The Laminar Flow Interface
The Laminar Flow (spf) interface () is used to compute the velocity and pressure fields for the flow of a single-phase fluid in the laminar flow regime. A flow remains laminar as long as the Reynolds number is below a certain critical value. At higher Reynolds numbers, disturbances have a tendency to grow and cause transition to turbulence. This critical Reynolds number depends on the model, but a classical example is pipe flow, where the critical Reynolds number is known to be approximately 2000.
The physics interface supports incompressible flow, weakly compressible flow (the density depends on temperature but not on pressure), and compressible flow at low Mach numbers (typically less than 0.3). It also supports flow of non-Newtonian fluids.
The equations solved by the Laminar Flow interface are the Navier-Stokes equations for conservation of momentum and the continuity equation for conservation of mass.
The Laminar Flow interface can be used for stationary and time-dependent analyses. Time-dependent studies should be used in the high-Reynolds number regime as these flows tend to become inherently unsteady.
When the Laminar Flow interface is added, the following default nodes are also added in the Model Builder: Fluid Properties, Wall (the default boundary condition is No slip), and Initial Values. Other nodes that implement, for example, boundary conditions and volume forces, can be added from the Physics toolbar or from the context menu displayed when right-clicking Laminar Flow.
Settings
The Label is the default physics interface name.
The Name is used primarily as a scope prefix for variables defined by the physics interface. Physics interface variables can be referred to using the pattern <name>.<variable_name>. In order to distinguish between variables belonging to different physics interfaces, the name string must be unique. Only letters, numbers, and underscores (_) are permitted in the Name field. The first character must be a letter.
The default Name (for the first physics interface in the model) is spf.
Physical Model
Compressibility
Depending of the fluid properties and the flow regime, three options are available for the Compressibility option. In general the computational complexity increases from Incompressible flow to Weakly compressible flow to Compressible flow (Ma<0.3) but the underlying hypotheses are increasingly more restrictive in the opposite direction.
When the Incompressible flow option (default) is selected, the incompressible form of the Navier-Stokes and continuity equations is applied. In addition, the fluid density is evaluated at the Reference pressure level defined in this section. The Reference temperature is set to 293.15 K.
The Weakly compressible flow option models compressible flow when the pressure dependency of the density can be neglected. When selected, the compressible form of the Navier-Stokes and continuity equations is applied. In addition, the fluid density is evaluated at the Reference pressure level defined in this section.
When the Compressible flow (Ma<0.3) option is selected, the compressible form of the Navier-Stokes and continuity equations is applied. Ma < 0.3 indicates that the inlet and outlet conditions, as well as the stabilization, may not be suitable for transonic and supersonic flow. For more information, see The Mach Number Limit.
Porous Media Domains
With the addition of various modules, the Enable porous media domains check box is available. Selecting this option, a Fluid and Matrix Properties node, a Mass Source node, and a Forchheimer Drag subnode are added to the physics interface. These are described for the Brinkman Equations interface in the respective module’s documentation. The Fluid and Matrix Properties can be applied on all domains or on a subset of the domains.
Reference values
Reference values are global quantities used to evaluate the density of the fluid when the Incompressible flow or the Weakly compressible flow option is selected.
Reference pressure level
There are generally two ways to include the pressure in fluid flow computations: either to use the absolute pressure pA=p+pref, or the gauge pressure p. When pref is nonzero, the physics interface solves for the gauge pressure whereas material properties are evaluated using the absolute pressure. The reference pressure level is also used to define the reference density.
Reference temperature
The reference temperature is used to define the reference density.
Reference position
When Include gravity is selected, the reference position can be defined. It corresponds to the location where the total pressure (that includes the hydrostatic pressure) is equal to the Reference pressure level.
Dependent Variables
The following dependent variables (fields) are defined for this physics interface — the Velocity field u and its components, and the Pressure p.
If required, the names of the field, component, and dependent variable can be edited. Editing the name of a scalar dependent variable changes both its field name and the dependent variable name. If a new field name coincides with the name of another field of the same type, the fields share degrees of freedom and dependent variable names. A new field name must not coincide with the name of a field of another type or with a component name belonging to some other field. Component names must be unique within a model except when two fields share a common field name.
Advanced Settings
To display this section, click the Show button () and select Advanced Physics Options. Normally these settings do not need to be changed.
The Use pseudo time stepping for stationary equation form is per default set to Automatic from physics. This option can add pseudo time derivatives to the equation when the Stationary equation form is used in order to speed up convergence. Pseudo time stepping is triggered when the Laminar Flow interface is selected in some multiphysics coupling features. Set Automatic from physics to On to apply pseudo time stepping also for laminar flows. Set it to Off to disable pseudo time stepping completely.
When Use pseudo time stepping for stationary equation form is set to Automatic from physics or On, a CFL number expression should also be defined. For the default Automatic option, the local CFL number (from the Courant–Friedrichs–Lewy condition) is determined by a PID regulator.
Discretization
The default discretization for Laminar Flow is P1+P1 elements — that is, piecewise linear interpolation for velocity and pressure. This is suitable for most flow problems.
Some higher-order interpolations are also available, and they can be cost-effective options to obtain high accuracy for flows with low Reynolds numbers.
The P2+P2 and P3+P3 options, the equal-order interpolation options, are the preferred higher-order options because they have higher numerical accuracy than the mixed-order options P2+P1 and P3+P2. The equal-order interpolation options do, however, require streamline diffusion to be active.
Flow Past a Cylinder: Application Library path COMSOL_Multiphysics/Fluid_Dynamics/cylinder_flow
Domain, Boundary, Pair, and Point Nodes for Single-Phase Flow
The following nodes, listed in alphabetical order, are available from the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), or by right-clicking to access the context menu (all users).
1 A feature that may require an additional license
For 2D axisymmetric components, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and adds an Axial Symmetry node that is valid on the axial symmetry boundaries only.
In the COMSOL Multiphysics Reference Manual, see Table 2-3 for links to common sections and Table 2-4 to common feature nodes. You can also search for information: press F1 to open the Help window or Ctrl+F1 to open the Documentation window.