplastic

Metal Bar: Application Library path

Nonlinear_Structural_Materials_Module/Plasticity/bar_necking.

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Linear Elastic Material>Plasticity
Solid Mechanics>Nonlinear Elastic Material>Plasticity
Solid Mechanics>Hyperelastic Material>Plasticity
Membrane>Linear Elastic Material>Plasticity
Membrane>Nonlinear Elastic Material>Plasticity

Truss>Linear Elastic Material>Plasticity

Ribbon

Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperlastic Material
node selected in the model tree:

Attributes>Plasticity

Creep

Use the Creep subnode to define the creep properties of the material model. This
material model is available in the Solid Mechanics, Membrane, and Layered Shell
interfaces, and can be used together with Linear Elastic Material and Nonlinear Elastic
Material.
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The Nonlinear Structural Material Module or the Geomechanics Module are required
for this material model, and the available options depend on the products used. For

details, see http://www.comsol.com/products/specifications/.

See also Creep and Viscoplasticity in the Structural Mechanics Theory

@l‘ chapter.

CHAPTER 4:

LAYER SELECTION
This section is only present in the in the Layered Shell interface, where it is described

in the documentation for the Creep node.

CREEP DATA

Nonlinear Structural Materials Module
Select a Material model — Norton, Norton-Bailey, Garofalo (hyperbolic sine),
Nabarro-Herring, Coble, Weertman, Potential, Volumetric, Deviatoric, or User defined.

Then follow the instructions as below.

Geomechanics Module
Select a Material model — Potential, Volumetric, Deviatoric, or User defined. Then follow

the instructions as below.

Norton

For Norton enter the following settings:

¢ Creep rate coefficient A.

¢ Reference creep stress O,r. The default is 1 MPa.

* Stress exponent 1.

¢ Seclect the Include temperature dependency check box to add an “Arrhenius-type”

temperature dependence. Then enter a Creep activation energy Q.

Norton-Bailey
For Norton-Bailey enter the following settings:

¢ Creep rate coefficient A.
¢ Reference creep stress O,qr. The default is 1 MPa.

* Stress exponent 1.
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* Select a Hardening model — Time hardening or Strain hardening.

- For Time hardening, enter the hardening exponent m, the Time shift £, ;s and the

Reference time ¢ ..f.

- For Strain hardening, enter the hardening exponent m, the Effective creep strain

shift &y;q, and the Reference time £ .f.

¢ Seclect the Include temperature dependency check box to add an “Arrhenius-type”

temperature dependence. Then enter a Creep activation energy Q.

Garofalo (hyperbolic sine)

For Garofalo (hyperbolic sine) enter the following settings:

¢ Creep rate coefficient A.

* Reference creep stress Opqr. The default is 1 MPa.

* Garofalo n parameter 1.

* Seclect the Include temperature dependency check box as needed. Then enter a Creep

activation energy Q.

Nabarro-Herring

For Nabarro-Herring enter the following settings:
* Volume diffusivity D,

¢ Burgers vector b.

¢ Grain diameter d.

Coble

For Coble enter the following settings:

¢ lonic diffusivity Dy,

¢ Burgers vector b.

* Grain diameter d.

Weertman

For Weertman enter the following settings:
* Diffusivity D,,.

¢ Burgers vector b.

* Stress exponent 1.

* Reference creep stress Opr. The default is 1 MPa.
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Potential

For Potential enter the following settings:
¢ Rate multiplier 7.

¢ Creep potential Q.

Deviatoric
For Deviatoric enter the Effective creep strain rate € .

Volumetric
For Volumetric enter the Volumetric creep strain rate &, ).

User defined
For User defined enter each element for the symmetric Creep strain rate tensor &,.. The

tensor components are interpreted in the coordinate system of the parent node.

To compute the energy dissipation caused by creep, enable the Calculate
dissipated energy check box in the Energy Dissipation section of the parent

material node (Linear Elastic Material or Nonlinear Elastic Material).

For an example of Norton and Norton-Baily material models, see
[T Combining Creep Material Models: Application Library path

Nonlinear_Structural_Materials_Module/Creep/combined_creep.

CHAPTER 4:

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Linear Elastic Material>Creep
Solid Mechanics>Nonlinear Elastic Material>Creep
Layered Shell>Linear Elastic Material>Creep
Membrane>Linear Elastic Material>Creep

Membrane>Nonlinear Elastic Material>Creep

Ribbon

Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the
model tree:

Attributes>Creep
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Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of the material
model. This material model is available in the Solid Mechanics and Membrane
interfaces, and can be used together with Linear Elastic Material and Nonlinear Elastic
Material.

The Nonlinear Structural Material Module is required for this material model.

See also Creep and Viscoplasticity in the Structural Mechanics Theory

E}‘ chapter.

LAYER SELECTION
This section is only present in the in the Layered Shell interface, where it is described

in the documentation for the Viscoplasticity node.

VISCOPLASTICITY MODEL
Select a Viscoplasticity model — Anand, Chaboche, or Perzyna. Then follow the

instructions as below.

Anand

For Anand enter the following data:

¢ Creep rate coefficient A.

¢ Creep activation energy Q.

* Multiplier of stress &.

* Stress sensitivity m.

* Deformation resistance saturation coefficient s.
* Deformation resistance initial value s;,;;.

* Hardening constant h.

* Hardening sensitivity a.

* Deformation resistance sensitivity 7.
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Each of the material properties can either be defined obtained From material, or as User

defined. In the latter case, enter a value or an expression.

Viscoplastic Creep in Solder Joints: Application Library path
ﬂ]]] Nonlinear_Structural_Materials_Module/Viscoplasticity/

viscoplastic_solder_joints

CHAPTER 4:

Chaboche

For Chaboche enter the following settings:

¢ Viscoplastic rate coefficient A.

¢ Reference creep stress O,qr. The default is 1 MPa.
* Stress exponent 1.

Yield Function F
The Yield function F defines the limit of the elastic regime F(0, 6y,) < 0.

Select a Yield function F criterion — von Mises stress, Tresca stress, Hill orthotropic

plasticity, or User defined.

e The default is von Mises stress with associate plastic potential.

* Select Tresca stress to use a Tresca yield criterion. The plastic potential can be an

Associated or non associated flow rule with the von Mises stress as plastic potential.

¢ Sclect Hill orthotropic plasticity to use Hill’s criterion. For Hill orthotropic plasticity
from the Specify list select cither the Initial tensile and shear yield stresses oy;; or
Hill’s coefficients F, G, H, L, M, and N. The default for either selection uses values
From material (if it exists) or User defined. The principal directions of orthotropy are

inherited from the coordinate system selection in the parent feature.
¢ For User defined enter a different value or expression. In the ¢(c) field write any

expression in terms of the stress tensor components or its invariants.

- For User defined also select the Plastic potential @ related to the flow rule —
Associated (the default), von Mises, or User defined (non associated). Enter a User
defined value in the @ field as needed.

Initial Yield Stress
The default Initial yield stress oy uses values From material and represents the stress

level where viscoplastic deformation starts.
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Isotropic Hardening Model
Select the type of linear or nonlinear isotropic hardening model from the Isotropic

hardening model list.

* Select Perfectly plastic (ideal viscoplasticity) if the material can undergo viscoplastic

deformation without any increase in yield stress.

* For Linear the default Isotropic tangent modulus Epy, uses values From material (if
it exists) or User defined. The yicld level 6y is modified as hardening occurs, and it

is related to the effective viscoplastic strain €ype as

. 1 1
iso€vpe with 7= ETiso_E

180

Oys = Oygo + E
For the linear isotropic hardening model, the yield stress increases proportionally to
the effective viscoplastic strain €ype. The Young’s modulus E is taken from the elastic

material properties.

¢ Select Ludwik from the list to model nonlinear isotropic hardening. The yield level
Oys is modified by the power-law

= +k "
Gys - GysO 8vpe

the Strength coefficient 2 and the Hardening exponent n use values From material (if
it exists) or User defined.

 For Swift nonlinear isotropic hardening, the Reference strain € and the Hardening
exponent 1 usc valucs From material (if it exists) or User defined. The yicld level oy

is modified by the power-law

SVEE n
G,.=0C (1 + )
ys ys0 €0

* Select Voce from the list to model nonlinear isotropic hardening. The yield level oy

is modified by the exponential law

_BEV
— pe
Gys - GysO + Gsat(l —-e )

the Saturation flow stress G, and the Saturation exponent [ use values From material

(if it exists) or User defined.

* For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress o,
the Saturation coefficient m, and the Saturation exponent 7 use values From material

if it exists) or User defined. The yield level 6, is increased by the exponential law
Y Vs Y P
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-mer
_ vpe
Oy = cyso+(cw—cyso)(l—e )

* For User defined isotropic hardening the Hardening function op,(€p,) uses values

From material. The yicld level 64 is modified as
Oys = Oyso + Gh(svpe)

This definition implies that the hardening function oy,(€,pe) must be zero at zero
viscoplastic strain. In other words, 0y = 0y49 Wwhen €,pe = 0. With this option it
is possible to fit nonlinear hardening curves. The hardening function can depend
on more variables than the effective viscoplastic strain, for example the

temperature.

Kinematic Hardening Model
Select the type of kinematic hardening model from the Kinematic hardening model list.

¢ Seclect No kinematic hardening when the material can undergo viscoplastic

deformation without a shift in the yield surface.

If Linear is selected as the Kinematic hardening model, the default Kinematic tangent
modulus E} uses values From material. This parameter is used to calculate the back
stress Oj, as:

Gb = Ck‘gevp Wlth l = lk—%

Ck
This is Prager’s linear kinematic hardening model, so the back stress Gy, is
collinear to the viscoplastic strain tensor €yp,.

If Armstrong-Frederick is sclected from the list, the default Kinematic hardening
modulus C}. and Kinematic hardening parameter ;. use values From material. These

parameters are used to calculate the back stress 6}, from the rate equation
Ob = 3% kEvp ~ Yk€vpeOp

This is Armstrong-Frederik nonlinear kinematic hardening model.

When Chaboche is selected from the Kinematic hardening model list, the default
Kinematic hardening modulus Cy uses values From material. Add branches as needed

to solve N rate equations for the back stresses:
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Ob,i = §Ci8vp —Yi€vpeOp i

For each Branch row, enter C; (the hardening modulus of the branch 7) in the
Hardening modulus (Pa) column and ¥; (the hardening parameter of the branch i) in
the Hardening parameter (1) column.

Use the Add button ( = ) and the Delete button ( := ) to add or delete a row in the
table. Use the Load from file button ( Ji= ) and the Save to file button ( [] ) to load
and store data for the branches in a text file with three space-separated columns

(from left to right): the branch number, the hardening modulus for that branch, and

the hardening parameter for that branch.

The total back stress oy, is then computed from the sum

iV
2
op = 5C08p + > O
i=1

Perzyna

For Perzyna enter the following settings:

e Viscoplastic rate coefficient A.

* Reference creep stress 0,.r. The default is 1 MPa.

The other settings are the same as for Chaboche.

To compute the energy dissipation caused by viscoplasticity, enable the
Calculate dissipated energy check box in the Energy Dissipation section of

it the parent material node (Linear Elastic Material or Nonlinear Elastic
Material).

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Linear Elastic Material>Viscoplasticity
Solid Mechanics>Nonlinear Elastic Material>Viscoplasticity
Layered Shell>Linear Elastic Material>Viscoplasticity
Membrane>Linear Elastic Material>Viscoplasticity

Membrane>Nonlinear Elastic Material>Viscoplasticity
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Ribbon

Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the
model tree:

Attributes>Viscoplasticity

Porous Plasticity

Use the Porous Plasticity subnode to define the properties of a plasticity model for a

porous material.

POROUS PLASTICITY MODEL

Use this section to define the plastic properties of the porous material.

Yield Function F
The Yield function F defines the limit of the elastic regime F(o, Oyg) < 0.

Select a Yield function F for the porous plasticity criterion — Shima-Oyane, Gurson,

Gurson-Tvergaard-Needleman, Fleck-Kuhn-McMeeking, or FKM-GTN.

Shima-Oyane

For Shima-Oyane enter the following data:
* Initial yield stress oy.

¢ Shima-Oyane parameter .

¢ Shima-Oyane parameter .

¢ Shima-Oyane parameter m.

* Initial void volume fraction fj.

Gurson

For Gurson enter the following data:

* Initial yield stress oy.

* Initial void volume fraction f;.
Gurson-Tvergaard-Needleman

For Gurson-Tvergaard-Needleman enter the following data:
* Initial yield stress oy.

* Tvergaard correction coefficient g.

¢ Tvergaard correction coefficient go.

* Initial void volume fraction fj.
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Critical void volume fraction f.

Failure void volume fraction f}.

Fleck-Kuhn-McMeeking

For Fleck-Kuhn-McMeeking enter the following data:

Initial yield stress Oy.
Initial void volume fraction f,.

Maximum void velume fraction f ..

FKM-GTN
For FKM-GTN enter the following data:

Initial yield stress oOyg.

Tvergaard correction coefficient q1.
Tvergaard correction coefficient go.
Initial void volume fraction f.
Maximum void volume fraction f, ..

Void volume fraction cut-off for GTN model /.

Void volume fraction cut-off for FKM model frxp-

Each of the material properties can either be defined obtained From material, or as User

defined. In the latter case, enter a value or an expression.

@

See also Porous Plasticity in the Structural Mechanics Theory chapter.

To compute the energy dissipation caused by porous compaction, enable

Material ).

the Calculate dissipated energy check box in the Energy Dissipation section

of the parent material node (Linear Elastic Material or Nonlinear Elastic

LOCATION IN USER INTERFACE

Context Menus

Solid Mechanics>Linear Elastic Material>Porous Plasticity

Solid Mechanics>Nonlinear Elastic Material>Porous Plasticity

THE SOLID MECHANICS INTERFACE |

589



590 |

CHAPTER 4:

Membrane>Linear Elastic Material>Porous Plasticity

Membrane>Nonlinear Elastic Material>Porous Plasticity

Ribbon

Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the
model tree:

Attributes>Porous Plasticity

Soil Plasticity

In the Soil Plasticity subnode you define the properties for modeling materials
exhibiting soil plasticity. This material model can be used together with Linear Elastic
Material and Nonlinear Elastic Material. It is available with the Geomechanics Module.

The yield criteria are described in the theory section:
¢ Drucker-Prager Criterion
* Mohr-Coulomb Criterion

¢ Matsuoka-Nakai Criterion

¢ Lade-Duncan Criterion

SOIL PLASTICITY
Select a Yield criterion — Drucker-Prager, Mohr-Coulomb, Matsuoka-Nakai, or
Lade-Duncan. Most values are taken From material. For User defined choices, enter other

values or expressions.

Drucker-Prager

In the standard Drucker-Prager formulation, the material parameters are given in
terms of the o and & coefficients. Often material data is expressed in the parameters ¢
and ¢ used in the Mohr-Coulomb model. You can the choose to use there parameters
instead. If so, select the Match to Mohr-Coulomb criterion check box (see
Mohr-Coulomb Criterion). If this check box is selected, the default values for Cohesion

¢ and the Angle of internal friction ¢ are taken From material.

If required, select the Use dilatation angle in plastic potential check box. If this check
box is selected, then enter a value or expression for the Dilatation angle y. Alternatively,
select From material. The dilatation angle replaces the angle of internal friction when

defining the plastic potential.

If the Match to Mohr-Coulomb criterion check box is zot selected, then the default

Drucker-Prager alpha coefficient and Drucker-Prager k coefficient arc taken From material.
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If required, select the Include elliptic cap check box. Select from the list the hardening
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to
define the semi-axes of the ellipse under Elliptic cap parameter p, and Elliptic cap
parameter p},. When Isotropic hardening is selected from the list, the default Isotropic

hardening modulus K; , the Maximum plastic volumetric strain € and the Ellipse

pvol,max>
aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value

or expression to define the initial semi-axis of the ellipse under the Initial location of the

cap ppo.

Mohr-Coulomb
The default Angle of internal friction ¢ and Cohesion ¢ arc taken From material.

If required, select the Use dilatation angle in plastic potential check box. If this check
box is selected, then enter a value or expression for the Dilatation angle y. Alternatively,
select From material. The dilatation angle replaces the angle of internal friction when

defining the plastic potential.

Under Plastic potential sclect cither Drucker-Prager matched at compressive meridian,

Drucker-Prager matched at tensile meridian, or Associated.

If required, select the Include elliptic cap check box. Select from the list the hardening
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to
define the semi-axes of the ellipse under Elliptic cap parameter p, and Elliptic cap
parameter p},. When Isotropic hardening is sclected from the list, the default Isotropic
hardening modulus K, the Maximum plastic volumetric strain ;4] max, and the Ellipse
aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value

or expression to define the initial semi-axis of the ellipse under the Initial location of the
€ap Ppo-

Matsuoka-Nakai
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is

selected, the default Angle of internal friction ¢ is taken From material.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default

Matsuoka-Nakai mu coefficient 4 is taken From material.

Lade-Duncan
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is
selected, then enter a value or expression for the Angle of internal friction ¢.

Alternatively, select From material.
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If the Match to Mohr-Coulomb criterion check box is zot selected, then the default

Lade-Duncan k coefficient % is taken From material.

TENSION CUT-OFF
If required, select the Include tension cut-off check box (see Tension Cut-Off). Enter a
value or expression for the Max tensile stress ;. Use this to constrain the soil plasticity

model with an extra yield surface, which limits the maximum principal stress.

e Deep Excavation: Application Library path Geomechanics_Module/Soil/

deep_excavation

il

o Flexible and Smooth Strip Footing on Stratum of Clay: Application
Library path Geomechanics_Module/Soil/flexible_footing

CHAPTER 4:

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Linear Elastic Material>Soil plasticity

Solid Mechanics>Nonlinear Elastic Material>Soil plasticity

Ribbon

Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the
model tree:

Attributes>Soil plasticity

Concrete

In the Concrete subnode you define the properties for modeling materials with failure
criteria representative of concrete. This material model can be used together with
Linear Elastic Material and Nonlinear Elastic Material. It is available with the

Geomechanics Module.
The failure criteria are described in the theory section:

¢ Bresler-Pister Criterion
e Willam-Warnke Criterion

¢ Ottosen Criterion
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CONCRETE MODEL
Sclect a Concrete criterion — Bresler-Pister, Willam-Warnke, or Ottosen. The defaults are

taken From material. For User defined choices, enter other values or expressions.

Bresler-Pister
The defaults for the Uniaxial tensile strength o, Uniaxial compressive strength o, and

Biaxial compressive strength oj, are taken From material.

Willam-Warnke
The defaults for the Uniaxial tensile strength o, Uniaxial compressive strength o, and

Biaxial compressive strength oj, are taken From material.

Ottosen
The defaults for the Uniaxial tensile strength o,, Ottosen’s parameters @ and b , Size

factor %1, and Shape factor ko arc taken From material.

TENSION CUT-OFF
If required, select the Include tension cut-off check box (see Tension Cut-Off). Enter a
value or expression for the Max tensile stress ;. Use this to constraint the concrete

model with an extra yield surface, which limits the maximum principal stress.

LOCATION IN USER INTERFACE

Context Menus
Solid Mechanics>Linear Elastic Material>Concrete

Solid Mechanics>Nonlinear Elastic Material>Concrete

Ribbon

Physics tab with Linear Elastic Material or Nonlinear Elastic Material node sclected in the
model tree:

Attributes>Concrete

Rocks

In the Rocks subnode you define the properties for modeling materials with failure
criteria representative of rocks. This material model can be used together with Linear
Elastic Material and Nonlinear Elastic Material. It is available with the Geomechanics
Module.
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The failure criterion are described in the theory section:

* Original Hoek-Brown Criterion

e Generalized Hoek-Brown Criterion

ROCK MODEL