

Thermal Stress Analysis of a Turbine Stator Blade

Introduction

The conditions within gas turbines are extreme. The pressure can be as high as 40 bars, and the temperature far above 1000 K. Any new component must therefore be carefully designed to be able to withstand thermal stress, vibrations due to the rotating machinery and aerodynamic loads exerted by the fluid rushing through the turbine. If a component fails, the high rotational speeds can result in a complete rupture of the whole turbine.

The most extreme conditions are found in the high pressure part downstream of the combustion chamber where hot combustion gas flows through a cascade of rotors and stators. To prevent the parts from melting, relatively “cold” air is taken from bleeding vanes located in the high-pressure compressor casing, then led past the combustion chamber into the turbine casing in order to be used as a coolant. Directly behind the combustion chamber, both internal cooling within ducts and film cooling over the blade side surfaces are applied. Further downstream, where the temperature is somewhat lower, it may suffice with internal cooling. For more details on gas turbines, see [Ref. 1](#).

Since the physics within a gas turbine is very complex, simplified approaches are often used at initial stages of the development of the new components. In this tutorial, the thermal stresses in a stator blade with internal cooling are analyzed.

Note: This application requires the Structural Mechanics Module and the CFD Module or Heat Transfer Module. It also uses the Material Library.

Model Definition

The model geometry is shown in [Figure 1](#). The stator blade profile is a modified version of a design shown in [Ref. 2](#). The model includes some generic mounting details as well as a generic internal cooling duct.

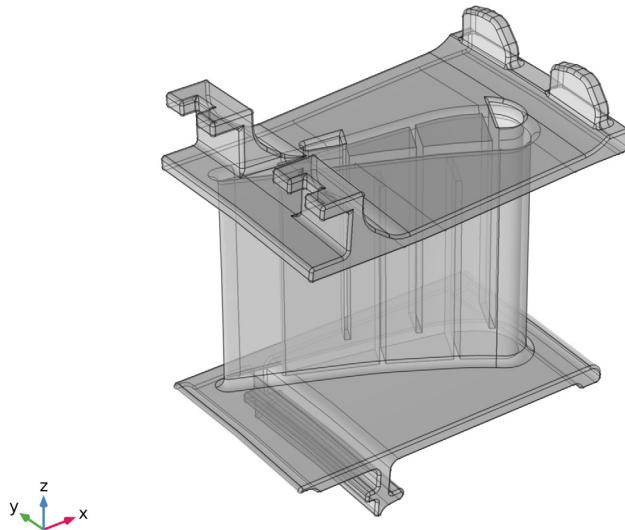
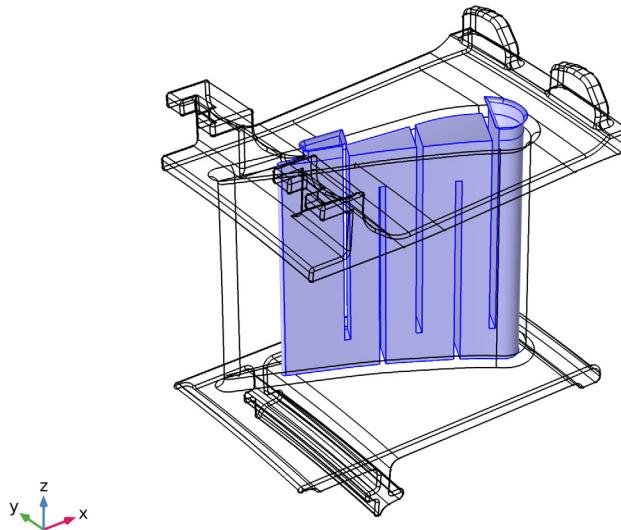
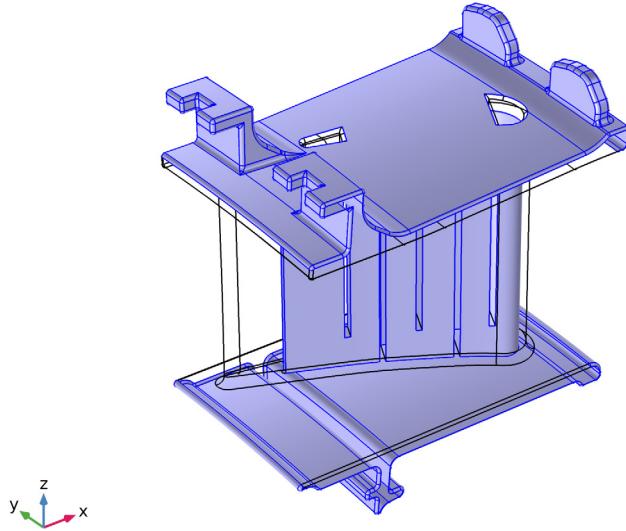


Figure 1: A stator blade with mounting details.

Use the Thermal Stress interface from the Structural Mechanics Module to set up the model. The blade and the mounting details are assumed to be made of the M-152 alloy which is a 12 Cr alloy with high tensile strength ([Ref. 1](#)). M-152 is available in the COMSOL Material Library. In addition to the data covered by the Material Library, the linear elastic model requires a reference temperature that is set to 300 K and a Poisson's Ratio that is set to 0.33, a number comparable to that for other stainless steels. Any coating has been neglected.

[Figure 2](#) shows the cooling duct. The duct geometry is simplified and does not include details such as the ribs ([Ref. 3](#)) typical for cooling ducts. Instead of simulating the complicated flow in the duct, an average Nusselt number correlation from [Ref. 3](#) is used to calculate a heat transfer coefficient. Assume the cooling fluid to be air at 30 bar and 600 K.




Figure 2: The internal cooling duct.

The heat flux on the stator blade surfaces is calculated using the heat transfer coefficient. The pressure and suction sides are approximated as two flat plates using the local heat transfer coefficient for external forced convection. The combustion gases are approximated as air at 30 bar and 1100 K. The corresponding speed of sound is approximately 650 m/s.

Ref. 4 contains a Mach number plot of stators without film cooling. A typical Mach number is 0.7 on the pressure side (the concave side) and 0.45 on the suction side (the convex side). This corresponds to approximately 450 m/s on the pressure side and 300 m/s on the suction side.

The platform walls adjacent to the stator blades are treated in the same way as the stator itself but with the free stream velocity set to 350 m/s.

The stator blade exchanges heat with the cooling air through the boundaries highlighted in [Figure 3](#). It is assumed that the turbine has a local working temperature of 900 K, and that the heat transfer coefficient to the stator is 25 W/(m²·K).

Figure 3: Boundaries through which heat is exchanged with the cooling air.

The attachment of the stator element to a ring support is simulated via roller and spring foundation boundary conditions on few boundaries. All other boundaries are free to deform as a result of thermal expansion.

Results and Discussion

[Figure 4](#) shows a temperature surface plot. The internal cooling creates significant temperature gradients within the blade. However, the trailing edge reaches a temperature close to that of the combustion gases, which indicates that the cooling might be

insufficient. The side walls also become very hot, and some additional cooling can be beneficial.

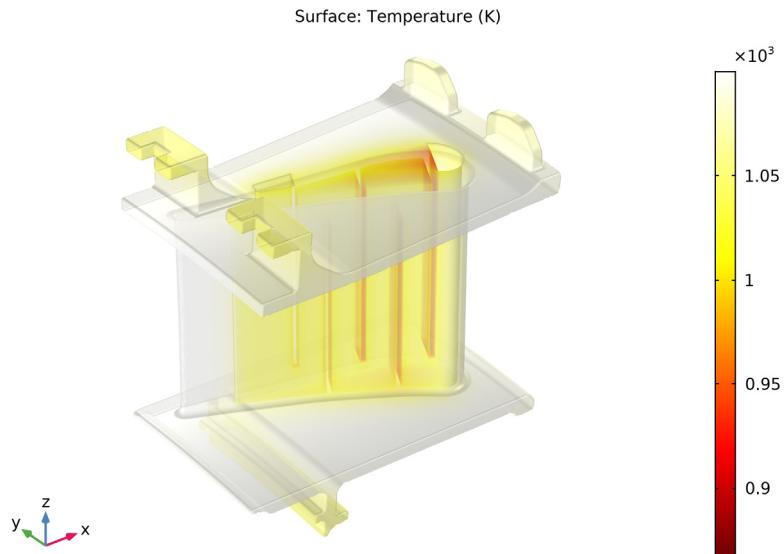


Figure 4: Surface temperature plot.

Figure 5 shows a surface plot of the von Mises stress. The maximum stress with a value close to the yield stress for the material (Ref. 5) occurs in the internal cooling duct. No

definite assessment can however be made without conducting a more advanced analysis that includes details of the flow inside the duct.

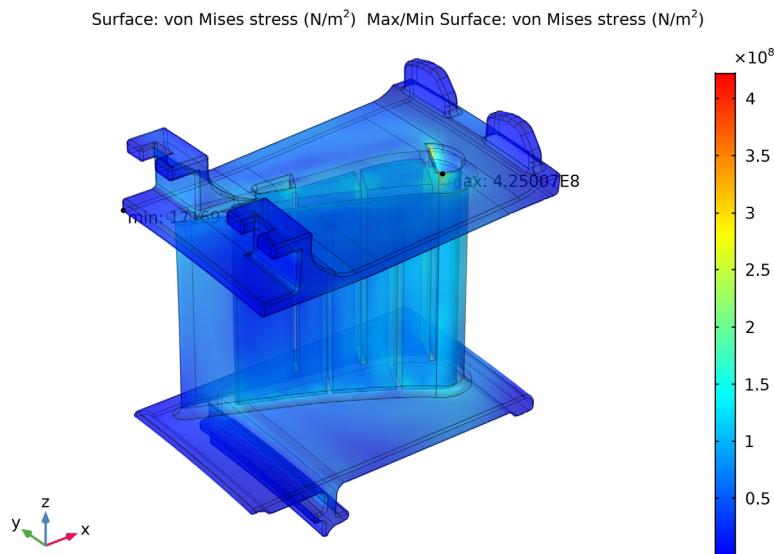


Figure 5: Surface plot of the von Mises stress.

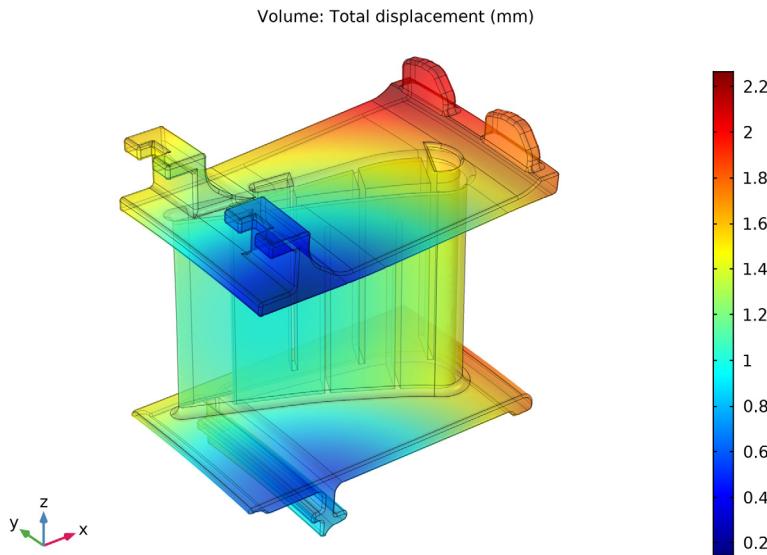


Figure 6: Surface plot of the displacement.

References

1. M.P. Boyce, *Gas Turbine Engineering Handbook*, 2nd ed., Gulf Professional Publishing, 2001.
2. NASA, “Power Turbine”, Glenn Research Center, www.grc.nasa.gov/WWW/K-12/airplane/powturb.html.
3. J. Bredberg, “Turbulence Modelling for Internal Cooling of Gas-Turbine Blades”, Thesis for the degree of doctor of philosophy, *Chalmers University of Technology*, 2002.
4. P. Dahlander, “Source Term Model Approaches to Film Cooling Simulations”, Thesis for the degree of doctor of philosophy, *Chalmers University of Technology*, 2001.
5. <http://www.cnalloys.co.uk/stainless-jethete-m152>

Application Library path: Heat_Transfer_Module/Thermal_Stress/turbine_stator

Modeling Instructions

Note: Instructions below require to select entities corresponding to a particular numbers list. For example:

Select Boundaries 113 and 139 only.

In most cases the easiest way to select them is to click the **Paste Selection** button and paste the numbers as they are printed in the document (for example paste “113 and 139” for the example above).

From the **File** menu, choose **New**.

NEW

In the **New** window, click **Model Wizard**.

MODEL WIZARD

- 1 In the **Model Wizard** window, click **3D**.
- 2 In the **Select Physics** tree, select **Structural Mechanics>Thermal Stress**.
- 3 Click **Add**.
- 4 Click **Study**.
- 5 In the **Select Study** tree, select **General Studies>Stationary**.
- 6 Click **Done**.

GLOBAL DEFINITIONS

- 1 In the **Model Builder** window, under **Global Definitions** click **Parameters I**.
- 2 In the **Settings** window for **Parameters**, locate the **Parameters** section.
- 3 In the table, enter the following settings:

Name	Expression	Value	Description
Pr_cool	0.72	0.72	Cooling Prandtl number
U_suction_side	450[m/s]	450 m/s	Gas velocity on stator suction side
U_pressure_side	300[m/s]	300 m/s	Gas velocity on stator pressure side
U_platform	350[m/s]	350 m/s	Gas velocity along platform walls
T_gas	1100[K]	1100 K	Gas temperature

Name	Expression	Value	Description
p_high	30[bar]	3E6 Pa	High pressure level
mu_cool	3.1e-5[Pa*s]	3.1E-5 Pa·s	Viscosity of the cooling air
Cp_cool	770[J/kg/K]	770 J/(kg·K)	Heat capacity of the cooling air
T_cool	800[K]	800 K	Cooling air temperature
H_cool	0.01[m]	0.01 m	Characteristic length scale of cooling channels
T_work	900[K]	900 K	Working temperature
Nu_cool	400	400	Average Nusselt number in cooling channel

GEOMETRY I

Import I (impI)

- 1 In the **Home** toolbar, click **Import**.
- 2 In the **Settings** window for **Import**, locate the **Import** section.
- 3 Click **Browse**.
- 4 Browse to the model's Application Libraries folder and double-click the file **turbine_stator.mphbin**.
- 5 Click **Import**.

To see the interior:

- 6 Click the **Transparency** button in the **Graphics** toolbar.
- The imported geometry should look as shown in the [Figure 1](#).
- 7 In the **Home** toolbar, click **Build All**.
- 8 Click the **Zoom Extents** button in the **Graphics** toolbar.

DEFINITIONS

Define a number of sections to simplify the model setup. First define the internal cooling duct boundaries.

Explicit I

- 1 In the **Definitions** toolbar, click **Explicit**.
- 2 In the **Settings** window for **Explicit**, type **Cooling_Duct** in the **Label** text field.
- 3 Locate the **Input Entities** section. From the **Geometric entity level** list, choose **Boundary**.

- 4 Click **Paste Selection**.
- 5 In the **Paste Selection** dialog box, type 222-225, 236, 261-266, 270-271, 278-279, 283-285, 292-305, 308-311, 313-314, 316, 321 in the **Selection** text field.
If you are reading an electronic version of this document, you can copy the geometric entity numbers from the text.
- 6 Click **OK**.
- 7 Click the **Transparency** button in the **Graphics** toolbar.
- 8 Click the **Wireframe Rendering** button in the **Graphics** toolbar.

The selection is shown in [Figure 2](#).

Proceed to select the boundaries through which heat exchanger with the rest of turbine occur [Figure 3](#).

Explicit 2

- 1 In the **Definitions** toolbar, click **Explicit**.
- 2 In the **Settings** window for **Explicit**, type Exchange_Boundaries in the **Label** text field.
- 3 Locate the **Input Entities** section. From the **Geometric entity level** list, choose **Boundary**.
- 4 Click **Paste Selection**.
- 5 In the **Paste Selection** dialog box, type 3-4, 9, 12, 14, 16, 19-20, 22-24, 28-96, 98-117, 122-135, 138-162, 166-221, 223, 226-231, 239-260, 267-269, 272-277, 280-282, 322-444 in the **Selection** text field.
- 6 Click **OK**.

ADD MATERIAL

- 1 In the **Home** toolbar, click **Add Material** to open the **Add Material** window.
- 2 Go to the **Add Material** window.
- 3 In the tree, select **Material Library>Iron Alloys>JETHETE M-152 or Moly Ascoloy>JETHETE M-152 or Moly Ascoloy [solid]**.
- 4 Click **Add to Component** in the window toolbar.
- 5 In the **Home** toolbar, click **Add Material** to close the **Add Material** window.

MATERIALS

JETHETE M-152 or Moly Ascoloy [solid] (mat1)

- 1 In the **Settings** window for **Material**, locate the **Material Contents** section.

2 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Poisson's ratio	nu	0.33	1	Young's modulus and Poisson's ratio

SOLID MECHANICS (SOLID)

- 1 In the **Model Builder** window, under **Component 1 (comp1)** click **Solid Mechanics (solid)**.
- 2 In the **Settings** window for **Solid Mechanics**, click to expand the **Discretization** section.
- 3 From the **Displacement field** list, choose **Linear**.

MULTIPHYSICS

- 1 In the **Model Builder** window, under **Component 1 (comp1)>Multiphysics** click **Thermal Expansion 1 (tel)**.
- 2 In the **Settings** window for **Thermal Expansion**, locate the **Model Input** section.
- 3 Click **Go to Source**.

GLOBAL DEFINITIONS

Common Model Inputs

- 1 In the **Model Builder** window, under **Global Definitions** click **Common Model Inputs**.
- 2 In the **Settings** window for **Common Model Inputs**, locate the **Browse Model Inputs** section.
- 3 Find the **Expression for remaining selection** subsection. In the **Volume reference temperature** text field, type **300[K]**.

HEAT TRANSFER IN SOLIDS (HT)

In the **Physics** toolbar, click **Solid Mechanics (solid)** and choose **Heat Transfer in Solids (ht)**.

Initial Values 1

- 1 In the **Model Builder** window, under **Component 1 (comp1)>Heat Transfer in Solids (ht)** click **Initial Values 1**.
- 2 In the **Settings** window for **Initial Values**, type **T_gas** in the **T** text field.
- 3 In the **Model Builder** window, click **Heat Transfer in Solids (ht)**.

Heat Flux 1

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.
- 2 In the **Settings** window for **Heat Flux**, locate the **Boundary Selection** section.

- 3 From the **Selection** list, choose **Exchange_Boundaries**.
- 4 Locate the **Heat Flux** section. Click the **Convective heat flux** button.
- 5 In the h text field, type 25.
- 6 In the T_{ext} text field, type T_{work} .

Heat Flux 2

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.
- 2 In the **Settings** window for **Heat Flux**, locate the **Boundary Selection** section.
- 3 From the **Selection** list, choose **Cooling_Duct**.
- 4 Locate the **Heat Flux** section. Click the **Convective heat flux** button.
- 5 In the h text field, type $Nu_{cool}*\mu_{cool}*Cp_{cool}/2/Pr_{cool}/H_{cool}$.
- 6 In the T_{ext} text field, type T_{cool} .

Heat Flux 3

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.
- 2 Select Boundaries 137 and 163 only.
- 3 In the **Settings** window for **Heat Flux**, locate the **Heat Flux** section.
- 4 Click the **Convective heat flux** button.
- 5 From the **Heat transfer coefficient** list, choose **External forced convection**.
- 6 From the list, choose **Plate, local transfer coefficient**.
- 7 In the x_{pl} text field, type 0.1675-x.
- 8 In the U text field, type $U_{suction_side}$.
- 9 In the p_A text field, type p_{high} .
- 10 In the T_{ext} text field, type T_{gas} .

Heat Flux 4

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.
- 2 Select Boundaries 136 and 312 only.
- 3 In the **Settings** window for **Heat Flux**, locate the **Heat Flux** section.
- 4 Click the **Convective heat flux** button.
- 5 From the **Heat transfer coefficient** list, choose **External forced convection**.
- 6 From the list, choose **Plate, local transfer coefficient**.
- 7 In the x_{pl} text field, type 0.1675-x.
- 8 In the U text field, type $U_{pressure_side}$.

9 In the p_A text field, type p_{high} .

10 In the T_{ext} text field, type T_{gas} .

Heat Flux 5

1 In the **Physics** toolbar, click **Boundaries** and choose **Heat Flux**.

2 Select Boundaries 15, 21, 118–121, 164, 165, 232, 234, 235, 237, 286, 289–291, 306, 307, 315, 317, and 320 only.

3 In the **Settings** window for **Heat Flux**, locate the **Heat Flux** section.

4 Click the **Convective heat flux** button.

5 From the **Heat transfer coefficient** list, choose **External forced convection**.

6 From the list, choose **Plate, local transfer coefficient**.

7 In the x_{pl} text field, type $0.19 \cdot x$.

8 In the U text field, type U_{platform} .

9 In the p_A text field, type p_{high} .

10 In the T_{ext} text field, type T_{gas} .

SOLID MECHANICS (SOLID)

In the **Model Builder** window, under **Component 1 (comp1)** click **Solid Mechanics (solid)**.

Roller 1

1 In the **Physics** toolbar, click **Boundaries** and choose **Roller**.

2 Select Boundaries 140, 146, and 213 only.

Spring Foundation 1

1 In the **Physics** toolbar, click **Boundaries** and choose **Spring Foundation**.

2 Select Boundaries 426 and 428 only.

3 In the **Settings** window for **Spring Foundation**, locate the **Spring** section.

4 From the list, choose **Diagonal**.

5 In the \mathbf{k}_A table, enter the following settings:

1e9	0	0
0	0	0
0	0	0

Spring Foundation 2

1 In the **Physics** toolbar, click **Boundaries** and choose **Spring Foundation**.

- 2 Select Boundaries 82, 90, 192, and 255 only.
- 3 In the **Settings** window for **Spring Foundation**, locate the **Spring** section.
- 4 From the list, choose **Diagonal**.
- 5 In the **k_A** table, enter the following settings:

0	0	0
0	0	0
0	0	1e10

Spring Foundation 3

- 1 In the **Physics** toolbar, click **Boundaries** and choose **Spring Foundation**.
- 2 Select Boundary 17 only.
- 3 In the **Settings** window for **Spring Foundation**, locate the **Spring** section.
- 4 From the list, choose **Diagonal**.
- 5 In the **k_A** table, enter the following settings:

0	0	0
0	1e9	0
0	0	0

MESH 1

Size

- 1 In the **Model Builder** window, under **Component 1 (comp1)** right-click **Mesh 1** and choose **Size**.
- 2 In the **Settings** window for **Size**, locate the **Element Size** section.
- 3 From the **Predefined** list, choose **Fine**.

Size 1

- 1 In the **Model Builder** window, under **Component 1 (comp1)>Mesh 1** click **Size 1**.
- 2 In the **Settings** window for **Size**, locate the **Geometric Entity Selection** section.
- 3 From the **Geometric entity level** list, choose **Boundary**.
- 4 From the **Selection** list, choose **Cooling_Duct**.
- 5 Locate the **Element Size** section. From the **Predefined** list, choose **Fine**.

Free Tetrahedral 1

- 1 In the **Model Builder** window, right-click **Mesh 1** and choose **Free Tetrahedral**.

- 2 Click **Build All**.

STUDY 1

In the **Home** toolbar, click **Compute**.

RESULTS

Stress (solid)

The first default plot show the von Mises stress. Disable the deformation and create a max/min plot to display the critical point in the stator.

Surface 1

In the **Model Builder** window, expand the **Stress (solid)** node.

Deformation

- 1 In the **Model Builder** window, expand the **Surface 1** node.

- 2 Right-click **Deformation** and choose **Disable**.

Max/Min Surface 1

- 1 In the **Stress (solid)** toolbar, click **More Plots** and choose **Max/Min Surface**.
- 2 In the **Settings** window for **Max/Min Surface**, click **Replace Expression** in the upper-right corner of the **Expression** section. From the menu, choose **Component 1>Solid Mechanics> Stress>solid.mises - von Mises stress - N/m²**.
- 3 In the **Stress (solid)** toolbar, click **Plot**.

TABLE

- 1 Go to the **Table** window.
- 2 Click the **Zoom Extents** button in the **Graphics** toolbar.
- 3 Click the **Transparency** button in the **Graphics** toolbar.

The second default plot shows the temperature distribution [Figure 4](#).

RESULTS

Temperature (ht)

- 1 In the **Model Builder** window, under **Results** click **Temperature (ht)**.
- 2 In the **Settings** window for **3D Plot Group**, locate the **Plot Settings** section.
- 3 Clear the **Plot data set edges** check box.
- 4 In the **Temperature (ht)** toolbar, click **Plot**.
- 5 Click the **Zoom Extents** button in the **Graphics** toolbar.

Finally, plot the total displacement ([Figure 6](#)).

Volume 1

- 1 In the **Home** toolbar, click **Add Plot Group** and choose **3D Plot Group**.
- 2 In the **Model Builder** window, right-click **3D Plot Group 4** and choose **Volume**.
- 3 In the **Settings** window for **Volume**, click **Replace Expression** in the upper-right corner of the **Expression** section. From the menu, choose **Component 1>Solid Mechanics>Displacement>solid_disp - Total displacement - m**.
- 4 Locate the **Expression** section. From the **Unit** list, choose **mm**.
- 5 In the **3D Plot Group 4** toolbar, click **Plot**.
- 6 Click the **Zoom Extents** button in the **Graphics** toolbar.

