model.component(<ctag>).physics(
<tag>).field(
fieldname).fieldname(
<pos>,
<name>);
model.component(<ctag>).physics(
<tag>).feature(
<ftag>).create(
<ftag2>,
feature,
<dim>);
model.component(<ctag>).physics(
<tag>).prop(
propname).getAllowedPropertyValues(
property);
model.component(<ctag>).physics(
<tag>).feature(
<ftag>).getAllowedPropertyValues(
property);
model.component(<ctag>).physics(
<tag>).diagram(
<dtag>).getAllowedPropertyValues(
property);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).set(String pname, int value);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
set(String pname, int pos, int value);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
set(String pname, int pos, int[] value);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
set(String pname, int pos1, int pos2, int value);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, String value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, String value, int firstIndex, int secondIndex);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, String[] value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, double value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, double value, int firstIndex, int secondIndex);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, double[] value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).setIndex(String name, int value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, String value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, String value, int index);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, int value, int firstIndex, int secondIndex);
model.component(<ctag>).physics(
<tag>).feature(
<tag>).
setIndex(String name, int[] value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).set(String pname, int value);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).set(String pname, int pos, int value);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).set(String pname, int pos, int[] value);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
set(String pname, int pos1, int pos2, int value);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, String value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, String value, int firstIndex, int secondIndex);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, String[] value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, double value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, double[] value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, int value, int index);
model.physics(<tag>).prop(
<tag>).setIndex(String name, String value, int index);
model.physics(<tag>).prop(
<tag>).setIndex(String name, String value, int index);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, int value, int firstIndex, int secondIndex);
model.component(<ctag>).physics(
<tag>).prop(
<tag>).
setIndex(String name, int[] value, int index);
The set() methods index/position arguments are 1-based. The
setIndex() methods index/position arguments are 0-based.
model.component(
<ctag>).
physics().create(<tag>,physint) creates and returns a physics interface.
model.component(
<ctag>).
physics().create(<tag>,physint) or
model.component(
<ctag>).
physics().create(<tag>,physint,<geomtag>) adds a physics interface to the model and initializes it with defaults. The
physint argument specifies which physics interface to create. There can be several different values of
physint which create the same internal physics interface class, but which set different defaults. The constructor without the
<geomtag> argument can only be used (and should be used) by 0D (space-independent) interfaces.
model.component(
<ctag>).
physics().create(<tag>,physint,<geomtag>,<varnames>) adds an interface with the field variable names
<varnames>. Only interfaces supporting a varying number of field variables considers this argument. Providing the variable names in the
create method rather than changes them afterward using
model.component(
<ctag>).
physics(<tag>).field(fieldname).fieldname(<namelist>) ensures that the default features are correct.
model.component(
<ctag>).
physics(<tag>).field(fieldname).fieldname(<namelist>) sets a name of a dependent variable. The entity
fieldname (which could be, for example,
temperature,
x-velocity,
electric field) specifies which dependent variable to set the name for. The available fields are provided by the physics interface. The argument
<namelist> can be a list of names for physics interfaces supporting an arbitrary number of dependent variables. The physics interfaces provide default names for the dependent variables.
model.component(
<ctag>).
physics(<tag>).field(fieldname).fieldname(<pos>,<name>) changes the name at position
<pos> in the list of field names.
model.component(
<ctag>).
physics(<tag>).selection().named(<seltag>) specifies that the physics interface is active on the named selection
<seltag>.
model.component(
<ctag>).
physics(<tag>).selection().set(...) defines a local selection that makes the physics interface active on the selection’s geometric entities. For a complete list of methods available under
selection(), see
Selections.The selection must apply to the physics interface’s maximum geometry level. The
create() method makes the physics interface active in all domains. 0D interfaces are always active globally and do not support these methods.
model.component(
<ctag>).
physics(<tag>).prop(propname).set(pname,<value>) sets the value of some property parameter. All string types listed in
Table 2-2 are supported.
model.component(
<ctag>).
physics(<tag>).create(<ftag>,feature) adds a new feature instance to the physics interface and initializes the feature with defaults. The available features are given by the physics interface.
model.component(
<ctag>).
physics(<tag>).create(<ftag>,feature,<dim>) adds a new feature instance to the physics interface and initializes the feature with defaults. The feature is assigned to the domain level
<dim>. Use this constructor for features which can be applied to more than one domain level. The constructor without the
<dim> argument assigns the feature to the highest domain level, which the feature supports.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).set(pname,<value>) sets a parameter value. All string types listed in the section
Table 2-2 are supported.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).selection().named(<seltag>) assigns the physics feature to the named selection
<seltag>.
model.component(
<ctag>).
physics(<tag>).selection().set(...) defines a local selection that assigns the physics feature to geometric entities. For a complete list of methods available under
selection(), see
Selections. 0D features need no domain selection.
model.component(
<ctag>).
physics(<tag>).feature().move(<ftag>,<position>) moves the feature
<ftag> to the zero indexed position
<position> in the list. A feature cannot be moved before a default feature and the default features cannot be moved.
model.component(
<ctag>).
physics(<tag>).create(<itag>,"init") creates an initial value feature, using the reserved feature ID
init.
model.component(
<ctag>).
physics(<tag>).feature(<itag>).set(varname,<value>) specifies an initial value. The variable names are the field variables. For wave problems, the time derivatives of the field variables are also included in the list of variables.
model.component(
<ctag>).
physics(<tag>).model() returns the model component node tag of the interface.
model.component(
<ctag>).
physics(<tag>).field(fieldname).fieldname() returns the field names as a string array.
model.component(
<ctag>).
physics(<tag>).scope() returns the fully qualified scope name.
model.component(
<ctag>).
physics(<tag>).geom() returns the geometry tag as a string.
model.component(
<ctag>).
physics(<tag>).selection().named() returns the selection tag as a string.
model.component(
<ctag>).
physics(<tag>).selection().getType() returns domain information. See
Selections for available methods.
model.component(
<ctag>).
physics(<tag>).prop(propname).getType(pname) returns the parameter value. See
get* and Selection Access Methods for available methods.
model.component(
<ctag>).
physics(<tag>).prop(propname).param() returns the parameter names as a string array.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).getType(<pname>) returns the parameter value. See
get* and Selection Access Methods for available methods.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).param() returns the parameter names as a string array.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).selection().named() returns the selection tag as a string array.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).feature() returns the list of feature attributes. This list supports the same methods as
model.component(
<ctag>).
physics(<tag>).feature().
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).feature(<ftag2>) returns the feature attribute
<ftag2>. The feature attributes support the same methods as
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).featureInfo() returns a list of info objects.
model.physics(<tag>).feature(<ftag>).featureInfo("
info"
) returns the info object that contains information about the variables, weak expressions, and constraints that a feature generates. The
model.component(
<ctag>).
physics(<tag>) and
model.coordSystem(<tag>) objects also have this list that you access with
model.component(
<ctag>).
physics(<tag>).featureInfo("
info"
). These objects do not support the
set method, which only works for the object
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).
model.component(
<ctag>).
physics(<tag>).feature(<ftag>)).getAllowedPropertyValues(property),
model.component(
<ctag>).
physics(<tag>).prop(propname).
getAllowedPropertyValues(property), and
model.component(
<ctag>).
physics(<tag>).diagram(<dtag>).
getAllowedPropertyValues(property) return the set of allowed values for a property if the set is a finite set of strings; otherwise, they return null.
feature.featureInfo("
info"
).set(variable,<value>) locks the named variable to the given expression. The expression must be given as a string array.
feature.featureInfo("
info"
).getInfoTable(id) returns a table that lists all information about a certain table id. The supported IDs are
Expression,
Shape,
Weak, and
Constraint.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).importData() imports the file that the physics feature references into the model. This is only allowed for specific physics features that allow external files to be used, such as the Release from Data File feature for the particle tracing interfaces.
model.component(
<ctag>).
physics(<tag>).feature(<ftag>).discardData() Discards the external file imported by the
importData() command. This only has an effect if
importData() has been called previously for the physics feature. This is only allowed for specific physics features that allow external files to be used, such as the Release from Data File feature for the particle tracing interfaces.