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 1
I n t r o d u c t i o n
This guide describes the Structural Mechanics Module, an optional add-on 
package that extends the COMSOL Multiphysics® modeling environment with 
customized physics interfaces that solve problems in the fields of structural and 
solid mechanics, including special physics interface for modeling of shells, 
membranes, beams, plates, and trusses.

This chapter introduces you to the capabilities of this module and includes a 
summary of the physics interfaces as well as information about where you can find 
additional documentation and model examples. The last section is a brief overview 
with links to each chapter in this guide.

• About the Structural Mechanics Module

• Overview of the User’s Guide
 17
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Abou t  t h e  S t r u c t u r a l  Me chan i c s  
Modu l e

In this section:

• Why Structural Mechanics is Important for Modeling

• What Problems Can It Solve?

• The Structural Mechanics Module Physics Interface Guide

• Common Physics Interface and Feature Settings and Nodes

• Geometry Levels for Study Capabilities

• Where Do I Access the Documentation and Application Libraries?

Why Structural Mechanics is Important for Modeling

The Structural Mechanics Module solves problems in the fields of structural and solid 
mechanics, adding special physics interfaces for modeling shells and beams, for 
example. 

The physics interfaces in this module are fully multiphysics enabled, making it possible 
to couple them to any other physics interfaces in COMSOL Multiphysics or the other 
modules. Available physics interfaces include:

• Solid mechanics for 2D plane stress and plane strain, axial symmetry, and 3D solids

• Beams in 2D and 3D, Euler and Timoshenko theory

• Truss and cable elements

• Shells and plates, Mindlin theory

• Membranes

The module’s study capabilities include static, eigenfrequency, time dependent 
(transient), frequency response, buckling, and parametric studies. 

The Physics Interfaces and Building a COMSOL Multiphysics Model in 
the COMSOL Multiphysics Reference Manual
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There are several material models:

• Linear Elastic Materials can be isotropic, orthotropic, or fully anisotropic, and you 
can use local coordinate systems to specify material properties.

• Linear Viscoelastic Materials

• Piezoelectric Material

• Magnetostrictive Materials are available when used together with the AC/DC 
module.

• Material models for hyperelasticity, metal plasticity, creep, viscoplasticity, nonlinear 
elasticity, soil plasticity, concrete, rocks, and clay are available with the optional 
Nonlinear Structural Materials Module and Geomechanics Module.

Large deformations as well as contact and friction, can also be modeled.

Coupling structural analysis with thermal analysis is one example of multiphysics easily 
implemented with the module, which provides predefined multiphysics couplings for 
thermal stress and other types of multiphysics. Piezoelectric materials, coupling the 
electric field and strain in both directions are fully supported inside the module 
through special multiphysics couplings solving for both the electric potential and 
displacements. Structural mechanics couplings are common in simulations done with 
COMSOL Multiphysics and occur in interaction with, for example, fluid flow 
(fluid-structure interaction, FSI), chemical reactions, acoustics, electric fields, 
magnetic fields, and optical wave propagation.

What Problems Can It Solve?

The Structural Mechanics Module contains a set of physics interfaces adapted to a 
broad category of structural-mechanics analysis. The module serves as an excellent tool 
for the professional engineer, researcher, and teacher. In education, the benefit of the 
short learning curve is especially useful because educators need not spend excessive 
time learning the software and can instead focus on the physics and the modeling 
process.

The module is a collection of physics interfaces for COMSOL Multiphysics that 
handles static, eigenfrequency, transient, frequency response, parametric, transient 
thermal stress, and other analyses for applications in structural mechanics, solid 
mechanics, and piezoelectricity.

S T A T I C  A N A L Y S I S

In a static analysis the load and constraints are fixed in time. 
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E I G E N F R E Q U E N C Y  A N A L Y S I S

An eigenfrequency analysis finds the damped or undamped eigenfrequencies and mode 
shapes of a structure. Sometimes referred to as the free vibration of a structure. 
Pre-stress effects and damping can be taken into account.

TR A N S I E N T  A N A L Y S I S

A transient analysis finds the transient response for a time-dependent model, taking 
into account mass, mass moment of inertia. The transient analysis can be either direct, 
or using a modal solution.

F R E Q U E N C Y  R E S P O N S E  A N A L Y S I S

A frequency response analysis finds the steady-state response to harmonic loads. The 
frequency-response analysis can be either direct, or using a modal solution. Effects of 
pre-stress can be included.

L I N E A R  B U C K L I N G  S T U D Y

A linear buckling analysis uses the stiffness coming from stresses and material to 
define an eigenvalue problem where the eigenvalue is a load factor that, when 
multiplied with the actual load, gives the critical load in a linear context. 

P A R A M E T R I C  A N A L Y S I S

A parametric analysis finds the solution dependence due to the variation of a specific 
parameter, which could be, for instance, a material property or the position of a load.

T H E R M A L  S T R E S S

In a transient thermal stress study, the program neglects mass effects, assuming that the 
time scale in the structural mechanics problem is much smaller than the time scale in 
the thermal problem.

L A R G E  D E F O R M A T I O N S

You can also enable geometric nonlinearity for all structural mechanics interfaces. The 
engineering strain is then replaced with the Green-Lagrange strain and the stress with 
the second Piola-Kirchhoff stress. To solve the problem, the program uses a total 
Lagrangian formulation.

E L A S T O P L A S T I C  M A T E R I A L S

An elastoplastic analysis involves a nonlinear material with or without hardening. 
Several isotropic and kinematic hardening models are available.

The material models allow large strains.
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The elastoplastic material models are available in the Solid Mechanics, Membrane, and 
Truss interfaces.

C R E E P  A N D  V I S C O P L A S T I C  M A T E R I A L S

A number of different material models for creep and viscoplasticity are available. In 
these materials the rate of elastic strain depends on the stress.

H Y P E R E L A S T I C  M A T E R I A L S

In hyperelastic materials the stresses are computed from a strain energy density 
function. They are often used to model rubber and biological tissue, but are also used 
in acoustic elasticity. Many different models are available.

The hyperelastic materials are available in the Solid Mechanics and Membrane 
interfaces.

N O N L I N E A R  E L A S T I C  M A T E R I A L S

The nonlinear elastic materials are intended for materials that exhibit a nonlinear 
behavior already at small strains. Some brittle material as well as soils show this 
behavior.

V I S C O E L A S T I C  M A T E R I A L S

Viscoelastic materials have a time-dependent response, even if the loading is constant. 
The Viscoelasticity materials are available in the Solid Mechanics and Membrane 
interfaces.

C O N T A C T  M O D E L I N G

You can model contact between parts of a structure. The Solid Mechanics interface 
supports contact with or without friction. The two contact algorithms available are 
based on the augmented Lagrangian and penalty methods. The contact models can 
be augmented with adhesion and decohesion.

• Hyperelastic, elastoplastic, creep, viscoplastic and nonlinear elastic 
material models are available with the Nonlinear Structural Materials 
Module.

• Additional functionality and material models for geomechanics and soil 
mechanics—nonlinear elasticity, soil plasticity, concrete, rock, and clay 
material models—is available with the Geomechanics Module.
A B O U T  T H E  S T R U C T U R A L  M E C H A N I C S  M O D U L E  |  21
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The Structural Mechanics Module Physics Interface Guide

At any time, a new model can be created or physics interfaces added. Right-click the 
Root (top) node and select Add Component or right-click a Component node and select 
Add Physics.

Depending on the physics interface, specify parameters defining a problem on points, 
edges (3D), boundaries, and domains. It is possible to specify loads and constraints on 
all available geometry levels, but material properties can only be specified for the 
domains, except for shells, membranes, beams, and trusses, where they are defined on 
the boundary or edge level.

The Poroelasticity interface requires, and couple with, the Structural 
Mechanics Module and is discussed in the Subsurface Flow Module 
User’s Guide.

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• The Physics Interfaces 

• For a list of all the core physics interfaces included with a COMSOL 
Multiphysics license, see Physics Interface Guide.

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY 
TYPE

 Fluid Flow

Fluid-Structure Interaction fsi 3D, 2D, 2D 
axisymmetric

stationary; stationary, 
one-way coupled; time 
dependent; time 
dependent, one-way 
coupled

Fluid-Structure 
Interaction, Fixed 
Geometry2

— 3D, 2D, 2D 
axisymmetric

stationary; time-dependent
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 Structural Mechanics

Solid Mechanics1 solid 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
prestressed analysis, 
eigenfrequency; mode 
analysis; time dependent; 
time-dependent modal; 
frequency domain; 
frequency-domain modal; 
prestressed analysis, 
frequency domain; modal 
reduced order model; 
linear buckling; bolt 
pre-tension

Thermal Stress2 — 3D, 2D, 2D 
axisymmetric

stationary; time dependent

Joule Heating and Thermal 
Expansion2

— 3D, 2D, 2D 
axisymmetric

stationary; time dependent

Shell shell 3D stationary; eigenfrequency; 
prestressed analysis, 
eigenfrequency; time 
dependent; time-dependent 
modal; frequency domain; 
frequency-domain modal; 
prestressed analysis, 
frequency domain; modal 
reduced order model; 
linear buckling

Plate plate 2D stationary; eigenfrequency; 
prestressed analysis, 
eigenfrequency; time 
dependent; time-dependent 
modal; frequency domain; 
frequency-domain modal; 
prestressed analysis, 
frequency domain; modal 
reduced order model; 
linear buckling

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY 
TYPE
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Beam beam 3D, 2D stationary; eigenfrequency; 
frequency domain; 
frequency-domain modal; 
time dependent; 
time-dependent modal; 
modal reduced order 
model; linear buckling

Beam Cross Section bcs 2D stationary

Truss truss 3D, 2D stationary; eigenfrequency; 
prestressed analysis, 
eigenfrequency; time 
dependent; time-dependent 
modal; frequency domain; 
frequency-domain modal; 
prestressed analysis, 
frequency domain; modal 
reduced order model; 
linear buckling

Membrane mbrn 3D, 2D 
axisymmetric

stationary; eigenfrequency; 
prestressed analysis, 
eigenfrequency; time 
dependent; time-dependent 
modal; frequency domain; 
frequency-domain modal; 
prestressed analysis, 
frequency domain

Piezoelectric Devices2 — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; 
time-dependent modal; 
frequency domain; 
frequency-domain modal; 
small-signal analysis, 
frequency domain; 
prestressed analysis, 
eigenfrequency; 
prestressed analysis, 
frequency domain; modal 
reduced order model

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY 
TYPE
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Common Physics Interface and Feature Settings and Nodes

There are several common settings and sections available for the physics interfaces and 
feature nodes. Some of these sections also have similar settings or are implemented in 
the same way no matter the physics interface or feature being used. There are also some 
physics feature nodes that display in COMSOL Multiphysics.

In each module’s documentation, only unique or extra information is included; 
standard information and procedures are centralized in the COMSOL Multiphysics 
Reference Manual.

Geometry Levels for Study Capabilities

The column for the dependent variables shows the field variables that formulate the 
underlying equations. Depending on the engineering assumptions and the geometry 
dimension, these variables include a subset of the displacement field u, v, and w in the 
global coordinate system, pressure, and temperature. The Shell and Plate interfaces use 
as dependent variables the variables ax, ay, and az, which are the displacements of the 

Magnetostriction2 — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; frequency 
domain; small-signal 
analysis, frequency domain; 
prestressed analysis, 
eigenfrequency; 
prestressed analysis, 
frequency domain

1 This physics interface is included with the core COMSOL package but has added 
functionality for this module.

2 This physics interface is a predefined multiphysics coupling that automatically adds all the 
physics interfaces and coupling features required.

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY 
TYPE

In the COMSOL Multiphysics Reference Manual see Table 2-3 for 
links to common sections and Table 2-4 to common feature nodes. 
You can also search for information: press F1 to open the Help 
window or Ctrl+F1 to open the Documentation window. 
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shell normals in the global x, y, and z directions, respectively. Such variables can be 
expressed in terms of customary rotations φx, φy, and φz about the global axes.

For each physics interface, the table indicates dependent variables and the geometry 
levels (where data such as material properties, loads, and constraints are specified). 
Edges exist only in 3D geometries. Studies are listed in a separate table in The 
Structural Mechanics Module Physics Interface Guide section. 

Studies and Solvers in the COMSOL Multiphysics Reference Manual

PHYSICS 
INTERFACE

GEOMETRY LEVEL

NAME DEPENDENT 
VARIABLES

POINTS EDGES BOUNDARIES DOMAINS

STRUCTURAL MECHANICS

Solid Mechanics solid u, (p) √ √ √ √

Shell shell u, a √ √ √

Plate (3 DOF) plate w, ax, ay √ √ √

Plate (6 DOF) plate u, a √ √ √

Beam beam u, θ √ √

Truss truss u √ √

Membrane mbrn u √ √ √

Thermal Stress n/a* u, (p), T √ √ √ √

Joule Heating and 
Thermal 
Expansion

n/a* u, (p), T, 
V

√ √ √ √

Piezoelectric 
Devices

n/a* u,V √ √ √ √

Fluid Flow

Fluid-Structure 
Interaction

fsi usolid, 
ufluid, p

√ √ √ √

Fluid-Structure 
Interaction, 
Fixed Geometry

n/a* usolid, 
ufluid, p

√ √ √ √

* These are multiphysics couplings that do not have names.
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Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the application libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions about how to use COMSOL Multiphysics and how to access the 
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to many of the features on the GUI. To 
learn more about a node in the Model Builder, or a window on the Desktop, click to 
highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules (as long as you have a license), application examples, and 
documentation sets.

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder click a node or 
window and then press F1. 

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help ( ) 
button.
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Opening the Documentation Window

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each application includes documentation with the theoretical background and 
step-by-step instructions to create a model application. The applications are available 
in COMSOL as MPH-files that you can open for further investigation. You can use the 
step-by-step instructions and the actual applications as a template for your own 
modeling and applications. In most models, SI units are used to describe the relevant 
properties, parameters, and dimensions in most examples, but other unit systems are 
available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the application and its 
properties, including options to open it or a PDF document. 

To open the Help window:

• In the Model Builder or Physics Builder click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu select Help>Documentation ( ).

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.
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Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number are sent to you by 
email.

C O M S O L  O N L I N E  R E S O U R C E S

• From the Home toolbar, Windows menu, click ( ) Applications 

Libraries.

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File> or Windows> menus.

To include the latest versions of model examples, from the Help menu 
select ( ) Update COMSOL Application Library.

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
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Ove r v i ew o f  t h e  U s e r ’ s  Gu i d e

The Structural Mechanics Module User’s Guide gets you started with modeling using 
COMSOL Multiphysics. The information in this guide is specific to this module. 
Instructions how to use COMSOL in general are included with the COMSOL 
Multiphysics Reference Manual. 

TA B L E  O F  C O N T E N T S ,  G L O S S A R Y ,  A N D  I N D E X

To help you navigate through this guide, see the Contents, Glossary, and Index.

M O D E L I N G  W I T H  T H E  S T R U C T U R A L  M E C H A N I C S  M O D U L E

The Structural Mechanics Modeling chapter gives you an insight on how to approach 
the modeling of various structural mechanics problems.

S T R U C T U R A L  M E C H A N I C S  T H E O R Y

The Structural Mechanics Theory chapter introduces the general theory on which the 
physics interfaces in the Structural Mechanics Module are based.

T H E  S O L I D  M E C H A N I C S  I N T E R F A C E

The Solid Mechanics chapter describes The Solid Mechanics Interface, which is used 
to model 3D solids, plane strain and plane stress 2D models, and axisymmetric models. 

T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S

The Shell and Plate chapter describes The Shell and Plate Interfaces, which are used to 
model thin 3D structures (shell) and out-of-plane loaded plates (plate). The 
underlying theory is described in Theory for Shell and Plate Interfaces.

T H E  B E A M  I N T E R F A C E

The Beam chapter describes The Beam Interface, which contains Euler 
(Euler-Bernoulli) and Timoshenko beams for modeling slender 3D and 2D structures. 
Typical examples are frameworks and latticeworks. The underlying theory for the 
physics interface is described in Theory for the Beam Interface.

As detailed in the section Where Do I Access the Documentation and 
Application Libraries? this information can also be searched from the Help 
menu in COMSOL Multiphysics.
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T H E  B E A M  C R O S S  S E C T I O N  I N T E R F A C E

The Beam Cross Section chapter describes The Beam Cross Section Interface, which 
is used for computing cross section properties for beams. It can also be used for a 
detailed evaluation of stresses in a beam when the section forces to which it is subjected 
are known. The first section discusses Using the Beam Cross Section Interface, and the 
underlying theory is described in Theory for the Beam Cross Section Interface.

T H E  TR U S S  I N T E R F A C E

The Truss chapter describes The Truss Interface, which models slender 3D and 2D 
structures with components capable to withstand axial forces only. Typical applications 
are latticeworks, but it can also be used for modeling cables. In the section Modeling 
with Truss Elements, the you will find a discussion how to set up models using this 
interface. The underlying theory for the physics interface is described in Theory for the 
Truss Interface.

T H E  M E M B R A N E  I N T E R F A C E

The Membrane chapter describes The Membrane Interface, which can be used for 
prestressed membranes, cladding on solids, and balloons, for example. The underlying 
theory for the physics interface is also included in Theory for the Membrane Interface.

T H E  M U L T I P H Y S I C S  I N T E R F A C E S

The Multiphysics Interfaces and Couplings chapter describes these physics interfaces 
found under the Structural Mechanics branch when adding a physics interface:

• The Thermal Stress Interface combines a Solid Mechanics interface with a Heat 
Transfer interface. The coupling appears on the domain level, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Solid 
Mechanics interface, causing thermal expansion.

• The Joule Heating and Thermal Expansion Interface combines solid mechanics 
using a thermal linear elastic material with an electromagnetic Joule heating model. 
This is a multiphysics combination of solid mechanics, electric currents, and heat 
transfer for modeling of, for example, thermoelectromechanical (TEM) 
applications.

• The Piezoelectric Devices Interface combines a Solid Mechanics with an 
Electrostatics interface. Piezoelectric materials in 3D, 2D plane strain and plane 
stress, and axial symmetry can be modeled.
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• The Magnetostriction Interface combines a Solid Mechanics with a Magnetic Fields 
interface. Using this interface you can solve problems in the magnetostrictive field 
with linear as well as nonlinear material models.

• The Fluid-Structure Interaction Interface, found under the Fluid Flow branch, is 
described in this chapter. The physics interface combines fluid flow with solid 
mechanics to capture the interaction between the fluid and the solid structure.

• The Fluid-Structure Interaction, Fixed Geometry Interface, found under the Fluid 
Flow branch, is described in this chapter. The interface can be used to model 
phenomena where a fluid and a deformable solid structure affect each other.
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S t r u c t u r a l  M e c h a n i c s  M o d e l i n g
The goal of this chapter is to give you an insight on how to approach the modeling 
of various structural mechanics problems.

Some physics interfaces and features discussed in this chapter are only available with 
certain products. For a detailed overview of the functionality available in each 
product, visit http://www.comsol.com/products/specifications/
 33
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In this chapter:

• Study Types

• Selecting the Physics Interface

• Selecting Discretization

• Coupling Different Element Types

• Applying Loads

• Defining Constraints

• Calculating Reaction Forces

• Introduction to Material Models

• Modeling Piezoelectric Problems

• Mechanical Damping and Losses

• Modeling Geometric Nonlinearity

• Contact Modeling

• Springs and Dampers

• Defining Multiphysics Models

• Thermally Coupled Problems

• Computing Mass Properties

• Pre-tensioned Bolts

• Stress Linearization

• Solver Settings

• Part Libraries
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S t u d y  T yp e s

Introduction

In this section, you will find information about when and how to apply the study types 
which are available for structural mechanics problems:

• Stationary Analysis

• Eigenfrequency Analysis

• Mode Analysis

• Time Domain Analysis

• Frequency Domain Analysis

• Modal Superposition

• Harmonic Perturbation

• Modal Reduced Order

• Linearized Buckling Analysis

• Bolt Pre-Tension Study

Stationary Analysis

You can consider a structural mechanics problem as stationary if the following two 
criteria are fulfilled:

• The loads vary so slowly that inertial forces are negligible. Problems of this type are 
referred to as quasi-static.

• There are no explicit time dependencies in the material model. Viscoelasticity and 
creep have such time dependences.

To perform this type of analysis, you use a Stationary study step.

For general information about study types and solvers, see Studies and 
Solvers in the COMSOL Multiphysics Reference Manual
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In many cases, there is a variation in the load, even though the solution for each value 
of the load can be considered as stationary. There are three conceptually different 
cases:

• The load values are independent; it is just a number of different load cases you want 
to compute. The load case handling functionality described in Load Cases is well 
suited for this purpose.

• You want to study a nonlinear problem where the solution is path dependent, or 
where the load must be increased in small increments in order to obtain a converged 
solution. In this case you should use the parametric continuation solver. Create a 
parameter under Global Definitions>Parameters, which you use to control the 
variation of the load. Then select Auxiliary sweep under Study Extensions in the 
settings for the Stationary solver. In the table for the auxiliary sweep parameters, add 
the load controlling parameter, and define its range of variation.

• In a multiphysics problem, another physical quantity might be truly 
time-dependent, but on a time scale that is “slow” from the structural mechanics 
point of view. This is usually the case with, for example, problems coupled to heat 
transfer or diffusion. If the problem also is one-way coupled in the sense that the 
structural deformations do not affect the other physics, it will be unnecessarily 
expensive to solve also the structural problem in the time domain, irrespective of 
whether it is linear or nonlinear. In this situation, you should first solve the other 
physics in a time-dependent study, and then the structural mechanics problem in a 
subsequent stationary study step using the time t as the parameter in the auxiliary 
sweep.

C O N S T R A I N T S

A stationary problems is solvable only if the structure is sufficiently constrained. There 
must not be any possible rigid body modes; thus no stress-free deformation states are 
allowed.

Eigenfrequency Analysis

An eigenfrequency study solves for the eigenfrequencies (natural frequencies) and the 
shapes of the corresponding eigenmodes.

For a more detailed discussion about sufficient constraints, see Rigid body 
motion.
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When performing an eigenfrequency analysis, you can specify whether to look at the 
mathematically more fundamental eigenvalue, λ, or the eigenfrequency, f, which is 
more commonly used in a structural mechanics context. The relation between the two 
is

where i is the imaginary unit.

Because only the shape and not the size of the modes (eigenvectors) have physical 
significance, the computed modes can be scaled arbitrarily. You can select the method 
for scaling in the Eigenvalue Solver node of the solver sequence. If output of mass 
participation factors is required, then Scaling of eigenvectors must be set to Mass 

matrix. This means that the eigenmodes U are orthogonalized with respect to the mass 
matrix M so that

 (2-1)

This is a common choice for the scaling of eigenvectors within the structural mechanics 
field.

The mass (or ‘modal’) participation factor for mode i in direction j, rij, is defined as

Here, dj is a vector containing unity displacement in all degrees of freedom 
representing translation in direction j. The mass participation factor gives an indication 
of to which extent a certain mode might respond to an excitation in that direction.

The mass participation factors have the important property that when their squares for 
a certain direction are summed over all modes, this sum approaches the total mass of 
the model:

If you use a modal superposition method to solve a forced response problem, then in 
practice you do not solve for all possible modes but just a limited number. This 
property if the mass participation factors can then be used for investigating how well a 
certain number of selected modes represent the total mass of the system.

f λ
2πi
---------–=

Ui
TMUi 1=

rij Ui
TMdj=

rij
2

i 1=

n

 mtot=
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The mass participation factors are available as a global variables, and these can be 
shown in a table using a Global Evaluation node under Derived Values in the Results 
branch, for example. The participation factor variables are available as predefined 
variables in the Solver submenu.

It is possible to compute eigenfrequencies for structures which are not fully 
constrained; this is sometimes referred to as free-free modes. For each possible rigid 
body mode, there is one eigenvalue which in theory is zero. The number of possible 
rigid body modes for different geometrical dimensions is shown in the table below.

In a piezoelectric model, one more zero eigenfrequency could appear if you have not 
set a reference value for the electric potential.

In practice, the natural frequencies of the rigid body modes are not computed as 
exactly zero, but can appear as small numbers which can even be negative or complex. 
If rigid body modes are present in the model, then it is important to use a nonzero 

For an example showing how to compute modal mass, see In-Plane 
Framework with Discrete Mass and Mass Moment of Inertia: 
Application Library path Structural_Mechanics_Module/

Verification_Examples/inplane_framework_freq.

For an example showing an eigenfrequency computation in a model 
having a rigid body mode, see Eigenfrequency Analysis of a Free 
Cylinder: Application Library path Structural_Mechanics_Module/

Verification_Examples/free_cylinder.

In the COMSOL Multiphysics Reference Manual:

• Eigenvalue Solver 

• Studies and Solvers

• Derived Values and Tables

TABLE 2-1:  NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

3D 6 (3 translations + 3 rotations)

2D axisymmetric 1 (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + 1 rotation)

2D (plate) 3 (1 translation + 2 rotations)
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value in the Search for eigenfrequencies around text field in the settings for the 
Eigenfrequency study step. The value should reflect the order of magnitude of the first 
important nonzero eigenfrequency.

D A M P I N G

If any type of damping is included in the model, an eigenfrequency solution 
automatically returns the damped eigenvalues. The eigenfrequencies and, in general, 
also the mode shapes are complex in this case. A complex-valued eigenfrequency can 
be interpreted so that the real part represents the actual frequency, and the imaginary 
part represents the damping. The ratio between the imaginary and real parts of the 
eigenfrequency is the relative damping of the corresponding eigenmode,

In a complex mode shape there are phase shifts between different parts of the 
structure, so that not all points reach the maximum at the same time under free 
vibration.

Some damping types will still give real valued eigenmodes, this is the case for Rayleigh 
damping and loss factor damping.

P R E S T R E S S E D  A N A L Y S I S

In a loaded structure, the natural frequencies may be shifted due to stress stiffening. 
With the Prestressed Analysis, Eigenfrequency study type you can compute 
eigenfrequencies taking this effect into account.

Mode Analysis

The Mode Analysis study type( ) is available with the Solid Mechanics interface in 
2D plane strain. 

Elastic waves can propagate over large distances in structures like rails and pipes, with 
a generic name referred to as waveguides. After some distance of propagation in a 
waveguide of uniform cross section, such guided waves can be described as a sum of 
just a few discrete propagating modes, each with its own shape and phase speed. The 

ζi
ωi( )imag
ωi( )real

-------------------------=

Prestressed Structures
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equation governing these modes can be obtained as a spatial Fourier transform of the 
linearized time-harmonic equation in the waveguide axial z direction or by inserting 
the assumption that the mode is harmonic in space,

and eliminating all out-of-plane z dependence.

Similar to the full time-harmonic equation, the transformed equation can be solved at 
a given frequency with a nonzero excitation for most axial wave numbers kz. But at 
certain discrete values the equation breaks down. These values are the propagation 
constants or wave numbers of the propagating or evanescent waveguide modes. The 
eigenvalue solver can solve for these propagation constants together with the 
corresponding mode shapes.

The most common use for the Mode Analysis is to define sources for a subsequent 
time-harmonic simulation. If there is a component with one or more waveguide 
connections, its behavior can be described by simulating its response to the discrete set 
of propagating modes on the waveguide opening cross sections. 

Time Domain Analysis

There are two classes of problems where a stationary solution cannot be used:

• When the inertial forces no longer are negligible, the full problem as given by 
Newton’s first law must be solved.

• When there are time dependencies in the material model, as for creep or 
viscoelasticity.

u ue ikz z–=

The propagating wave number is a function of the frequency. The relation 
between the two is commonly referred to as a dispersion curve.

• Out-of-plane and Circumferential Modes in the Structural Mechanics 
Theory Chapter

• Studies and Solvers and Mode Analysis in the COMSOL Multiphysics 
Reference Manual
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The most general way of doing that is to use a Time Dependent study. In this type of 
analysis, you can incorporate any type of nonlinearity, and there are no limitations on 
the time dependence of the loads.

A time domain solution can be preceded by a stationary study, if for example prestress 
effects are needed.

For a linear problem including inertia, using the modal superposition method is often 
much more efficient than using the standard direct method.

S O L V E R  S E L E C T I O N

The two classes of dynamic problems presented above have quite different properties. 
The inertial forces in the full structural dynamics problem contain second-order time 
derivatives of the displacements, whereas creep and viscoelasticity only have first-order 
derivatives. The physical and numerical properties of these equations differ 
significantly.

There are two general solvers for time-dependent problems in COMSOL 
Multiphysics.

• The Generalized alpha method, which is recommended for structural dynamics 
problems. This is the default solver if Structural Transient Behavior is set to Include 

inertial terms in the physics interface settings.

• The BDF method, which is recommended for the first-order problems. This is the 
default solver if Structural Transient Behavior is set to Quasi-static in the physics 
interface settings.

Frequency Domain Analysis

In a frequency domain analysis, you study the response to a harmonic steady state 
excitation for certain frequencies. Such a steady state can prevail once all transient 
effects have been damped out.

The response must be linear, so that the single frequency harmonic excitation gives a 
pure harmonic response with the same frequency. The model may however contain 
nonlinearities; the harmonic response is computed around a linearization point. In 

In the COMSOL Multiphysics Reference Manual:

• Time-Dependent Solver 

• Studies and Solvers
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such a case, the frequency domain analysis can be considered as a very small 
perturbation around the linearization point. 

All loads and responses are in general complex valued quantities. If not all loads have 
the same phase, you can prescribe the phase of a certain in two ways:

• Add a Phase subnode to the load, in which you give the phase angle.

• Enter the load as a complex value, for example as
100[N]*(1+0.5*i)/sqrt(1.25).

Most results of a frequency domain analysis are complex. In results evaluation, the real 
value of any result quantity will be shown. Assuming that you want to display for 
example the displacement in the x-direction, u, you have following options:

• Plot u or real(u). This gives the displacement at zero phase angle.

• Plot imag(u). This gives the displacement at a phase angle of 90 degrees.

• Plot abs(u). This gives the amplitude of the displacement.

• Plot arg(u). This gives the phase angle of the displacement.

The reference phase, with respect to which the results above are reported.

Harmonic Perturbation
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Result quantities that are nonlinear in terms of the displacements, such as principal 
stresses, should be interpreted with great care. They will in general not be harmonic, 
so the amplitude and phase information is not reliable.

P R E S T R E S S E D  A N A L Y S I S

The shift in the natural frequencies in a prestressed structure may have a significant 
effect on the frequency response. This is particularly important when the frequencies 
of the load are close to any of the natural frequencies of the structure. The Prestressed 
Analysis, Frequency Domain study type is designed to take such effects into account.

The prestress loading can include a contact analysis, in which case the subsequent 
frequency domain analysis provide as linearization around the current contact state.

Some extra variables for postprocessing are created in a frequency-domain 
analysis. As an example, in the Solid Mechanics interface the following 
variables are defined:

• solid.disp—Norm of displacement (at current phase angle)

• solid.vel—Norm of velocity (at current phase angle)

• solid.acc—Norm of acceleration (at current phase angle)

• solid.disp_rms—RMS displacement over a cycle

• solid.vel_rms—RMS velocity over a cycle

• solid.acc_rms—RMS acceleration over a cycle

• solid.uAmpX—Amplitude of displacement in X direction

• solid.uAmp_tX—Amplitude of velocity in X direction

• solid.uAmp_ttX—Amplitude of acceleration in X direction

• solid.uPhaseX—Phase of X displacement, in radians

• solid.uPhase_tX—Phase of X velocity, in radians

• colid.uPhase_ttX—Phase of X displacement, in radians

The components in other coordinate directions are obtained by replacing 
X by another coordinate name.

• Prestressed Structures

• Harmonic Perturbation
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O B T A I N I N G  A  T I M E  H I S T O R Y

Sometimes you want to study the time history over a period for the results of a 
frequency domain analysis. You can do that by adding a Frequency to Time FFT study 
step. The frequency response results are then viewed as terms in a Fourier series, which 
can be transformed to time domain. It is possible combine the results for several 
frequencies into a single time history, under the assumption that they are all multiples 
of the same fundamental frequency.

Modal Superposition

Analyzing forced dynamic response for large models can be very time-consuming. You 
can often improve the performance dramatically by using the modal superposition 
technique. The following requirements must be met for a modal solution to be 
possible:

• The analysis is linear. It is possible, however, that the structure has been subjected 
to a preceding nonlinear history. The modal response can then be a linear 
perturbation around that state.

• There are no nonzero prescribed displacements.

• The important frequency content of the load is limited to a range that is small when 
compared to all the eigenfrequencies of the model, so that its response can be 
approximated with a small number of eigenmodes. In practice, this excludes wave 
and shock type problems.

• If the modal solution is performed in the time domain, all loads must have the same 
dependency on the time.

When using the Structural Mechanics Module, there are two predefined study types 
for modal superposition: Time-Dependent Modal and Frequency-Domain Modal. 

For an examples showing how to obtain a time history from frequency 
domain results, see

• Viscoelastic Structural Damper: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency.

• Vibration Analysis of a Deep Beam: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

vibrating_deep_beam.
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Both these study types consist of two study steps: One step for computing the 
eigenfrequencies and one step for the modal response.

In practice, you have often computed the eigenfrequencies already, and then want to 
use them in a modal superposition. In this case, start by adding an empty study, and 
then add a Time-Dependent Modal or Frequency-Domain Modal study step to it. After 
having added the study step this way, you must point the modal solver to the solution 
containing the eigenfrequencies and eigenmodes. You do this by first selecting Show 

default solver at the study level, and then selecting the eigenfrequency solution to be 
used in the Eigenpairs section of the generated modal solver.

In a modal superposition, the deformation of the structure is represented by a linear 
combination of its eigenmodes. The amplitudes of these modes are the degrees of 
freedom of the reduced problem. You must select which eigenmodes to include in the 
analysis. This choice is usually based on a comparison between the eigenfrequencies of 
the structure and the frequency content of the load. As a rule of thumb, select 
eigenmodes up to approximately twice the highest frequency of the excitation.

In the modal superposition formulation in COMSOL, the full model is projected onto 
the subspace spanned by the eigenmodes. A problem having the number of degrees 
equal to the number of included modes is then solved. This means that there are no 
restrictions on the type of damping that can be used in a modal superposition analysis, 
as it would have been the case if the modal equations were assumed to be totally 
decoupled.

For many common cases, the modal superposition analysis is not sensitive to whether 
the eigenmodes were computed using damping or not. The reason is that the 
eigenmodes of problems with Rayleigh damping and loss factor damping can be shown 
to be identical to those of the undamped problem, so that the projection to the 
subspace spanned by the eigenmodes is the same in both cases. For more general 
damping, it is however recommended that you suppress all contributions to the 
damping during the eigenfrequency step, and thus base the modal superposition on 
the solution to the undamped eigenfrequency problem.

F R E Q U E N C Y  D O M A I N  A N A L Y S I S

All loads are assumed to have a harmonic variation. This is a perturbation type analysis, 
so only loads having the Harmonic perturbation property selected are then included in 
the analysis.
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T I M E - D E P E N D E N T  A N A L Y S I S

Only the factor of the load which is independent of time should be specified in the load 
features. The dependency on time is specified as Load factor under the Advanced section 
of the modal solver. This factor is then applied to all loads.

Harmonic Perturbation

Analyses in the frequency domain assume that the problem your study is linear, at least 
with respect to the response to the harmonic excitation. There may be other 
nonlinearities, such that the structure has responded nonlinearly to a previous loading. 
This loading could, for example, have caused a large rotations or prestress of a rubber 
membrane.

The concept of harmonic perturbation is in COMSOL Multiphysics used for 
distinguishing the linear harmonic analysis from a possible prestress analysis. The most 
important implication is that if a load has the Harmonic Perturbation selection, it is 
applied only in a study that is of the perturbation type. A load without this selection is, 
on the other hand, ignored in such a study. In this way two sets of loads can be 
distinguished from each other. Technically speaking, the effect of marking a load as 
Harmonic Perturbation is that the linper() operator is applied to the value of the load.

The default settings for the different structural mechanics study types in the frequency 
domain are summarized in Table 2-2.

• Modal Solver and Studies and Solvers in the COMSOL Multiphysics 
Reference Manual

• Mechanical Damping and Losses

For an example showing how to perform modal superposition in time and 
frequency domain, see Various Analyses of an Elbow Bracket: 
Application Library path Structural_Mechanics_Module/Tutorials/

elbow_bracket.

TABLE 2-2:  DEFAULT PERTURBATION SETTINGS FOR STRUCTURAL MECHANICS STUDY TYPES

STUDY TYPE STUDY STEP PERTURBATION

Frequency Domain Frequency Domain No
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Note the following:

• With the default settings you cannot use the same set of loads for a Frequency Domain 
and a Frequency-Domain, Modal study because only the latter responds to 
perturbation loads.

• You can change the behavior of a Frequency Domain study to be of the perturbation 
type by modifying the solver sequence. In the General section of the settings for the 
Stationary Solver, change Linearity to Linear perturbation.

• A solver that does not have Linearity set to either Linear perturbation or Linear may 
respond to nonlinear effects. There are multiphysics problems where this is wanted 
because there may be a nonlinearity in another physics, even though the harmonic 
solution within structural mechanics is linear. But if there are nonlinearities within 
the structural mechanics parts of the model, you must be careful with the solver 
settings.

Prestressed Analysis, Frequency 
Domain

Stationary
Frequency-Domain, Perturbation

No
Yes

Frequency-Domain, Modal Eigenfrequency
Frequency-Domain, Modal

N/A
Yes

TABLE 2-2:  DEFAULT PERTURBATION SETTINGS FOR STRUCTURAL MECHANICS STUDY TYPES

STUDY TYPE STUDY STEP PERTURBATION

In a Frequency-Domain, Perturbation study step, that is when Linearity is set 
to Linear perturbation, geometric nonlinearity will be incorporated in the 
sense that there is a split between the material and spatial frames. This 
makes it possible to take into account for example stiffness from follower 
loads, and to use a contact solution as linearization point.

This frame split was introduced in version 5.3. As an effect, models 
created in an earlier version, in which some expressions have a frame 
dependency may produce results that differ from before. Examples of 
such cases are:

• Pressure loads

• Loads defined in coordinate systems with deformation dependent axis 
orientation

• User-defined expressions containing spatial (‘lowercase’) coordinates
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For most load types, the use of Harmonic Perturbation is straightforward, but some 
cases need a more detailed discussion:

• A Rigid Connector can be assigned an Harmonic Perturbation subnode in which you 
can prescribe harmonic perturbation values to constrained degrees of freedom. If 
you have added Applied Force or Applied Moment nodes under a Rigid Connector, you 
can independently assign Harmonic Perturbation to these nodes, so that the loads are 
considered as being of the perturbation type.

• Even though initial stresses and strains are not usually considered as loads, you can 
assign Harmonic Perturbation also to the Initial Stress and Strain nodes.

Modal Reduced Order

Reduced-order modeling seeks to reduce the number of degrees of freedom in a 
physical model, whilst still retaining the essential physics. For a lightly damped 
resonant system driven at one of its resonant frequencies, it is reasonable to consider 
only the contributions to the system of a small number (m) of modes within the signal 
bandwidth. In some cases a single mode is sufficient. A system with n degrees of 
freedom has mass, stiffness, and damping matrices of size n-by-n. A reduced-order 
representation of the system considering m modes has size m-by-m. The reduction in 
complexity of the system, and the computational speed up is therefore significant when 
m « n. This section describes the theory of the reduced-order system and gives 
guidelines on how to obtain reduced-order models from a COMSOL model.

This can be employed in two different ways: Either you can use the built-in modal 
solvers for the time or frequency domain, or you can export the small equivalent system 
and analyze it outside COMSOL, for example, as a component in a larger system 
simulation.

In the COMSOL Multiphysics Reference Manual:

• Frequency-Domain Perturbation Study Step 

• Harmonic Perturbation — Exclusive and Contributing Nodes 

• Built-In Operators (linper() operator)

For an example showing how to use harmonic perturbation, see 
Bracket—Frequency-Response Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_frequency.
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T H E  M O D A L  C O O R D I N A T E  S Y S T E M

Consider a mechanical system, with n degrees of freedom, described by an equation of 
the form

 (2-2)

where u is the displacement vector (size: n-by-1), K is the stiffness matrix (size: 
n-by-n), D is the damping matrix (size: n-by-n), and M is the mass matrix (size: 
n-by-n). In the frequency domain the problem takes the form

where u = u0eiωt.

Initially consider the system in the absence of damping and forces. The undamped 
system has n eigenvalues ωi, which satisfy the equation

 (2-3)

These eigenvectors can be shown to be orthogonal with respect to both M and K:

 (2-4)

 (2-5)

Next the following n-by-n matrix is constructed, with columns taken from the n 
eigenvectors:

Then consider the following matrix:

Mu·· Du· Ku+ + F=

ω2M– u0 iωDu0 Ku0+ + F=

Kûi ωi
2Mûi=

ûj
T

Mûi 0= i j  ωi ωj≠,≠

ûj
T

Kûi 0= i j  ωi ωj≠,≠

U û1  û2, … ûn
=

UTMU

û1
T

Mû1 û1
T

Mû2    

û2
T

Mû1 û2
T

Mû2    
     

   ûn 1–
T

Mûn 1– ûn 1–
T

Mûn

   ûn
T

Mûn 1– ûn
T

Mûn

=
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From Equation 2-4 it is clear that this is a diagonal matrix. Similarly from Equation 2-5 
it is clear that UTKU is also diagonal.

From the properties of the eigenvectors it is possible to expand any function in terms 
of the eigenvectors. Thus the displacement u can be written as:

This equation can also be expressed in the form:

 (2-6)

where a is a column vector containing the coefficients ai as rows. In general a is 
time-dependent.

Now consider the original equation: Equation 2-2. First substitute for u using 
Equation 2-6. Then transform the equation to the modal coordinate system by 
premultiplying by UT. This gives:

 (2-7)

It has already been established that the matrices UTMU and UTKU are diagonal and 
frequently a damping model is chosen that results in a diagonal damping matrix. For 
example, in Rayleigh damping D = αM + βK, where α and β are constants. For a 
general damping, the transformed damping matrix is however not diagonal. As an 
alternative, a damping ratio, ζi, can be assigned to each mode.

E I G E N V A L U E  S C A L I N G

The precise form of Equation 2-7 is determined by the normalization adopted for the 
eigenfunctions. In structural applications the eigenfunctions are often normalized such 
that UTMU = I. This is referred to as mass matrix scaling in the eigenvalue solver. In 
this case Equation 2-3 gives

so that

u aiûi

i 1=

n

=

u Ua=

UTMUa·· UTDUa· UTKUa+ + UTF=

ûi
T

Kûi ωi
2ûi

T
Mûi ωi

2
= =

UTKU diag ωi
2( )=
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



where diag(ωi
2) is the diagonal matrix with diagonal elements ωi

2. Similarly, if 
damping ratios for each mode are defined, the damping matrix can be expressed in the 
form

Thus if mass matrix scaling is used Equation 2-7 takes the form

 (2-8)

It is also possible to scale the eigenvectors so that the point of maximum displacement 
has unit displacement. This is referred to as max scaling in the eigenvalue solver. For 
an individual mode this scaling has a simple physical interpretation—the 
corresponding component of a, ai, is the amplitude of the i:th mode, measured at the 
point of maximum displacement, when the mode is driven by the force F. In this case 
Equation 2-7 takes the form

 (2-9)

Here meff,i is the effective mass of the i:th mode, ceff,i = 2meff,iξiωi is the effective 
damping parameter for the mode, and keff,i is the effective spring constant. Each 
element of the vector UTF gives the force component that acts on each of the 
respective modes.

R E D U C E D - O R D E R  M O D E L S

The preceding discussion did not consider how to reduce the number of degrees of 
freedom in the system. For systems in which the vector UTF has only a few significant 
components (for example, components i = 1, …, m where m « n) the following 
approximation can be made:

UTDU diag 2ζiωi( )=

a·· diag 2ζiωi( )a· diag ωi
2( )a+ + UTF=

diag meff  i,( )a·· diag ceff  i,( )a· diag keff  i,( )a+ + UTF=

When using max scaling, it is the largest value of a degree of freedom 
which is scaled to 1. The total displacement in that node will thus be 
between 1 and .

If degrees of freedom other than displacements are active in the 
eigenfrequency problem, the maximum value may occur in another type 
of degree of freedom such as electric potential or pressure. Consequently, 
the peak displacement in that mode can then be less than 1.

3
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The expression for u in matrix becomes:

where U' is now an m-by-n and a' is a vector with m components. The equation 
system in modal coordinates now takes the form

 (2-10)

The matrices U'TMU', U'TDU', and U'TKU' now have dimensions m-by-m. Similarly 
the vector U'TF has m components. This results in a significant reduction in the 
system complexity.

R E D U C E D - O R D E R  M O D E L S  W I T H  P H Y S I C A L  D A M P I N G

If physically relevant damping is present in the system, the above theory must be 
modified as the damping matrix is no longer diagonal in the modal coordinate system. 
COMSOL can still handle this case as the modal solver does not make the assumption 
that any of the matrices are diagonal. In this case the eigenvalues become complex and 
the eigenvectors split into right and left eigenvectors. The right eigenvectors Ur are 
solutions of the equation:

As in the previous section, for a reduced set of modes, it is assumed that:

where U'r is the n-by-m matrix containing the right eigenvectors chosen for the modal 
analysis. Once again a' is a vector with m components. The system in modal 
coordinates takes the form

where U'l is the n-by-m matrix containing the left eigenvectors chosen for the modal 
analysis.

u aiûi

i 1=

m

≈

u U'a'=

U'
T

MU'a'·· U'
T

DU'a'· U'
T

KU'a'+ + U'
T

F=

ωi
2M– ûr i, iωiDûr i, Kûr i,+ + F=

u U'ra'=

U'l
T

MU'ra'·· U'l
T

DU'ra'· U'l
T

KU'ra'+ + U'l
T

F=
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The matrices U'l
TMU'r, U'l

TDU'r, and U'l
TKU'r are no longer necessarily diagonal. 

The modal solver accepts any linearly independent set of vectors to project the solution 
vector and equations onto and constructs the reduced-order system accordingly.

C O N S T R U C T I N G  R E D U C E D - O R D E R  M O D E L S  W I T H  C O M S O L

To obtain the data necessary to construct reduced-order models from a COMSOL 
simulation the Modal Reduced Order Model study step is available. Add this study step 
after an existing Eigenvalue study step, by right-clicking the Study 1 node and selecting 
Study Steps>Time Dependent>Modal Reduced Order Model. Then solve the model. After 
the model has solved, right-click the Results>Derived Values node and select System 

Matrices. In the output section choose the Matrix to display in the list. The mass matrix 
corresponds to the matrix U'l

TMU'r the stiffness matrix corresponds to U'l
TKU'r, and 

the damping matrix corresponds to U'l
TDU'r. The vector U'l

TF is available as the load 
vector. The Modal Reduced Order Model exports these matrices in a format that 
respects the normalization of the preceding Eigenvalue study. To change this select the 
Study 1>Solver Configurations>Solver 1>Eigenvalue Solver 1 node and change the Scaling 

of Eigenvectors setting under the Output section. Use the Max setting if an equivalent 
Mass-Spring-Damper system is required, in which case the modal amplitude 
corresponds to the maximum displacement of the mode. 

Linearized Buckling Analysis

A linearized buckling analysis can be used for estimating the critical load at which a 
structure becomes unstable. This is a predefined study type that consists of two study 
steps: An initial step in which a unit load is applied to the structure, and a second step 
in which an eigenvalue problem is solved for the critical buckling load.

The idea behind this type of analysis can be described in the following way:

Consider the equation system to be solved for a stationary load f,

Here the total stiffness matrix, K, has been split into a linear part, KL, and a nonlinear 
contribution, KNL.

In a first order approximation, KNL is proportional to the stress in the structure and 
thus to the external load. So if the linear problem is solved first for an arbitrary initial 
load level f0,

Ku KL KNL+( )u f= =

KLu0 f0=
S T U D Y  TY P E S  |  53



54 |  C H A P T E R
then the nonlinear problem can be approximated as 

where λ is called the load multiplier.

An instability is reached when this system of equations becomes singular so that the 
displacements tend to infinity. The value of the load at which this instability occurs can 
be determined by, in a second study step, solving an eigenvalue problem for the load 
multiplier λ.

COMSOL reports a critical load factor, which is the value of λ at which the structure 
becomes unstable. The corresponding deformation is the shape of the structure in its 
buckled state.

The level of the initial load used is immaterial since a linear problem is solved. If the 
initial load actually was larger than the buckling load, then the critical value of λ is 
smaller than 1.

KL λKNL u0( )+( )u λf0=

KL λKNL u0( )+( )u 0=

You should not select geometric nonlinearity in a linearized buckling 
analysis. Since the nonlinear effect of the stress is already taken into 
account in the formulation, an explicit use of geometric nonlinearity 
would make the computed buckling load dependent on the load level 
used in the pre-load study step.

Be aware that for some structures, the true buckling load can be 
significantly smaller that what is computed using a linearized analysis. 
This phenomenon is sometimes called imperfection sensitivity. Small 
deviations from the theoretical geometrical shape can then have a large 
impact on the actual buckling load. This is especially important for curved 
shells.

For a structure that exhibits axial symmetry in the geometry, constraints, 
and loads, the critical buckling mode shape can still be non-axisymmetric. 
A full 3D model should always be used when computing buckling loads.
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Bolt Pre-Tension Study

The Bolt Pre-Tension study step is a special case of a Stationary study step, where the 
special degrees of freedoms used for modeling prestressed bolts are solved for. In all 
other study types, these degrees of freedom are inactive. Typically, you include a Bolt 

Pre-Tension study step as the first step in a study in order to simulate the state after the 
assembly of a bolted joint. You can the add any other types of study steps for 
computing the effects of the service loads.

Studies and Solvers and Linear Buckling in the COMSOL Multiphysics 
Reference Manual

• Bracket — Linear Buckling Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_linear_buckling

• Linear Buckling Analysis of a Truss Tower: Application Library path 
Structural_Mechanics_Module/Buckling/truss_tower_buckling

Pre-tensioned Bolts

Prestressed Bolts in a Tube Connection: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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S e l e c t i n g  t h e  Ph y s i c s  I n t e r f a c e

The structural mechanics products contain a number of physics interfaces for a wide 
range of applications. This section contains some guidelines for how to select an 
appropriate physics interface for your analysis.

The basic physics interfaces for structural mechanics are:

• Solid Mechanics—General modeling of objects with extension in all directions

• Shell and Plate—For objects which are thin in one direction, but have significant 
bending stiffness

• Membrane—For objects which are thin in one direction, and have negligible 
bending stiffness

• Beam—For objects where two directions have significantly smaller dimensions than 
the third; significant bending stiffness

• Truss—For objects where two directions have significantly smaller dimensions than 
the third; only axial forces can be transmitted

Solid Mechanics

The Solid Mechanics interface offers the most general modeling of structural 
mechanics problems and is formulated based on general principles of continuum 
mechanics. It is the interface which contains the largest number of material models, 
and the most advanced boundary conditions. It is also the only physics interface that 
supports contact analysis.

The drawback with using solid elements is that the models can become 
computationally expensive, especially in 3D. For structures which are thin or slender, 
you should consider using one of the specialized physics interfaces.

For a detailed overview of the functionality available in each product, visit 
http://www.comsol.com/products/specifications/
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The degrees of freedom (dependent variables) in 3D are the global displacements u, v, 
and w in the global x, y, and z directions, respectively.

Figure 2-1: Loads and constraints applied to a 3D solid using the Solid Mechanics 
interface.

2 D  G E O M E T R Y

Plane Stress
The plane stress variant of the 2D physics interface is useful for analyzing thin in-plane 
loaded plates. For a state of plane stress, the out-of-plane components of the stress 
tensor are zero.

Figure 2-2: Plane stress models plates where the loads are only in the plane; it does not 
include any out-of-plane stress components.

The 2D physics interface for plane stress allows loads in the x and y directions, and it 
assumes that these are constant throughout the material’s thickness, which can vary 
with x and y. The plane stress condition prevails in a thin flat plate in the xy-plane 
loaded only in its own plane and without any z direction restraint.
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Plane Strain
The plane strain variant of the 2D physics interface that assumes that all out-of-plane 
strain components of the total strain εz, εyz, and εxz are zero. 

Figure 2-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant 
throughout the thickness of the material, but the thickness can vary with x and y. The 
plane strain condition prevails in geometries, whose extent is large in the z direction 
compared to in the x and y directions, or when the z displacement is in some way 
restricted. One example is a long tunnel along the z-axis where it is sufficient to study 
a unit-depth slice in the xy-plane.

A X I S Y M M E T R I C  G E O M E T R Y

The axisymmetric variant of the Solid Mechanics interface uses cylindrical coordinates 
r, ϕ (phi), and z. Loads are independent of ϕ, and the axisymmetric variant of the 
physics interface allows loads only in the r and z directions.

The 2D axisymmetric geometry is viewed as the intersection between the original 
axially symmetric 3D solid and the half plane ϕ = 0, r ≥ 0. Therefore the geometry is 
drawn only in the half plane r ≥ 0 and recover the original 3D solid by rotating the 2D 
geometry about the z-axis.

Figure 2-4: Rotating a 2D geometry to recover a 3D solid.
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Shell and Plate

The Shell interface is useful when the object is thin in one direction. Structures built 
from welded or bolted flat plates is an archetypal shell structure, and so are pressure 
vessels.

The Plate interface is a specialization of the Shell interface, used for 2D modeling in 
the XY-plane. A plate model has its main action in bending out of the plane, but it can 
also treat in-plane forces. If the loads act only in the plane, using Solid Mechanics with 
the Plane Stress option is a better choice.

Shells are modeled on boundaries, and the transverse direction is represented only by 
the mathematical model. The degrees of freedom consist of displacements and 
rotations at the modeled boundary. This results in an assumption where the in-plane 
stresses and strains vary linearly through the thickness, and the stress in the thickness 
direction is zero. The thickness of a shell does not have to be constant, although this 
is by far the most common case.

The Shell and Plate interfaces can be used both for ‘thin’ and ‘thick’ shells. Shear 
deformations are taken into account; this is usually called Mindlin theory. The material 
model is linear elastic. 

When modeling with shells, it important to keep track of ‘top’ and ‘bottom’ side when 
applying loads and interpreting the results.

The in-plane stiffness of a shell is proportional to the thickness h, while the bending 
stiffness is proportional to h3. The difference in stiffness along different directions can 
thus become very large. When an object is very thin, a shell model may be numerically 
ill-posed. It is then better to use the Membrane interface.

Membrane

The Membrane interface can be used for very thin objects, like cloth, where only 
in-plane forces are important. Membranes can be considered as plane stress elements, 
but with an arbitrary, possibly curved configuration is space.

In most applications, a membrane must be pre-tensioned in order to have a stable 
configuration, so it will almost invariably be used in a geometrically nonlinear analysis. 
The only exception is when it is used as a ‘cladding’ on top of a solid, since it will then 
be stabilized by the solid.

In the Membrane interface a large number of different material models can be used.
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Beam

A beam is an abstract model where only the extension in the axial direction is modeled 
explicitly on an edge. The cross section is specified in terms of properties such as area 
and moments of inertia.

The exact stress distribution in the beam is not explicitly modeled. It is actually not 
even fully determined by the cross-sectional properties. Instead, six (in 3D) resultant 
section forces are used: axial force, shear forces in two perpendicular directions, two 
bending moments, and one twisting moment.

Two formulations are available in the Beam interface:

• The classical Euler-Bernoulli beam theory, which is applicable for slender beams.

• Timoshenko theory, where shear deformations are taken into account. This allows 
the Beam interface to be applied to rather thick beams.

Truss

The Truss interface has four distinct purposes:

• Modeling of trusses, consisting of straight bars carrying only axial forces

• Modeling of cables and wires

• As reinforcements, used in conjunction with other physics interfaces

• For modeling discrete springs and dampers, often added to other physics interfaces

For a truss model, only one geometrical property is needed, the cross section area. The 
material model can be linear elastic or elastoplastic. There is also a special material 
model for creating spring/damper data.

The truss element has no stiffness in the directions perpendicular to its extension. For 
trusses, this is usually not a problem since they are designed such that each member is 
stabilized by its neighbors. For cables however, a prestress is necessary to keep them 
stable.
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Shape Function Order

In structural mechanics analysis, the focus is often on the stresses and strains rather 
than on the displacements. Since the strains are derivatives of the displacement field, 
the accuracy of the strains will be one order less than the accuracy of the displacements. 
For this reason, second-order shape functions are used as default in most of the 
structural mechanics interfaces. Often this gives the best trade-off between model size 
and accuracy.

It is well known that using first-order shape functions in solid mechanics will give an 
overly stiff solution, unless a very fine mesh is used. This is especially noticeable for 
triangular and tetrahedral elements. 

If the purpose of the analysis is only to compute stiffness, rather than stresses, the use 
of linear shape functions can still be justified. This is the default choice in the 
Multibody Dynamics interface.

If the solution contains discontinuities, like when some type of front is moving 
through the material, first-order elements and a fine mesh is often a good choice, since 
the advantage of the higher-order elements lies in their ability to represent smooth 
gradients.

TR U S S  E L E M E N T S

In the Truss interface the default is to use first-order shape functions, since the 
elements are mainly used in a context where the axial force in each element is constant.

When truss elements share an edge with other structural elements, you should choose 
the same discretization in both interfaces, usually quadratic.

B E A M  E L E M E N T S

The beam elements have only one set of shape functions, which cannot be changed. 
The axial displacement and the twist are represented by first-order shape functions, 
while the bending is represented by cubic Hermitian shape functions. This element can 
then represent a constant axial force, a constant twisting torque, a linear bending 
moment, and a constant shear force. This is the exact solution for a beam having no 
distributed loads.
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A consequence of this formulation is that it may not possible to obtain a perfectly 
conforming approximation if a beam shares an edge with elements from another 
physics interface.

Lagrange and Serendipity Shape Functions

In the Solid Mechanics and Membrane interfaces, you can choose between two 
families of shape functions: Lagrange and serendipity. The default is to use serendipity 
shape functions.

The serendipity elements have the advantage of generating significantly fewer degrees 
of freedom for structured meshes. The accuracy is in most cases almost as good as for 
the Lagrange elements. The Lagrange elements are however less sensitive to strong 
mesh distortions.

The serendipity shape functions differs from the Lagrange shape functions only for the 
following element shapes:

• 2D: Quadrilateral elements of discretization order higher than 1

• 3D: Hexahedral, prism, and pyramid elements of discretization order higher than 1

When coupling to other structural mechanics physics interfaces, the same type of shape 
functions should be used in both interfaces to ensure conformity in displacement shape 
functions. Since there is no difference between the two families of shape functions in 
1D, this is not an issue when connecting edges.

Choosing Shape Functions in Multiphysics Models

In problems where several physics fields participate, the accuracy can sometimes be 
improved by considering how the different fields interact. In structural mechanics, it 
is common that other physics fields directly affect the inelastic strains. This is the case 
in, for example, thermal expansion and hygroscopic swelling.

In the COMSOL Multiphysics Reference Manual:

• The Lagrange Element

• The Nodal Serendipity Element
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In thermal expansion, the elastic strain used in most constitutive relations is the 
difference between the total strain, which is computed from derivatives of the 
displacement field, and the thermal strain:

Since the thermal strain is directly proportional to the temperature, a consistent 
approximation would be to use one order lower discretization order for the 
temperature than for the displacements. These kinds of considerations are 
automatically made when you add the built-in multiphysics interfaces, such as The 
Thermal Stress Interface.

Another type of coupling appears on the boundary between two domains having 
different physics, as in fluid-structure interaction and acoustic-structure interaction. 
When, for example, Thermoviscous Acoustics is coupled to Solid Mechanics, then the 
time derivative of the displacement in the solid is set equal to the velocity in the 
acoustic medium on the shared boundary. In this case, it makes sense to have the same 
shape function order for these two fields.

Implicit Shape Function Orders

Some solid mechanics formulations contain other degrees of freedom in addition to 
the displacements. The shape functions are then selected internally based on your 
choice of displacement discretization.

M I X E D  F O R M U L A T I O N

When the Nearly incompressible material check box is selected for a certain material, the 
pressure (mean stress) is added as an extra degree of freedom to form what is called a 
mixed formulation.

The shape function used for the pressure is continuous Lagrangian, having an order 
that is one below what is used for the displacement shape functions. The pressure 
degree of freedom is, however, discontinuous over domain boundaries in order to 
allow for changes in material properties.

V I S C O E L A S T I C  S T R E S S  A N D  S T R A I N

When using the Viscoelastic material, auxiliary degrees of freedom are added either for 
the viscoelastic strains or the viscoelastic stresses, depending on whether a linear or a 
nonlinear formulation is used. These degrees of freedom are local to the element, and 
you can select either the discontinuous Lagrange or Gauss point data type.

εel εtot εth– εtot α T Tref–( )–= =
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The discontinuous Lagrange shape functions will have an order that is one below what 
is used for the displacement shape functions.

If Gauss point data is used, the same integration points as used for the numerical 
integration of the stiffness matrix are used. This order depends on the selected 
displacement discretization order.

I N E L A S T I C  S T R A I N S

For material models like plasticity and creep, the inelastic strains are formally degrees 
of freedom. They will be allocated at the same integration points as used for the 
numerical integration of the stiffness matrix. This order depends on the selected 
displacement discretization order.
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Coup l i n g  D i f f e r e n t  E l emen t  T yp e s

In this section:

• Introduction to the Element Types

• Coupling Techniques

• Solver Settings

Introduction to the Element Types

In some engineering structures, the optimal idealization is a mixture of different 
element types. Some examples are:

• Structures that are thin in large regions but more three-dimensional at certain 
locations. A mixture of solids and shells can then significantly reduce the model size.

• Plates or shells having beams as stiffeners.

• Truss elements acting as reinforcement bars in a concrete structure.

• A thin layer of one material on top of another material. In this case, an idealization 
with shells or membranes covering the boundary of a solid can be useful.

When several physics interfaces are added in COMSOL, the default is always that each 
physics interface has its individual degrees of freedom. In structural mechanics the first 
physics interface has the displacement variables (u, v, w), then the second physics 
interface has (u2, v2, w2), and so on. This means that the physics interfaces initially are 
independent even when defined on the same geometrical part. To get the intended 
interaction requires that a coupling is established between the physics interfaces.

Various methods to couple different element types are discussed in this section.

Coupling Techniques

The following basic techniques to connect physics interfaces with displacement 
degrees of freedom is discussed in this section:

• Renaming Degrees of Freedom

• Using Customized Coupling Features

• Using General Coupling Operators
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R E N A M I N G  D E G R E E S  O F  F R E E D O M

The easiest coupling method is to rename the displacement degrees of freedom so that 
these are the same for all physics interfaces. This is sufficient, for example, when using 
membranes as cladding on a solid boundary or truss elements as reinforcement bars in 
a solid.

In the Beam, Shell, and Plate interfaces, the deformation is described also by rotational 
degrees of freedom. In the general case, these degrees of freedom interact with the 
translational degrees of freedom in a connection.

In some special cases—for example, when a thin shell acts as cladding on a solid—it is 
sufficient to make the degree of freedom names for the displacements common; the 
rotational degrees of freedom are not important. If, however, a shell edge is connected 
to a solid, it acts as a ‘hinge’, which in most cases is not the intended behavior. You 
then need to use the more sophisticated techniques described next.

U S I N G  C U S T O M I Z E D  C O U P L I N G  F E A T U R E S

There are a number of built-in couplings, by which you can add connections that are 
difficult to set up manually:

• Shell Edge to Solid Boundary (3D)

• Shell Boundary to Solid Boundary (3D)

• Beam Point to Solid Boundary (2D)

The default shape functions in the Solid Mechanics interface are of the 
serendipity type, whereas in the Shell interface Lagrange shape functions 
are used. If you are placing a shell element on the boundary of a solid 
element, you must select Lagrange shape functions also in the Solid 
Mechanics interface so that the two physics interfaces share the same node 
points.

The shape functions used in the Beam interface have special properties, 
and a beam cannot have the same degrees of freedom as another physics 
interface if the same edge or boundary are shared.

Also, the representation of rotations differs between the Shell and Plate 
interfaces (displacement of normal) and the Beam interface (rotation 
angle). It is therefore not possible to use common degree of freedom 
names for the rotational degrees of freedom.
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• Beam Edge to Solid Boundary (2D)

• Beam Edge to Shell Edge (3D)

• Beam Point to Shell Boundary (3D)

• Beam Point to Shell Edge (3D)

Shell Edge to Solid Boundary (3D)
A shell can be coupled to a solid by adding a Solid-Shell Connection multiphysics 
coupling. In the settings, set Connection type to Solid boundaries to shell edges. This 
situation typically occurs when you want to make a transition from a thin region to one 
which is thicker. Usually, shell assumptions should be valid on both sides of the 
transition.

Shell Boundary to Solid Boundary (3D)
A shell can also be coupled to a solid by adding a Solid-Shell Connection multiphysics 
coupling with Connection type set to Solid and shell shared boundaries or Solid and shell 

parallel boundaries. This connection is used to add a shell on top of a solid as a 
‘cladding’. It is possible to include an offset distance. The boundaries may be 
coincident or parallel.

Beam Point to Solid Boundary (2D)
A beam can be coupled to a solid by adding a Solid-Beam Connection multiphysics 
coupling. In the settings, set Connection type to Solid boundaries to beam points. This 
coupling is intended for modeling a transition from a beam to a solid where beam 
assumptions are valid on both sides of the connection.

Beam Edge to Solid Boundary (2D)
A beam can also be coupled to a solid by adding a Solid-Beam Connection 
multiphysics coupling with Connection type set to Solid and beam parallel boundaries. 
This connection is used for adding a beam on top of a solid as a ‘cladding’. The 
boundaries are assumed to be parallel.

Beam Edge to Shell Edge (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to either Shell and beam shared boundaries or 
Shell and beam parallel boundaries. This connection is used for adding beams as 
stiffeners to shells. The edges may be coincident or parallel. It is possible to prescribe 
that the beam has an offset from the shell when a coincident edge is used. 
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Beam Point to Shell Boundary (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to Shell boundaries to beam points. This connection 
is used for modeling a beam with one end ‘welded’ to the face of the shell. You can 
specify the size of the are around the beam end that is connected in several ways.

Beam Point to Shell Edge (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to Shell edges to beam points. This connection is 
used for modeling a beam with one end ‘welded’ to the edge of the shell. You can 
specify how large portion of the edge that is connected to the beam end in several ways.

The underlying theory and more details can be found in Connection Between Shells 
and Solids and Connection Between Shells and Beams.

U S I N G  G E N E R A L  C O U P L I N G  O P E R A T O R S

The most general method of connecting parts modeled with different physics 
interfaces is by using a General Extrusion operator. In this case the parts need not even 
be in contact, so the connection is an abstraction.

An example could be a shell stiffened by beams. In practice, you would probably use 
the built-in coupling described in Beam Edge to Shell Edge (3D) for this case, but the 
examples displays the principles.

In structure like this, the beam is usually placed at one side of the shell, so that the 
centerline of the beam and the midsurface of the shell do not coincide. This difference 

• Examples of all types of couplings between shells and beams are shown 
in Connecting Shells and Beams: Application Library path 
Structural_Mechanics_Module/Tutorials/shell_beam_connection

• An example of couplings between shells and solids is shown in 
Connecting Shells and Solids: Application Library path 
Structural_Mechanics_Module/Tutorials/shell_solid_connection
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must be taken into account, so the edges representing the beam are geometrically 
disconnected from the midsurface of the shell. 

Mathematically, the connection between the beam and the shell can be expressed as

or equivalently as 

Here φ is the rotation vector, which contains the rotational degrees of freedom in the 
Beam interface. The rotation vector is also available as a variable in the Shell interface, 
where it is derived from the rotational degrees of freedom a. The shell normal is 
denoted by n.

To create the coupling:

1 Add a General Extrusion node under Definitions. Select the line on the shell 
midsurface as source. Enter data in the Destination Map.

Beam centerline

ubeam ushell φ Xbeam Xshell–( )×+=

φbeam φshell=






ubeam ushell Xbeam Xshell–( ) n⋅( )a+=

φbeam φshell=
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2 Add a Prescribed Displacement/Rotation node in the Beam interface and select the 
corresponding edge.

3 Enter data for the prescribed displacements and rotations, for example 
genext1(u)+genext1(shell.thy)*zdist, where zdist is some expression 
defining the distance from the beam axis to the shell midsurface.

Because a shell does not have a valid rotation degree of freedom around 
its normal, the rotation of the beam should not be connected in that 
direction.

In the COMSOL Multiphysics Reference Manual:

• Component Couplings and Coupling Operators and General 
Extrusion

• About Component Couplings
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App l y i n g  L o ad s

An important aspect of structural analysis is the formulation of the forces applied to 
the modeled structure. The freedom is available to use custom expressions, predefined 
or user-defined coordinate systems, and even variables from other modeling physics 
interfaces.

Loads can be applied in the structural mechanics interfaces on the body, face, edge, or 
point levels. Add The Solid Mechanics Interface ( ) to the Model Builder, then from 
the Physics toolbar, Domains, Boundaries, Edges, and Points menus, click to select Body 

Load, Face Load, Edge Load, or Point Load. This guide includes a detailed description of 
the functionality for each physics interface. 

In this section:

Units, Orientation, and Visualization

U S I N G  U N I T S

Enter loads in any unit, independently of the base SI unit system in the model, because 
COMSOL automatically converts any unit to the base SI unit system. To use the 
feature for automatic unit conversion, enter the unit in square brackets, for example, 
100[lbf/in^2].

P R E D E F I N E D  A N D  C U S T O M  C O O R D I N A T E  S Y S T E M S

In this module, different predefined coordinate systems are available when loads are 
specified. There is always the global coordinate system. Depending on the 
dimensionality of the part being worked with, there can also be predefined coordinate 
systems such as and the local tangent and normal coordinate system for boundaries.

• Units, Orientation, and 
Visualization

• Load Cases

• Singular Loads

• Moments in the Solid Mechanics 
Interface

• Pressure

• Acceleration Loads

• Temperature Loads—Thermal 
Expansion

• Hygroscopic Swelling

• Total Loads
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Custom coordinate systems are also available and are useful, for example, to specify a 
load in any direction without splitting it into components. From the Definitions 
toolbar, select a Coordinate System ( ) from the menu.

V I S U A L I Z A T I O N

If you have switched on the physics symbols (see Displaying Physics Symbols in the 
Graphics Window — An Example in the COMSOL Multiphysics Reference Manual), 
then an applied load is indicated by a symbol together with a coordinate system 
indicator displaying the definition directions for the load. The actual direction or 
magnitude of the load you enter is not, however, reflected by the symbol. As a load in 
COMSOL can be a function of parameters, variables, the solution, or results from 
other physics interfaces, it is not possible to display it with only the information 
available in the individual load feature.

You can always display the loads actually used after the analysis, since they are available 
among the result quantities. Sometimes, especially if you have entered complicated 
load expressions in a large model, it is important to inspect the load distribution before 
you run the analysis. You can then do like this:

1 On the Study toolbar, click Get Initial Value. This operation is fast when compared 
to actually solving the problem.

2 From the Results toolbar, add a 3D Plot Group or 2D Plot Group.

3 Add a suitable plot type to the plot group, for example an Arrow Surface plot.

4 Select a result from the Load group in the results for the physics interface.

Some coordinate systems can have solution dependent axis directions. If 
you use such a system for defining a load, the directions of the load follow 
the moving coordinate axis directions if the Include geometric nonlinearity 
check box is selected under the Study settings section of the current study 
step.

In the COMSOL Multiphysics Reference Manual:

• Physics Symbols

• Using Units

• Coordinate Systems
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Load Cases

For a Stationary study, you can define load cases and constraint cases. A load or 
constraint can be assigned to a load or constraint group, and then used conditionally.

For most load types, the load case acts as a simple multiplier, but some cases need a 
more detailed discussion:

• A Prescribed Displacement or Prescribed Displacement/Rotation node can be assigned 
both a constraint group and a load group. You can use the constraint group to 
switch off the whole constraint. The load group acts as a multiplier to non-zero 
prescribed values of displacement and rotations.

• When a load case multiplier is used for Thermal Expansion, the multiplier is applied 
not to the actual temperature, but to the difference between the temperature and 
the strain free reference temperature. The temperature difference, and thus the 
thermal strain, is proportional to the load case multiplier.

• Since Thermal Expansion nodes are exclusive (only the last one given gives a 
contribution for a certain domain), you cannot switch between different Thermal 

Expansion nodes only by assigning them to different load cases.

• A Spring Foundation or Thin Elastic Layer node can be assigned a constraint group, 
which you can use to switch it on and off. If there is also a Predeformation subnode, 
then you can assign a load group to that subnode. The prescribed predeformation 
is then multiplied by the load case multiplier. Predeformation nodes are exclusive, 
you cannot switch between them by assigning them to different load cases.

• A Rigid Connector can be assigned both a constraint group and a load group. You can 
use the constraint group to switch off the prescribed displacements and rotations. 
The load group acts as a multiplier to non-zero prescribed values of displacement 
and rotations.

• If you have added Applied Force or Applied Moment nodes under a Rigid Connector, 
you can assign individual load groups to these nodes

For an example showing how to examine the load distribution, see 
Bracket—Static Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_static. This is also the first 
example used in the Introduction to the Structural Mechanics Module.
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• If you have added Applied Force or Applied Moment nodes under a Rigid Domain, you 
can assign individual load groups to these nodes.

Singular Loads

In reality, loads always act on a finite area. However, in a model a load is sometimes 
defined on a point or an edge, which leads to a singularity. The reason for this is that 
points and lines have no area, so the stress becomes infinite. Because of the stress 
singularity, there are high stress values in the area surrounding the applied load. The 
size of this area and the magnitude of the stresses depend on both the mesh and the 
material properties. The stress distribution at locations far from these singularities is 
unaffected according a to a well-known principle in solid mechanics, the St. Venant’s 
principle. It states that for an elastic body, statically equivalent systems of forces 
produce the same stresses in the body, except in the immediate region where the loads 
are applied.

Figure 2-5 shows a plate with a hole in plane stress loaded with a distributed load and 
a point load of the same magnitude. The mesh consists of triangular elements with 
quadratic shape functions. The high stress around the point load is dissipated within 
the length of a few elements for both mesh cases. The stresses in the middle of the plate 
and around the hole are in agreement for the distributed load and the point load. The 
problem is that due to the high stress around the singular load it is easy to overlook 
the high stress region around the hole. When the point load is applied, the range must 
be manually set for the stress plot to get the same visual feedback of the high stress 
region around the hole in the two cases. This is because the default plot settings 
automatically set the range based on the extreme values of the expression that is 
plotted.

Despite these findings it is good modeling practice to avoid singular loads because it is 
difficult to estimate the size of the singular region. In the Structural Mechanics 

For an example about how to set up expressions for controlling position 
and distribution of loads using load cases, see Pratt Truss Bridge: 
Application Library path Structural_Mechanics_Module/Civil_Engineering/

pratt_truss_bridge.
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



Module it is possible to define loads on all boundary types. However, avoid singular 
loads altogether with elastoplastic or creep materials.

Figure 2-5: A plate with a hole subject to a distributed load (left) and a point load (right).

Moments in the Solid Mechanics Interface

The Solid Mechanics interface, as opposed to the Beam, Plate, and Shell interfaces, 
does not have rotational degrees of freedom. This makes the direct specification of 
moment loads somewhat more complicated. To specify moments, attach a rigid 
connector to the loaded area. The rigid connector has rotational degrees of freedom, 
and it is possible to apply moments directly.

The Plasticity and Creep nodes are available as a subnode to Linear Elastic 

Material nodes with the Nonlinear Structural Materials Module or the 
Geomechanics Module. 

normal mesh size

finer mesh size
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Pressure

A pressure is a load acting toward the normal of a face of the structure. If there are 
large deformations in the model and the Include geometric nonlinearity check box is 
selected under the Study settings section of the current study step, the pressure acts as 
a follower load. The pressure is then defined with respect to the geometry and, as the 
geometry deforms locally, the orientation of the load changes. The size of the loaded 
area can also change as an effect of straining.

Acceleration Loads

Acceleration loads can be found, for example, in the structural mechanics analysis of 
an airplane seat. Acceleration or deceleration of the aircraft produces a force that an 
accurate simulation must include. Because expressions can be used when specifying 
loads, it is easy to model acceleration loads.

For modeling rotating parts under static conditions, use centrifugal acceleration loads. 
The body load in the radial direction is

 (2-11)

where ρ is the density of the material, ω is the angular frequency, and r is the radial 
distance from the axis of rotation. A cylindrical coordinate system is often useful here.

Temperature Loads—Thermal Expansion

When performing thermal expansion analysis, temperature loads are specified by 
entering a temperature and a reference temperature in a thermal expansion subnode 
which is available from the context menu (right-click the parent node, a Linear Elastic 
Material node, for example) or from the Physics toolbar, Attributes menu. Enter a 
constant temperature or an analytic expression that can depend on the coordinates or 
dependent variables. For beams, plates, and shells it is also possible to specify bending 
temperature loads. More details are available in the descriptions for each physics 
interface.

When a separate physics interface is used to model heat transfer in the material, the 
entry for the temperature is the dependent variable for the temperature from that 

Kr ρω2r=
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



physics interface, typically T. In most cases, possible temperature variables from other 
physics interfaces can be directly selected from a list. 

Hygroscopic Swelling

Some materials have the capability to absorb significant amounts of moisture through 
diffusion processes. Changes in the moisture content may then cause volume changes. 

To include the effects of hygroscopic swelling, the Hygroscopic Swelling subnode is 
available from the context menu (right-click the parent node, Linear Elastic Material 
node, for example) or from the Physics toolbar, Attributes menu. Enter a constant 
concentration or an analytic expression that can depend on the coordinates or 
dependent variables. For beams, plates, and shells it is also possible to specify bending 
swelling loads caused by concentration gradient in the transverse direction. More 
details are available in the descriptions for each physics interface.

When a separate physics interface is used to model the moisture diffusion in the 
material, the entry for the concentration is the dependent variable for the 
concentration from that physics interface, typically c. In most cases, possible 
concentration variables from other physics interfaces can be directly selected from a 
list.

The diffusion of the moisture into the material also adds to the mass density. You can 
choose to automatically include this effect in a dynamic analysis, and also in mass 
proportional loads, such as gravity and rotating frame loads.

Total Loads

You can specify a load either as a distributed load per unit length, area, or volume, or 
as a total force to be distributed on a boundary. In the case of a total load, the applied 
distributed load is the given load divided by the area (or length, or volume) on which 
its acts.

• For more information about how to couple heat transfer analysis with 
structural mechanics analysis, see Thermal-Structural Interaction. This 
module also includes The Thermal Stress Interface.

• For a detailed discussion about thermal effects in structural mechanics 
models, see Thermally Coupled Problems.
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De f i n i n g  Con s t r a i n t s

Defining the proper constraints for structural mechanics models is just as important as 
defining the loads as together they make up the model boundary conditions. This 
module has many useful predefined physics features to define the constraints or to 
create user-defined expressions that define constraints.

In this section:

• Rigid body motion

• Orientation

• Prescribed Displacements, Velocities, and Accelerations

• Symmetry Constraints

• Kinematic Constraints

• Rotational Joints

Rigid body motion

In most cases, a structure must have a set of constraints which is sufficient to suppress 
any rigid body motions. A stationary problems is solvable only if the structure is 
sufficiently constrained. There must not be any possible rigid body modes; thus no 
stress-free deformation states are allowed. In a dynamic analysis, rigid body motions 
are admissible. The inertial forces will then balance the external forces.

The number of possible rigid body modes for different geometrical dimensions is 
shown in the table below.

If the model is underconstrained, you may encounter the following problems:

• The solver reports that the stiffness matrix is singular.

TABLE 2-3:  NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

3D 6 (3 translations + 3 rotations)

2D axisymmetric 1 (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + 1 rotation)

2D (plate) 3 (1 translation + 2 rotations)
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• The solver reports that the stiffness matrix is ill-conditioned. Theoretically, the 
matrix is singular for a structure with rigid body modes, but because of the 
round-off errors during the solution this is not exactly determined.

• A nonlinear analysis fails to converge.

• An iterative linear equation solver fails to converge.

• You get a solution with an extremely large displacement, orders of magnitude larger 
than what is expected.

For a single body, it is seldom difficult to see whether it is fully constrained or not, but 
for a more complex assembly, including several physics interfaces, or advanced 
couplings and boundary conditions, it may not be trivial. If you suspect that rigid body 
modes is a problem in your model, you can run an eigenfrequency analysis, and check 
for modes with zero eigenfrequency as described in Eigenfrequency Analysis.

If there are no constraints which are dictated by the physical boundary conditions of 
the structure, you can use the Rigid Motion Suppression boundary condition to 
automatically remove the rigid body motions. When you do this, the assumption is that 
the external loads are in equilibrium. If not, reaction forces and stress concentrations 
will appear at seemingly arbitrary points where the automatic constraints were placed.

As an alternative to applying constraints, you can also add elastic supports through a 
Spring Foundation node to suppress rigid body motion.

Orientation

You can specify constraints in global as well as in any previously defined local 
coordinate system.

Rigid Motion Suppression Boundary Condition in the Structural 
Mechanics Theory chapter.

Coordinate Systems in the COMSOL Multiphysics Reference Manual
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Prescribed Displacements, Velocities, and Accelerations

The most fundamental constraint is the prescribed displacement, where the individual 
components of displacement or rotation can be prescribed to zero or non-zero values 
for points, edges, boundaries, or domains.

For dynamic analysis, you can also directly prescribe the velocity or acceleration. The 
conditions for prescribing displacements, velocities, or accelerations are mutually 
exclusive for the same geometrical object since they prescribe the same degree of 
freedom.

In frequency domain, a prescribed velocity vp or prescribed acceleration ap can be 
directly interpreted as a prescribed displacement up:

 

where ω is the angular frequency.

In the case of a time-dependent analysis, the prescribed displacement is obtained as

or 

where u0 and v0 are is given by the initial conditions. It is not possible to set explicit 
initial conditions, but if initial values are taken from a previous study, they will be 
respected. In order to compute the integrals, up is introduced as a separate degree of 
freedom which is solved for by adding an extra ODE.

As prescribing the velocity or acceleration in time domain comes with an extra cost, 
you should always consider using a prescribed displacement instead. As long as the 
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time history of the velocity or acceleration is a known a priori and does not depend on 
the solution itself, this is possible.

• When the velocity or acceleration has a simple time dependence, you can integrate 
it analytically one or two times to obtain the displacement, and directly prescribe the 
displacement instead.

• When you have complicated known velocity or acceleration histories, for example 
from measurements, you can use the integrate() operator. In this case, you enter 
the prescribed displacement as integrate(my_data(tau),tau,0,t). Here 
my_data is the measured data as function of time, and tau is a dummy integration 
variable

In a stationary analysis, the prescribed velocity and acceleration nodes can have two 
different behaviors. As a default, they are ignored, but you can also select that the 
degrees of freedom having a prescribed velocity or acceleration in a dynamic analysis 
should be constrained to zero in a static analysis.

When a local coordinate system is used for prescribing a prescribed velocity or 
acceleration, the axis directions must be fixed in space. As an example, you cannot use 
a Boundary System rotating with the deformation.

Symmetry Constraints

In many cases symmetry of the geometry and loads can be used to your advantage in 
modeling. Symmetries can often greatly reduce the size of a model and hence reduce 
the memory requirements and solution time. When a structure exhibits axial 
symmetry, use the axisymmetric physics interfaces. A solid that is generated by rotating 
a planar shape about an axis is said to have axial symmetry. In order to make use of 
the axisymmetric physics interfaces, all loads and constraints must also be the same 
around the circumference.

For other types of symmetry, use the predefined symmetry and antisymmetry 
constraints. This means that no expressions need to be entered—instead just add the 
type of constraint to apply to the model.

Physics Interface Axial Symmetry Node in the COMSOL Multiphysics 
Reference Manual
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If the geometry exhibits two symmetry planes (Figure 2-6), model a quarter of the 
geometry by using the Symmetry node for the two selected surfaces.

Figure 2-6: If the geometry exhibits two symmetry planes, model a quarter of the geometry 
by using the Symmetry feature for the two selected surfaces. 

Figure 2-7 shows symmetric and antisymmetric loading of a symmetric geometry. 
When modeling half of the geometry, the correct constraint for the face at the middle 
of the object would be Antisymmetry in the case of antisymmetric loading and 
Symmetry in the case of symmetric loading of the object.

Figure 2-7: Symmetry plane (left) and antisymmetry plane (right).

Symmetry planes Apply symmetry constraints

Both geometric symmetry and loads are important when selecting the 
correct constraints for a model.

In an eigenfrequency or buckling analysis, the eigenmodes might be 
non-symmetric even if the structure is symmetric.

Symmetry plane Antisymmetry plane
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Elemental and Nodal Constraints

For most constraints, you can select between using elemental and nodal constraints. 
To do this, select Advanced Physics Options, so that the Constraint Settings section is 
displayed.

When using nodal constraints, one constraint is generated for each node within the 
selection a certain constraint feature. With elemental constraints, the number of 
constraints added at a node equals the number of elements connected to that node. 
This means that if some values used in the constraints differ between the elements, 
then different constraints will be generated by the elemental method, whereas with the 
nodal method an average is computed at the node before adding the constraint.

When several constraints are present at a node, the internal constraint elimination 
algorithm is responsible for reducing them to a minimum unique set. Using elemental 
constraints will clearly put an extra burden on this algorithm, so whenever possible you 
should use nodal constraints.

The two different options exist, since under some circumstances the actual constraints 
can differ between the two methods. Consider for example a symmetry constraint, 
where the displacement in the direction normal to the boundary is constrained by the 
equation

where n is the unit normal vector. 

If there are several intersecting symmetry planes, like in Figure 2-6, using nodal 
constraints could cause a problem:

• If both boundaries are selected in the same Symmetry node, then only a single 
constraint is applied for each node along the common edge, while you actually want 
constraints along the normals of both planes. The normal used would be pointing 
somewhere between the two planes, since a nodal constraint uses averaging of the 
values from the adjacent elements.

• If two Symmetry nodes are used, so that the selection in any one of them only 
contains boundaries without a normal direction discontinuity, the intended 
constraints are added. On the common edge, there will be two contributions, one 
from each node, and each using the normal direction of its boundary. If you want 
to use nodal constraints, you must set up your model in this way if the constraints 
are orientation dependent.

u n⋅ 0=
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Elemental constraints, on the other hand, can cause problems if the constraints added 
by adjacent elements are not exactly the same. This could for example happen if the 
normal orientation differs between neighboring elements. In such a case, a boundary 
could behave as if it were fixed when a Symmetry, Antisymmetry, or Roller constraint is 
applied. Such a situation could occur when the component consists of an imported 
mesh, so that no underlying geometry exists.

The default type of the constraint, nodal or elemental, differs between different 
constraint features. A nodal formulation is the default whenever it is considered safe, 
like for a Fixed Constraint. Whenever the constraint can have a dependency on the 
surface orientation, the default value is elemental.

Kinematic Constraints

Kinematic constraints are equations that control the motion of solids, faces, edges, or 
points. Add a Prescribed Displacement constraint to enter expressions for constraints. 
You can define the equations using predefined coordinate systems as well as custom 
coordinate systems. Special constraints, for instance to keep an edge of body straight 
or to make a boundary rotate, require such constraint equations.  

See also Constraint Settings in the COMSOL Multiphysics Reference 
Manual.

For an example showing how to force a boundary to remain plane, but 
still allow it to translate in its normal direction, see Thermo-Mechanical 
Analysis of a Surface-Mounted Resistor: Application Library path 
Structural_Mechanics_Module/Thermal-Structure_Interaction/

surface_resistor.

In the 3D and 2D Solid Mechanics interfaces and in the Shell interface 
there is a special constraint called a Rigid Connector. A rigid connector is 
applied to one or more boundaries or edges and force them to behave as 
connected to a common rigid body. The rigid connector can be given 
prescribed displacements and rotations and thus simplifies the realization 
of some constraints.
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Rotational Joints

Joints between elements in The Truss Interface are automatically rotational joints 
because the truss elements have no rotational degrees of freedom. For beams, however, 
the rotational degrees of freedom are by default coupled between elements. To create 
a rotational joint between two beam elements, add one additional Beam interface to a 
geometry. Make sure that it is only active for the edge that includes the point where 
the joint is positioned and that no other physics interface is active here. Couple the 
translational degrees of freedom and leave the rotational degrees of freedom 
uncoupled at the joint.
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Ca l c u l a t i n g  R e a c t i o n  Fo r c e s

There are different ways to evaluate reaction forces and these are discussed in this 
section.

• Using Predefined Variables to Evaluate Reaction Forces

• Using Weak Constraints to Evaluate Reaction Forces

• Using Surface Traction to Evaluate Reaction Forces

• Using Surface Traction to Evaluate Reaction Forces

The following sections describe the merits and costs of these methods.

Using Predefined Variables to Evaluate Reaction Forces

The results analysis capabilities include easy access to the reaction forces and moments. 
They are available as predefined variables. The reaction force variables are available 
only at the nodes, and not as a continuous field, so they are not suitable for graphic 
presentation.

Reaction forces are computed as the sum of the nodal values over the selected volume, 
face, or edge. Reaction moments are calculated as the sum of the moment from the 
reaction forces with respect to a reference point, and any explicit reaction moments (if 
there are rotational degrees of freedom).

Specify the default coordinates of the Reference Point for Moment Computation at the 
top level of the Settings window for the physics interface. After editing the reference 
point coordinates, you need to right-click the Study node and select Update Solution 

for the change to take effect on the reaction moment calculation. During 

To compute the sum of the reaction forces over a region, use 
Volume Integration, Surface Integration, or Line Integration under 
Results>Derived Values. The integration method discovers that the 
reaction forces are discrete values and applies a summation instead of an 
integration.

If you create an integration operator under 
Component>Definitions>Component Couplings>Integration to sum reaction 
forces, you must explicitly set Method to Summation over nodes.
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postprocessing, you can modify the coordinates of the reference point in the 
Parameters section of a result feature..

Using Weak Constraints to Evaluate Reaction Forces

Select the Use weak constraints check box to get accurate distributed reactions. Extra 
variables that correspond to the reaction traction distribution are automatically added 
to the solution components. 

With weak constraints activated, COMSOL Multiphysics adds the reaction forces to 
the solution components. The variables are denoted X_lm, where X is the name of the 
constrained degree of freedom (as, for example, u_lm and v_lm). The extension lm 

• Reaction forces are not available for eigenfrequency analysis or when 
weak constraints are used.

• Reaction force variables are computed where there are constraints, that 
is Dirichlet conditions like Fixed Constraint, or Prescribed Displacement. 
From the physical point of view, there can be other sources of reaction 
forces, such as the elastic and viscous forces from a Spring Foundation. 
Such forces are not included in the reaction force variables.

• If reaction forces are summed independently for two adjacent 
boundaries, the total sum is not the same as if the reaction forces were 
summed for both boundaries in one operation. The values of the nodes 
at the common edge always contain contributions from the elements 
at both sides of the edge.

Derived Values and Tables in the COMSOL Multiphysics Reference 
Manual
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stands for Lagrange multipliers. It is only possible to evaluate reaction forces on 
constrained boundaries in the directions of the constraints.

Since the reaction force variables are added to the solution components, the number 
of DOFs for the model increases slightly, depending on the mesh size for the 
boundaries in question. Boundaries that are adjacent to each other must have the same 
constraint settings. The reason for this is that adjacent boundaries share a common 
node.

Using weak constraints affects the structure of the equation system to be solved, and 
is not suitable for all types of equation solvers.

Using Surface Traction to Evaluate Reaction Forces

As an alternative method, you can obtain values of the reaction forces on constrained 
boundaries by using boundary integration of the relevant components of the surface 
traction vector.

Two different types of surface traction results can be computed in COMSOL 
Multiphysics:

The first type, contained in the variables interface.Tax, is computed from the 
stresses. It is always available. Since the surface traction vector is based on computed 

To compute the total reaction force on a boundary, integrate one of the 
variables X_lm using Volume Integration, Surface Integration, or Line 

Integration under Derived Values.

If the constraint is defined in a local coordinate system, the degrees of 
freedom for the weak constraint variables are defined along the directions 
of that system.

In the COMSOL Multiphysics Reference Manual:

• Derived Values and Tables

• Symmetric and Nonsymmetric Constraints 

For 2D components, multiply the surface traction by the cross section 
thickness before integrating to calculate the total reaction force. 
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stress results, this method is less accurate for computing reactions than the other 
methods.

The second type, contained in the variables interface.Tracx, is computed using a 
method similar to the weak constraints, but without introducing the Lagrange 
multipliers as extra degrees of freedom. The accuracy is high, but there is an extra 
computational cost. These traction variables are computed only if the check box 
Compute boundary fluxes in the Discretization section is selected for the Solid Mechanics 
interface.

Evaluating Surface Traction Forces on Internal Boundaries

As opposed to the other methods for reaction force computation, the boundary flux 
based tractions are computed not only on external boundaries, but also on internal 
boundaries. On internal boundaries, there are then two traction fields: One acting 
from each of the domains sharing the boundary. These internal traction fields are 
contained in the variables interface.iTracux and interface.iTracdx. The letters 
u and d in the variable names indicate the up and down side of the boundary 
respectively. If you need the value of the total force acting on an internal section 
through your model, these variable can be integrated. The interface.iTracux 
andinterface.iTracdx variables are only available if the Compute boundary fluxes 
check box is selected in the Discretization section of the physics interface, and there are 
internal boundaries in your model.

In case of geometric nonlinearity, the two types of traction variables are 
interpreted differently. The interface.Tax variables are based on 
Cauchy stress, and contains a force per current area. If you integrate them 
you must use the spatial frame. The interface.Tracx variables are based 
on First Piola-Kirchhoff stresses and contains a force per undeformed 
area. An integration must then be done on the material frame.

Computing Accurate Fluxes in the COMSOL Multiphysics Reference 
Manual
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I n t r o du c t i o n  t o  Ma t e r i a l  Mode l s

In this section:

• Material Models for Structural Mechanics

• Entering material data

• Introduction to Linear Elastic Materials

• Introduction to Viscoelastic Materials

• Mixed Formulation

• About the Material Databases for the Structural Mechanics Module

Material Models for Structural Mechanics

The Structural Mechanics Module without any add-on modules provides the Linear 
Elastic material with Viscoelasticity and Thermal Expansion modeling capabilities. It 
also provides access to Piezoelectric materials modeling, which is described in detail in 
the section Modeling Piezoelectric Problems.

If you have the optional products Nonlinear Structural Materials Module or 
Geomechanics Module, many other classes of nonlinear materials are also available. 
These models can be modified and extended, and custom material models can be 
defined.

You can also add a material model which you have coded yourself and made available 
as a binary library file using an External Stress-Strain Relation.

In the COMSOL Multiphysics Reference Manual: 

• Working with External Materials

• External Material
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In Table 2-4 you can find an overview of the families of materials, and their 
applicability in the various structural mechanics interfaces.

Many of the material models can be augmented by effects like thermal expansion, 
hygroscopic swelling, initial stresses and strains, and external stress.

Combination of Material Models

It is possible to combine many of the effects in an additive manner. The models based 
on elasticity all have the same structure where

1 An elastic strain is computed by removing all inelastic strains (for example, plastic or 
thermal strains) from the total strain.

2 An “elastic stress” is computed from the elastic strains.

TABLE 2-4:  MATERIAL MODELS IN THE BASIC PHYSICS INTERFACES

MATERIAL
MODEL

SOLID
MECHANICS

SHELL/
PLATE

MEMBRANE BEAM TRUSS

Linear Elastic Material X X X X X

Nonlinear Elastic 
Material

X - X - -

Hyperelastic Material X - X - -

Piezoelectric Material X - - - -

Magnetostrictive 
Material

X - - - -

Viscoelasticity X - X - -

Plasticity X - X - X

Soil Plasticity X - - - -

Creep X - X - -

Concrete X - - - -

Rocks X - - - -

Cam-Clay Material X - - - -

External Stress-Strain 
Relation

X - - - -

Rigid Domain X - - - -

Spring-Damper - - - - X
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3 Any additional stresses (for example viscous stresses, or initial stresses) are added to 
form the total stress.

This concept will give you a great freedom in combining effects. Some such useful 
combinations are

• Plasticity and thermal expansion

• Plasticity and creep

• Two different creep models

• Thermal expansion and hygroscopic swelling

• Viscoelasticity and creep

Entering material data

For most material data, you have the option to choose between From material and 
User defined. The preferred way of supplying the material data, is through the Materials 
node. If you are using data from the Material Library, this is the only option, but also 
when supplying your own data this will improve clarity of model.

Constitutive matrices, such as the elasticity matrix for an anisotropic material, are in 
many cases per definition symmetric. Only the upper diagonal of the matrix given as 
input is used for forming the matrix used, so you need not enter the lower diagonal 
part.

Introduction to Linear Elastic Materials

Linear elasticity forms the basis for the majority of structural mechanics simulations.

For isotropic linear elasticity, two parameters are enough to describe the material 
behavior. The number of parameters increases to (at most) 21 for the fully anisotropic 
case in 3D. When setting up a model, make sure that the material parameters are 
defined in agreement with the type of relationship used. If necessary, transform the 
material data before entering it in the physics interface. For example, for orthotropic 
materials calculate the Poisson’s ratio νxy by
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Introduction to Viscoelastic Materials

The generalized Maxwell, standard linear solid (SLS) and Kelvin-Voigt viscoelastic 
materials are available. All the models are linear, and the corresponding materials can 
be described as consisting of one or more branches with a spring and a dashpot acting 
in parallel to a linear elastic material. For each viscoelastic branch, the shear modulus 
and the relaxation time (or viscosity) are entered.

Mixed Formulation

Nearly incompressible materials can cause numerical problems if only displacements 
are used in the interpolating functions. Small errors in the evaluation of volumetric 
strain, due to the finite resolution of the discrete model, are exaggerated by the high 
bulk modulus. This leads to an unstable representation of stresses, and in general to 
underestimation of the deformation because spurious volumetric stresses might 
balance also applied shear and bending loads.

When the Nearly incompressible material check box is selected in the Settings window 
for the material, the negative volumetric stress pw is treated as an additional dependent 
variable. The resulting mixed formulation is also known as u-p formulation. This 
formulation removes the effect of volumetric strain from the original stress tensor and 
replaces it with an interpolated pressure, pw. A separate equation constrains the 
interpolated pressure to make it equal (in a finite-element sense) to the original 
pressure calculated from the strains.

νxy νyx
Ex
Ey
------=

In the theory section Linear Elastic Material

• Linear Viscoelastic Materials

• Viscoelasticity
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Select this setting when the material data is close to incompressibility. For an isotropic 
material, this happens when Poisson’s ratio approaches 0.5. 

For an isotropic linear elastic material, the second Piola-Kirchhoff stress tensor S, 
computed directly from the strains, is replaced by a modified version:

where I is the unit tensor and the pressure p is calculated from the stress tensor

The auxiliary dependent variable pw is set equal to p using the equation

 (2-12)

where κ is the bulk modulus.

The modified stress tensor  is used then in calculations of the energy variation.

For orthotropic and anisotropic materials, the auxiliary pressure equation is scaled to 
make the stiffness matrix symmetric. Note, however, that the stiffness matrix in this 
formulation is not positive definite and even contains a zero block on the diagonal in 

The mixed formulation is useful not only for linear elastic materials but 
also for elastoplastic materials, hyperelastic materials, and viscoelastic 
materials. The Hyperelastic Material and Plasticity nodes are available with 
the Nonlinear Structural Materials Module. The Plasticity node is also 
available with the Geomechanics Module.

The order of the shape function for the auxiliary pressure variable should 
be one order less than that for the displacements. Thus, it is not 
recommended to use linear elements for the displacement variables in the 
domains, where the mixed formulation is turned on. Also note that some 
iterative solvers do not work well together with mixed formulation 
because the stiffness matrix becomes indefinite.

s̃ s p pw–( )I+=

p 1
3
---trace s( )–=

pw

κ
------- p

κ
---– 0=

s̃
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the incompressible limit. This limits the possible choices of direct and iterative linear 
solver. 

About the Material Databases for the Structural Mechanics Module

The Structural Mechanics Module includes these material databases: Liquids and 
Gases, with temperature-dependent fluid dynamic and thermal properties, MEMS, an 
extended solid materials library with metals, semiconductors, insulators, and polymers 
common in MEMS devices, and a Piezoelectric database with over 20 common 
piezoelectric materials. The materials include temperature-dependent fluid dynamic 
and thermal properties.

In case of linear elastic materials without geometric nonlinearity (and also 
for hyperelastic materials), the stress tensor s in the above equations is 
replaced by the 2nd Piola-Kirchhoff stress tensor S, and the pressure p 
with:

pp
1
3
---trace S( )–=

In the COMSOL Multiphysics Reference Manual:

• MEMS Materials Database

• Piezoelectric Materials Database

• Liquids and Gases Materials Database

• Materials

For an example of the MEMS materials database and Piezoelectric 
materials database, see Piezoelectric Shear-Actuated Beam: Application 
Library path Structural_Mechanics_Module/Piezoelectric_Effects/

shear_bender.
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Mode l i n g  P i e z o e l e c t r i c  P r ob l em s

In this section:

• About Piezoelectric Materials

• Piezoelectric Coupling

• Create the Piezoelectric Effect Interface and Define Domains

• Complete Settings of Piezoelectric Materials

• Add Damping and Loss

• Define Material Properties

About Piezoelectric Materials

Piezoelectric materials become electrically polarized when strained. From a 
microscopic perspective, the displacement of atoms within the unit cell (when the solid 
is deformed) results into electric dipoles within the medium. In certain crystal 
structures, this combines to give an average macroscopic dipole moment or electric 
polarization. This effect, known as the direct piezoelectric effect, is always 
accompanied by the converse piezoelectric effect, in which the solid becomes strained 
when placed in an electric field.

Within a piezoelectric, there is a coupling between the strain and the electric field, 
which is determined by the constitutive relation:

 (2-13)

Here, the naming convention used in piezoelectricity theory is assumed: S is the strain, 
T is the stress, E is the electric field, and D is the electric displacement field. The 
material parameters sE, d, and εT, correspond to the material compliance, the coupling 
properties and the permittivity. These quantities are tensors of rank 4, 3, and 2 

• Multiphysics Modeling Approaches in the COMSOL Multiphysics 
Reference Manual.

• Piezoelectric Coupling

• Piezoelectric Material in the theory section

S sET dTE+=

D dT εTE+=
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respectively. The tensors however are highly symmetric for physical reasons, and they 
can be represented as matrices within an abbreviated subscript notation, which is 
usually more convenient. In the Piezoelectric Devices interface, the Voigt notation is 
used, which is standard in the literature for piezoelectricity but which differs from the 
defaults in the Solid Mechanics interface. 

Equation 2-13 will, using the notation from structural mechanics, then read

 (2-14)

Equation 2-13 (or Equation 2-14) is known as the strain-charge form of the 
constitutive relations. The equation can be re-arranged into the stress-charge form, 
which relates the material stresses to the electric field:

 (2-15)

The material properties, cE, e, and εS are related to sE, d, and εT. It is possible to use 
either form of the constitutive relations. In addition to Equation 2-13 or 
Equation 2-15, the equations of solid mechanics and electrostatics must also be solved 
within the material.

Piezoelectric Material Orientation

The orientation of a piezoelectric crystal cut is frequently defined by the system 
introduced by the IRE standard of 1949 (Ref. 8). This standard has undergone a 
number of subsequent revisions, with the final revision being the IEEE standard of 

The Piezoelectric Material uses the structural mechanics nomenclature. 
The strain is named ε (instead of S) and the stresses are denoted by either 
σ or S (instead of T). This makes the names consistent with those used in 
the other structural mechanics interfaces.

ε sEσ dTE+=

D dσ ε0εrTE+=

σ cEε eTE–=

D eε ε0εrSE+=

• Piezoelectric Coupling

• Modeling Piezoelectric Problems

• Piezoelectric Material in the theory section
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1987 (Ref. 9). Unfortunately the 1987 standard contained a number of serious errors 
and the IEEE subsequently withdrew it. COMSOL therefore adopts the preceding 
1978 standard (Ref. 10), which is similar to the 1987 standard, for material property 
definitions. Most of the material properties in the material library are based on the 
values given in the book by Auld (Ref. 11), which uses the 1978 IEEE conventions. 
This is consistent with general practice except in the specific case of quartz, where it is 
more common to use the 1949 IRE standard to define the material properties. 
COMSOL therefore provides additional sets of material properties consistent with this 
standard for the case of quartz. Note that the material properties for quartz are based 
on Ref. 12, which uses the 1949 IRE standard (the properties are appropriately 
modified according to the different standards).

The stiffness, compliance, coupling, and dielectric material property matrices are 
defined with the crystal axes aligned with the local coordinate axes. Note that the signs 
of several matrix components differ between the 1949 and the 1978 standards (see 
Table 2-5). In the absence of a user-defined coordinate system, the local system 
corresponds to the global X, Y, and Z coordinate axes. When an alternative coordinate 
system is selected this system defines the orientation of the crystal axes. This is the 
mechanism used in COMSOL to define a particular crystal cut, and typically it is 
necessary to calculate the appropriate Euler angles for the cut (given the thickness 
orientation for the wafer). All piezoelectric material properties are defined using the 
Voigt form of the abbreviated subscript notation, which is universally employed in the 
literature (this differs from the standard notation used for the Solid Mechanics 
interface material properties). The material properties are defined in the material 
frame, so that if the solid rotates during deformation the material properties rotate 
with the solid. See Modeling Geometric Nonlinearity.

Crystal cuts are usually defined by a mechanism introduced by the IEEE/IRE 
standards. Both standards use a notation that defines the orientation of a virtual slice 
(the plate) through the crystal. The crystal axes are denoted X, Y, and Z and the plate, 
which is usually rectangular, is defined as having sides l, w, and t (length, width, and 
thickness). Initially the plate is aligned with respect to the crystal axes and then up to 
three rotations are defined, using a right-handed convention about axes embedded 
along the l, w, and t sides of the plate. Taking AT cut quartz as an example, the IEEE 
1978 standard defines the cut as: (YXl) −35.25°. The first two letters in the bracketed 
expression always refer to the initial orientation of the thickness and the length of the 
plate. Subsequent bracketed letters then define up to three rotational axes, which move 
with the plate as it is rotated. Angles of rotation about these axes are specified after the 
bracketed expression in the order of the letters, using a right-handed convention. For 
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AT cut quartz only one rotation, about the l axis, is required. This is illustrated in 
Figure 2-9. Note that within the 1949 IRE Standard AT cut quartz is denoted as: 
(YXl) +35.25°, since the X-axis is rotated by 180° in this convention and positive 
angles therefore correspond to the opposite direction of rotation (see Figure 2-8). 
Table 2-6 summarizes the differences between the standards for different crystal cuts.

When defining the material properties of Quartz, the orientation of the 
X, Y, and Z axes with respect to the crystal differs between the 1987 IEEE 
standard and the 1949 IRE standard. Figure 2-8 shows the alignment of 
the axis for the case of right-handed quartz. A consequence of this is that 
both the material property matrices and the crystal cuts differ between the 
two standards. Table 2-5 summarizes the signs for the important matrix 
elements under the two conventions. Table 2-6 shows the different 
definitions of the crystal cuts under the two conventions.

TABLE 2-5:  SIGNS FOR THE MATERIAL PROPERTIES OF QUARTZ, WITHIN THE TWO STANDARDS COMMONLY 
EMPLOYED

IRE 1949 STANDARD IEEE 1978 STANDARD

MATERIAL 
PROPERTY

RIGHT HANDED 
QUARTZ

LEFT HANDED 
QUARTZ

RIGHT HANDED 
QUARTZ

LEFT HANDED 
QUARTZ

s14 + + - -

c14 - - + +

d11 - + + -

d14 - + - +

e11 - + + -

e14 + - + -
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When defining the material orientation, it is necessary to consider the orientation of 
the plate with respect to the global coordinate system in addition to the orientation of 
the plate with respect to the crystallographic axes. Consider the example of AT cut 
quartz in Figure 2-9. The definition of the appropriate local coordinate system 
depends on the desired final orientation of the plate in the global coordinate system. 
One way to set up the plate is to orientate its normal parallel to the Y axis in the global 
coordinate system. Figure 2-10 shows how to define the local coordinate system in this 
case. Figure 2-11 shows how to define the local system such that the plate has its 
normal parallel to the global Z axis. In both cases it is critical to keep track of the 
orientation of the local system with respect to the global system, which is defined 
depending on the desired orientation of the plate in the model.

There are also a number of methods to define the local coordinate system with respect 
to the global system. Usually, it is most convenient to define the local coordinates with 
a Rotated System node, which defines three Euler angles according to the ZXZ 
convention (rotation about Z, then X, then Z again). Note that these Euler angles 
define the local (crystal) axes with respect to the global axes—this is distinct from the 
approach of defining the cut (global) axes with respect to the crystal (local) axes.

TABLE 2-6:  CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY 
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL 
THICKNESS

STANDARD REPRESENTATION AT CUT BT CUT

IRE 1949 Standard (YXl) +35.25° (YXl) −49°

Y-thickness Euler 
angles

(ZXZ: 0°,−35.25°,0°) (ZXZ: 0°,49°,0°)

Z-thickness Euler 
angles 

(ZXZ: 0°,−125.25°,0°) (ZXZ: 0°, −41°,0°)

IEEE 1978 Standard (YXl) −35.25° (YXl) +49°

Y-thickness Euler 
angles

(ZXZ: 0°, 35.25°,0°) (ZXZ: 0°, −49°,0°)

Z-thickness Euler 
angles

(ZXZ: 0°, −54.75°,0°) (ZXZ: 0°, −139°,0°)
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Figure 2-8: Crystallographic axes defined for right-handed quartz in COMSOL and the 
1978 IEEE standard (color). The 1949 standard axes are shown for comparison (gray). 

Figure 2-8 is reproduced with permission from: IEEE Std 176-1987 - 
IEEE Standard on Piezoelectricity, reprinted with permission from 
IEEE, 3 Park Avenue, New York, NY 10016-5997 USA, copyright 1987, 
by IEEE. This figure must not be reprinted or further distributed without 
prior written permission from the IEEE.
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Figure 2-9: Definition of the AT cut of quartz within the IEEE 1978 standard. The AT 
cut is defined as: (YXl) −35.25°. The first two bracketed letters specify the initial 
orientation of the plate, with the thickness direction, t, along the crystal Y axis and the 
length direction, l, along the X axis. Then up to three rotations about axes that move with 
the plate are specified by the corresponding bracketed letters and the subsequent angles. In 
this case only one rotation is required about the l axis, of −35.25° (in a right-handed 
sense).
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Figure 2-10: Defining an AT cut crystal plate within COMSOL, with normal in the 
global Y-direction. Within the 1978 IEEE standard the AT cut is defined as (YXl) 
-35.25°. Start with the plate normal or thickness in the Ycr direction (a) and rotate the 
plate −35.25° about the l axis (b). The global coordinate system rotates with the plate. 
Finally rotate the entire system so that the global coordinate system is orientated as it 
appears in COMSOL (c). The local coordinate system should be defined with the Euler 
angles (ZXZ - 0, 35.25°, 0).(d) shows a coordinate system for this system in COMSOL.
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Figure 2-11: Defining an AT cut crystal plate within COMSOL, with normal in the 
global Z-direction. Within the 1978 IEEE standard the AT cut is defined as (YXl) 
−35.25°. Begin with the plate normal in the Zcr-direction, so the crystal and global systems 
are coincident. Rotate the plate so that its thickness points in the Ycr-direction (the 
starting point for the IEEE definition), the global system rotates with the plate (b). Rotate 
the plate −35.25° about the l axis (d). Finally rotate the entire system so that the global 
coordinate system is orientated as it appears in COMSOL (d). The local coordinate system 
should be defined with the Euler angles (ZXZ: 0, -54.75°, 0). (e) shows a coordinate system 
for this system in COMSOL.
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Piezoelectric Losses

Losses in piezoelectric materials can be generated both mechanically and electrically.

In the frequency domain, these can be represented by introducing complex material 
properties in the elasticity and permittivity matrices, respectively. Taking the 
mechanical case as an example, this introduces a phase lag between the stress and the 
strain, which corresponds to a Hysteretic Loss. These losses can be added to the 
Piezoelectric Material by three subnodes: Mechanical Damping, Coupling Loss, and 
Dielectric Loss. The losses typically defined as loss factors (see below). 

The hysteretic electrical losses are usually used to represent high frequency electrical 
losses that occur as a result of friction impeding the rotation of the microscopic dipoles 
that produce the material permittivity.

Low frequency losses, corresponding to a finite material conductivity, can be added to 
the model through an Electrical Conductivity (Time Harmonic) subnode. This feature 
operates only in the frequency domain.

In the time domain, the losses can be added by using the Rayleigh Damping option in 
the Mechanical Damping and Coupling Loss subnodes, and by using the Dielectric 

Dispersion option in the Dielectric Loss subnodes. These types of damping are also 
available in the frequency domain.

H Y S T E R E T I C  L O S S

In the frequency domain, the dissipative behavior of the material can be modeled using 
complex-valued material properties, irrespective of the loss mechanism. Such hysteretic 
losses can be applied to model both electrical and mechanical losses. For the case of 
piezoelectric materials, this means that the constitutive equations are written as 
follows.

For the stress-charge formulation

and for the strain-charge formulation

Rayleigh Damping

σ c̃Eε ẽ
T

E–=

D ẽε ε̃SE+=
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where , , and ε are complex-valued matrices, where the imaginary part defines the 
dissipative function of the material.

Both the real and complex parts of the material data must be defined so as to respect 
the symmetry properties of the material being modeled and with restrictions imposed 
by the laws of physics.

In COMSOL, you can enter the complex-valued data directly or by means of loss 
factors. When loss factors are used, the complex data  is represented as pairs of a 
real-valued parameter

 

and a loss factor

the ratio of the imaginary and real part, and the complex data is then: 

where the sign depends on the material property used. The loss factors are specific to 
the material property, and thus they are named according to the property they refer to, 
for example, ηcE. For a structural material without coupling, simply use ηs, the 
structural loss factor.

The loss factors are defined so that a positive loss factor value corresponds to a positive 
loss. The complex-valued data is then based on sign rules. 

By default, there is no damping until at least one of the damping and losses related 
subfeatures is added.

ε s̃Eσ d̃
T

E+=

D d̃σ ε̃TE+=

c̃E d̃

A key requirement is that the dissipation density is positive; that is, there 
is no power gain from the passive material. This requirement sets rules for 
the relative magnitudes for all material parameters. This is important 
when defining the coupling losses.

X̃

X real X̃( )=

ηX imag X̃( ) real X̃( )⁄=

X̃ X 1 jηX±( )=
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For the Piezoelectric Material node, the following equations apply via the 
corresponding three subnodes:

Mechanical Damping

where m and n refer to components of each matrix.

Coupling Loss

Dielectric Loss

Note that the multiplication is applied component-wise.

In practice, it is often difficult to find complex-valued data for each of the matrix 
elements in the literature. The loss factors can also be entered as scalar isotropic factors 
independently of the material and the other coefficients.

For more information about hysteretic losses, see Ref. 1 to Ref. 4.

E L E C T R I C A L  C O N D U C T I V I T Y  ( T I M E  H A R M O N I C )

For frequency domain analyses, the electrical conductivity of the piezoelectric material 
(see Ref. 2, Ref. 5, and Ref. 6) can be defined. Depending on the formulation of the 
electrical equation, the electrical conductivity appears in the equation as an effective 
electric displacement

where σe is the material electrical conductivity, and E is the electric field. Note that the 
displacement current variables themselves do not contain any conductivity effects.

c̃E
m n,

cE
m n, 1 jηcE

m n,
+( )=

s̃E
m n,

sE
m n, 1 jηsE

m n,
–( )=

ẽ
m n,

em n, 1 jηe
m n,

+( )=

d̃
m n,

dm n, 1 jηd
m n,

+( )=

ε̃rS
m n,

εrS
m n, 1 jηεS

m n,
–( )=

ε̃rT
m n,

εrT
m n, 1 jηεT

m n,
–( )=

∇ D j
σeE

ω
-----------– 

 ⋅ 0=
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Both a dielectric loss factor and the electrical conductivity can be defined at the same 
time. In such case, ensure that the loss factor refers to the alternating current loss 
tangent, which dominates at high frequencies, where the effect of ohmic conductivity 
vanishes (Ref. 7).

The use of electrical conductivity in a damped eigenfrequency analysis leads to a 
nonlinear eigenvalue problem, which must be solved iteratively. To compute the 
correct eigenfrequency, run the eigenvalue solver once for a single mode. Then, set the 
computed solution to be the linearization point for the eigenvalue solver, which is 
defined in the Settings window for the Eigenvalue Solver node. Re-run the eigenvalue 
solver repeatedly until the solution no longer changes. This process must be repeated 
for each mode separately.

D I E L E C T R I C  D I S P E R S I O N

When the Dielectric Loss subnode is used with the Dielectric Dispersion option, the 
following equations are solved in the time domain:

where two material parameters can be specified, the relaxation time τd, and the relative 
permittivity increment ΔεrS. The latter can be either a matrix or a scalar quantity. This 
model is a one-term version of the more general Debye dispersion model, Ref. 13. In 
the frequency domain, the time derivative is replaced by the factor jω, and the above 
equation can be rewritten as

which shows how the dispersion parameters contribute into the polarization and losses. 
Thus, the effective permittivity varies from εrS + ΔεrS down to ε0εrS as the excitation 
frequency increases from zero. The damping effect vanishes for both large and small 
frequencies, and it reaches the maximum for ω = 1/τd. 

∇ D τd t∂
∂D ε0ΔεrSE+ + 

 ⋅ 0=

D eε ε0εrSE+=

∇ eε ε0 εrS
ΔεrS

1 τdω( )2
+

---------------------------+
 
 
 

E j
τdωε0Δε

rS

1 τdω( )2
+

----------------------------E–+⋅ 0=

In the COMSOL Multiphysics Reference Manual:

• Selecting a Stationary, Time-Dependent, or Eigenvalue Solver

• Eigenvalue Solver
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Piezoelectric Coupling

The piezoelectric effect is an interaction between the mechanical and electrical physics, 
where a stress applied on a piezoelectric material generates a voltage (direct effect) or 
a voltage applied on it generates the deformation of the material (inverse effect). In 
COMSOL Multiphysics, the Piezoelectric Devices interface is constituted of one Solid 

Mechanics and one Electrostatics interface, which are coupled together by a Piezoelectric 

Effect multiphysics feature. Hence a piezoelectric problem contains solid and 
electrostatic domains, with at least one domain shared by the two physics interfaces 
and with the piezoelectric coupling defined on it.

Create the Piezoelectric Effect Interface and Define Domains

A piezoelectric problem can be set up in different ways:

• By selecting Piezoelectric Devices from the Model Wizard, 

• By choosing Piezoelectric Devices from the Add Physics menu when working in an 
existing model, or 

• By adding the corresponding features to create the coupling manually. 

In the first two cases, by default all the domains in the model are assumed to be 
piezoelectric materials. 

When setting up the problem manually (that is, by adding single physics interfaces one 
at a time) both Solid Mechanics and Electrostatics interfaces should be added. Then, you 
have to specify which domains are in each physics, and which domains are to be 
modeled as piezoelectric materials.

1 On the Solid Mechanics interface Settings window, locate the Domain Selection 
section. Select the domains which undergo structural deformation, including the 
piezoelectric material domains.

2 Go to the Solid Mechanics>Piezoelectric Material node (if it is not yet available, add 
it). Select the domains where the piezoelectric effect applies. Non-piezoelectric 
domains can be modeled using the other available material models.
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3 Go to the Electrostatics node and under Domain Selection select the domains the 
electrostatics equations must be solved. These domains include all the piezoelectric 
domains, and any other insulating domains. 

4 Go to the Electrostatics>Charge Conservation, Piezoelectric node (if it is not yet 
available, add it). Select the domains where the piezoelectric effect has to be 
modeled.

5 A Multiphysics>Piezoelectric Effect node is already present if the coupling was added 
using either the Model Wizard or Add Physics window. If the model is set up manually 
(that is, single physics interfaces are added), right-click the Multiphysics node to add 
a Piezoelectric Effect coupling. 

6 Confirm that all the domains where the piezoelectric material is present are selected.

7 Confirm that remaining domains are well assigned:

- Solid and electrostatic domains: In these domains, the electrostatics and 
structural problems are solved independently without any piezoelectric coupling. 
This is the case for insulators.

- Solid-only domains: In these domains, only mechanical phenomena are modeled, 
and the electrostatics phenomena are neglected. Metals are typically modeled in 
this way, because their conductivity is so high that their surfaces can be treated as 
isopotential surfaces within the electrostatics problem. In some cases, insulators 
are modeled using these settings, for example, when there is no potential applied 

Since metals usually have a conductivity several orders of magnitude 
higher than other materials, it is normal not to solve the electrostatics 
equations in their corresponding domains, but instead the surfaces of the 
material are represented as isopotentials with an appropriate boundary 
condition (usually a terminal or floating potential).

Only domains that have both Charge Conservation, Piezoelectric selected in 
the Electrostatics interface and Piezoelectric Material selected in the Solid 

Mechanics interface are selected. The selection of this feature cannot be 
edited. If several Solid Mechanics or Electrostatics interfaces are present, 
select the correct ones.
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across the domain, and correspondingly solving the electrostatics equations 
would produce a constant potential and waste computing resources.

- Electrostatics-only domains: Those domains are non-solid, this is typically the 
case of air, in which the electrostatics is solved but not mechanics.

- Non-solid and non-electrostatics domains: In those domains another physics is 
solved. A typical example is an acoustic domain in the case of piezoacoustic 
modeling.

Complete Settings of Piezoelectric Materials

Go to the Solid Mechanics>Piezoelectric Material node. On the Settings window 
complete these settings:

• Coordinate System Selection section: The material is poled in the x3 direction of the 
coordinate system (x1,x2,x3) specified in this section. By default, it is set to the global 
coordinate system. If the piezoelectric material is poled along an other direction, 
you need to define a coordinate system so that its third direction is aligned with the 
poling direction. Then, assign it as the coordinate system which orients the material 
in the Coordinate System Selection section. 

• Piezoelectric Material Properties: Select whether the constitutive relation of 
piezoelectric material is in Stress-charge or in Strain-charge form. This choice 
defines the type of material properties that will be used.

• Geometric Nonlinearity: select the check box to force strains to be linear.

• Energy Dissipation: Select the check box to enable the calculation of the dissipated 
energy.

If a given piezoelectric material is present with several orientations (such 
as stacked piezoelectric disks) you need to define several Piezoelectric 

Material nodes and to assign a different coordinate system for each of 
them.
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Add Damping and Loss

In the physics toolbar you can add attributes to the Piezoelectric Material node, 
especially the following damping and loss contributions:

• Mechanical Damping: Specify the domains of application, then choose if you want to 
define a loss factor for cE, a loss factor for sE (in Strain-charge form), an isotropic 
loss factor, or a Rayleigh damping.

• Dielectric Loss: Specify the domains of application, then choose if you want to define 
a loss factor for εS, a loss factor for εT (in Strain-charge form), or dispersion.

• Coupling Loss: Specify the domains of application, then choose if you want to define 
a loss factor for e, a loss factor for d (in Strain-charge form), or Rayleigh damping.

• Conduction Loss (Time-Harmonic): Specify the domains of application, then choose 
how you want to define the Electrical conductivity.

Define Material Properties

Define material properties for the piezoelectric materials. The material library contains 
several common piezoelectric materials under the piezoelectric section. If you want to 
define your own piezoelectric material, you need to specify its properties by hand. The 
required properties depend on whether the constitutive relations are in Stress-charge 
or Strain-charge form, and which damping and loss attributes are created. Defining all 
piezoelectric settings before materials preselects the required properties and makes the 
completion easier:

M E C H A N I C A L  P R O P E R T I E S :

• Density rho (SI unit: kg/m3)

• Elasticity matrix cE (SI unit: Pa) in Stress-charge form.

• Compliance Matrix sE (SI unit: 1/Pa) in Strain-charge form.

E L E C T R O S T A T I C  P R O P E R T I E S :

• Relative Permittivity epsilonrS (dimensionless) in Stress-charge form.

• Relative Permittivity epsilonrT (dimensionless) in Strain-charge form.

C O U P L I N G  P R O P E R T I E S

• Coupling matrix eES (SI unit: C/m2) in Stress-Charge form.

• Coupling matrix dET (SI unit: C/N) in Strain-charge form.
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D A M P I N G  A N D  L O S S  P R O P E R T I E S

• Loss factor for elasticity matrix cE, eta_cE, or loss factor for elasticity matrix sE, 
eta_sE: required when Mechanical Damping is present. The latter is valid only in 
Strain-Charge form.

• Loss factor for electrical permittivity matrix εrS, eta_epsilonS, or Loss factor for 
electrical permittivity matrix εrT, eta_epsilonT: required when Dielectric Loss is 
present. The latter is valid only in Strain-Charge form.

• Loss factor for coupling matrix e, eta_eES, or loss factor for coupling matrix d, 
eta_dET: required when Coupling Loss is present. The latter is valid only in 
Strain-Charge form.

• Electrical conductivity sigma (SI unit: S/m): required when Conduction Loss is 
present.

Coupling Piezoelectric Devices with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars, 
microphones, sensors, and so forth. This is why coupling piezoelectric devices with 
acoustic domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics 
interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics, 

Transient (depending on which study type you want to use) plus an Acoustic-Structure 

Boundary coupling under the Multiphysics node. You can also directly create the nodes 
that are needed for coupling by adding an Acoustic-Piezoelectric Interaction interface 
from the Model Wizard or Add Physics windows. If solid and acoustic domains are 
correctly defined, then the right coupling boundaries are automatically selected. Then 
specify domains of application for each physics.

• Select solid domains and Piezoelectric Material domains in Solid Mechanics.

• Select electrostatic domains and Charge Conservation, Piezoelectric domains in 
Electrostatics.

• Select acoustic domains in a Pressure Acoustics node.

• Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and 
Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid 

Working with Materials and Piezoelectric Materials Database in the 
COMSOL Multiphysics Reference Manual.
R  2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



Mechanics, or Electrostatics interfaces are present, select the right ones that need to 
be coupled in the multiphysics interfaces.

• Continue the modeling process by entering the settings for each physics interface 
and feature and define materials.
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Mode l i n g  Magn e t o s t r i c t i v e  Ma t e r i a l s

Magnetostriction Coupling

Magnetostriction is an interaction between the mechanical and magnetic physics, 
where a magnetic field applied on magnetostrictive material generates the deformation 
of the material (direct effect), and a stress applied on it changes the material 
magnetization (inverse effect). In COMSOL Multiphysics, the Magnetostriction 
interface is constituted of one Solid Mechanics and one Magnetic Fields interface, which 
are coupled together via a Magnetostriction multiphysics feature. Hence a 
magnetostriction problem contains solid and magnetic domains, with at least one 
domain shared by the two physics interfaces and with the magnetostriction coupling 
defined on it.

Create the Magnetostriction Interface and Define Domains

A magnetostriction problem can be set up in different ways:

• By selecting Magnetostriction from the Model Wizard, 

• By choosing Magnetostriction from the Add Physics menu when working in an 
existing model, or 

• By adding the corresponding features to create the coupling manually. 

In the first two cases, by default all the domains in the model are assumed to be 
magnetostrictive materials. 

When setting up the problem manually (that is, by adding single physics interfaces one 
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then, 
you have to specify which domains are in each physics, and which domains are to be 
modeled as magnetostrictive materials.

1 On the Solid Mechanics interface Settings window, locate the Domain Selection 
section. Select the domains which undergo structural deformation, including the 
magnetostrictive material domains.

2 Go to the Solid Mechanics>Magnetostrictive Material node (if it is not yet available, 
add it). Select the domains where the magnetostriction effect applies. 
Nonmagnetostrictive domains can be modeled using the other available material 
models.
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3 Go to the Magnetic Fields node and under Domain Selection select the domains the 
magnetics equations must be solved. These domains include all the magnetostrictive 
domains, and any other magnetic domains. 

4 Go to the Magnetic Fields>Ampere’s Law, Magnetostrictive node (if it is not yet 
available, add it). Select the domains where the magnetostriction effect has to be 
modeled.

5 A Multiphysics>Magnetostriction node is already present if the coupling was added 
using either the Model Wizard or Add Physics window. If the model is set up manually 
(that is, single physics interfaces are added), right-click the Multiphysics node to add 
a Magnetostriction coupling. 

6 Confirm that all the domains where the magnetostrictive material is present are 
selected.

7 Confirm that remaining domains are well assigned:

- Solid and magnetic domains: In these domains, the magnetics and structural 
problems are solved independently without any magnetostriction coupling. This 
represents deformable magnetic materials for which the magnetostriction 
coupling is negligible.

- Solid-only domains: In these domains, only mechanical phenomena are modeled, 
and the magnetics phenomena are neglected. This represents deformable solid 
nonmagnetic materials.

- Magnetics-only domains: Those domains are non-solid, this is typically the case 
of air, in which the magnetics is solved but not mechanics.

- Non-solid and non-magnetics domains: In those domains another physics is 
solved. Typical examples are acoustic domains and fluid flow domains, which 
might be present in various multiphysics models.

Only domains that have both Ampere’s Law, Magnetostrictive selected in 
the Magnetic Fields interface and Magnetostrictive Material selected in the 
Solid Mechanics interface are active in the selection for Magnetostriction 
coupling. The selection of this multiphysics feature cannot be edited. If 
several Solid Mechanics or Magnetic Fields interfaces are present, select the 
correct ones.
M O D E L I N G  M A G N E T O S T R I C T I V E  M A T E R I A L S  |  117



118 |  C H A P T E
Linear vs Nonlinear Magnetostriction

The magnetostrictive strain has a nonlinear dependence on the magnetic field and the 
mechanical stress in the material. However, the effect can be modeled using linear 
coupled constitutive equations if the response of the material consists of small 
deviations around an operating point (bias point).

For linear magnetostriction model, it is possible to express the relation between the 
stress S, strain ε, magnetic field H, and magnetic flux density B in either a 
stress-magnetization form or strain-magnetization form. In COMSOL 
Multiphysics, both constitutive forms can be used; simply select one, and the software 
will make all necessary transformations if needed. For details, see the corresponding 
the theory section Linear Magnetostriction Model. You find all the necessary material 
data inputs within the Magnetostrictive Material selected in the Solid Mechanics interface.

The nonlinear model of magnetostrictive strain can be used for the whole range from 
full demagnetization to saturation magnetization. For more details, see the 
corresponding the theory section Nonlinear Magnetostriction. 

In case of nonlinear magnetostriction, the magnetization model can be selected. The 
following options are available: Langevin function, Hyperbolic tangent, User defined, 
and Linear. The last option will make it possible to find an explicit expression for the 
magnetization. Note however that such model does not have a proper saturation 
behavior, and thus it should be used only in the operating range far from saturation. 
For ll other choices, the magnetization vector components will be treated as extra 
dependent variables.
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Mechan i c a l  Damp i n g  and Lo s s e s

Damping and losses are important for determining the response in Time Dependent 
and Frequency Domain studies, and sometimes also when computing 
eigenfrequencies. This section describes how to model damping and loss using 
different damping models. In this section:

In this section:

• About Damping

• Rayleigh Damping

• Loss Factor Damping

• Viscoelastic Damping

• Explicit Damping

• Equivalent Viscous Damping

• Piezoelectric Damping

• Adding Damping in the Modal Solver

Damping Sources

There are many sources of damping in a system. Some some them are:

• Dissipation in the material. This dissipation can be for example be proportional to 
the amplitude of the strain rate (viscous damping) or to the amplitude of the strain 
itself (hysteretic damping).

• Thermoelastic damping, which is a thermodynamic effect which is related not only 
to the state in a point, but also to the gradients of the temperature field.

• Damping caused by the surrounding medium, often air or water.

• Friction between joined parts.

• Components intended to supply damping like a dashpot in a car suspension.

It is often difficult to separate and quantify these effects, so damping modeling is one 
of the biggest challenges in structural dynamics.
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About Damping

Phenomenological damping models are typically invoked to model the intrinsic 
frictional damping present in most materials (material damping). These models are 
easiest to understand in the context of a system with a single degree of freedom. The 
following equation of motion describes the dynamics of such a system with viscous 
damping:

 (2-16)

In this equation u is the displacement of the degree of freedom, m is its mass, c is the 
damping parameter, and k is the stiffness of the system. The time (t) dependent forcing 
term is f(t). This equation is often written in the form:

 (2-17)

where ξ = c/(2mω0) and ω0
2 = k/m. In this case ζ is the damping ratio (ζ = 1 for 

critical damping) and ω0 is the undamped resonant frequency of the system. In the 
literature it is more common to give values of ζ than c. ζ can also be readily related to 
many of the various measures of damping employed in different disciplines. These are 
summarized in Table 2-7.

TABLE 2-7:  RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING 
PARAMETER

DEFINITION RELATION TO 
DAMPING RATIO

Damping ratio –

Logarithmic 
decrement

where t0 is a reference time and τ is the period 
of vibration for a decaying, unforced degree of 
freedom.

md2u

dt2
---------- cdu

dt
------- ku+ + f t( )=

d2u

dt2
---------- 2ζω0

du
dt
------- ω0

2u+ +
f t( )
m

---------=

ζ c ccritical⁄=

δd
u t0( )

u t0 τ+( )
---------------------- 
 ln=

δd 2πζ≈

ζ 1«( )
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In the frequency domain, the time dependence of the force and the displacement can 
be represented by introducing a complex force term and assuming a similar time 
dependence for the displacement. The equations

 and 

are written where ω is the angular frequency and the amplitude terms U and F can in 
general be complex (the arguments provide information on the relative phase of 
signals). Usually the real part is taken as implicit and is subsequently dropped. 
Equation 2-16 takes the following form in the frequency domain:

 (2-18)

where the time dependence has canceled out on both sides. Alternatively this equation 
can be written as:

 (2-19)

There are three basic damping models available in the structural mechanics interfaces 
for explicit modeling of material damping—Rayleigh damping, viscous damping, and 
loss factor models based on introducing complex quantities into the equation system. 
There are also other phenomena which contribute to the damping. Some material 
models, such as viscoelasticity and plasticity are inherently dissipative. It is also possible 
to model damping in spring conditions.

Quality factor

where Δω is the bandwidth of the amplitude 
resonance measured at  of its peak.

Loss factor

where Qh is the energy lost per cycle and Wh is 
the maximum potential energy stored in the 
cycle. The variables Qh and Wh are available as 
solid.Qh and solid.Wh.

At the resonant 
frequency:

TABLE 2-7:  RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING 
PARAMETER

DEFINITION RELATION TO 
DAMPING RATIO

Q ω Δω⁄=

1 2⁄

Q 1 2ζ( )⁄≈

ζ 1«( )

η 1
2π
------

Qh

Wh
-------- 
 =

η 2ζ≈

ζ 1«( )

f t( ) Re Fejωt{ }= u t( ) Re Uejωt{ }=

ω2mU– jωcU kU+ + F=

ω2U– 2jωω0ξU ω0
2U+ +

F
m
-----=
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Rayleigh Damping

A common method of modeling damping is Rayleigh damping, where two damping 
coefficients are specified. This type of damping is not directly related to any physical 
process, but must be seen as a way to take the total damping of a structure into 
account.

Rayleigh damping introduces damping in a form based on Equation 2-16. This means 
that the method can be applied generally in either the time or frequency domain. The 
parameter c in Equation 2-16 is defined as a fraction of the mass and the stiffness using 
two parameters, αdM and βdK, such that

 (2-20)

Substituting this relationship into Equation 2-16 and rearranging into the form of 
Equation 2-17 gives:

When there are many degrees of freedom m, k, and c become matrices and the 
technique can be generalized. 

Rayleigh damping can therefore be identified as equivalent to the damping ratio at 
resonance of:

 (2-21)

Note that Equation 2-21 holds separately for each vibrational mode in the system at 
its resonant frequency. In the frequency domain it is possible to use frequency 
dependent values of αdM and βdK. For example setting αdM = 0 and βdK = 2ζ/ω0 
produces a equivalent viscous damping model at the resonant frequency.

While Rayleigh damping is numerically convenient, the model does not agree with 
experimental results for the frequency dependence of material damping over an 
extended range of frequencies. This is because the material damping forces behave 
more like frictional forces (which are frequency independent) than viscous damping 
forces (which increase linearly with frequency as implied by Equation 2-18). In the 
frequency domain it is possible to introduce loss factor damping, which has the desired 
property of frequency independence. 

c αdMm βdKk+=

d2u

dt2
---------- αdM βdKω0

2
+( )du

dt
------- ω0

2u+ +
f t( )
m

---------=

ζ 1
2
---

αdM
ω0

----------- βdKω0+ 
 =
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A complication with the Rayleigh damping model is to obtain good values for the 
damping parameters αdM and βdK. A more physical damping measure is the relative 
damping, the ratio between actual and critical damping, often expressed as a 
percentage of the critical damping. Commonly used values of relative damping can be 
found in the literature.

Using Equation 2-21, this relationship at two frequencies, f1 and f2, with different 
relative damping, ζ1 and ζ2, results in an equation system that can be solved for αdM 
and βdK:

The damping ratios are then

Using the same relative damping, ζ1 = ζ2, does not result in a constant damping factor 
inside the interval f1 < f < f2. It can be shown that the damping factor is lower inside 
the interval, as Figure 2-12 shows.

Figure 2-12: An example of Rayleigh damping.
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Since the coefficients αdM and βdK. should not be negative, the damping ratios are 
constrained by the respective frequencies as

For many applications it is sufficient to leave αdM as zero and to define damping only 
using the βdK coefficient. Then according to Equation 2-21, a damping which 
increases linearly with frequency is obtained. If the damping ratio ξ(f0) or loss factor 
η(f0) is known at a given frequency f0, the appropriate value for βdK is:

Loss Factor Damping

Loss factor damping (sometimes referred to as material damping, structural damping, 
or hysteretic damping) can be applied in the frequency domain.

The loss factor is a measure of the inherent damping in a material when it is 
dynamically loaded. It is typically defined as the ratio of energy dissipated in unit 
volume per radian of oscillation to the maximum strain energy per unit volume.

In COMSOL Multiphysics the loss information appears as a multiplier to the elastic 
constitutive matrix Dc

For a nonlinear elastic material, this applies to the tangential stiffness.

The use of loss factor damping traditionally refers to a scalar-valued loss factor ηs. But 
there is no reason that ηs must be scalar. Because the loss factor is a value deduced from 
true complex-valued material data, it can be represented by a matrix of the same 
dimensions as the anisotropic stiffness matrix. Especially for orthotropic materials, 
there should be a set of loss factors of all normal and shear elasticity modulus 
components, and COMSOL allows all these options, so a more general expression is.

For hyperelastic materials the loss information appears as a multiplier in strain energy 
density, and thus in the second Piola-Kirchhoff stress, S:

f1
f2
----

ζ2
ζ1
-----

f2
f1
----≤ ≤

βdK ζ πf0( )⁄ η 2πf0( )⁄= =

Dc 1 jηs+( )D=

Dmn
c 1 jηs mn,+( )Dmn=
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Loss factor damping is available for frequency response analysis and damped 
eigenfrequency analysis in all interfaces.

Viscoelastic Damping

In some cases damping is included implicitly in the material model. This is the case for 
a viscoelastic material, where damping operates on the shear components of stress and 
strain.

When viscoelasticity is modeled in the frequency domain, it will act as a loss factor 
damping. The complex modulus G*(ω) is the frequency-domain representation of the 
stress relaxation function of viscoelastic material. It is defined as

where G' is the storage modulus, G'' is the loss modulus, and their ratio ηs = G''/G' is 
the loss factor. The term G' defines the amount of stored energy for the applied strain, 
whereas G'' defines the amount of energy dissipated as heat; G', G'', and ηs can all be 
frequency dependent.

Explicit Damping

It is possible to define damping by modeling the dissipative behavior of the material 
using complex-valued material properties. In COMSOL Multiphysics, you can enter 
the complex-valued data directly, using i or sqrt(-1) for the imaginary unit.

Equivalent Viscous Damping

Although equivalent viscous damping is independent of frequency, it is only possible 
to use it in a frequency response analysis. Equivalent viscous damping also uses a loss 
factor as the damping parameter, and can be implemented using the Rayleigh damping 
feature, by setting the stiffness damping parameter βdK, to the loss factor, η, divided 
by the excitation frequency:

The mass damping factor, αdM, should be set to zero.

S 1 jηs+( )
Ws∂
E∂

----------=

G∗ G′ jG″+ 1 jηs+( )G′= =

βdK
η

2πf
--------- η

ω
----= =
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Piezoelectric Damping

Piezoelectric losses are more complex and include coupling and electrical losses in 
addition to the material terms. For damping in piezoelectric materials, see Piezoelectric 
Losses.

For piezoelectric materials, βdK is only used as a multiplier of the structural 
contribution to the stiffness matrix when building-up the damping matrix as given by 
Equation 2-20. In the frequency domain studies, you can use the coupling and 
dielectric loss factors equal to βdKω to effectively achieve the Rayleigh damping 
involving the whole stiffness matrix.

Adding Damping in the Modal Solver

In COMSOL it is possible to solve a problem for a set of modes in the absence of 
damping, and then to use those solutions as a modal basis to solve a problem in the 
time (using a time domain modal study) or frequency domain (using a frequency 
domain modal study). In both of these cases it is possible to manually assign a damping 
ratio to the computed modes in the time or frequency domain study. To do that, right 
click on the study and choose Show Default Solver, then expand the solver sequence 
until the Modal Solver node is visible. In the settings window for that node, add 
damping ratios for each of the modes.

For more details, see the section Modal Solver in the COMSOL 
Multiphysics Reference Manual.
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Mode l i n g  Geome t r i c  Non l i n e a r i t y

This section discusses how to model problems where displacements or strains are of a 
size where the deformation of the structure has to be taken into account when 
formulating the equations. Examples of the type of problems where this feature is 
useful include:

• Thin structures, where the deflection is of the same order of magnitude as the 
thickness.

• Where the structure exhibits large rotations. A rigid body rotation of only a few 
degrees causes significant strains and stresses in a material where a linear strain 
representation is used.

• Where the strains are larger than a few percent.

• Contact problems.

• Where a prestress must be taken into account for computing the dynamic response 
of a structure.

• Buckling problems.

• Where a deformed mesh is used.

• Fluid-structure interaction problems. 

Geometric Nonlinearity, Frames, and the ALE Method

Consider the bending of a beam in the general case of a large deformation (see 
Figure 2-13). In this case the deformation of the beam introduces an effect known as 
geometric nonlinearity into the equations of solid mechanics.

Figure 2-13 shows that as the beam deforms, the shape, orientation, and position of 
the element at its tip changes significantly. Each edge of the infinitesimal cube 
undergoes both a change in length and a rotation that depends on position. 
Additionally the three edges of the cube are no longer orthogonal in the deformed 

• Contact Modeling

• The Fluid-Structure Interaction Interface

• The more formal theory is described in Analysis of Deformation
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configuration (although typically for practical strains the effect of the 
non-orthogonality can be neglected in comparison to the rotation).

From a simulation perspective it is possible to solve the equations of solid mechanics 
on either a fixed domain (this is often called a Total Lagrangian formulation), or on 
a domain that changes continuously with the deformation. The latter approach is often 
called an Updated Lagrangian formulation. These two approaches also stand in 
contrast to the Eulerian formulation which is often used for fluid mechanics. In an 
Eulerian formulation the flow through a domain fixed in space is considered, while in 
the Lagrangian formulation a fixed volume of material is considered.

Solid mechanics in COMSOL Multiphysics is formulated on the material frame. This 
is achieved by defining a displacement field for every point in the solid, usually with 
components u, v, and w. At a given coordinate (X, Y, Z) in the reference configuration 
(on the left of Figure 2-13) the value of u describes the displacement of the point 
relative to its original position. The displacement is considered as a function of the 
material coordinates (X, Y, Z), but it is not explicitly a function of the spatial 
coordinates (x, y, z). The spatial coordinates is the current location in space of a point 
in the deformed solid. As a consequence, it is only possible to compute derivatives with 
respect to the material coordinates.

Taking derivatives of the displacement with respect to X, Y, and Z enables the 
definition of a strain tensor. There are possible representations of the deformation. Any 
reasonable representation must however be able to represent a rigid rotation of an 
unstrained body without producing any strain. The engineering strain fails here, thus 
it cannot be used for general geometrically nonlinear cases. One common choice for 
representing large strains is the Green-Lagrange strain. It contains derivatives of the 
displacements with respect to the original configuration. The values therefore 
represent strains in material directions. This allows a physical interpretation, but it 
must be realized that even for a uniaxial case, the Green-Lagrange strain is strongly 
nonlinear with respect to the displacement. If an object is stretched to twice its original 

In COMSOL Multiphysics, the concepts of a material frame and a 
spatial frame are used. Equations formulated in the material frame will 
give a Total Lagrangian formulation, while equations formulated in the 
spatial frame will give an Eulerian formulation.

See Frames and Coordinate Systems in the theory chapter for more 
details.
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length, the Green-Lagrange strain is 1.5 in the stretching direction. If the object is 
compressed to half its length, the strain would read -0.375.

An even more fundamental quantity is the deformation gradient, which contains the 
derivatives of the deformed coordinates with respect to the original coordinates:

The deformation gradient contains all information about the local deformation in the 
solid, and can be used to form many other strain quantities. As an example, the 
Green-Lagrange strain is 

An element at point (X, Y, Z) specified in the material frame moves with a single piece 
of material throughout a solid mechanics simulation. It is often convenient to define 
material properties in the material frame as these properties move and rotate naturally 
together with the volume element at the point at which they are defined as the 
simulation progresses. In Figure 2-13 this point is illustrated by the small cube 
highlighted at the end of the beam, which is stretched, translated, and rotated as the 
beam deforms. The three mutually perpendicular faces of the cube in the Lagrange 

F x∂
X∂

------- u I+∇= =

ε 1
2
--- FTF I–( )=
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frame are no longer perpendicular in the deformed (spatial) frame. The deformed 
frame Coordinates in this frame are denoted (x, y, z) in COMSOL.

Figure 2-13: An example of the deformation of a beam showing the undeformed state 
(left) and the deformed state (right) of the beam itself with an element near its tip 
highlighted (top), of the element (center) and of lines parallel to the x-axis in the 
undeformed state (bottom).

S T R E S S  M E A S U R E S

For example, in the spatial frame it is easy to define forces per unit area (known as 
tractions) that act within the solid, and to define a stress tensor that represents all of 
these forces that act on a volume element. Such forces could be physically measured, 
for example using an implanted piezoresistor. The stress tensor in the spatial frame is 
called the Cauchy or true stress tensor (in COMSOL this is referred to as the spatial 
stress tensor). To construct the stress tensor in the Lagrangian frame a tensor 
transformation must be performed on the Cauchy stress. This produces the second 
Piola-Kirchhoff (or material) stress, which can be used with the material strain to solve 

It is important to note that, as the solid deforms, the Lagrangian frame 
becomes a non-orthogonal curvilinear coordinate system (see the lower 
part of Figure 2-13 to see the deformation of the X-axis). Particular care 
is therefore required when defining physics in this coordinate system. 
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the solid mechanics problem in the (fixed) material frame. This is how the Solid 
Mechanics interface works when geometric nonlinearities are enabled.

For the Cauchy stress tensor, both the force components and the normal to the area 
on which the force is acting have fixed directions in space. This means that if a stressed 
body is subjected to a pure rotation, the actual values of the stress components will 
change. What was originally a uniaxial stress state might be transformed into a full 
tensor with both normal and shear stress components. In many cases, this is neither 
what you want to use nor what you would expect.

Consider for example an orthotropic material with fibers having a certain orientation. 
It is much more plausible that you want to see the stress in the fiber direction, even if 
the component is rotated. The Second Piola-Kirchhoff stress has this property as it is 
defined along the material directions. In the figure below, an originally straight 
cantilever beam has been subjected to bending by a pure moment at the tip. The 
xx-component of the Cauchy stress and Second Piola-Kirchhoff stress are shown. Since 
the stress is physically directed along the beam, the xx-component of the Cauchy stress 
(which is related to the global x-direction) decreases with the deflection. The Second 
Piola-Kirchhoff stress however, has the same through-thickness distribution all along 
the beam, even in the deformed configuration.

Figure 2-14: xx-components of the Cauchy stress tensor (top) and Second-Piola-Kirchoff 
stress tensor (below) for an initially straight beam
M O D E L I N G  G E O M E T R I C  N O N L I N E A R I T Y  |  131



132 |  C H A P T E
Another stress measure available in COMSOL is the First Piola-Kirchhoff stress. It is a 
multiaxial generalization of the nominal (or engineering) stress. The stress is defined 
as the force in the current configuration acting on the original area. The First 
Piola-Kirchhoff stress is an unsymmetric tensor, and is for that reason less attractive to 
work with. Sometimes you may also encounter the Kirchhoff stress, although it is not 
used in COMSOL. The Kirchhoff stress is just the Cauchy stress scaled by the volume 
change. It has little physical significance, but can be convenient in some mathematical 
and numerical operations.

Unfortunately, even without a rotation, the actual values of all these stress 
representations are not the same. All of them scale differently with respect to local 
volume changes and stretches. This is illustrated in the graph below. The 
xx-component of four different stress measures are plotted at the fixed end of the beam 
from the example above. At this point, the beam axis coincides with the x-axis, so the 
directions of all stress tensor components coincide. In the center of the beam, where 
strains, and thereby volume changes are small, all values approach each other. For a 
case with large rotation but small strains, the different stress representations can be 
seen as pure rotations of the same stress tensor.

Figure 2-15: Stress distribution across the beam at the constrained end
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If you want to compute the resulting force or moment on a certain boundary based on 
the stresses, there are in practice only two possible choices: Either integrate the Cauchy 
stress over the deformed boundary, or integrate the First Piola-Kirchhoff stress over 
the same boundary in the undeformed configuration. In COMSOL Multiphysics this 
corresponds to selecting either Spatial frame or Material frame in the settings for the 
integration operator.

A L E  M E T H O D

In the case of solid mechanics, the material and spatial frames are associated directly 
with the Lagrangian and Eulerian frames, respectively. In a more general case (for 
example, when tracking the deformation of a fluid, such as a volume of air surrounding 
a moving structure) tying the Lagrangian frame to the material frame becomes less 
desirable. Fluid must be able to flow both into and out of the computational domain, 
without taking the mesh with it. The Arbitrary Lagrangian-Eulerian (ALE) 
method allows the material frame to be defined with a more general mapping to the 
spatial or Eulerian frame. In COMSOL, a separate equation is solved to produce this 
mapping—defined by the mesh smoothing method (Laplacian, Winslow, hyperelastic, 
or Yeoh) with boundary conditions that determine the limits of deformation (these are 
usually determined by the physics of the system, whilst the domain level equations are 
typically being defined for numerical convenience). The ALE method offers significant 
advantages since the physical equations describing the system can be solved in a 
moving domain.

Geometric Nonlinearity for the Solid Mechanics Interface

For the Solid Mechanics interface, or any multiphysics interface derived from it, you 
enable a geometrically nonlinear analysis for a certain study step by selecting the Include 

geometric nonlinearity check box in the Study Settings section of a study step.

If any active feature in the model requires the analysis to be geometrically nonlinear, 
the Include geometric nonlinearity check box is selected automatically, and it cannot be 
cleared. The physics features which force this behavior are:

• Contact, because the deformation between the contacting boundaries must be part 
of the solution

Deformed Geometry and Moving Mesh in the COMSOL Multiphysics 
Reference Manual
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• The Fluid-Structure Interaction interface.

• Hyperelastic materials, which are always formulated for large strains,

Usually you would also want to use geometric nonlinearity when a Moving Mesh 
interface is present, but this is not forced by the program.

When you select a geometrically nonlinear study step, the behavior of several features 
differ from that in a geometrically linear case:

• There is an important difference between using uppercase (X, Y, Z, R) and 
lowercase (x, y, z, r) coordinates in expressions. The lowercase coordinates 
represent the deformed position, and this introduces a dependency on the solution.

• Many features, such as coupling operators, can be specified as operating either in the 
material (X, Y, Z) or the spatial (x, y, z) frame. This setting does not make a 
difference unless a geometrically nonlinear analysis is performed. In most cases you 
would want to do the operation in the material frame.

• The strain representation is changed from using engineering strains to 
Green-Lagrange strains, unless the Force linear strains check box is selected in the 
Geometric Nonlinearity section of a certain material.

• Where Green-Lagrange strains are used, Second Piola-Kirchhoff stresses are also 
used. This means that material data must be given in terms of these quantities. This 
distinction is important only when the strains actually are large.

• Pressure loads are interpreted as follower loads, so that the direction of the load as 
well as the loaded area are deformation dependent.

• Rigid connectors take finite rotations into account.

Geometric Nonlinearity for the Shell, Plate, Membrane, Beam and 
Truss Interfaces

For the Shell, Plate, Membrane, Beam, and Truss interfaces, a geometrically nonlinear 
analysis is enabled in the same way described above. For the Membrane interface, 
geometric nonlinearity must almost always be used, since it is nonlinear effects which 
supply the stiffness in the transverse direction.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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The geometric nonlinearity in the Beam interface is limited to large rotations and 
displacements, but small strains.

The effect of using geometric nonlinearity in these interfaces is limited to the stress and 
strain representation as the other effects described in Geometric Nonlinearity for the 
Solid Mechanics Interface are not relevant.

Solving Geometrically Nonlinear Problems

Depending on the geometrically nonlinear effects that appear in your model, you may 
have to use different solution strategies. Some problems in this class are strongly 
nonlinear, while others show only a weak deviation from linearity. Some guidelines are:

• If the problem has a path dependent solution, then it must be solved in an 
incremental way in order to give a correct solution. Problems including for example 
plasticity or friction belong to this class. If you do the analysis in time domain, then 
the solution is inherently incremental. If the analysis is stationary, invoke the 
parametric continuation solver by adding an Auxiliary Sweep, and ramp up some 
loading parameter. In either case, make sure that the step size is not too large.

• Problem that have a unique solution, like an elastic model subjected to large 
rotations or strains can be solved in a single static load step without loss of accuracy. 
It is however possible that such an approach will not converge, in which case a 
parametric continuation solver must be used.

• In problems involving large rotations, the default settings of the nonlinear solver 
will sometimes give a too conservative solution strategy. You can often decrease the 
solution time significantly by modifying the settings under Method and Termination 
in the settings for the Fully Coupled or Segregated Step node in the solver sequence. 
Set Nonlinear method to Constant (Newton) and use a rather high Damping factor. In 
most cases the value 1 will work.

• If you model a situation which to a large extent is a rigid rotation, it is often 
necessary to use tighter tolerances than usual in order to avoid spurious stresses. 
Since the strains are computed from the differences of the displacements in an 
element, even a small relative error in the displacements (which are large) can cause 
significant strains. This will be visible in a case where the actual stresses are small.

Prestressed Structures

You can analyze eigenfrequency or frequency domain problems where the dynamic 
properties of the structure are affected by a preload, such as a tensioned string.
M O D E L I N G  G E O M E T R I C  N O N L I N E A R I T Y  |  135



136 |  C H A P T E
Usually, a study of a prestressed problem includes using study steps. The first step is a 
Stationary step in which the static preload is applied. The effects of the preload can be 
computed with or without taking geometric nonlinearity into account. In the second 
study step, where the you compute the eigenfrequency or the frequency response, it is 
necessary to take geometric nonlinearity into account. Even if the displacements and 
strains are small, this is what gives the prestress contribution to the equations.

The same principles apply also to a linear buckling analysis, except that both study steps 
should be geometrically linear. The nonlinear contribution is included in the 
formulation of the buckling eigenvalue itself.

F O L L O W E R  L O A D S

Loads which change orientation with deformation, such as a pressure, actually 
contribute not only to the load, but also to the stiffness. This is a physical effect, and 
not just a numerical artifact. Whether such loads are included or not in an 
Eigenfrequency study step will affect the computed eigenfrequencies. If you for some 
reason do not want this effect, you must suppress the load in the Physics and Variables 
section of the Eigenfrequency node.

C O N T A C T  A N D  F R E Q U E N C Y  D O M A I N  A N A L Y S I S

If a contact is included in the prestress load case, you can perform a subsequent 
frequency domain analysis in which then the linearization will be made around the 
computed contact state. It is however not possible perform an eigenvalue analysis 
based on a contact solution.

If you use a local coordinate system for describing a load, you must in case 
of geometric nonlinearity pay attention to whether that coordinate system 
has constant axis orientations or not. As an example, the default boundary 
system has Frame set to Deformed Configuration, so that a load represented 
in that system will behave as a follower load. Change to Reference 

Configuration if the load should act in fixed directions.
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I N E L A S T I C  S T R E S S E S  A N D  S T R A I N S

When inelastic stresses and strains are part of the problem description, you need to 
make some extra considerations. Such contributions are formally part of the 
constitutive model, but generate load vector contributions.

Geometric Nonlinearity for the Piezoelectric Material

P I E Z O E L E C T R I C  M A T E R I A L S  W I T H  L A R G E  D E F O R M A T I O N S

The linear piezoelectric equations as presented in About Piezoelectric Materials with 
engineering strains are valid if the model undergoes only relatively small deformations. 
As soon as the model contains larger displacements or rotations, these equations 

There are three Preset study types which can be used to set up these two 
study steps: Prestressed Analysis, Eigenfrequency; Prestressed Analysis, 

Frequency Domain; and Linear Buckling.

If you want to explicitly prescribe the stress field for a prestressed analysis 
rather than solving for it, you should not use the two study step 
procedure.

In such a case, prescribe the stress field using an Initial Stress and Strain or 
External Stress node. Then add a separate Eigenfrequency study and select 
Include Geometric Nonlinearity in the settings for the study step.

Prestressed Analysis, Eigenfrequency, Prestressed Analysis, Frequency 
Domain, and Linear Buckling in the COMSOL Multiphysics Reference 
Manual

• For an example of a general prestressed eigenfrequency analysis see 
Bracket—Eigenfrequency Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_eigenfrequency.

• For an example of an analysis where the stress state is explicitly 
prescribed, see Vibrating Membrane: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

vibrating_membrane.
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produce spurious strains that result in an incorrect solution. To overcome this 
problem, so-called large deformation piezoelectrical equations are required.

The Piezoelectric Material implements the large deformation piezoelectrical equations 
according to Yang (Ref. 1). Key items of this formulation are:

• The strains are calculated as the Green-Lagrange strains, εij:

 (2-22)

Green-Lagrange strains are defined with reference to an undeformed geometry. 
Hence, they represent a Lagrangian description. In a small-strain, large rotational 
analysis, the Green-Lagrange strain corresponds to the engineering strain in 
directions that follow the deformed body.

• Electrical field variables are calculated in the material directions, and the electric 
displacement relation is replaced by an expression that produce electric polarization 
in the material orientation of the solid.

• In the variational formulation, the electrical energy is split into two parts: The 
polarization energy within the solid and the electric energy of free space occupied 
by the deformed solid.

The first two items above result in another set of constitutive equations for large 
deformation piezoelectricity:

where S is the second Piola-Kirchhoff stress; ε is the Green-Lagrange strain, Em and 
Pm are the electric field and electric polarization in the material orientation; I is the 
identity matrix; and cE, e, and εrS are the piezoelectric material constants. The 
expression within parentheses equals the dielectric susceptibility of the solid:

The electric displacement field in the material orientation results from the following 
relation

where C is the right Cauchy-Green tensor

εij
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R  2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



Fields in the global orientation result from the following transformation rules:

 (2-23)

where F is the deformation gradient; J is the determinant of F; and ρv and ρV are the 
volume charge density in spatial and material coordinates respectively. The 
deformation gradient is defined as the gradient of the present position of a material 
point x = X + u:

Finally, one can rewrite the constitutive equations as

D E C O U P L E D  M A T E R I A L S  W I T H  L A R G E  D E F O R M A T I O N S

The large deformation formulation described in the previous section applies directly to 
non-piezoelectric materials if the coupling term is set to zero: e = 0. In that case, the 
structural part corresponds to the large deformation formulation described for the 
solid mechanics interfaces.

The electrical part separates into two different cases: For solid domains, the electric 
energy consists of polarization energy within the solid and the electric energy of free 
space occupied by the deformed solid—the same as for the piezoelectric materials. For 
non-solid domains this separation does not occur, and the electric displacement in 
these domains directly results from the electric field—the electric displacement 
relation:

C FTF=

E F T– Em=

P J 1– FPm=

D J 1– FDm=

ρv ρVJ 1–
=

F x∂
X∂

-------=

S cEε eTEm–=

Dm eε ε0εrSEm ε0 JC 1– I–( )Em+ +=
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L A R G E  D E F O R M A T I O N  A N D  D E F O R M E D  M E S H

The Piezoelectric Devices Interface can be coupled with the Moving Mesh (ALE) 
interface in a way so that the electrical degrees of freedom are solved in an ALE frame. 
This feature is intended to be used in applications where a model contains non-solid 
domains, such as modeling of electrostatically actuated structures. This functionality is 
not required for modeling of piezoelectric or other solid materials.

The use of ALE has impacts on the formulation of the electrical large deformation 
equations. The first impact is that with ALE, the gradient of electric potential directly 
results in the electric field in the global orientation, and the material electric field 
results after transformation.

The most visible impact is on the boundary conditions. With ALE any surface charge 
density or electric displacement is defined per the present deformed boundary area, 
whereas for the case without ALE they are defined per the undeformed reference area.

References

1. J. Yang, An Introduction to the Theory of Piezoelectricity, Springer Science and 
Business Media, N.Y., 2005.

2. A.F. Bower, Applied Mechanics of Solids, CRC Press, Boca Raton, FL (http://
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Con t a c t  Mode l i n g

General

Situations where objects come into contact with each other occur frequently in 
mechanical simulations. Setting up and solving contact problems is sometimes a 
challenging task, and this section contains information about important aspects of 
creating models involving contact. 

In a contact analysis, you solve for the contact state and the contact forces. If friction 
is ignored, the state only consists of being in contact or not, and the force variable is 
the contact pressure in the normal direction. With friction included, there are two 
possible states for the relative tangential displacement when in contact: sticking and 
sliding. The tangential force vector is added as force variable.

The contact analysis functionality in COMSOL Multiphysics also includes the 
possibility to prescribe adhesion and decohesion between the contacting objects.

In this section:

Setting up a contact problem

Mechanical contact can be modeled in the Solid Mechanics and Multibody Dynamics 
interfaces. To model a mechanical contact problem, you must do the following:

• Add Contact Pair nodes under Definitions. A contact pair consists of two sets of 
boundaries, which are called the source and destination boundaries.

• Setting up a contact problem

• Contact Pairs

• Meshing for Contact Analysis

• Constraints

• Settings for Contact Nodes

• Time-Dependent Contact Analysis

• Multiphysics Contact

• Fallback Nodes for Contact

• Solver Settings for Contact Analysis

• Monitoring the Solution

• Dependent Variables in Contact 
Analysis

• Important Contact Variables
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• Add Contact nodes in the physics interface. In the Contact node, you select the 
contact pairs to be used, and provide the settings for the physical and numerical 
properties of the contact model.

• In the finalization step of the geometry sequence, you should normally have Action 
set to Form an assembly. If Form a union is used, then the contacting boundaries must 
be geometrically separated in the initial configuration.

• Select a suitable study type. You can analyze contact using a Stationary or Time 
Dependent study step.

In a multiphysics analysis, a contact problem can also incorporate for example changes 
in the heat flux or electric current through the contacting boundaries. You will then 
also need to add corresponding features in the other participating interfaces, like a 
Thermal Contact node in the Heat Transfer in Solids interface. The contact state and 
contact pressure used in other physics interfaces is always supplied by the structural 
mechanics interface.

The fact that you add a Contact node to your model will make all study steps 
geometrically nonlinear.

I N C L U D I N G  F R I C T I O N

In real life, there is always some friction between contacting objects, but this is often 
ignored. There are several reasons to do this simplification:

• In many cases, only the normal forces are significant for the general force 
distribution in the structure, while the frictional forces only cause a minor local 
effect.

• The values of the friction coefficients are difficult to obtain, and unless the structure 
is assembled under well controlled conditions, the magnitude of the friction can 
vary a lot.

• Adding friction to a contact problem will often increase the computation time 
significantly, or even cause convergence problems.

• Documentation of the Contact, Friction and Adhesion nodes.

• Contact Analysis Theory.

• Identity and Contact Pairs in the COMSOL Multiphysics Reference 
Manual.

• Time-Dependent Contact Analysis.
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There are a number of situations when friction modeling cannot be avoided. Some of 
them are:

• When a significant portion of the load is carried by shear stresses in the contact 
boundaries.

• When a tangential force is necessary to maintain stability and avoid rigid body 
motions. In many cases, it is however possible to replace the friction by a suitable 
constraint instead, as long as there are no resultant forces being resisted by such a 
constraint.

• When the frictional dissipation is an important component of a dynamics problem, 
or when it is needed as a heat source in a thermal analysis.

A D H E S I O N  A N D  D E C O H E S I O N

You can also specify that the contacting boundaries stick to each other so that they will 
not separate or slide. The onset of adhesion, when the boundaries become 
permanently attached to each other, can be based on several criteria:

• When a certain contact pressure is exceeded.

• When the gap distance between the contact boundaries is smaller than a certain 
value.

• When a user specified logical expression is fulfilled. This can for example be used if 
an adhesive cures when a certain temperature is exceeded.

• From the start of the analysis. This case is particularly interesting if you are 
interested in modeling the tearing of a thin glue layer by decohesion.

If adhesion is active between the contact boundaries, it is possible to break the bond 
by adding a decohesion rule. You can choose between several different decohesion 
laws.

S E L E C T I N G  T H E  C O N T A C T  A L G O R I T H M

In COMSOL Multiphysics, there are two possible methods for solving contact 
problems: the augmented Lagrangian method and the penalty method.

The default augmented Lagrangian method provides better accuracy, but at a higher 
computational cost. It requires additional degrees of freedom, and is less stable from 
the convergence point of view. This method ensures that there will not be any 
penetration between the contacting objects in a well converged solution. The contact 
pressure and friction forces are added as degrees of freedom. The contact pair is 
asymmetric (that is, it is a source/destination pair). The destination contact domain 
is constrained not to penetrate the source domain, but not vice versa. The contact 
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condition is evaluated in the integration points on the destination boundary. It is thus 
possible for a node to have a small penetration into the source boundary, even in a 
converged state.

In comparison, the penalty method is rather simple and robust. Roughly speaking, it 
is based on inserting a stiff spring, active only in compression, between the contacting 
boundaries. In addition to the robustness, it has the advantage that no special solver is 
required, which makes it easier to set up multiphysics problems and time-dependent 
studies.

The penalty method must be used when modeling adhesion.

You can select the method used for computing the normal direction pressure and the 
friction forces independently.

Contact Pairs

To decide which boundaries to assign as source and destination in a contact pair 
consider the following guidelines:

• Make sure that the source boundary stiffness in the normal direction is higher than 
the destination boundary stiffness. This is especially important if the difference in 
stiffness is quite large (for example, over ten times larger).

• If one of the boundaries belongs to a part that is rigid, either since it is a rigid 
domain, or because of the constraints applied, it should be selected as the source 
boundary.

• When the contacting parts have approximately the same stiffness, consider the 
geometry of the boundaries instead. Make a concave boundary the source and a 
convex boundary the destination rather than the opposite.

For efficiency, include only those boundaries that can actually come in contact in the 
destination selection. For the source, it is often a bit more efficient to make it so large 
that every destination point ‘sees’ a corresponding source point. The source point is 
obtained by following the normal to the destination until it reaches the source 
boundary. 

F I X E D  G E O M E T R Y  C O N T A C T

In some situations, the relative sliding between the contacting boundaries is small. This 
is often the case for shrink fit simulations or when mounting a component using 
prestressed bolts. The sliding can be considered as small if it is significantly less than 
the length of an element edge.
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In this case, it is possible to simplify the problem by selecting the Mapping Method to 
be Initial Configuration in the Contact Pair node. With this setting, a certain point on 
the destination boundary will see the same point on the source boundary during the 
entire simulation. This will make the contact analysis to run faster and convergence to 
be more stable.

The analysis is still geometrically nonlinear when using this option, and the contact 
region can still have arbitrarily large displacements and rotations.

A U T O M A T I C  G E N E R A T I O N  O F  C O N T A C T  P A I R S

Contact pairs can be automatically generated during the finalization of the geometry 
sequence. When Action is set to Form an assembly, you can select Create pairs, and use 
Contact pair as Pair type. Boundaries which are in geometrical contact with each other 
will then be placed in contact pairs. When you add Contact nodes in the physics 
interface, you select which of these suggested pairs to actually use for the contact 
analysis.

Meshing for Contact Analysis

Once the source and destination boundaries are chosen, mesh the destination finer 
than the source. Do not make the destination mesh just barely finer than the source 
because this can cause nonphysical oscillations in the contact pressure. Make the 
destination at least two times finer than the source. The reason is that the algorithm is 
asymmetric; the points on the destination side connects to the source side, and not vice 
versa. So with a coarse mesh on the destination side, a large portion of an element (or 
even a whole element) on the source side could be without connection to the 
destination.

It is always important that the geometry is well resolved, so that a curved contact 
boundary actually is seen as curved rather than ‘faceted’. The density of the mesh often 
needs to be finer than what would be needed to resolve stresses on a similar boundary 
without the contact conditions. If the normals to the contact boundaries change much 
from one element to the next, there is a risk that the contact analysis does not 
converge.

The automatic pair generation will not know which side to use as source 
or destination. Based on the rules above, you may need to switch them 
using the Swap Source and Destination button in the Source Boundaries 
section of the pair settings.
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If the source boundary is rigid, there are no requirements on the mesh size of the 
destination boundary. In this case, you may use a significantly finer mesh on the source 
boundary than on the destination boundary. This is sometimes necessary in order to 
resolve the geometry well.

Constraints

Make sure that the bodies are sufficiently constrained. If the bodies are not in contact 
in the initial configuration, and there are no constraints on them, there will be possible 
rigid body displacements. This causes the solver to fail and must be avoided.

Sometimes, as when simulating mounting processes, the structure is fully constrained 
only once the contact is fully established. There are some strategies for how you can 
deal with this problem.

• Create the geometry or set initial values for the displacement variables so that there 
is a small penetration in the initial configuration.

• Use boundary conditions giving a prescribed displacement rather than a prescribed 
force. When possible, this is usually the best solution to the stability problem. Note 
that you can always obtain the force actually applied from the reaction forces.

• Add a temporary weak spring during the beginning of the simulation. Assuming 
that a parameter p, ranging from 0 to 1, is used for applying the external load, you 
can introduce a stabilizing spring with stiffness kx in the x direction as

and similarly in any other direction that needs to be restrained. It is not important 
whether the spring is applied to domains, boundaries, or edges, but it should not create 
local forces. The value for the stiffness k should be chosen so that the force generated 
by the spring balances the external load at a sufficiently small displacement. A too weak 
spring will give a too large initial overclosure of the contact boundaries. A too stiff 
spring might influence the solution too much.

For a more detailed discussion about sufficient constraints, see 
Constraints under Stationary Analysis.

kx k 1 p–( )2 p 10⋅( )–
=
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Settings for Contact Nodes

PE N A L T Y  F A C T O R

An important parameter in the settings for the Contact node is the penalty factor. It is 
used for both the augmented Lagrangian method and the penalty method, but the 
interpretation is different:

• In the augmented Lagrangian method, the penalty factor is a numerical parameter, 
which affects the convergence properties of the algorithm. A higher value gives a 
faster convergence, but at the price of less stability.

• In the penalty method, the penalty factor has a straightforward interpretation as the 
stiffness of a distributed spring connecting the two contacting boundaries. A higher 
value will decrease the unphysical penetration, but can be detrimental to the 
numerical conditioning of the stiffness matrix.

• When modeling adhesion, the penalty factor is the stiffness in the normal direction 
of the adhesive layer.

When running into convergence problems, check the penalty settings. If the iteration 
process fails in some of the first iterations, lower the penalty parameters. If the model 
seems to converge but very slowly, consider increasing the maximum value of the 
penalty parameters.

Increasing the penalty factor can lead to an ill-conditioned Jacobian matrix and 
convergence problems in the Newton iterations. This is often seen by noting that the 
damping factor becomes less than 1 for many Newton iterations or that the structure 
“jumps” into an unphysical state. If this occurs, decrease the penalty factors.

The default values for the penalty factors is based on an “equivalent” Young’s modulus 
(Eequiv) of the material on the destination side. For linear elastic isotropic materials 
Eequiv is equal to the actual Young’s modulus. For other types of materials Eequiv is 
defined by an estimate of a similar stiffness at zero strain. For materials that are user 
defined or in other senses nonstandard (for example, anisotropic with large differences 

In the augmented Lagrangian method, the value of the penalty factor 
does not affect the accuracy of the final solution, like it does in the penalty 
method.
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in stiffness in different directions), Eequiv might need to be replaced with another 
estimate.

Penalty Factor Relaxation
When using the augmented Lagrangian method, having a well tuned penalty factor is 
an important factor for the performance of the contact iterations.

The default value is selected as a compromise between speed and stability, but with 
more weight on stability. The strategy is to for each new step (parametric step or time 
step) start with a softened penalty factor, which is then increased over the first four 
iterations. The purpose is to stabilize the problem if there are large overclosures in the 
first iterations. This is called relaxation.

In a situation where the contact is well established, using relaxation will however cost 
extra iterations, and it may even lead to a loss of convergence.

The penalty factor can be tuned in several ways. You have three basic choices, ranging 
from simple to advanced:

• With a Preset penalty factor, you can choose having it tuned for Stability or Speed. 
With Stability, relaxation is used in every step. With Speed, a constant penalty factor 
is used all the time, and the value used is also higher than the final value obtained 
when using Stability.

• With Manual tuning, you can make adjustments to the magnitude of the penalty 
factor, and to the relaxation strategy.

• With User defined, you can enter any expression for the penalty factor.

Some hints for selecting the penalty factor:

• Use relaxation only when large changes in the contact state is expected.

For nonlinear materials in general, and for elastoplastic materials in 
particular, there can be a significant change in stiffness during the solution 
process. Choose the source and destination boundaries accordingly. You 
may even have to adjust the penalty factor as the solution progresses when 
such materials form a contact boundary.

For details about these settings, see the documentation of the settings for 
the Contact node.
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• If an analysis takes a long time, check the convergence graphs. If the contact 
variables show a steady, but slow, convergence it may help to increase the penalty 
factor. Increase by a factor of 2–5.

• If a model fails to converge and the contacting parts appear to have moved far from 
each other, it is probable that the penalty factor is too high. You can then either 
decrease the total stiffness or add more relaxation.

TR I G G E R  C U T B A C K

If, during the iterations, a contact problem comes into a state where it is far from the 
converged solution, it is unlikely that the solution will ever converge. In such a case, 
much computing time can be spent before the maximum number of iterations is 
reached, and the solver makes an attempt with a smaller time or parameter step. To 
speed up this process, you can select the Trigger cutback check box. You can then enter 
a logical expression which, when fulfilled, will force the solver to immediately abandon 
the iterations and try a smaller step. Such an expression can, for example, be a 
maximum displacement (like solid.disp > 5[mm]), based on what is physically 
realizable for the structure. The expression is evaluated in all points on the boundary, 
but you can also use a global value, like an average or a maximum.

O F F S E T  A N D  A D J U S T M E N T

It is possible to assign an offset to both the source and destination boundaries. When 
an offset is given, the boundary used in the computations is not the geometrical 
boundary, but a virtual boundary displaced by the offset value. You can use this option 
for several purposes:

• When analyzing problems with for example shrink fit, nominal dimensions can be 
used for the geometry, and the overclosure in included in the gap by using the 
offset.

• When there is a small clearance between two boundaries, a negative offset can be 
used instead of changing the geometry.

• If geometries are such that a large overclosure exists in the initial configuration, the 
contact algorithms may not converge. You can then add a negative offset, which is 
slowly removed by letting it depend on time or on the parameter in the parametric 
continuation solver.

When the source or destination boundaries are curved, the discretization introduced 
by the meshing may lead to small variations in the computed distance between the 
source and destination boundaries, even though the geometrical shapes of the two 
objects are ideal. When modeling for example a shrinkage fit, this effect can cause 
C O N T A C T  M O D E L I N G  |  149



150 |  C H A P T E
significant fluctuations in the contact pressure. If you select Force zero initial gap, the 
computed distance from destination to source will be adjusted by the initial distance. 
This adjustment can be combined with an offset. The offset is applied to the adjusted 
value.

The mesh as such is not adjusted, it is only the distance computation which is affected. 
This type of adjustment is most useful when the sliding is small, so that the gap distance 
is always computed between the same points on source and destination.

I N I T I A L  V A L U E

In the augmented Lagrangian method, where the contact pressure is a dependent 
variable, it can be given an initial value. In force-controlled contact problems where no 
other stiffness prohibits the deformation except the contact, the initial contact pressure 
is crucial for convergence. If it is too low the parts might pass through each other in 
the first iteration. If it is too high they never come into contact.

D I S C R E T I Z A T I O N

When using the augmented Lagrangian method it is possible to change the order of 
the shape functions used for the contact pressure and friction force degrees of freedom. 
The default is linear shape functions, and this matches the quadratic shape functions 
used as default for the displacement degrees of freedom in the Solid Mechanics 
interface. The only situation when you should consider changing the discretization for 
the contact variables is if you use cubic or higher shape functions for the displacements.

Selecting any other discretization else than Linear requires that the solver sequence is 
modified manually, since the default lumped solver is no longer optimal for the contact 
pressure update. An ordinary segregated step should then be used.

A D H E S I O N

When using the penalty method, you can specify that the boundaries in the contact pair 
should stick to each other after coming into contact.

The adhesive layer is conceptually without thickness, but by specifying on offset in the 
Contact node, you can to some extent include the dimensions of the adhesive layer.

The adhesive layer always has a finite stiffness. For a glue layer, this represents the true 
stiffness. For a more conceptual joining of two boundaries, this stiffness should be 
considered in the same way as the penalty stiffness in the contact formulation. The 
stiffness can differ between tension and compression: In compression the stiffness is 
always taken as the penalty stiffness, whereas you can change the tensile stiffness.
R  2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



Decohesion
Two boundaries joined by adhesion can separate if you select any of the decohesion 
laws. You must then specify the maximum strength and the total energy release during 
decohesion for pure tension and pure shear. In most cases, the decohesion process is a 
mixture between tension and shear, so you also have to specify the interaction rule.

As long as the stress is below the maximum strength, the adhesive layer retains it 
original stiffness. Once the displacement in the layer is so large that the maximum 
strength is exceeded, the material is considered as damaged, and the stiffness is 
decreased. The same damage factor is applied to both the tensile and the shear stiffness, 
while the compressive stiffness is unchanged.

Decohesion is an inherently unstable process. The elastic energy in the strained 
adhesive layer will be released during decohesion. Numerically, the decreasing 
stress-strain curve manifests itself as a local negative stiffness. Such a problem may be 
possible to solve, if the surrounding material can absorb the released energy. The 
numerical stability is closely coupled to the physical stability of the structure.

• If the structure is in load controlled situation, there is no possibility to continue the 
analysis when the peak external load has been exceeded. Physically, this corresponds 
to a sudden collapse of the component.

• If the structure is loaded by prescribed displacements, it is usually possible to 
continue the analysis further. It may however happen that the stored elastic energy 
in the structure is large enough to force a complete breakdown of the adhesive layer 
once a certain external displacement is reached.

• If possible, use prescribed displacements in a decohesion analysis, and evaluate the 
applied load from the reaction forces.

• Sometimes it is not possible to use prescribed displacements, for example if the load 
is distributed. You can then add a Global Equation to control the loading rate by 
some other quantity that increases monotonically. This is the same technique that is 
used for post-buckling problems.

• You may have to change the settings in the Method and Termination section of the 
settings for the Fully Coupled or Segregated nodes in the solver sequence, for example 
by allowing a larger number of iterations.
C O N T A C T  M O D E L I N G  |  151



152 |  C H A P T E
• The true unstable failure is a dynamic event. This can be analyzed using a time 
dependent solver, but the computational cost can be high. The inertial forces will 
then balance the released energy.

Time-Dependent Contact Analysis

The contact formulation is strictly valid only for stationary problems. It is still possible 
to use contact modeling in a time-dependent analysis, as long as inertial effects are not 
important in the contact region or you use a sufficiently short time step. In practice, 
this means that you can solve both quasi-static problems and truly dynamic problems, 
as long as situations with impact are avoided. When in doubt, try to do an a posteriori 
check of conservation of momentum and energy to ensure that the solution is 
acceptable.

In time-dependent contact models, the penalty method is usually the better choice.

Multiphysics Contact

Multiphysics contact problems often exhibit a high degree of nonlinearity, which leads 
to convergence problems for the nonlinear solver. As ab example, consider heat 
transfer through the contact area, where initially only a small spot is in contact. The 
solution for the temperature field is then extremely sensitive to the size of the contact 
area. If at the same time, the solid deforms due to thermal expansion, there may be 
large changes in the contact area between each iteration,

• Documentation of the Contact, Friction and Adhesion nodes.

• Adhesion and Decohesion in the Structural Mechanics Theory chapter.

For an example showing decohesion analysis, including how to use a 
global equation to control an unstable problem, see Mixed-Mode 
Debonding of a Laminated Composite: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/

cohesive_zone_debonding

It is important to resolve the size of the contact area accurately, that is, to 
use a very fine mesh in the contact area when modeling fully coupled 
multiphysics problems.
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If the contact area is larger, a fine mesh is not required because then the temperature 
solution is not that sensitive to the size of the contact area. If possible, start with an 
initial configuration where the contact area is not very small.

You can use the contact variables (gap and contact pressure) in expressions for 
quantities in other physics interfaces. As an example, a thermal resistance in the contact 
region can depend on the contact pressure.

In many cases, the penalty method is preferred in multiphysics contact problems 
because of its better stability and less restrictive requirements on solver selections. If 
the contact conditions depend strongly on the contact pressure, use the augmented 
Lagrangian method because if its higher accuracy.

Fallback Nodes for Contact

When a Contact node has been added, it always contains one subnode, Free. This is the 
default fallback condition on the part of the boundary where contact is not established. 
By right-clicking the Contact node, you can replace it by another fallback condition. 
The most common case is when there is a pressure load acting on the part of the 
boundary that is currently not in contact. In this case you would add a Boundary Load 
fallback node.

Solver Settings for Contact Analysis

The following solver settings can help to successfully solve contact models:

• In a contact analysis, you almost invariably use an incremental approach. It is 
possible to solve a problem without friction in a single stationary load step, but such 
an approach will often fail to converge. In a stationary analysis, you should then use 
the parametric continuation solver, and gradually increase the load or displacement. 

• If you add an ordinary Boundary Load node after a Contact node and use 
the same boundary selection, the load will be applied also to the part 
of the boundary that is in contact. In most cases, this is not a physical 
behavior.

• If a Boundary Load node appears before a Contact node in the model 
tree, the load on the common selection will be ignored, irrespective of 
whether the boundary actually is in contact or not.
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Enable it by selecting Auxiliary sweep under Study Extensions in the settings for the 
Stationary solver.

• Use a direct solver instead of an iterative solver as linear equation solver if the 
problem size allows it. Direct solvers are less sensitive and can provide better 
convergence.

• As a default, the double dogleg nonlinear solver is selected when a stationary study 
is generated and Contact nodes are present in the model. For the majority of contact 
problems this solver has more stable convergence properties than the Newton 
solver, which is the generally used default solver for other problems. Using the same 
settings, the Double dogleg solver tends to be somewhat slower than the Newton 
solver on problems where both solvers converge. It is however often possible to take 
larger load steps when using the double dogleg solver. For some problems, the 
Newton solver can still be the better choice, so if you experience problems using the 
default settings, try to switch solver.

• It is important to scale the contact degrees of freedom manually. The convergence 
check relies on the scaling of the degrees of freedom, but since contact pressures and 
friction forces often are zero over parts of the simulation, you should not rely on 
automatic scaling. When the solver sequence is first created, both contact pressure 
and friction forces are given a manual scaling which is relevant for typical 
metal-to-metal contact. You should in most cases change this to values appropriate 
for your application. The variable scaling is accessed under Dependent Variables in the 
solver sequence. Set the scale for each variable to a value which is representative for 
the expected result. Too large values may give a too early convergence, while too 
small values may lead to an excessive number of iterations.

• For some contact problems, it is necessary to let the parametric solver use a more 
defensive strategy when going to the next parameter step. This can be controlled by 
setting the value of Predictor in the Parametric feature to Constant.

• When using the augmented Lagrangian method, at least one lumped step will be 
generated in the segregated solver for each Contact node. The number of lumped 
steps will be increased even more if you select the Group contact variables in solver 

per pair check box in the Advanced section of the settings for the Contact node. This 
split of variables into different lumped steps does not influence the solution as such; 
you can equally well group the contact variables in a single lumped step. Each 
lumped step will however generate an individual curve in the convergence plot, 
making it easier to pinpoint the source of convergence problems.

• If the model includes friction, try solving the problem without friction first. When 
the model seems to work without friction, friction can be added.
R  2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



• Always solve contact problems which contain friction or decohesion incrementally, 
using a parametric or time-dependent solver. The evolution of the friction forces is 
history dependent. For contact problems without friction an incremental strategy is 
not necessary but often a good choice.

• For models that include decohesion, see also suggestions under Decohesion.

Monitoring the Solution

It is often useful to monitor the solution during a contact analysis. This can be done 
in different ways.

Using the Results while solving functionality in the study step is a good practice. You 
can either use a stress plot, or a plot of the contact pressure. In most cases, the scale of 
a deformed plot should be set to 1 when monitoring contact problems. Note that if 
you select Results while solving in the Segregated feature, the plot is updated after each 
iteration, thus allowing you to monitor the convergence in detail.

For each contact pair, two global variables that can be used in probe plots are available. 
These are the maximum contact pressure (solid.Tnmax_pair) and the minimum gap 
distance (solid.gapmin_pair).

Looking at the convergence plot will give valuable information about the convergence 
properties. There will, as a default, be one graph per Contact node in the Model Tree, 
which will help you pinpoint the source of a convergence problem. You can increase 
the granularity further, by selecting the Group contact variables in solver per pair check 
box in the Advanced section of the settings for the Contact node.

You can also select to include information about the contact state in the solver log. To 
do that, select the Add contact status to solver log check box in the Advanced section of 
the settings for the Contact node. For each contact pair, messages like 

  69 points of 120 are now in contact.

  33 points started to stick. 72 points are now sticking.

  12 points started to slide. 47 points are now sliding.

will be generated for each time or parameter step. Only changes are reported.

Dependent Variables in Contact Analysis

The Contact and Friction nodes will generate a number of degrees of freedom which 
depend on the settings and study type. You will see these degrees of freedom appear 
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under Dependent Variables in the solver sequence. There are two types of extra variables 
created:

• Variables changed until convergence is reached during the iterations. These variables 
appear in the Lumped Step nodes in the Segregated solver or in the Fully Coupled 
node.

• Variables used to store the state, once the iterations have converged for a certain 
time or parameter step. These variables are appear in the Previous Solution node. In 
a stationary solver, the path to this node is Stationary Solver>Parametric>

Previous Solution. In a time-dependent solver it appears directly under 
Time-Dependent Solver.

In Table 2-8 the dependent variables which can be created by the Contact or Friction 
nodes are summarized. To shorten the variable names, the full scope has been 
removed. As an example, the contact pressure variable for pair p1 in component comp1, 
generated in the Solid Mechanics interface solid, will have the full name 
comp1.solid.Tn_p1. In the table, it is shown as Tn.

If you change settings in the Contact or Friction nodes after the solver 
sequence has been generated, dependent variables may be added or 
removed. The second case is never a problem, but when new dependent 
variables are created, they are not automatically added to the groups in the 
segregated solver. You may then encounter the error message 
“Segregated solver steps do not involve all components.” You 
can then either regenerate the solver sequence, or manually insert the 
missing variables into the Lumped Step and Previous Solution nodes.

TABLE 2-8:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE

Tn Contact pressure The contact 
pressure in the 
normal direction

Contact: 
Augmented 
Lagrangian used

Lumped 
Step

Tt Friction force The friction force 
vector

Friction: 
Augmented 
Lagrangian used

Lumped 
Step
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cm_old Previous mapped 
source 
coordinates

The location on 
the source where 
this point was 
located at last 
converged 
solution

Friction node 
present

Previous 
Solution

sliptot_old Previous 
accumulated slip

Total slip in this 
point at last 
converged 
solution

Friction: Store 
accumulated slip 
selected

Previous 
Solution

contact_old Contact variable 
in previous step

Non-zero if the 
point was in 
contact at last 
converged 
solution within 
the friction 
detection 
tolerance

Friction node 
present

Previous 
Solution

isContact_old Contact status 
variable in 
previous step

Non-zero if the 
point was in 
contact at last 
converged 
solution

Contact: Add 
contact status to 
solver log 
selected

Previous 
Solution

isSliding_old Sliding friction 
status variable 
previous step

Non-zero if the 
point was in a 
sliding state at last 
converged 
solution

Contact: Add 
contact status to 
solver log 
selected. Friction 
node present.

Previous 
Solution

isSticking_old Sticking friction 
status variable 
previous step

Non-zero if the 
point was in a 
sticking state at 
last converged 
solution

Contact: Add 
contact status to 
solver log 
selected. Friction 
node present.

Previous 
Solution

Wcnt Contact energy 
density

Elastic energy 
stored in normal 
contact by the 
penalty factor.

Contact: Store 
energy variables 
selected.

Segregated 
step

TABLE 2-8:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE
C O N T A C T  M O D E L I N G  |  157



158 |  C H A P T E
Important Contact Variables

In n this section you will find a summary of variables created in the contact feature 
which can be useful in postprocessing.I

Wfric Frictional 
dissipation energy 
density

Energy dissipated 
by friction

Contact: Store 
energy variables 
selected. Friction 
node present.

Segregated 
step

cma_old Previous adhesive 
mapped source 
coordinates

Position on the 
source where this 
point was located 
when adhesion 
was detected.

Adhesion node 
present

Previous 
Solution

u_max_old Maximum 
adhesion 
displacement at 
previous step

Maximum norm 
of adhesive layer 
displacement 
reached until 
previous step. 
Also used as 
indication of 
adhesion 
activation.

Adhesion node 
present

Previous 
Solution

TABLE 2-8:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE

TABLE 2-9:  IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS

solid.gap_p1 Gap distance including 
offsets, contact pair 
p1

Contact

solid.gapmin_p1 Minimum gap 
distance, contact pair 
p1

Contact

solid.cnt1.Tn Contact pressure Contact

solid.Tnmax_p1 Maximum contact 
pressure, contact pair 
p1

Contact

solid.cnt1.
fric1.Ttnorm

Friction force norm Friction
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solid.cnt1.
fric1.Ttx

Friction force, x 
component

Friction

solid.Wcnt_tot Total contact energy Contact Integration over 
all contact 
boundaries

solid.Wfric_tot Total frictional 
dissipation energy

Friction ntegration over all 
contact 
boundaries

TABLE 2-9:  IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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S p r i n g s  and Dampe r s

The Spring Foundation and Thin Elastic Layer physics nodes supply elastic and 
damping boundary conditions for domains, boundaries, edges, and points. 

The features are completely analogous, with the difference that a Spring Foundation 
connects the structural part on which it is acting to a fixed “ground,” while the Thin 

Elastic Layer acts between two parts, either on an internal boundary or on a pair.

A Spring Foundation is most commonly used for simulating boundary conditions with 
a certain flexibility, such as the soil surrounding a construction. Another important use 
is for stabilizing parts that would otherwise have a rigid-body singularity. This is a 
common problem in contact modeling before an assembly has actually settled. In this 
case a Spring Foundation acting on the entire domain is useful because it avoids the 
introduction of local forces.

A Thin Elastic Layer used as a pair condition can simulate thin layers with material 
properties that differ significantly from the surrounding domains. Common 
applications are gaskets and adhesives.

When a Thin Elastic Layer is applied on an interior boundary, it usually models a local 
flexibility, such as a fracture zone in a geological model.

The following types of data are defined by these nodes:

• Spring Data

• Loss Factor Damping

• Viscous Damping

S P R I N G  D A T A

The elastic properties can be defined either by a spring stiffness or by a force as function 
of displacement. The force as a function of displacement can be more convenient for 
nonlinear springs. Each spring node has three displacement variables defined, which 
can be used to describe the deformation dependency. These variables are named 
<interface_name>.uspring1_<tag>, <interface_name>.uspring2_<tag>, and 
<interface_name>.uspring3_<tag> for the three directions given by the local 
coordinate system. In the variable names, <tag> represents the tag of the feature 
defining the variable. The tag could, for example, be spf1 or tel1 for a Spring 
Foundation or a Thin Elastic Layer, respectively. These variables measure the relative 
extension of the spring after subtraction of any predeformation.
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In addition to explicitly supplying a spring stiffness, you can choose to enter elastic 
material data and the layer thickness. The spring stiffness is then computed internally, 
based on an assumption of plane strain conditions.

L O S S  F A C T O R  D A M P I N G

The loss factor damping adds a loss factor to the spring data above, so that the total 
force exerted by the spring with loss is

where fs is the elastic spring force, and η is the loss factor.

Loss factor damping is only applicable for eigenfrequency and frequency-domain 
analysis. In time-dependent analysis the loss factor is ignored.

V I S C O U S  D A M P I N G

It is also possible to add viscous damping to the Spring Foundation and Thin Elastic 
Layer features. The viscous damping adds a force proportional to the velocity (or in 
the case of Thin Elastic Layer: the relative velocity between the two boundaries). The 
viscosity constant of the feature can be made dependent on the velocity by using the 
variables named <interface_name>.vdamper1_<tag>, 
<interface_name>.vdamper2_<tag>, and <interface_name>.vdamper3_<tag>, 
which contain the velocities in the three local directions.

fsl 1 iη+( )fs=

Bracket—Spring Foundation Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_spring

Spring Foundation and Thin Elastic Layer
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De f i n i n g  Mu l t i p h y s i c s  Mode l s

The following modeling tips are about how to define multiphysics models. A good 
place to start reading is in Building a COMSOL Multiphysics Model in the COMSOL 
Multiphysics Reference Manual. 

In this section:

• Thermal-Structural Interaction

• Acoustic-Structure Interaction

• Thermal-Electric-Structural Interaction

Thermal-Structural Interaction

The Thermal Stress Interface included with this module has a predefined one-way 
coupling for thermal-structure interaction (thermal stress), which combines a Solid 
Mechanics interface with a Heat Transfer interface from the Heat Transfer Module or 
COMSOL Multiphysics. 

By default, COMSOL Multiphysics takes advantage of the one-way coupling and 
solves the problem sequentially using the segregated solver. The solution for the 
temperature is separated from the stress-strain analysis which then uses the computed 
temperature field from the heat transfer equation.

Using a single iteration in the segregated solver does not produce a 
correct result if there are thermal properties that depend on the 
displacements. Examples are when a heat source causes mechanical losses 
(damping) in the material or when thermal contact is present. 
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Acoustic-Structure Interaction

When the Structural Mechanics Module is used together with an acoustics physics 
interface from the Acoustics Module, it is possible to model a wide range of 
acoustic-structure interaction problems..

Thermal-Electric-Structural Interaction

The Joule Heating and Thermal Expansion Interface enables 
thermal-electric-structural interaction. This is a combination of three physics 
interfaces: Solid Mechanics, Heat Transfer in Solids, and Electric Currents.

The thermal-electric coupling is bidirectional, with joule heating and temperature 
dependent electrical properties, while the temperature coupling to the Solid 
Mechanics interface is unidirectional.

By default, COMSOL Multiphysics takes advantage of the one-way coupling and 
solves the problem sequentially using the segregated solver. Temperature and electric 
potential are solved using a coupled approach and then the stress-strain analysis uses 
the computed temperature field from the heat transfer equation.

There are several physics interfaces available that are documented and 
described in the Acoustic-Structure Interaction Interfaces chapter in 
Acoustic Module User’s Guide

• The Acoustic-Solid Interaction, Frequency Domain Interface

• The Acoustic-Solid Interaction, Transient Interface

• The Acoustic-Piezoelectric Interaction, Frequency Domain Interface

• The Acoustic-Piezoelectric Interaction, Transient Interface

• The Solid Mechanics (Elastic Waves) Interface

• The Poroelastic Waves Interface

• The Acoustic-Solid-Poroelastic Waves Interaction Interface

• The Acoustic-Poroelastic Waves Interaction Interface

• The Acoustic-Shell Interaction, Frequency Domain Interface

• The Acoustic-Shell Interaction, Transient Interface
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Using a single iteration does not produce a correct result if there are 
thermal properties or electrical that depend on the displacements, making 
the thermal-structure part into a two-way coupling.
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Th e rma l l y  C oup l e d  P r ob l em s

A wide class of structural mechanics problems are related to effects of variations in 
temperature. In this section various such effects are discussed.

Temperatures can either be computed using another physics interface, usually Heat 
Transfer in Solids, or directly be prescribed in the input for the various physics nodes.

In this section:

• Temperature Dependent Material Data

• Thermal Expansion

• Constraints and Thermal Expansion

• Thermoelastic Damping

Temperature Dependent Material Data

Many material properties, such as Young’s modulus, coefficient of thermal expansion, 
and yield stress, can have a significant dependence on temperature. In many cases, 
materials supplied in the material libraries and databases have such dependencies 
incorporated.

If a material property under the Materials branch has a temperature dependence, you 
have to input the temperature to be used in the Model Inputs section in the Settings 
window for the node in the physics interface that references the property. It is possible 
that not all aspects of a material are defined in the same node in the Model Builder tree. 
For example, if a problem is run with thermal expansion and plasticity, then:

• Young’s modulus, Poisson’s ratio, and density are given in the Linear Elastic 
Material node.

For information about the predefined coupling between the Solid 
Mechanics and Heat Transfer in Solids interfaces, see The Thermal Stress 
Interface.

Materials in the COMSOL Multiphysics Reference Manual
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• Yield stress and hardening function are given in the Plasticity node.

• Coefficient of thermal expansion is given in the Thermal Expansion (for materials) 
subnode.

For each of these nodes there is a Model Inputs section on the Settings window. Some 
of these sections may be empty, specifically if none of the properties given in that node 
has a temperature dependence. In general you have to supply the temperature in all the 
Model Inputs sections. This can be done either by explicitly giving a temperature or by 
selecting a temperature variable from another physics interface.

D E N S I T Y

All Structural Mechanics interfaces are formulated on the material frame. This means 
that the equations of motion are formulated for a certain volume in its initial 
configuration. 

Thermal Expansion

As the temperature changes, most materials react by a change of volume. For a 
constrained structure, the stresses that evolve even with moderate temperature changes 
can be considerable. The volume change can be is represented a thermal strain εth, 
which produces stress-free deformations. For a linear elastic material, the constitutive 
law is

The Plasticity node is available as a subnode to the Linear Elastic Material 
node when you have either the Nonlinear Structural Materials Module or 
the Geomechanics Module.

If there is a Temperature Coupling node under the Multiphysics branch, 
then you cannot change the temperature input under Model Inputs. The 
temperature is automatically taken from the connected Heat Transfer in 
Solids interface.

The preservation of mass requires that the mass density is constant. In a 
structural mechanics problem this means you must not use a temperature 
dependent density. All effects of volume change with temperature are 
incorporated through the thermal expansion effects.
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In the computations, the thermal expansion appears as a load, even though it formally 
is a part of the constitutive relations.

TE M P E R A T U R E  D E P E N D E N C E  O F  T H E  T H E R M A L  E X P A N S I O N  

C O E F F I C I E N T

When performing an analysis over a larger range of temperatures, you often need to 
take into account the temperature dependence in the values of the thermal expansion 
coefficient itself.

As long as you are using materials from the COMSOL Material Library, everything is 
handled internally. When you want to enter data from your own measurements or from 
the literature, you do however need to be aware of some details in the definitions used.

Tangent or Secant Data
Thermal expansion coefficients can appear in two forms: tangent and secant.

The tangent form states that the increment in length is

 (2-24)

where αt is the tangential thermal expansion coefficient. This form, which is the 
thermodynamic definition, is conceptually simple, because αt is uniquely defined at 

σ C : ε εth–( )=

• You can include thermal expansion in a model either by adding a 
Thermal Expansion (for materials) subnode to the chosen material, or 
by using the Thermal Expansion (Multiphysics Coupling) and 
Temperature Coupling (described in the COMSOL Multiphysics 
Reference Manual).

• When the temperature distribution is computed by another physics 
interface (often Heat Transfer in Solids), it is a good practice to use a 
discretization which in the heat transfer interface is one order lower 
than what is used in the structural mechanics interface. The thermal 
strains are proportional to the temperature, while the strains in the 
structural problem are computed as derivatives of the displacements, so 
the approximations will then be consistent. This is automatically taken 
care of when you use the The Thermal Stress Interface or the The Joule 
Heating and Thermal Expansion Interface.

dL
L

-------- αt T( )dT=
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each temperature. It is however less convenient to use in practice, since an integration 
is required for determining the actual change in length for a finite temperature 
difference.

The secant formulation, which is the default in COMSOL Multiphysics, is often used 
in engineering:

In the secant formulation, the actual values of α will however depend on the choice of 
reference temperature, Tref, at which the material has the reference length L0:

Converting from Tangent Form to Secant Form
Equation 2-24 can be integrated, giving

 (2-25)

Thus,

giving the secant thermal expansion coefficient as

For most materials and temperature ranges , which makes it possible to 
approximate with the simpler expression

 (2-26)

ΔL
L0
-------- α T( )ΔT=

ΔL
L0
-------- α T,Tref( ) T Tref–( )=

L
L0
------ 
 ln αt

Tref

T

 τ( )dτ I T,Tref( )= =

ΔL
L0
-------- L

L0
------ 1– e

I T,Tref( )
1–= =

α T,Tref( ) e
I T,Tref( )

1–
T Tref–( )

---------------------------------=

I T,Tref( ) 1«

α T,Tref( )
I T,Tref( )
T Tref–( )

-------------------------=
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If you have access to tangent data, you can choose between two different methods for 
using them in COMSOL Multiphysics:

• In most of the physics interfaces, you can enter tangent data directly by selecting 
Tangent coefficient of thermal expansion in the settings for Thermal Expansion. When 
using this option, a numerical integration of Equation 2-25 will be performed each 
time the thermal strain is used. This will have a negative impact on the performance, 
when compared to using a secant coefficient of thermal expansion.

• Pre-compute the expression in Equation 2-24 externally for the intended range of 
temperatures. This can for example be done in a spreadsheet program. Enter the 
computed result as a function, which is then used as any other secant temperature 
dependent thermal expansion coefficient.

Thermal Expansion Coefficient Dependence on Reference Temperature
Let αm(T) be the temperature-dependent function that represents the measured values 
of the secant thermal expansion coefficient. The change in length of a sample at a given 
temperature T with respect to the sample’s original length at a temperature Tm is called 
dilation.

Note that by definition, the dilation at T=Tm is zero, so Tm denotes the strain-free 
state of the material as far as the measured values of αm(T) is concerned. Denote the 
length of the sample at a temperature T as L(T) and the strain-free length as 
L0 = L(Tm). The dilation can be then expressed as . Using the 
definition of the secant coefficient of thermal expansion, L(T) can be written as:

 (2-27)

When using the measured data, it is possible that the strain-free state occurs at a 
temperature Tref which differs from Tm. The dilation at any temperature T would then 
be defined as , where L(Tref) can be written as.

 (2-28)

As a result of this shift in the strain-free temperature, it is necessary to redefine the 
thermal expansion coefficient so that L(T) and L(Tref) can be related using 
Equation 2-27 but with Tm replaced by Tref.

 (2-29)

Here αr(T) is the redefined thermal expansion coefficient, based on Tref. It can be 
derived from the relations above. Using Equation 2-27 and Equation 2-29 there are 
two ways of writing the current length L(T), so that

L T( ) L Tm( )–

L T( ) 1 αm T( ) T Tm–( )+[ ]L Tm( )=

L T( ) L Tref( )–

L Tref( ) 1 αm Tref( ) Tref Tm–( )+[ ]L Tm( )=

L T( ) 1 αr T( ) T Tref( )–( )+[ ]L Tref( )( )=
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 (2-30)

Equation 2-28 makes it is possible to eliminate L(Tref) and L(Tm) from 
Equation 2-30, and after some algebra αr(T) can then be written as

 (2-31)

Representation in COMSOL
Most materials listed in COMSOL’s material libraries and databases contain a function 
for the measured temperature-dependent thermal expansion coefficient curve. You can 
find this from the Materials branch, as shown in Figure 2-16. The Piecewise function 
named alpha_solid_1 is the measured thermal expansion coefficient αm(T). 

The Material Contents section in Figure 2-16 shows the material property alpha, 
which is the redefined thermal expansion coefficient αr(T). The complete expression 
for alpha is as follows:

(alpha_solid_1(T[1/K])[1/K]+(Tempref-293[K])*
if(abs(T-Tempref)>1e-3,(alpha_solid_1(T[1/K])[1/K]
-alpha_solid_1(Tempref[1/K])[1/K])/(T-Tempref),
d(alpha_solid_1(T[1/K]),T)[1/K]))/
(1+alpha_solid_1(Tempref[1/K])[1/K]*(Tempref-293[K]))

This is essentially Equation 2-31, but with a small modification to avoid problems if 
T=Tref.

1 αr T( ) T Tref( )–( )+[ ]L Tref( )( ) 1 αm T( ) T Tm–( )+[ ]L Tm( )=

αr T( )
αm T( ) Tref Tm–( )

αm T( ) αm Tref( )–

T Tref–
-----------------------------------------------+

1 αm Tref( ) Tref Tm–( )+
------------------------------------------------------------------------------------------------------=

Using Functions in Materials in the COMSOL Multiphysics Reference 
Manual
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Figure 2-16: An example in COMSOL Multiphysics showing the Materials branch and 
where to find the temperature-dependent thermal expansion coefficient. 

In the definition of alpha (to be more specific: <material_tag>.def.alpha) in 
COMSOL, Tm is set as 293 K and Tref is obtained from the variable Tempref which 
typically fetches its value from the physics interface.

Using Your Own Material Data
If you use our own material data in COMSOL Multiphysics (via an interpolation or 
any other function), you can still copy-paste the built-in expression for alpha into your 
New Material. You just need to:

• Replace the function name alpha_solid_1(T[1/K])[1/K], with the function 
name that you have assigned to the temperature-dependent measured thermal 
expansion coefficient and use the correct temperature units. This is particularly 

αr(T)

αm(T)
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important if the measured data used the Fahrenheit scale (denoted by [degF] in 
COMSOL).

• Ensure that the value of Tm is changed from 293 K to the actual value of 
temperature that was used as the strain-free temperature to compute αm(T) in the 
function that you created.

Constraints and Thermal Expansion

When a structure is undergoes thermal expansion, the fact that the motion is restricted 
by constraints will in general cause stresses. There are three types of such effects:

• The global expansion is restricted by constraints at different locations, so that 
internal forces are introduced throughout the structure.

• At a boundary which is constrained, local stresses can appear if the boundary is not 
free to expand in the tangential direction.

• Internally, the same type of local constraint effects will be caused by rigid objects, 
such as Rigid Domains.

In many cases, not only the structure which actually is modeled deforms due to the 
changes in temperature, but also the surroundings (which are approximated by 
constraints) will deform. You can take this effect into account by adding a Thermal 

Expansion subnode to the constraints. The constraints will then provide an extra 
displacement based on a given temperature field. For thermal strains which have a 
simple variation in space (for example linear temperature variations), it is possible to 
completely offset the constraint stresses using this method. For more general cases, the 
stresses caused by the constraint can be significantly reduced.

The thermal expansions of the constraints are independent of that of the material in 
the adjacent domain, so that the surrounding structure can be made from another 
material, or have a different temperature distribution.

User-Defined Materials and Libraries in the COMSOL Multiphysics 
Reference Manual
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You can however also inherit temperature and thermal expansion coefficient from the 
domain being constrained. This is useful for the common case that the temperature 
and materials are the same over the modeled structure body and its surroundings.

Thermoelastic Damping

In most engineering problems, the coupling between temperatures and structural 
problems can be considered as unidirectional. Only the thermal expansion is taken into 
account.

The opposite effect, where changes in stress cause heat generation may be important 
in small structures vibrating at high frequencies. The Thermoelasticity interface, 
available with the MEMS module, is designed for analyzing such problems.

It is also possible to take this effect into account by adding the Thermoelastic Damping 
node to the Heat Transfer in Solids interface. When you add a Thermal Expansion node 
to a material in the Solid Mechanics interface, the heat source term is computed and 
made available to the Heat Transfer in Solids interface.

When you add a Thermal Expansion node under the Multiphysics branch, it is possible 
to select whether the thermoelastic damping effect should be taken into account or 
not. The heat source contribution is then included automatically without adding any 
data in the heat transfer interface.

The spatial variation of the temperature and coefficient of thermal 
expansion must be explicit functions of the material frame coordinates. It 
is not possible to use a computed temperature distribution for the thermal 
expansion of the constraints.

• Thermal Expansion (for constraints)

• Thermal Expansion of Constraints in the theory section.

For an example showing how to relive the stress at constraints in a heated 
structure, see Thermal Expansion in a MEMS Device: Application 
Library path Structural_Mechanics_Module/Thermal-Structure Interaction/

thermal_expansion.
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In either case, the heat source term is only present when Structural Transient Behavior 
is set to Include inertial terms.

See also

• Entropy and Thermoelasticity

• Thermal Expansion (for materials)

• Thermal Expansion (Multiphysics Coupling)
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Compu t i n g  Ma s s  P r op e r t i e s

In structural mechanics analysis, especially when modeling dynamic problems, the 
mass properties of a structure or its part can be an important aspect of the design. To 
compute such mass properties, you can use Mass Properties node, which can be added 
under Component>Definitions. There, you can select the geometry domains to be 
included into the computations, and select physics interfaces that will define the mass 
properties. You can add and configure several mass property contributions if needed.
C O M P U T I N G  M A S S  P R O P E R T I E S  |  175



176 |  C H A P T E
Volume, mass, center of mass, and moments of inertia will be computed. They will 
become available as predefined variables which you can find in the equation view under 
the corresponding Mass Properties node.

Besides for postprocessing purposes, you can also use these variables in any 
user-defined expressions, user inputs, and in optimization criteria.

Structural mechanics interfaces contribute to the mass properties in several ways:

• All material models, including Rigid Domain, define mass density contributions.

• Added Mass nodes for all geometric entity levels can also contribute with added mass 
density. It is possible to suppress the contribution from an Added Mass node by using 
the Exclude contribution check box in the Frame Acceleration Forces section.

• Point Mass nodes will contribute both with mass and with the specified mass moment 
pf inertia. It is possible to suppress the contribution from an Point Mass node by 
using the Exclude contribution check box in the Frame Acceleration Forces section.

• The Hygroscopic Swelling nodes, which can be added to most material models for all 
structural elements, can use the moisture content as an extra mass density 
contribution.
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• Rigid Domain and Rigid Connector can contribute directly to the total mass properties 
via their Mass and Moment of Inertia subnodes

• Structural elements like beams and shells take their true geometrical dimensions into 
account when contributing to the mass properties. As an example, a beam 
contributes to the rotational inertial around its axis, even though the geometrical 
model is only an edge. The beam cross section properties are used to compute the 
data.

The mass properties can be computed on both initial geometry (material frame) and 
deformed geometry (spatial frame). The results may differ considerably in case of large 
deformations. To compute the results in the undeformed geometry, you do not have 
to perform the whole analysis, it is sufficient to chose Get Initial Values under the Study 
node. To obtain the mass properties in the deformed configuration, you need to the 
full analysis, so that the displacement results are available.

In the COMSOL Multiphysics Reference Manual:

• Mass Properties 

• Studies and Solvers

• Derived Values and Tables
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P r e - t e n s i o n ed Bo l t s

Bolted joints are common in mechanical and civil engineering structures. If you are 
interested in analyzing the details of a bolted joint, the pre-stress in the bolt must be 
taken into account in order to correctly capture the behavior under service loads. The 
Bolt Pre-Tension functionality in COMSOL Multiphysics designed to simplify such 
analyses.

During mounting, a bolt is tightened to a certain pre-stress. The mounting of the bolt 
is, in general, accompanied by deformations of the surrounding structure. In the 
subsequent service, the force in the bolt can then change due to external loads.

M O D E L I N G  T H E  B O L T S

You must use a specific modeling technique in order to use a bolt in a prestress analysis.

1 Model each bolt using solid elements in 3D. Usually it is most efficient to add the 
predefined bolt geometries from the Part Libraries.

2 Make sure that there is at least one internal boundary perpendicular to the bolt axis 
somewhere in the shank. In the following, this boundary is referred to as the slit 
boundary (Figure 2-17). The slit boundary can be composed of several boundaries 
in the geometry.

3 If you are using bolts from the Part Libraries, a slit boundary is predefined, and has 
the selection name Pre-tension cut. In order to make this boundary selection 
visible from the physics interface, select its Keep check box in the Boundary Selections 
section of the settings for the part instance (Figure 2-18).

4 If needed, add contact conditions between the bolt head and the component, and 
between different components clamped by the bolt.

5 Add a Bolt Pre-Tension node, in which the pre-tension force or stress is prescribed 
for a set of bolts with the same data.

The information about pre-tensioned bolts is applicable if your license 
includes the Structural Mechanics Module.
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6 For each bolt having the identical pre-tension stress, add a Bolt Selection subnode 
where the slit boundary is selected. 

Figure 2-17: Example of a bolted joint.

When a bolt is located in a symmetry plane (so that only half the bolt is 
modeled), and Automatic symmetry detection is selected in the Bolt 

Selection node, the given pre-tension force is interpreted as the force in 
the whole bolt, not as the force in the modeled half. This makes it possible 
to use the same Bolt Pre-Tension node for a set of similar bolts where some 
of them are located in symmetry planes.
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Figure 2-18: Getting access to the slit boundary selection for a bolt from the Part Libraries.

Each bolt defined in the Bolt Selection node has a single degree of freedom called 
predeformation, d. At the slit boundary, the two sides of the bolt are disconnected so 
that the displacements over it can be discontinuous. The discontinuity is represented 
by:

Here the subscript u denotes the upside of the slit boundary, and d denotes the 
downside. n is the normal pointing out from the downside. The sign has been selected 
so that d gets a positive value when the bolt force is tensile.

The axial force in the bolt is thus caused by a small overlap between the two sides of 
the slit boundary. It is computed as the reaction force belonging to the degree of 
freedom d.

S E T T I N G  U P  T H E  S T U D Y  S T E P S

In an analysis of prestressed bolts, you have to use two or more separate study steps. 
They can be part of a single study, or be placed in different studies. The first study step, 
in which the bolt pre-stress is prescribed, simulates the mounting process. If you would 
only use a force to load the bolt, for example as an initial stress, the resulting stress in 
the bolt would be less than the intended, due to the compression of the material 

uu ud dn–=
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around the bolt. The prestress step ensures that the bolts have the intended prestress, 
irrespective of the flexibility of the surrounding structure and their interaction.

In the subsequent studies the bolt force is allowed to change, while keeping the 
extension of the bolt, as caused by the first study, fixed. The procedure to do this is as 
follows:

1 Run the study step for the mounting simulation. The predefined study type Bolt 

Pre-Tension is designed for this.

2 Add one or more studies or study steps to analyze the effects of the service loads.

3 Since the pre-tension degrees of freedom are not solved for in the service load study 
steps, they must obtain their values from the pre-tension study step. If the study 
steps are sequential within the same study, this action is not needed, since the default 
then is to inherit values from the previous study step. For other cases, go to the 
Values of Dependent Variables section of the study step, set Values of variables not 

solved for to User controlled, and then select the pre-tension study step.
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R E S U L T S

The results in a bolt do not belong to any part of the geometry, but are global 
variables. To access the result from a certain bolt, a full scope of the type 
<interface>.<Bolt Pre-Tension tag>.<Bolt Selection tag>.<variable> 

It is important to make sure that you only solve for the bolt 
predeformation degrees of freedom in the pre-tension study step, and not 
when analyzing the service loads.

If you use the Bolt Pre-Tension study type for the pre-tension study step, 
and any other study type to analyze the service loads, the solvers are 
automatically set up to handle this. The Bolt Pre-Tension study type is 
actually a special case of a Stationary study step, with the sole purpose of 
activating the predeformation degrees of freedom. These degrees of 
freedom are by default not solved for in any other study type.

If you however set up your studies manually, the information below is 
useful. Also, in versions prior to 5.3, this automatic mechanism was not 
available, so in older models the studies were always set up manually.

You enable or disable the solution of individual degrees of freedom under 
the Dependent Variables node for a certain study step in the solver 
sequence. If required, begin by clicking Show Default Solver in the study 
node or in the Solver Configurations node of the study. Then move to the 
Dependent Variables node, and in the General section, set Defined by study 

step to User defined.

You can now go to the node for each predeformation degree of freedom 
below Dependent Variables and adjust the state of the Solve for this state 
check box.

For more information, see also Dependent Variables and Studies and 
Solvers in the COMSOL Multiphysics Reference Manual.
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must be used. An example could be solid.pblt1.sblt1.F_bolt. The bolt results 
are summarized in the table below.

If you place a bolt in a symmetry plane, that only half of the bolt is modeled, this will 
automatically be detected. The results are reported for the whole bolt, not for the 
symmetric half. 

TABLE 2-10:  BOLT VARIABLES

VARIABLE DESCRIPTION

d_pre Predeformation

F_bolt Axial force in the bolt

F_shear Shear force in the bolt

Studies and Solvers in the COMSOL Multiphysics Reference Manual

Prestressed Bolts in a Tube Connection: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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S t r e s s  L i n e a r i z a t i o n

Stress linearization is a procedure in which the stress distribution along a line through 
the thickness in a solid is approximated with an equivalent linear stress distribution, 
similar to what would be the result of an analysis using shell theory. The line is 
commonly referred to a stress classification line, SCL. This type of evaluation is 
common is the analysis of pressure vessels. It is also useful for the dimensioning of 
reinforcements for concrete structures, and for fatigue analysis of welds.

To perform a stress linearization, you add one Stress Linearization node for each SCL.

O R I E N T A T I O N  O F  S T R E S S  C O M P O N E N T S

The stresses along the SCL are represented in a local orthonormal coordinate system, 
x1-x2-x3. The x1 direction is oriented along the SCL, so it is mainly the stresses in the 
second and third directions which are of interest.

• In 3D, you must specify the x2 direction, and thus implicitly the x3 direction. You 
specify the orientation either by selecting a point in the x1-x2 plane, or by defining 
an orientation vector in an approximate x2 direction. In either case, the actual x2 
direction is chosen so that it is perpendicular to the SCL, and lies in the plane you 
have specified. The x3 orientation is then taken as perpendicular to x1 and x2. As 
long as you are only interested in a stress intensity, the choice of orientation is 
arbitrary.

• In 2D, the x3 direction is the out-of-plane direction, and the x2 direction is 
perpendicular to the SCL in the X-Y plane.

• In 2D axial symmetry, the x3 direction is the azimuthal direction, and the x2 
direction is perpendicular to the SCL in the R-Z plane.

C R E A T I N G  T H E  S T R E S S  C L A S S I F I C A T I O N  L I N E

The most straightforward way to create an SCL, is to include it in the geometry, and 
then select it in a Stress Linearization node.

The information about stress linearization is applicable if your license 
includes the Structural Mechanics Module.
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Figure 2-19: Four stress classification lines in a transition region at a pressure vessel 
nozzle.

There are however some situations where the direct approach is less convenient:

• When the introduction of the SCL in the geometry must be done after the analysis, 
since the locations of critical regions were not obvious when setting up the initial 
analysis. It is of course possible to add new edges and re-run the analysis, but this 
may not be a good solutions if the analysis time is long.

• When the introduction of the edges for the SCL makes the meshing more difficult. 
It may for example not any longer be possible to use swept meshes, or the mesh 
quality is reduced in critical regions.

In this case, a possible solution is to operate on a copy of the geometry in another 
component. It is then possible to use submodeling, that is to study only a local region, 
with its boundaries have displacements controlled by the solution from the larger 
model.

Below is an outline of the steps you need to take for this approach.

1 In the original component (assume that its tag is comp1), add a General Extrusion 
operator. Set Source frame to Material. You can name the operator, but in the 
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following description, the default name genext1 is assumed. This operator will be 
used for mapping results to the second component.

2 Add a new component of the same dimension as the one in which you performed 
the original analysis.

3 Add the geometry, using for example Insert Sequence or Import. to the new 
component (comp2).

4 Add the lines you are going to use for stress linearization to the imported geometry.

5 Add a Solid Mechanics interface, and select only the domains which contain the new 
lines. You can even change the geometry so that you cut out parts of the domains.

6 Add a Prescribed Displacement node having domain selection. Select All domains. 
Prescribe the displacement in all directions to be the same as in the original model 
with expressions like comp1.genext1(u) for Prescribed in x direction.

7 If the original analysis contains inelastic strains, such as thermal expansions, these 
must also be included. You can do this either by adding a Thermal Expansion node 
with appropriate settings, or by explicitly importing the inelastic strains using an 
External Strain node. In the latter case, you would use expressions like 
comp1.genext1(solid.eth11) for the strain components.

8 Add Stress Linearization nodes for the new linearization lines.

9 Add the materials that were used in comp1. The most efficient approach is to add 
them under Global Definitions, and link to the same material definitions from both 
components.

10 Create a mesh for the domains in comp2 which you are solving for. It is only the 
mesh close to the new edges to which you need to pay any attention.

11 Add a new stationary study, in which you solve only for the new Solid Mechanics 
interface in comp2.

12 In the settings for the new study set Values of variables not solved for to point to the 
solution from which you want to pick the results in comp1. You can also add an 
Auxiliary sweep, if the original analysis contains results for several parameters or time 
steps.

13 Run the new study.

S T U D I E S  A N D  S O L U T I O N S

Stress linearization is a pure postprocessing operation. The a Stress Linearization node 
will only create a number of variables, which can be evaluated under Results. It is thus 
possible to add such nodes after the main analysis has been performed. In order to 
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make the new variables available for postprocessing, you must then run an Update 

Solution.

R E S U L T S

When you have included one or more Stress Linearization nodes in a model, a number 
of data sets and an extra default plot are generated.

One edge data set is created for each SCL. These data sets are named Linearization 
Line <n>, where n is an integer number.

Figure 2-20: Generated data sets in a model with four SCL.

The default plot contains graphs for the 22 component of the actual stress, the 
membrane stress, and the linearized stress. The first Linearization Line data set is 
selected. By changing edge date set in the plot group, you can easily move between the 
different stress classification lines.

Figure 2-21: Default plot along a stress classification line.
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VA R I A B L E  N A M E S

Each Stress Linearization node adds a number of variables. Many of these variables exist 
with two different scopes, physics scope and feature scope. The physics scope is the 
name of the physics interface, having the default value ‘solid’. The feature scope 
contains also the tag of the Stress Linearization node, for example ‘sl1’.

As an example, the variable solid.Sm22 and the variable solid.sl1.Sm22 have the 
same value. The variables with physics scope makes it more convenient to create 
expressions using postprocessing. You could for example make a line plot of 
solid.sb22, and get all edges having a stress linearization colored by their individual 
results.

TABLE 2-11:  VARIABLE FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN 
THEORY SECTION

COMMENT SCOPE

Sllij Stress tensor in 
local coordinate 
system

ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Smij Membrane stress ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Sbmaxij Maximum bending 
stress

ij = 11, 12, 13, 22, 
23, 33

Feature

Sbij Bending Stress ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Smbij Membrane + 
bending stress

ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Spsij Peak stress, start 
point

ij = 11, 12, 13, 22, 
23, 33

Feature

Speij Peak stress, start 
point

ij = 11, 12, 13, 22, 
23, 33

Feature

SIm Stress intensity, 
membrane

Physics, 
Feature

SImbs Stress intensity, 
membrane + 
bending, start 
point

Feature

SIbme Stress intensity, 
membrane + 
bending, end 
point

Feature

σij

σm ij,

σb max( ) ij,

σb ij,

σmb ij,

σp start( ) ij,

σp end( ) ij,

σint

σint

σint
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SImb Stress intensity, 
membrane + 
bending,

max(SImbs, SImbe) Physics, 
Feature

Nij Local in-plane 
force

ij = 22, 23, 33 Feature

Mij Local bending 
moment

ij = 22, 23, 33 Feature

Qi Local out-of-plane 
shear force

i = 2, 3 Feature

lengthtot Length of SCL Feature

arclength Coordinate along 
SCL

Feature

TABLE 2-11:  VARIABLE FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN 
THEORY SECTION

COMMENT SCOPE

Nij

Mij

L

X1

Stress Linearization in the Structural Mechanics Theory Chapter.
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S o l v e r  S e t t i n g s

COMSOL Multiphysics includes many solvers and solver settings. To make it easier to 
use a suitable solver and its associated solver parameters, the physics interfaces have 
different default settings based on the study type and features used. In some situations, 
the default settings may need to be changed. This section helps you to select a solver 
and its settings to solve structural mechanics and related multiphysics problems. 

In this section:

• Symmetric Matrices

• Selecting Iterative Solvers

• Specifying Tolerances and Scaling for the Solution Components 

Symmetric Matrices

Use the Matrix symmetry list (see the General section on the Settings window for 
Advanced for a solver node such as Stationary Solver). There you can explicitly state 
whether the assembled matrices (stiffness matrix, mass matrix) resulting from the 
compiled equations are symmetric or not.

Normally the matrices from a single-physics structural mechanics problem are 
symmetric, but there are exceptions, including the following cases:

• Multiphysics models solving for several physics simultaneously, for example, heat 
transfer and structural mechanics. Solving for several Structural Mechanics 
interfaces, such as shells combined with beams, does not create unsymmetrical 
matrices.

Studies and Solvers in the COMSOL Multiphysics Reference Manual

If you make changes to the physics, this will not be reflected in the solver 
settings unless you regenerate the solver sequence.
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• Contact with friction.

• Elastoplastic analysis

One of the benefits of using the symmetric solvers is that they use less memory and are 
faster. The default option is Automatic, which means the solver automatically detects if 
the system is symmetric or not. Some solvers do not support symmetric matrices and 
always solve the full system regardless of symmetry. 

Complex matrices can be unsymmetric, symmetric, or Hermitian. Hermitian matrices 
do not appear in structural mechanics problems.

Selecting Iterative Solvers

The default solver for structural mechanics is the MUMPS direct solver in both 2D and 
3D. For large 3D problems (several hundred thousands or millions of degrees of 
freedom) it is beneficial to use iterative solvers when possible to save time and memory. 
The drawback is that they are more sensitive and might not converge if the mesh 
quality is low. The iterative solvers also have more options than the direct solvers.

For Stationary, Time Dependent studies and Frequency Domain studies in 3D, a 
GMRES iterative solver is preconfigured and available as an alternative solver 
suggestion for solid mechanics models.

If the model is set up using quadratic (default) or higher order elements for the 
displacement dependent variable, this GMRES solver will use geometric multigrid 
(GMG) as the preconditioner.

Advanced and Stationary Solver in the COMSOL Multiphysics Reference 
Manual

Selecting the Symmetric option for a model with unsymmetric matrices 
may lead to incorrect results. For a nonlinear problem with only a weak 
unsymmetry, it may still be useful, since the faster solution of the 
symmetric problem may offset the lower convergence rate. This is for 
example the case for contact problems with a low coefficient of friction.

Selecting the Hermitian option for a model with complex-valued 
symmetric matrices produces incorrect results.
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For slender geometries, changing to SOR Line as presmoother and postsmoother can 
give better results compared to SOR that is the default for GMG preconditioner.

For models using linear elements for the displacement dependent variable, the 
preconditioner will be changed to smoothed aggregated algebraic multigrid (AMG). 
This is to avoid remeshing when creating the discretization on the coarse level. Note 
that you need to manually regenerate the solver sequence after you change the element 
order if you want to make use of such change in the predefined iterative solver 
configuration.

• For eigenfrequency/eigenvalue studies, use the default direct solver (MUMPS).

Solver Settings for Viscoelasticity, Creep, and Viscoplasticity

Viscoelastivity, creep, and viscoplasticity are time-dependent phenomena. The time 
scale is however often such that inertial effects can be ignored. When that is the case, 
you can modify the solver settings to improve the performance of the time-dependent 
analysis.

P H Y S I C S  I N T E R F A C E  S E T T I N G S

In the Model Builder, click the Solid Mechanics node. In the Settings window, under 
Structural Transient Behavior, select Quasi-static to treat the elastic behavior as 
quasi-static (with no mass effects; that is, no second-order time derivatives for the 
displacement variables). Selecting this option gives a more efficient solution for 
problems where the variation in time is slow when compared to the natural frequencies 
of the system since no mass matrix will be created.

S O L V E R  S E T T I N G S

When Quasi-static is selected on the physics interface Settings window, the automatic 
solver suggestion changes the method for the Time Stepping from Generalized alpha to 
BDF.

Specifying a shift frequency greater than the lowest eigenfrequency results 
in indefinite matrices. 

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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For a Fully Coupled node (or Segregated node for multiphysics problems), the default 
Nonlinear method under Method and Termination is Automatic (Newton). To get a faster 
computation time when the effective strain rate is low or moderate, select Constant 

(Newton) as the Nonlinear method instead.

Specifying Tolerances and Scaling for the Solution Components

The absolute-tolerance parameters used for time-dependent studies are problem 
specific. By default, the absolute tolerance is applied to scaled variables, with the 
default value being 0.001 for all solution components.

The default scaling for the displacement components is based on the size of the 
geometry in the model, and certain reasonable scales are used for the pressure and 
contact force variables, if any. You are encouraged to change these scales as soon as 
better values are known or can be guessed or estimated from the applied forces, yield 
stress, reaction forces, maximum von Mises stress, or similar. The same suggestion 
applies to the displacement scale, which can be estimated easily if the problem is 
displacement controlled. This approach can significantly improve the robustness of the 
solution. The variable scaling is accessed under Dependent Variables in the solver 
sequence. The scales need to be entered using the main unit system in the model.

Solver Settings

In many situations, the default in COMSOL when having several physics interfaces is 
to generate a solver sequence with a segregated solver. When several structural 
mechanics interfaces are present, it can happen that the degrees of freedom are placed 
in different segregated steps by the default solver generation. It is, however, not 
possible to solve a model where the structural mechanics degrees of freedom are placed 
in different segregated groups, so in this case you must modify the solver settings.

• If the model only consists of structural mechanics interfaces, the best option is 
usually to replace the segregated solver with a fully coupled solver.

• If the model contains contact conditions where the augmented Lagrangian method 
is used, then a segregated solver must be used. Place all structural mechanics degrees 

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• Fully Coupled and Segregated
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of freedom except the contact variables in one segregated step. The contact variables 
should remain in the lumped step.

• If there are other types of physics interfaces being solved in the same study, then the 
segregated solver should usually be kept. Make sure that all structural mechanics 
degrees of freedom except contact variables are solved in one segregated step.

In the COMSOL Multiphysics Reference Manual:

• Solution Operation Nodes and Solvers

• About the Stationary Solver
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Pa r t  L i b r a r i e s

The Part Libraries can be used to store and access a set of standard geometric entities. 
It is possible to create custom user-defined geometry libraries or to use built-in 
collections of geometric entities that are available with many add-on modules for 
COMSOL Multiphysics.

A dedicated part library for the Structural Mechanics Module is included. The library 
consists of two main parts:

• Bolts, nuts, and washers. These are parts intended for quick modeling of fasteners. 
The bolts geometries are prepared for use with the Pre-tensioned Bolts 
functionality.

• Beam cross sections. These are 2D geometries, primarily intended for use in The 
Beam Cross Section Interface. The library includes geometries for all standard beam 
cross sections according to European and US standards.

All entities in the built-in the Part Libraries are fully parameterized, making them easy 
to use as parts in large-scale industrial models.

Part Libraries in the COMSOL Multiphysics Reference Manual
P A R T  L I B R A R I E S  |  195



196 |  C H A P T E
 R  2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



 3
S t r u c t u r a l  M e c h a n i c s  T h e o r y
This chapter contains the theory behind the implementation of the structural 
mechanics functionality in COMSOL Multiphysics. It is assumed that the reader 
has a basic knowledge of solid mechanics. 

In this chapter:

• Solid Mechanics Theory

• Frames and Coordinate Systems

• Analysis of Deformation

• Stresses

• Material Models

• Formulation of the Equilibrium Equations

• Damping

• Loads and Boundary Conditions

• Stress Linearization

• Energy Quantities
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S o l i d  Me chan i c s  T h e o r y

Introduction

In the following, the theory for the Solid Mechanics interface is described. To a large 
extent, this theory covers other structural mechanics physics interfaces, such as Shell 
and Beam, which are included with the Structural Mechanics Module. For these other 
interfaces, only the details which are specific to a certain interface are described its 
documentation.

TE N S O R  N O T A T I O N

Some of the theory is developed using tensor notation. In most cases, explicit index 
notation is avoided. This means that the order of a tensor usually must be understood 
from the context. As an example, Hooke’s law for linear elasticity is usually written like

Here, the stress tensor σ and the strain tensor ε are second-order tensors, while the 
constitutive tensor C is a fourth-order tensor. The ‘:’ symbol means a contraction over 
two indices. In a notation where the indices are shown, the same equation would read

where the Einstein summation convention has been used as a shorthand for 

In a few cases, non-orthonormal coordinate systems must be considered. It is then 
necessary to keep track of the covariance and contravariance properties of tensors. In 
such a case, Hooke’s law is written

• Theory for Shell and Plate Interfaces

• Theory for the Membrane Interface

• Theory for the Beam Interface

• Theory for the Beam Cross Section Interface

• Theory for the Truss Interface

σ C:ε=

σij Cijklεkl=

σij Cijklεkl

l 1=

3


k 1=

3

=
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The stress and constitutive tensors have contravariant components, while the strain 
tensor has covariant components.

σij
C

ijklεkl=
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F r ame s  and Coo r d i n a t e  S y s t em s

In this section:

• Material and Spatial Coordinates

• Coordinate Systems

Material and Spatial Coordinates

The Solid Mechanics interface, through its equations, describes the motion and 
deformation of solid objects in a 2- or 3-dimensional space. In COMSOL Multiphysics 
terminology, this physical space is known as the spatial frame, and positions in the 
physical space are identified by lowercase spatial coordinate variables x, y, and z (or r, 

, and z in axisymmetric components).

Continuum mechanics theory also makes use of a second set of coordinates, known as 
material (or reference) coordinates. These are normally denoted by uppercase 
variables X, Y, and Z (or R, Φ, and Z) and are used to label material particles. Any 
material particle is uniquely identified by its position in some given initial or reference 
configuration. As long as the solid stays in this configuration, material and spatial 
coordinates of every particle coincide and displacements are zero by definition.

When the solid object deforms due to external or internal forces and constraints, each 
material particle keeps its material coordinates X (bold font is used to denote 
coordinate vectors), while its spatial coordinates change with time and applied forces 
such that it follows a path

 (3-1)

in space. Because the material coordinates are constant, the current spatial position is 
uniquely determined by the displacement vector u, pointing from the reference 
position to the current position. The global Cartesian components of this displacement 
vector in the spatial frame, by default called u, v, and w, are the primary dependent 
variables in the Solid Mechanics interface.

By default, the Solid Mechanics interface uses the calculated displacement and 
Equation 3-1 to define the difference between spatial coordinates x and material 
coordinates X. This means the material coordinates relate to the original geometry, 
while the spatial coordinates are solution dependent.

ϕ

x x X t,( ) X u X t,( )+= =
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Material coordinate variables X, Y, and Z must be used in coordinate-dependent 
expressions that refer to positions in the original geometry, for example, for material 
properties that are supposed to follow the material during deformation. On the other 
hand, quantities that have a coordinate dependence in physical space — for example, a 
spatially varying electromagnetic field acting as a force on the solid — must be 
described using spatial coordinate variables x, y, and z. 

Coordinate Systems

Force vectors, stress and strain tensors, as well as various material tensors are 
represented by their components in a specified coordinate system. By default, material 
properties use the canonical system in the material frame. This is the system whose 
basis vectors coincide with the X, Y, and Z axes. When the solid deforms, these vectors 
rotate with the material.

Loads and constraints, on the other hand, are applied in spatial directions, by default 
in the canonical spatial coordinate system. This system has basis vectors in the x, y, and 
z directions, which are forever fixed in space. Both the material and spatial default 
coordinate system are referred to as the global coordinate system in the physics 
interface.

In a geometrically linear analysis, no difference is made between the two 
coordinate systems. For this case, the material and spatial coordinates 
coincide. This may seem inconsistent with equation Equation 3-1 but 
ensures linearity for problems that are expected to be linear. It is then, for 
example, equivalent to choose a coordinate system related to the material 
frame or one related to the spatial frame. In a geometrically nonlinear 
analysis, however, any use of a spatial coordinate in an expression will 
introduce a nonlinear contribution because it will be deformation 
dependent.
F R A M E S  A N D  C O O R D I N A T E  S Y S T E M S  |  201



202 |  C H A P T E
Vector and tensor quantities defined in the global coordinate system on either frame 
use the frame’s coordinate variable names as indices in the tensor component variable 
names.

It is possible to define any number of user coordinate systems on the material and 
spatial frames. Most types of coordinate systems are specified only as a rotation of the 
basis with respect to the canonical basis in the underlying frame. This means that they 
can be used both in contexts requiring a material system and in contexts requiring a 
spatial one. A coordinate system defined on the spatial frame will in general introduce 
nonlinearities in the problem, since its directions are deformation dependent in case of 
a geometrically nonlinear analysis.

The coordinate system can be selected separately for each added material model, load, 
and constraint. This is convenient when for example, an anisotropic material with 
different orientation in different domains is required. The currently selected 
coordinate system is called the local coordinate system.

Coordinate systems used for describing a material must be defined on the material 
frame.

For example, solid.SXY is the material frame XY-plane shear stress, also 
known as a second Piola-Kirchhoff stress, while solid.sxy is the 
corresponding spatial frame stress, or Cauchy stress. There are also a few 
mixed tensors, most notably the deformation gradient solid.FdxY, 
which has one spatial and one material index because it is used in 
converting quantities between the material and spatial frames.
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Ana l y s i s  o f  De f o rma t i o n

The analysis of deformation aims at deriving descriptions of the local deformation in a 
material suitable for use in a constitutive relation. Often, but not always, this amounts 
to deriving a strain tensor.

This section starts by a general description of finite deformation in solids. At the end, 
the specialization to engineering strains used in geometrically linear analysis, is made.

In this section:

• Lagrangian Formulation

• Deformation Measures

• Invariants of Strain

• Inelastic Strain Contributions

• Axial Symmetry and Deformation

• Out-of-plane and Circumferential Modes

Lagrangian Formulation

The formulation used for structural analysis in COMSOL Multiphysics for both small 
and finite deformations is a total Lagrangian formulation. This means that the 
computed stress and deformation state is always referred to the material configuration 
rather than to current position in space.

Likewise, material properties are always given for material particles and with tensor 
components referring to a coordinate system based on the material frame. This has the 
obvious advantage that spatially varying material properties can be evaluated just once 
for the initial material configuration, and they do not change as the solid deforms and 
rotates.

Consider a certain physical particle, initially located at the coordinate X. During 
deformation, this particle follows a path

Here, x is the spatial coordinate and X is the material coordinate.

For simplicity, assume that undeformed and deformed positions are measured in the 
same coordinate system. Using the displacement u it is then possible to write

x x X t,( )=
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The displacement is considered as a function of the material coordinates (X, Y, Z), but 
it is not explicitly a function of the spatial coordinates (x, y, z). It is thus only possible 
to compute derivatives with respect to the material coordinates.

In the following, the gradient operator is assumed to be a gradient with respect to the 
material coordinates, unless something else is explicitly stated.

The gradient of the displacement, which occurs frequently in the following theory, is 
always computed with respect to material coordinates. In 3D:

The deformation gradient tensor F shows how an infinitesimal line element, dX, is 
mapped to the corresponding deformed line element dx by

x X u X t,( )+=

∇ X∇
X∂
∂

Y∂
∂

Z∂
∂= =

u∇

X∂
∂u

Y∂
∂u

Z∂
∂u

X∂
∂v

Y∂
∂v

Z∂
∂v

X∂
∂w

Y∂
∂w

Z∂
∂w

=
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The deformation gradient F contains the complete information about the local 
straining and rotation of the material. It is a two-point tensor (or a double vector), 
which transforms as a vector with respect to each of its indices. It involves both the 
reference and present configurations.

In terms of the displacement gradient, F can be written as

The deformation of the material (stretching) will in general cause changes in the 
material density. The ratio between current and initial volume (or mass density) is 
given by

Here, ρ0 is the initial density and ρ is the current density after deformation. The 
determinant of the deformation gradient tensor F is related to volumetric changes with 
respect to the initial state. A pure rigid body displacement implies J = 1. Also, an 
incompressible material is represented by J = 1. These are called isochoric processes.

The determinant of the deformation gradient tensor is always positive (since a negative 
mass density is unphysical). The relation ρ = ρ0/J implies that for J < 1 there is 
compression, and for J > 1 there is expansion. Since J > 0, the deformation gradient 
F is invertible.

In the material formulations used within the structural mechanics interfaces, the mass 
density should in general be constant because the equations are formulated for fixed 
material particles. You should thus not use temperature-dependent material data for 
the mass density. The changes in volume caused by temperature changes are 
incorporated using the coefficient of thermal expansion when you add Thermal 
Expansion (for materials) to the material model.

dx x∂
X∂

-------dX F dX= =

F x∂
X∂

------- u I+∇= =

dV
dV0
----------

ρ0
ρ
------ det F( ) J= = =

 The variable solid.rho represents a “reference” or “initial” density ρ0, 
and not the “current” density ρ. If you are interested in finding the 
density of the deformed material (the density in the spatial frame), you 
can compute it using the expression solid.rho/solid.J.
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Deformation Measures

Since the deformation tensor F is a two-point tensor, it combines both spatial and 
material frames. It is not symmetric. Applying a singular value decomposition on the 
deformation gradient tensor gives an insight into how much stretch and rotation a unit 
volume of material has been subjected to. The right polar decomposition is defined as

where R is a proper orthogonal tensor ( , and ) and U is the 
right stretch tensor given in the material frame. The rotation tensor R describes the 
rigid rotation, and all information about the deformation of the material is contained 
in the symmetric tensor U.

The stretch tensor contains physically important information about the deformation 
state. The eigenvalues of the U tensor are the principal stretches, λ1, λ2, and λ3. The 
stretch of a line element with initial length L0 and current length L is 

where εeng is the engineering strain. The three principal stretches act along three 
orthogonal directions. In the coordinate system defined by these principal directions, 
the U tensor will be diagonal:

F RU=

det R( ) 1= R 1– RT=

• The internal variables for the deformation gradient tensor with respect 
to global material coordinates are named solid.FdxX, solid.FdxY, 
and so on.

• The internal variables for the deformation gradient tensor with respect 
to local material coordinates are named solid.Fdx1, solid.Fdx2, 
and so on.

• The rotation tensor components are named solid.RotxX, 
solid.RotxY, and so on.

• The right stretch tensor components are named solid.UstchXX, 
solid.UstchXY, and so on.

An upper case index refers to the material frame, and a lower case index 
refers to the spatial frame.

λ L
L0
------ 1 εeng+= =
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The right Cauchy-Green deformation tensor C defined by

It is a symmetric and positive definite tensor, which accounts for the strain but not for 
the rotation. The eigenvalues of the C tensor are the squared principal stretches, thus 
providing a more efficient way to compute the principal stretches than by using the 
stretch tensor U directly.

The Green-Lagrange strain tensor is a symmetric tensor defined as

Since C is independent of rigid body rotations, this applies also to the Green-Lagrange 
strain tensor.

Using the displacement components and Cartesian coordinates, the Green-Lagrange 
strain tensor can be written on component form as

.  (3-2)

U

λ1 0 0

0 λ2 0

0 0 λ3

=

C FTF U2= =

ε 1
2
--- C I–( ) 1

2
--- FTF I–( )= =

εij
1
2
---

ui∂
Xj∂

--------
uj∂
Xi∂

--------
uk∂
Xi∂

---------
uk∂
Xj∂

---------⋅+ + 
 =

The rotation independence of the Green-Lagrange strain tensor, together 
with the fact that it for small strain approaches the engineering strain 
tensor explains why it is a common choice in constitutive models for small 
strain- finite rotation. As an opposite, a pure rigid rotation causes strains 
when engineering strains are used.

The Green-Lagrange is the natural strain representation in a Lagrangian 
description. Since it is a tensor in the material frame, its values should be 
interpreted in along the undeformed axis orientations.
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E N G I N E E R I N G  S T R A I N

Under the assumption of small displacements and rotations, the normal strain 
components and the shear strain components are related to the deformation as follows:

 (3-3)

In COMSOL Multiphysics, the tensor form of strain representation (εxy, εyz, εxz) is 
used.

The symmetric strain tensor ε consists of both normal and shear strain components:

• The internal variables for the Green-Lagrange strains are named 
solid.eX, solid.eXY, and so on.

• The internal variables for the Green-Lagrange strain tensor in local 
coordinates are named solid.el11, solid.el12, and so on.

• In a geometrically linear analysis, the strain variables 
solid.eX,solid.el11, and so on, will instead represent engineering 
strain.

• The right Cauchy-Green deformation tensor in local coordinate system 
are named solid.Cl11, solid.Cl12, and so on.

Some textbooks prefer to use the left Cauchy-Green deformation tensor 
B = FFT, which is also symmetric and positive definite but it is defined in 
the spatial frame.

εx x∂
∂u

=

εy y∂
∂v

=

εz z∂
∂w

=

εxy
γxy
2

-------=
1
2
---

y∂
∂u

x∂
∂v

+ 
 =

εyz
γyz

2
-------=

1
2
---

z∂
∂v

y∂
∂w

+ 
 =

εxz
γxz
2

-------=
1
2
---

z∂
∂u

x∂
∂w

+ 
  .=

In the documentation, the symbol ε is used to denote strain in general. In 
a geometrically nonlinear analysis, the strain should be interpreted as a 
Green-Lagrange strain. In a geometrically linear analysis, the engineering 
strain is used.
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The strain-displacement relationships for the axial symmetry case for small 
displacements are

A general description of the axially symmetric case is given in Axial Symmetry and 
Deformation.

Invariants of Strain

P R I N C I P A L  S T R A I N S

The principal strains are the eigenvalues of the strain tensor (ε), computed from the 
eigenvalue equation

The three principal strains are sorted so that 

This sorting is true also for the 2D cases. The corresponding vectors in the principal 
directions, vpi, are orthonormal.

ε
εx εxy εxz

εxy εy εyz

εxz εyz εz

=

εr r∂
∂u,= εϕ

u
r
---,= εz z∂

∂w, and= γrz z∂
∂u

r∂
∂w

+=

ε εpI–( )vp 0=

εp1 εp2 εp3≥ ≥

• The internal variables for the principal strains are named solid.ep1, 
solid.ep2, and solid.ep3 respectively.

• The internal variables for the components of the directions of the first 
principal strains are named solid.ep1X, solid.ep1Y, and 
solid.ep1Z. The direction vectors for the other two principal strains 
are named analogously.

In a geometrically nonlinear analysis, the Green-Lagrange strain tensor is 
used. The orientations of the principal directions will thus be with respect 
to the material directions. If you plot the principal strains as arrows, you 
should thus use an undeformed plot.
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P R I N C I P A L  S T R E T C H E S

The principal stretches are the eigenvalues of the stretch tensor U, and are also sorted 
by size:

The different invariants of the strain tensor form are useful for constitutive modeling 
and result interpretation. The three fundamental invariants for any tensor are 

The invariants of the strain deviator tensor is also useful.

As defined above J2 ≥ 0. I1 represents the relative change in volume for infinitesimal 
strains and J2 represents the magnitude of shear strain.

In tensor component notation, the invariants can be written as

λp1 λp2 λp3≥ ≥

The internal variables for the principal stretches are named 
solid.stchp1, solid.stchp2, and solid.stchp3 respectively. The 
elastic principal stretches are named solid.stchelp1, 
solid.stchelp2, and solid.stchelp3 respectively.

I1 ε( ) trace ε( )=

I2 ε( ) 1
2
--- trace ε( )2 trace ε2( )–( )=

I3 ε( ) det ε( ) =

dev ε( ) ε 1
3
---trace ε( )I–=

J1 ε( ) trace dev ε( )( ) 0= =

J2 ε( ) 1
2
---dev ε( ):dev ε( ) 1

3
---I1 ε( )2 I2 ε( )–= =

J3 ε( ) det dev ε( )( ) 2
27
------I1 ε( )3 1

3
---I1 ε( )I2 ε( ) I3 ε( )+–==
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The volumetric strain is defined as

.

In terms of the principal strains, the stress invariants can be written as

The principal stresses are the roots of the characteristic equation (Cayley–Hamilton 
theorem)

S T R A I N  R A T E  A N D  S P I N

The spatial velocity gradient is defined in components as 

where  is the spatial velocity field. It can be shown that L can be computed in 
terms of the deformation gradient as

where the material time derivative is used.

trace ε( ) εkk=

dev ε( )ij εij
εkk
3

--------δij–=

I2 ε( ) 1
2
--- εiiεjj εijεji–( )=

J2 ε( ) 1
2
---dev ε( )ijdev ε( )ji=

εvol trace ε( )=

The internal variable for the volumetric strain is solid.evol.

I1 ε( ) εp1 εp2 εp3+ +=

I2 ε( ) εp1εp2 εp2εp3 εp1εp3+ +=

I3 ε( ) εp1εp2εp3=

εp
3 I1εp

2
– I2εp I3–+ 0=

Lkl xl∂
∂ vk x t,( )=

vk x t,( )

L
td

dFF
1–

=
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The velocity gradient can be decomposed into symmetric and skew-symmetric parts

where 

is called the rate of strain tensor, and

is called the spin tensor. Both tensors are defined on the spatial frame.

It can be shown that the material time derivative of the Green-Lagrange strain tensor 
can be related to the rate of strain tensor as 

The spin tensor Lw(x,t) accounts for an instantaneous local rigid-body rotation about 
an axis passing through the point x.

Inelastic Strain Contributions

Many of the material models in COMSOL Multiphysics will compute a stress based on 
an elastic strain. The elastic strain tensor is obtained after removing any inelastic 
deformation contribution from the total deformation from the displacements. There 
are several possible inelastic strain contributions:

• Initial strain, ε0

• External strain, εex

L Ld Lw+=

Ld
1
2
--- L LT

+( )=

Lw
1
2
--- L LT

–( )=

dε
dt
------ FTLdF=

Components of both Ld and Lw are available as results and analysis 
variables under the Solid Mechanics interface.

• The components of the rate of strain tensor are named solid.Ldx, 
solid.Ldxy, and so on.

• The components of the spin tensor are named solid.Lwx, 
solid.Lwxy, and so on.
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• Thermal strain, εth

• Hygroscopic strain, εhs

• Plastic strain, εpl

• Creep strain, εcr

• Viscoplastic strain, εvp

A D D I T I V E  D E C O M P O S I T I O N

In a geometrically linear analysis, the elastic strain is computed by a straightforward 
subtraction of the inelastic strain:

where

Additive decomposition of strains can also be used in a geometrically nonlinear 
analysis. In this case, it can however only be justified as long as the strains are small. In 
the case of large deformations, the different strain contributions may not even be 
commutative.

You can choose to use additive decomposition also for geometric nonlinearity by 
selecting the Additive strain decomposition check box in the settings for Linear Elastic 
Material or Nonlinear Elastic Material.

M U L T I P L I C A T I V E  D E C O M P O S I T I O N

In the finite deformation case, the inelastic strain is instead removed using a 
multiplicative decomposition of the deformation gradient tensor. The elastic 
deformation gradient tensor is the basis for all strain energy formulations in 
hyperelastic materials, and also for the elastic strain in linear and nonlinear elasticity. It 
is derived by removing the inelastic deformation from the total deformation gradient 
tensor.

The total deformation gradient tensor is defined as the result of two successive 
operations, an inelastic deformation followed by an elastic deformation:

εe ε εinel–=

εinel ε0 εex εth εhs εpl εcr εvp+ + + + + +=
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 (3-4)

When the inelastic deformation gradient tensor is known, the elastic deformation 
gradient tensor is computed as

 (3-5)

so the inelastic deformations are removed from the total deformation gradient tensor. 
The elastic right Cauchy-Green deformation tensor is then computed from Fel.

and the elastic Green-Lagrange strain tensor is computed as:

The inelastic deformation tensor Finel is derived from inelastic processes, such as 
thermal expansion or plasticity. When there are several inelastic contributions, they are 
applied sequentially to obtain the total inelastic deformation tensor Finel. 

F FelFinel=

The order is important here, multiplication from the left makes the elastic 
deformation act on the inelastically deformed state.

Since a deformation gradient tensor describes a mapping from one frame 
to another, there are actually three frames involved in this operation. The 
F tensor is defined by the displacements as usual and describes the 
mapping from the material frame to the spatial frame. The Finel tensor, 
however, describes a mapping from the material frame to an intermediate 
frame, and the Fel tensor describes a mapping from the intermediate 
frame to the spatial frame.

Fel FFinel
1–

=

Cel Fel
T Fel=

εel
1
2
--- Cel I–( )=

Finel F1F2F3F4  ...=
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where Fi is the inelastic strain contribution from subnode i under a Linear Elastic 
Material, Nonlinear Elastic Material, or Hyperelastic Material.

The elastic, inelastic, and total volume ratios are related as

 or  

Large strain plasticity
In case of large strain plasticity, the plastic strains are primarily not represented as 
strains, but as the plastic deformation gradient tensor, Fpl.

The plastic Green-Lagrange strain tensor is computed from the plastic deformation 
gradient tensor as

As opposed to the small strain formulation, the total, plastic, and elastic 
Green-Lagrange strain tensors are related as

• The order is important when deformations are finite. The 
contributions are applied in the same order as the subnodes appear in 
the model tree. If a Thermal Expansion node appears before a Plasticity 
node, then the physical process can be viewed as a thermal expansion 
followed by a plastic deformation.

• When a certain inelastic strain contribution is small, the order is not 
significant.

• If the inelastic strain is a pure isotropic volume change, as is often the 
case for thermal expansion and hygroscopic swelling, the order is not 
significant.

The internal variables for the elastic right Cauchy-Green deformation 
tensor in the local coordinate system are named solid.Cel11, 
solid.Cel12, and so on; and for the elastic Green-Lagrange tensor in 
local coordinates solid.eel11, solid.eel12, and so on.

det F( ) det Fel( )det Finel( )= J JelJinel=

The internal variables for the elastic, inelastic, and total volume ratio are 
named solid.Jel, solid.Ji, and solid.J.

εpl
1
2
--- Fpl

T Fpl I–( )=
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Axial Symmetry and Deformation

The axially symmetric geometry uses a cylindrical coordinate system. Such a coordinate 
system is orthogonal but curvilinear, and you can choose between a covariant basis 
e1, e2, e3 and a contravariant basis e1, e2, e3 when formulating the theory.

The metric tensor is

in the coordinate system given by e1, e2, e3, and

in e1, e2, e3. 

The metric tensor plays the role of a unit tensor for a curvilinear coordinate system.

For any vector or tensor A, the metric tensor can be used for conversion between 
covariant, contravariant, and mixed components:

In both covariant and contravariant basis, the base vector in the azimuthal direction 
has a non-unit length. To cope with this issue, the so-called physical basis vectors of 
unit length are introduced. These are

The corresponding components for any vector or tensor are called physical.

εel Fpl
T– ε εpl–( )Fpl

1–
=

gij[ ]
1 0 0

0 r2 0
0 0 1

=

gij

1 0 0

0 r 2– 0
0 0 1

=

Ai
j Aimgmj( )

m
=

Aij Anmgnig
mj

( )
m n,
=

er e1 e1
= eϕ

1
r
---e2 re2

= = ez e3=, , e3
= =
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For any tensor, the physical components are defined as

where no summation is done over repeated indices.

M I X E D  C O M P O N E N T S  A N D  P R I N C I P A L  I N V A R I A N T S

The mixed tensor components are given by

The principal invariants are

D I S P L A C E M E N T S  A N D  A X I A L  S Y M M E T R Y  A S S U M P T I O N S

The axial symmetry implementation in COMSOL Multiphysics assumes independence 
of the angle, and also that the azimuthal component of the displacement is identically 
zero. The physical components of the radial and axial displacement, u and w, are used 
as dependent variables for the axially symmetric geometry.

S T R A I N S

The right Cauchy-Green deformation tensor is defined as

and the Green-Lagrange strain tensor is

Under the axial symmetry assumptions, the covariant components of C are

Aij
phys gii gjjA

ij
=

Aj
i gimAmj( )

m
=

I1 A( ) trace Ai
i[ ] Ai

i

i
= A11 A22

1

r2
----- A33+ += =

I2 A( ) 1
2
--- I1 A( )( )2 Aj

iAi
j

i j,
–

 
 
 

=

I3 A( ) det Ai
i[ ]=

C u∇( )T u∇ u∇( )T u∇+ +( ) g+=

ε 1
2
--- C g–( )=
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For geometrically linear analysis, drop the nonlinear terms inside square brackets in the 
above expressions.

The physical components of ε are

The volumetric strain is

C11 2
r∂

∂u
r∂

∂u
 
 

2

r∂
∂w
 
 

2
+ 1+ +=

C12 C23 0= =

C13 z∂
∂u

r∂
∂w

r∂
∂u u∂

z∂
------ w∂

r∂
------- w∂

z∂
-------++ +=

C22 2ru u( )2[ ] r2
+ +=

C23 r v∂
z∂

------ v–
u∂
z∂

------ u v∂
z∂

------++=

C33 2 w∂
z∂

------- u∂
z∂

------ 
 2 w∂

z∂
------- 
  2

+ 1++=

εr ε11
1
2
--- C11 1–( )= =

εrϕ εϕz 0= =

εrz ε13
1
2
---C13= =

εϕ
ε22

r2
-------- 1

2r2
--------- C22 r2

–( )= =

εz ε33
1
2
--- C33 1–( )= =

εvol I= 1 ε( ) εr εϕ εz+ +=
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Out-of-plane and Circumferential Modes

O U T - O F - P L A N E  W A V E S

If a 2D plane strain model represents a cross-section of the structure that has a 
significant uniform extension in the out-of-plane Z-direction, the following 3D 
solution can be sought in form of the amplitude expansion:

The first term represents a static in-plane prestress solution:

This can be obtained by a standard static analysis using 2D geometry for the cross 
section with the corresponding boundary conditions.

The second part of the solution presents a time-harmonic linear perturbation with an 
amplitude that can be a function of the in-plane coordinates. Such a perturbation can 
be seen as an out-of -plane wave, with a small amplitude that propagates in the 
Z-direction, and has a wave length L and phase velocity c:

Note that in contrast to the prestress, the perturbation amplitude can have non-zero 
values in all three displacement components:

There are two alternative approaches. The wave length, and thus the wave number kZ, 
can be considered as a parameter. Then, ω can be computed by an eigenfrequency 
analysis for the 2D cross-section with all three displacement components taken as 
dependent variables. As a result, one obtains

u X Y Z t, , ,( ) u0 X Y,( ) u1 X Y,( ) iωt ikZZ–( )exp+=

u0

u0 X Y,( )

v0 X Y,( )

0

=

kZ 2π L⁄=

c ω kZ⁄=

u1 X Y,( ) 2πi
L

--------- ct Z–( )exp

u1

u1 X Y,( )

v1 X Y,( )

w1 X Y,( )

=
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Thus, the wave speed for the out-of-plane wave is computed as a function of the wave 
length and possible prestress in the material. The dependence of the wave speed on the 
wave length is often called dispersion.

Alternatively, the frequency f (and thus ω) can be taken as a parameter. Then, the 
solution can be computed via eigenvalue analysis with respect to the wave number kZ 
using the 2D cross section geometry. Hence,

which determine the wave length and speed for the wave that can propagate 
out-of-plane for a given frequency under given in-plane prestress condition. Such 
interpretation of the perturbation solution is sometimes called a signaling problem.

C I R C U M F E R E N T I A L  M O D E S

A standard 2D axially symmetric representation of the structure geometry assumes 
zero twist displacement component together with independence of the circumferential 
position φ. The following 3D solution form represent an extension of these 
assumptions:

where m a circumferential mode number that can only have integer values to obey the 
axially symmetric nature of the corresponding 3D problem. Thus,

The circumferential wave number can be introduced as . 

The static prestress solution  has zero twist component

ω 2πf=

f f L u0,( )=

c λ u0,( ) Lf L u0,( )=

kZ 2π L⁄=

L L f u0,( )=

c f u0,( ) fL f u0,( )=

u R φ Z t, , ,( ) u0 R Z,( ) u1 R Z,( ) iωt imφ–( )exp+=

u R φ 2π+ Z t, , ,( ) u R φ Z t, , ,( )=

km m R⁄=

u0

u0

u0 R Z,( )

0
w0 R Z,( )

=
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and it can be obtained using a standard static analysis in 2D axially symmetric 
geometry.

The displacement vector  can have non-zero values in all three components, which 
are functions of the radial and axial positions. For a given circumferential mode 
number m, it can be found using an eigenfrequency analysis in a 2D axially symmetric 
geometry. Hence,

 

and the perturbation solution becomes

This represents eigenmodes in the corresponding 3D structure, which can be 
computed assuming certain constraints on the axis and possible static prestress without 
twist and independent off the position along the axis.

u1

ω 2πf=

f f m u0,( )=

u1 R Z,( ) 2πif m u0,( )t imφ–[ ]exp
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S t r e s s e s

In this section:

• Defining Stress

• Invariants of the Stress Tensor

• Plane Strain and Plane Stress Cases

• Initial Stresses and Strains

• Axial Symmetry and Stresses

Defining Stress

This section summarizes the definition of different stress measures, stress invariants, 
and other important definitions.

Three different stress measures are used in COMSOL Multiphysics:

• Cauchy stress σ defined as force/deformed area in fixed spatial directions not 
following the body. This is a symmetric tensor.

• First Piola-Kirchhoff stress P. The forces in the spatial directions are related to the 
area in the original (material) frame. This is an unsymmetric two-point tensor.

• Second Piola-Kirchhoff stress S. Both force and area are represented in the material 
configuration. For small strains the values are the same as Cauchy stress tensor but 
the directions are rotating with the body. This is a symmetric tensor. 

The stresses relate to each other as

In a geometrically linear analysis, the distinction between the stress measures disappear, 
and they all converge to the same values.

S F 1– P=

σ J 1– PFT J 1– FSFT
= =

In the documentation, the symbol σ is used to denote not only Cauchy 
stress, but stress in general. The symbols P and S are used whenever it is 
necessary to make a distinction. In geometrically nonlinear analysis, the 
stress should in general be interpreted as second Piola-Kirchhoff stress.
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S I G N  C O N V E N T I O N S

A positive normal stress in COMSOL Multiphysics acts in tension. This is the most 
widely used definition in general physics and engineering.

Within the field of geomechanics it is however common to let compressive stresses be 
positive, since compression is almost always dominant in that field of science. When 
working with the material models intended for soils and rocks, you must be aware of 
that the “positive in tension” convention is used also there in order to maintain 
consistency within the software.

Specifically, the ordering of Principal Stresses is such that  (including 
signs). In geotechnical applications the dominant principal stresses will usually be 
compressive, so the third principal stress will the be the one which you may consider 
as “largest”.

The convention used in Ref. 1 refers to the hydrostatic pressure (trace of the stress 
Cauchy tensor) with a positive sign. The use of the first invariant of Cauchy stress 
tensor I1(σ) is preferred in this document where there is a risk of confusion. The 
pressure in COMSOL Multiphysics is always defined as positive under compression, or 
equivalently, it has the opposite sign of the Cauchy stress tensor’s trace.

Invariants of the Stress Tensor

The different invariants of the stress tensor form an important basis for constitutive 
models and also for interpretation of stress results. The three fundamental invariants 
for any tensor are 

 (3-6)

• The internal variables for the Cauchy stresses are named solid.sx, 
solid.sxy, and so on.

• The internal variables for the first Piola-Kirchhoff stresses are named 
solid.PxX, solid.PxY, and so on.

• The internal variables for the second Piola-Kirchhoff stresses are 
named solid.SX, solid.SXY, and so on.

σp1 σp2 σp3≥ ≥

I1 σ( ) trace σ( )=

I2 σ( ) 1
2
--- trace σ( )2 trace σ2( )–( )=

I3 σ( ) det σ( ) =
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In many cases, the invariants of the deviatoric stress tensor are also useful.

 (3-7)

As defined above J2 ≥ 0. In many material models, the most relevant invariants are I1, 
J2, and J3. I1 represents the effect of mean stress, J2 represents the magnitude of shear 
stress, and J3 contains information about the direction of the shear stress.

In tensor component notation, the invariants can be written as

The pressure is defined as

and is thus positive in compression.

P R I N C I P A L  S T R E S S E S

The principal stresses are the eigenvalues of the stress tensor, computed from the 
eigenvalue equation.

dev σ( ) σ 1
3
---trace σ( )I–=

J1 σ( ) trace dev σ( )( ) 0= =

J2 σ( ) 1
2
---dev σ( ):dev σ( ) 1

3
---I1 σ( )2 I2 σ( )–= =

J3 σ( ) det dev σ( )( ) 2
27
------I1 σ( )3 1

3
---I1 σ( )I2 σ( ) I3 σ( )+–==

trace σ( ) σkk=

dev σ( )ij σij
σkk
3

---------δij–=

I2 σ( ) 1
2
--- σiiσjj σijσji–( )=

J2 σ( ) 1
2
---dev σ( )ijdev σ( )ji=

p trace σ( )–
3

------------------------
I1 σ( )–

3
-----------------= =

• The internal variables for the invariants I1, I2, and I3 are named 
solid.I1s, solid.I2s, and solid.I3s, respectively.

• The internal variables for the invariants J2 and J3 are named 
solid.II2s and solid.II3s, respectively.

• The internal variable for the pressure is solid.pm.
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The three principal stresses are ordered so that 

This ordering is true also for the 2D cases. The corresponding principal directions vpi 
are orthonormal.

In terms of the principal stresses, the stress invariants can be written as

The principal stresses are the roots of the characteristic equation (Cayley–Hamilton 
theorem)

O T H E R  S T R E S S  I N V A R I A N T S

It is possible to define other invariants in terms of the primary invariants. One common 
auxiliary invariant is the Lode angle θ.

 (3-8)

The Lode angle is bounded to 0 ≤ θ ≤ π/3 when the principal stresses are sorted as 
σp1 ≥ σp2 ≥ σp3 (Ref. 1).

σ σpI–( )vp 0=

σp1 σp2 σp3≥ ≥

• The internal variables for the principal stresses are named solid.sp1, 
solid.sp2, and solid.sp3 respectively.

• The internal variables for the components of the directions of the first 
principal stress are named solid.sp1x, solid.sp1y, and 
solid.sp1z. The direction vectors for the other two principal stresses 
are named analogously.

I1 σ( ) σp1 σp2 σp3+ +=

I2 σ( ) σp1σp2 σp2σp3 σp1σp3+ +=

I3 σ( ) σp1σp2σp3=

σp
3 I1σp

2
– I2σp I3–+ 0=

3θcos 3 3
2

-----------
J3

J2
3 2⁄

------------⋅=
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Following this convention, θ = 0 corresponds to the tensile meridian, and θ = π/3 
corresponds to the compressive meridian. The Lode angle is part of a cylindrical 
coordinate system (the Haigh–Westergaard coordinates) with height (hydrostatic axis)

 and radius .

The octahedral plane (also called π-plane) is defined perpendicular to the hydrostatic 
axis in the Haigh–Westergaard coordinate system. The stress normal to this plane is 
σoct = I1/3, and the shear stress on that plane is defined by

The functions described in Equation 3-6 and Equation 3-7 enter into expressions that 
define various kind of yield and failure surfaces. A yield surface is a surface in the 3D 
space of principal stresses that circumscribe an elastic state of stress.

The principal stresses (σp1, σp2, and σp3) can, when sorted as σp1 ≥ σp2 ≥ σp3, be 
written by using the invariants I1 and J2 and the Lode angle (Ref. 1):

ξ I1/ 3= r 2J2=

The Lode angle is undefined at the hydrostatic axis, where all three 
principal stresses are equal (σp1 = σp2 = σp3 = I1/3) and J2 = 0. To avoid 
division by zero, the Lode angle is actually computed from the inverse 
tangent function atan2, instead of the inverse cosine, as stated in 
Equation 3-8.

The Lode angle and the effective (von Mises) stress can be called in 
user-defined yield criteria by referencing the variables solid.thetaL and 
solid.mises, where solid is the name of the physics interface node.

τoct 2/3J2=

σp1  =
1
3
---I1

4J2
3

---------- θ           cos+

σp2  =
1
3
---I1

4J2
3

---------- θ 2π
3

------– 
 cos+

σp3  =
1
3
---I1

4J2
3

---------- θ 2π
3

------+ 
 cos+
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Plane Strain and Plane Stress Cases

For two-dimensional problems, there are two possible approximations: plane strain 
and plane stress. The selection is made in the settings for the Solid Mechanics node.

In the plane stress formulation in COMSOL Multiphysics, the plane stress conditions

 (3-9)

are not enforced through a modified constitutive relation, as is common in many 
textbooks. Instead, an extra set of degrees of freedom for the out-of-plane strains are 
introduced, and Equation 3-9 is enforced by solving for the strains.

For a general anisotropic linear elastic material in case of plane stress, COMSOL 
Multiphysics solves three equations. For isotropy and orthotropy, only one extra 
degree of freedom is needed since all out-of-plane shear components of both stress are 
zero.

Initial Stresses and Strains

Initial stresses and strains refer to a stress and strain state that would exist even without 
the external loads. Initial stresses and strains are not initial values in the mathematical 
sense. They apply all through the solution, and may even vary with time or solution 
parameters. They should rather be considered as an offset to the stress and strain state 
in the constitutive relation.

The initial strain is subtracted from the total strain, before the constitutive law is 
applied for computing the stresses. The initial stress is added to the stress computed by 
using the constitutive law. As an example, linear elasticity including both in initial strain 
ε0 and an initial stress s0 can be written as

It can also be noted that the effect of the initial strain is analogous to that of a for 
example a thermal strain.

σzz σxz σyz 0= = =

• For isotropic and orthotropic materials, the extra degree of freedom is 
named wZ, and represents .

• For anisotropic materials, two more degrees of freedom area added, uZ 
and vZ. They represent  and .

w∂
Z∂

-------

u∂
Z∂

------ v∂
Z∂

------

s s0 C : ε ε0–( )+=
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A common case is when you have results from another analysis or another physics 
interface, which you want to incorporate as initial stresses or strains. You should then 
use either the strain or the stress, but not both. 

The Initial Stress and Strain node can be added to Linear Elastic Material, Nonlinear 
Elastic Material Models, Piezoelectric Material, or Cam-Clay Material Model.

Both the initial stress and strains are tensor variables defined via components in the 
local coordinate system for each domain.

In case of nearly incompressible material (mixed formulation), the components of the 
total initial stress (that is, without volumetric-deviatoric split) are still input. The initial 
pressure in the equation for the pressure help variable pw is computed as

In the case of geometric nonlinearity, the initial stress represents the second 
Piola-Kirchhoff stress, not the Cauchy stress. The initial strain is interpreted as a 
Green-Lagrange strain.

O T H E R  PO S S I B L E  U S E S  O F  I N I T I A L  S T R A I N S  A N D  S T R E S S E S

Many inelastic effects in solids mechanics (for example creep, plasticity, damping, 
viscoelasticity, poroelasticity, and so on) are additive contributions to either the total 
strain or total stress. Then the initial value input fields can be used for coupling the 
elastic equations (solid mechanics) to the constitutive equations (usually General 
Form PDEs) modeling such extra effects. When adding stress contributions, you may 
however find it more convenient to use the External Stress concept.

External Stress

The external stress is a stress contribution which has a source other than the 
constitutive relation. It is similar to the initial stress described in the previous section, 
and the two features can to a large extent be used interchangeably.

There is however one large difference: using the External Stress, you can also prescribe 
a stress contribution that only acts as a load on the structure but is not added into the 
stress tensor. The typical case is when there is a pore pressure in a porous material, a 
common case in geotechnical engineering. The stress carried by the solid material, 
excluding the pore pressure, is often called the effective stress. So the load from the 
pore pressure helps to balance the external loads, while not contributing to the stress 
tensor of the solid. The contribution to the virtual work of the external stress is then

p0
1
3
---I1 s0( )–=
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The External Stress subnode can be added to Linear Elastic Material, Nonlinear Elastic 
Material Models, Piezoelectric Material, or Cam-Clay Material Model.

Axial Symmetry and Stresses

The physical stress components are defined on the global coordinate system:

The first invariant of the stress tensor is

δW δε–  : σext dv
V=

σr σ11
=

σϕ r2σ
22

=

σz σ33
=

σrz σ13
=

I1 σ( ) σijgij( )
i j,
 σr σϕ σz+ += =
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Equa t i o n  o f  Mo t i o n

The first Piola-Kirchhoff stress P is calculated from the second Piola-Kirchhoff stress 
as P = FS. The first Piola-Kirchhoff stress relates forces in the present configuration 
with areas in the reference configuration, and it is sometimes called the nominal stress.

Using the first Piola-Kirchhoff stress tensor, the equation of motion can be written in 
the following form:

 (3-10)

where the density corresponds to the material density in the initial undeformed state, 
the volume force vector FV has components in the actual configuration but given with 
respect to the undeformed volume, and the tensor divergence operator is computed 
with respect to the coordinates on the material frame. Equation 3-10 is the strong 
form that corresponds to the weak form equations within the Solid Mechanics 
interface (and many related multiphysics interfaces) in COMSOL Multiphysics. Using 
vector and tensor components, the equation can be written as

The components of the first Piola-Kirchhoff stress tensor are non symmetric in the 
general case, thus

because the component indexes correspond to different frames. Such tensors are called 
two-point tensors.

ρ0
t2

2

∂

∂ u FV ∇X P⋅–=

ρ0
t2

2

∂

∂ ux FVx X∂
∂PxX

Y∂
∂PxY

Z∂
∂PxZ+ + 

 –=

ρ0
t2

2

∂

∂ uy FVy X∂
∂PyX

Y∂
∂PyY

Z∂
∂PyZ+ + 

 –=

ρ0
t2

2

∂

∂ uz FVz X∂
∂PzX

Y∂
∂PzY

Z∂
∂PzZ+ + 

 –=

PiJ PIj≠
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The boundary load vector FA in case of geometric nonlinearity can be related to the 
first Piola-Kirchhoff stress tensor via the following formula:

where the normal n0 corresponds to the undeformed surface element. Such a force 
vector is often referred to as the nominal traction. In components, it can be written as

The Cauchy stress, s, can be calculated as

The Cauchy stress is a true stress that relates forces in the present configuration (spatial 
frame) to areas in the present configuration, and it is a symmetric tensor. 
Equation 3-10 can be rewritten in terms of the Cauchy stress as

where the density corresponds to the density in the actual deformed state, the volume 
force vector fV has components in the actual configuration (spatial frame) given with 
respect to the deformed volume, and the divergence operator is computed with respect 
to the spatial coordinates.

The pressure is computed as

which corresponds to the volumetric part of the Cauchy stress. The deviatoric part is 
defined as

The second invariant of the deviatoric stress

FA P n0⋅=

FAx PxXnX PxYnY PxZnZ+ +=

FAy PyXnX PyYnY PyZnZ+ +=

FAz PzXnX PzYnY PzZnZ+ +=

s J 1– PFT J 1– FSFT
= =

ρ
t2

2

∂

∂ u fV ∇x s⋅–=

p 1
3
---– trace s( )=

sd s pI+=

J2 s( ) 1
2
---sd:sd=
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is used for the computation of von Mises (effective) stress

smises 3J2 s( )=
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Ma t e r i a l  Mode l s

There are many material models available for structural analysis in COMSOL 
Multiphysics. In this section, theory for all material models is presented. The material 
models available, and also some detailed aspects of them, depend on which licenses you 
have. The material models, grouped by families, are as follows:

• Linear Elastic Material

• Nonlinear Elastic Material Models

- Ramberg-Osgood

- Power Law

- Bilinear Elastic

- Uniaxial Data

- Hyperbolic Law

- Hardin-Drnevich

- Duncan-Chang

- Duncan-Selig

- User Defined

• Linear Viscoelastic Materials

- Generalized Maxwell Model

- Standard Linear Solid Model

- Kelvin-Voigt Model
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• Hyperelastic Material Models

- Neo-Hookean

- St Venant-Kirchhoff

- Mooney-Rivlin, Two Parameters

- Mooney-Rivlin, Five Parameters

- Mooney-Rivlin, Nine Parameters

- Yeoh

- Ogden

- Storakers

- Varga

- Arruda-Boyce

- Gent

- Blatz-Ko

- Gao

- Murnaghan

- User Defined

• Elastoplastic Material Models

- von Mises Criterion

- Tresca Criterion

- Shima-Oyane Criterion

- Gurson Criterion

- Gurson-Tvergaard-Needleman Criterion

- Fleck-Kuhn-McMeeking Criterion

- FKM-GTN Criterion

- Mohr-Coulomb Criterion

- Drucker-Prager Criterion

- Matsuoka-Nakai Criterion

- Lade-Duncan Criterion

- Hill Orthotropic Plasticity
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• Failure Criteria for Concrete, Rocks, and Other Brittle Material

- Bresler-Pister Criterion

- Willam-Warnke Criterion

- Ottosen Criterion

- Original Hoek-Brown Criterion

- Generalized Hoek-Brown Criterion

• Cam-Clay Material Model

• Creep and Viscoplasticity

- Norton Law (Power law)

- Norton-Bailey Law

- Garofalo Law (Hyperbolic Sine Law)

- Navarro-Herring Creep (Diffusional Creep)

- Coble Creep (Diffusional Creep)

- Weertman Creep (Dislocation Creep)

- Anand Viscoplastic Model

- Chaboche Viscoplastic Model

- Perzyna Viscoplastic Model

- Creep Potential

- Volumetric Creep

- Deviatoric Creep

- User-Defined Creep

• Piezoelectric Material

• Magnetostrictive Material

• Rigid Domain Material Model

• Safety Factor Evaluation

You can also add a material model which you have coded yourself and made available 
as a binary library file using an External Stress-Strain Relation.

In the COMSOL Multiphysics Reference Manual:

• Working with External Materials

• External Material
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Linear Elastic Material

For a linear elastic material, Hooke’s law relates the stress tensor to the elastic strain 
tensor:

  (3-11)

where  is the 4th order elasticity tensor, “:” stands for the double-dot tensor product 
(or double contraction). The elastic strain εel is the difference between the total strain 
ε and all inelastic strains εinel. There may also be an extra stress contribution σex with 
contributions from initial stresses and viscoelastic stresses. In case of geometric 
nonlinearity, the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain 
tensor are used.

The elastic strain energy density is 

 (3-12)

This expression assumes that the initial stress contribution is constant during the 
straining of the material.

TE N S O R  V S .  M A T R I X  F O R M U L A T I O N S

Because of the symmetry, the strain tensor can be written as the following matrix:

A similar representation applies to the stress tensor:

Due to the symmetry, the elasticity tensor can be completely represented by a 
symmetric 6-by-6 matrix as:

σ σex C : εel+ σex C : ε εinel–( )+= =

C

Ws
1
2
---εel : C : εel 2σ0+( ) 1

2
---εel : σ σ0+( )= =

εx εxy εxz

εxy εy εyz

εxz εyz εz

σx σxy σxz

σxy σy σyz

σxz σyz σz
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which is the elasticity matrix.

I S O T R O P I C  M A T E R I A L  A N D  E L A S T I C  M O D U L I

In this case, the elasticity matrix becomes

Different pairs of elastic moduli can be used, and as long as two moduli are defined, 
the others can be computed according to Table 3-1.

TABLE 3-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G) D(λ,μ)
Young’s 
modulus

E = E E

Poisson’s 
ratio

ν = ν

Bulk 
modulus

K = K

Shear 
modulus

G = G G μ

D

D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

C
1111

C
1122

C
1133

C
1112

C
1123

C
1113

C
1122

C
2222

C
2233

C
2212

C
2223

C
2213

C
1133

C
2233

C
3333

C
3312

C
3323

C
3313

C
1112

C
2212

C
3312

C
1212

C
1223

C
1213

C
1123

C
2223

C
3323

C
1223

C
2323

C
2313

C
1113

C
2213

C
3313

C
1213

C
2313

C
1313

= =

D E
1 ν+( ) 1 2ν–( )

---------------------------------------

1 ν– ν ν 0 0 0
ν 1 ν– ν 0 0 0
ν ν 1 ν– 0 0 0

0 0 0 1 2ν–
2

---------------- 0 0

0 0 0 0 1 2ν–
2

---------------- 0

0 0 0 0 0 1 2ν–
2

----------------

=

9KG
3K G+
------------------- μ3λ 2μ+

λ μ+
--------------------

E
2G
-------- 1– 1

2
--- 1 3G

3K G+
-------------------– 

  λ
2 λ μ+( )
---------------------

E
3 1 2ν–( )
------------------------ EG

3 3G E–( )
--------------------------- λ 2μ

3
-------+

E
2 1 ν+( )
---------------------
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According to Table 3-1, the elasticity matrix D for isotropic materials is written in 
terms of Lamé parameters λ and μ,

or in terms of the bulk modulus K and shear modulus G:

O R T H O T R O P I C  A N D  A N I S O T R O P I C  M A T E R I A L S

There are two different ways to represent orthotropic or anisotropic data. The 
Standard (XX, YY, ZZ, XY, YZ, XZ) material data ordering converts the indices as:

Lamé 
parameter 
λ

λ = λ

Lamé 
parameter 
μ

μ = G G μ

Pressure-
wave speed

cp =

Shear-wave 
speed

cs =

TABLE 3-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G) D(λ,μ)

Eν
1 ν+( ) 1 2ν–( )

--------------------------------------- G E 2G–( )
3G E–

---------------------------- K 2G
3

--------–

E
2 1 ν+( )
---------------------

E 1 ν–( )
ρ 1 ν+( ) 1 2ν–( )
------------------------------------------ G 4G E–( )

ρ 3G E–( )
---------------------------- K 4G 3⁄+

ρ
-------------------------- λ 2μ+

ρ
----------------

E
2ρ 1 ν+( )
------------------------- G ρ⁄ G ρ⁄ μ ρ⁄

D

λ 2μ+ λ λ 0 0 0
λ λ 2μ+ λ 0 0 0
λ λ λ 2μ+ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

=

D

K 4G
3

--------+ K 2G
3

--------– K 2G
3

--------– 0 0 0

K 2G
3

--------– K 4G
3

--------+ K 2G
3

--------– 0 0 0

K 2G
3

--------– K 2G
3

--------– K 4G
3

--------+ 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

=
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thus, Hooke’s law is presented in the form involving the elasticity matrix D and the 
following vectors:

COMSOL Multiphysics uses the complete tensor representation internally to perform 
the coordinate system transformations correctly.

Beside the Standard (XX, YY, ZZ, XY, YZ, XZ) Material data ordering, the elasticity 
coefficients can be entered following the Voigt notation. In the Voigt (XX, YY, ZZ, YZ, 

XZ, XY) Material data ordering, the sorting of indices is:

The last three rows and columns in the elasticity matrix D are thus swapped.

Orthotropic Material
The elasticity matrix for orthotropic material in the Standard (XX, YY, ZZ, XY, YZ, XZ) 

Material data ordering has the following structure:

11
22
33

12 21,
23 32,
13 31,

1
2
3
4
5
6

x
y
z

xy
yz
xz

↔ ↔

σx

σy

σz

σxy

σyz

σxz

σx

σy

σz

σxy

σyz

σxz ex

D

εx

εy

εz

2εxy

2εyz

2εxz

εx

εy

εz

2εxy

2εyz

2εxz inel

–

 
 
 
 
 
 
 
 
 
 
 

+=

11
22
33

23 32,
13 31,
12 21,

1
2
3
4
5
6

x
y
z

yz
xz
xy

↔ ↔
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where the components are as follows:

where

The values of Ex, Ey, Ez, νxy, νyz, νxz, Gxy, Gyz, and Gxz are supplied in designated 
fields in the physics interface. COMSOL Multiphysics deduces the remaining 
components—νyx, νzx, and νzy—using the fact that the matrices D and D−1 are 
symmetric. The compliance matrix has the following form:

D

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

=

D11
Ex

2 Ezνyz
2 Ey–( )

Ddenom
----------------------------------------,= D12

ExEy Ezνyzνxz Eyνxy+( )
Ddenom

-----------------------------------------------------------------–=

D13
ExEyEy νxyνyz νxz+( )

Ddenom
----------------------------------------------------------,–= D22

Ey
2 Ezνxz

2 Ex–( )
Ddenom

----------------------------------------=

D23
EyEz Eyνxyνxz Exνyz+( )

Ddenom
-----------------------------------------------------------------,–= D33

EyEz Eyνxy
2 Ex–( )

Ddenom
-----------------------------------------------=

D44 Gxy= ,    D55 Gyz= ,  and D66 Gxz=

Ddenom EyEzνxz
2 ExEy– 2νxyνyzνxzEyEz ExEzνyz

2 Ey
2νxy

2
+ + +=
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The elasticity matrix in the Voigt (XX, YY, ZZ, YZ, XZ, XY) Material data ordering changes 
the sorting of the last three elements in the elasticity matrix:

Anisotropic Material
In the general case of fully anisotropic material, you provide explicitly all 21 
components of the symmetric elasticity matrix D, in either Standard (XX, YY, ZZ, XY, YZ, 

XZ) or Voigt (XX, YY, ZZ, YZ, XZ, XY) Material data ordering.

A X I A L  S Y M M E T R Y

For the linear elastic material, the stress components in coordinate system are

For anisotropic and orthotropic materials, the 4th-order elasticity tensor is defined 
from D matrix according to:

D 1–

1
Ex
------

νyx
Ey
--------–

νzx
Ez
--------– 0 0 0

νxy

Ex
--------–

1
Ey
------

νzy

Ez
--------– 0 0 0

νxz
Ex
--------–

νyz
Ey
--------–

1
Ez
------ 0 0 0

0 0 0 1
Gxy
--------- 0 0

0 0 0 0 1
Gyz
--------- 0

0 0 0 0 0 1
Gxz
---------

=

The values of νxy and νyx are different for an orthotropic material. For a 
certain set of given material data, you must make sure that the definition 
of the indices is consistent with the definition used in COMSOL 
Multiphysics.

D44 Gyz= ,    D55 Gxz= ,  and D66 Gxy=

σij σex
ij

C+
ijkl

εkl εinel kl,–( )=
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The user input D matrix always contains the physical components of the elasticity 
tensor

and the corresponding tensor components are computed internally according to:

For an isotropic material:

where λ and μ are the first and second Lamé elastic parameters and g is the metric 
tensor.

For a hyperelastic material, the second Piola-Kirchhoff stress tensor is computed as

which is computed as the contravariant components of the stress in the local 
coordinate system:

The energy variation is computed as

which can be also written as

σr

σϕ

σz

σrz

σr

σϕ

σz

σrz ex

D

εr

εϕ

εz

2εrz

εr

εϕ

εz

2εrz inel

–

 
 
 
 
 
 
 

+=

Cijkl
phys

C
ijkl Cijkl

phys

gii gjj gkk gll

-----------------------------------------------=

C
ijkl λgijgkl μ gikgjl gilgjk

+( )+=

S 2
C∂

∂Ws=

Sij 2
Cij∂

∂Ws=

S : test ε( ) Sijtest εij( )
i j,
=
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E N T R O P Y  A N D  T H E R M O E L A S T I C I T Y

The free energy for the linear thermoelastic material can be written as

where the strain energy density Ws(ε, T) is given by Equation 3-12. Hence, the stress 
can be found as

and the entropy per unit volume can be calculated as

where T0 is a reference temperature, the volumetric heat capacity ρCp can be assumed 
to be independent of the temperature (Dulong-Petit law), and the elastic entropy is

where α is the thermal expansion coefficient tensor. For an isotropic material, it 
simplifies into

The heat balance equation can be written as

where k is the thermal conductivity matrix, and the heat source caused by the 
dissipation is

where  is the strain-rate tensor and the tensor τ represents all possible inelastic stresses 
(for example, a viscous stress).

Using the tensor components, the heat balance can be rewritten as:

Srtest εr( ) Sϕtest εϕ( ) Sztest εz( ) 2Srztest εrz( )+ + +

F ρf0 T( ) Ws ε T,( )+=

σ
ε∂

∂F
 
 

T ε∂
∂W
 
 

T
C : ε εinel–( )= = =

T∂
∂F
 
 

ε
– ρCp T T0⁄( )log Selast+=

Selast α : σ=

Selast α σx σy σz+ +( )=

ρCp t∂
∂T T

t∂
∂ Selast+ ∇ k T∇( )⋅ Qh+=

Qh τ : ε·=

ε·
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 (3-13)

In many cases, the second term can be neglected in the left-hand side of Equation 3-13 
because all Tαmn are small. The resulting approximation is often called uncoupled 
thermoelasticity.

Nonlinear Elastic Material Models

As opposed to hyperelastic materials, where the stress-strain relationship becomes 
significantly nonlinear at moderate to large strains, nonlinear elastic materials present 
nonlinear stress-strain relationships even at infinitesimal strains.

Here, nonlinear effects on the strain tensor are not as relevant as the nonlinearity of 
the elastic properties. Important materials of this class are Ramberg-Osgood for 
modeling metal and other ductile materials, and the Duncan-Chang soil model.

The nonlinear elastic materials as such do not include strain-rate nor stress-rate in the 
constitutive equations. It is however possible to add linear viscoelasticity to these 
materials.

For a nonlinear material to be “energetically sound” it should be possible to take any 
path in stress-strain space and return to the undeformed state without producing or 
dissipating any net energy. A requirement is then that the bulk modulus depends only 
on the volumetric strain, and the shear modulus depends only on the shear strains.

The splitting into volumetric and deviatoric components of the stress tensor helps 
ensuring the “path independent” restriction for isotropic nonlinear elastic materials.

For isotropic linear elastic materials, the stress tensor follows Hooke’s law:

For a more detailed discussion, see Equation 3-11.

It is possible to split the stress and elastic strain tensors into the deviatoric and 
volumetric contributions

and

ρCp t∂
∂T Tαmn t∂

∂ σmn

m n,
+ ∇ k T∇( )⋅ Qh+=

σ σex C : εel+ σex C : ε εinel–( )+= =

σ dev σ( ) 1
3
---trace σ( )I+=
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Assuming only elastic stresses in linear isotropic elastic medium, Hooke’s law simplifies 
to

where K is the bulk modulus and G is the shear modulus. By using the convention that 
the pressure is the mean stress defined as positive in compression,

The volumetric strain (positive in tension) is

The linear relation between pressure and volumetric elastic strain is thus

The deviatoric stress and deviatoric elastic strain tensors are related by the shear 
modulus

By using the contraction of the deviatoric stress and strain tensors, we can alternatively 
relate the invariants of these tensors

For a body subject to pure torsion on the plane 12, the stress tensor components are 
zero except the shear stress σ12 = σ21 = τ, and also the elastic strain tensor has zero 
components beside the shear strains on that plane ε12 = ε21 = γel/2. 

We can then write

and

εel dev εel( ) 1
3
---trace εel( )I+=

σ dev σ( ) 1
3
---trace σ( )I+ 2Gdev εel( ) Ktrace εel( )I+= =

p 1
3
---– trace σ( )=

εel,vol trace εel( )=

p Kεel,vol–=

dev σ( ) 2Gdev εel( )=

J2 σ( ) 1
2
---dev σ( ):dev σ( ) 2G( )2J2 εel( )= =

J2 σ( ) 1
2
---dev σ( ):dev σ( ) τ2

= =
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The shear stress on the plane  is then related to the elastic shear strain 
 by the shear modulus

Nonlinear Moduli
For nonlinear elastic materials, there is a nonlinear relation between shear stress and 
shear strain and/or a nonlinear relation between pressure and volumetric strain.

For the purpose of this discussion,  and  are used 
alternatively as variables.

In the most general case:

 and 

Tangent and secant moduli
The tangent shear modulus Gt(γel) and the secant shear modulus Gs(γel) in the most 
general case depend non-linearly on the shear strain, and are defined as

 and 

The tangent bulk modulus Kt(εel,vol) and the secant bulk modulus Ks(εel,vol) depend 
on the elastic volumetric strain, and are defined as

 and 

For linear elastic materials, it is clear that Gt = Gs = G and Kt = Ks = K, but this is not 
the case for nonlinear elastic materials.

At zero strain, the secant and shear moduli are equal to each other Gs(0) = Gt (0) and 
Ks(0) = Kt (0).

The nonlinear elastic materials described in the next sections are represented by 
introducing nonlinear secant shear and/or bulk moduli.

Geometric nonlinearity
The nonlinear elastic material models are primarily intended for small strain analysis. 
When used in a geometrically nonlinear study step, the strains will be interpreted as 

J2 εel( ) 1
2
---dev εel( ):dev εel( ) 1

4
---γel

2
= =

τ J2 σ( )=

γel 2ε12 2 J2 εel( )= =

τ Gγel=

τ J2 σ( )= γel 2 J2 εel( )=

p p εel,vol( )= τ τ γel( )=

Gt
∂τ

∂γel
---------= Gs

τ
γel
------=

Kt
∂p

∂εel,vol
----------------–= Ks

p
εel,vol
-------------–=
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Green-Lagrange strains and the stresses will be interpreted as second Piola-Kirchhoff 
stresses. This is relevant for a situation with large rotations but small strains. If the 
strains become larger than a few percent, then you must be careful when interpreting 
input parameters and results since the strain and stress tensors also have a nonlinear 
dependence on the displacements.

R A M B E R G - O S G O O D

Ramberg-Osgood material model (Ref. 1) is a non-linear elastic material commonly 
used to model plastic deformation in metals, but it also often used in soil engineering. 
As it is an elastic model, it can only represent plasticity during pure on-loading 
conditions.

For uniaxial extension, the stress-strain curve is defined by the expression

Here, E means the initial Young’s modulus, and εref is the strain at a reference stress 
σref. The parameter n is the stress exponent. It is common to use εref = 0.002, so σref 
is the stress at 0.2% strain, typically denoted by the symbol σ0.2. This parameter has 
several names depending on the literature: 0.2% offset yield strength, 0.2% proof stress, 
0.2% proof strength, or 0.2% yield stress. Typical values for stainless steel are E = 200 
GPa, σ0.2 = 600 GPa, and n = 4.8.

The linear strain is given by

and the nonlinear strain by

The total strain is the sum of linear an nonlinear strains

In order to avoid a circular dependence of internal variables, the nonlinear strain εnl is 
defined with an auxiliary degree of freedom, so the stress reads  σ = E(ε − εnl).

ε σ
E
---- εref

σ
σref
--------- 
 n

+=

εel
σ
E
----=

εnl εref
σ

σref
--------- 
 n

=

ε εel εnl+
σ
E
---- εref

σ
σref
--------- 
  n

+= =
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Ramberg-Osgood material in soil engineering
In soil engineering, it is common to write Ramberg-Osgood material with the 
stress-strain expression

 (3-14)

so at the reference stress σref, the strain is ε = (1 + α)σref/E. It is common to use α = 3/
7, so σref represents the stress level at which the secant Young’s modulus has been 
reduced to 70% its initial value: E0.7 = E/(1 + α) = 0.7E. At this reference stress the 
strain is ε = σref/E0.7.

POW E R  L A W

For this type of material the shear stress is related to the shear strain by the strain 
exponent n and a reference shear strain γref (Ref. 2)

The secant shear modulus is given by the power law relation

The strain exponent controls the nonlinear deformation:

• For n > 1 the material behaves as a dilatant (shear-thickening) solid

• For n = 1 the material is linear elastic

• For 0 < n< 1 the material behaves as pseudoplastic (shear-thinning) solid

• For n = 0 the material is perfectly plastic 

B I L I N E A R  E L A S T I C

The most commonly mentioned model of “bilinear elastic” material is defined with 
two different bulk moduli for either tension and compression. Commonly, brittle 
materials like graphite and ceramics exhibit this behavior. The secant bulk modulus 
reads:

 for εel,vol > 0 

and 

ε σ
E
---- α

σref
E

--------- σ
σref
--------- 
  n

+=

τ G0γref
γ

γref
------- 
  n

=

Gs G0
γ

γref
------- 
 n 1–

=

K Kt=
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 for εel,vol < 0 

where εel,vol is the volumetric strain, Kc is the bulk modulus for compression, and Kt 
the bulk modulus for tension.

U N I A X I A L  D A T A

Many nonlinear stress-strain curves are measured in a tensile test, for which a nonlinear 
curve of force vs displacement is obtained.

If only the uniaxial behavior is measured, the measurements do not fully define the 
material behavior. An extra assumption is needed. This material model allows you to 
assume either a constant Poisson’s ratio, or a constant bulk modulus.

For the uniaxial tensile test, the principal stresses are σ1 = σmises, σ2 = σ3 = 0. The 
principal (axial) strain is positive, and the other two strains (transverse) are negative and 
related by the Poisson’s ratio ε2 = ε3 = −νε1.

For uniaxial compression, the axial strain is negative, and the other two strains 
(transverse) are positive.

The uniaxial test defines then the relation between the axial stress and axial strain as

where Es is the secant Young’s modulus, and the axial stress σax is considered as a 
function of axial strain εax. Thus

At zero strain, the secant Young’s modulus is defined as 

Assuming a constant Poisson’s ratio, the secant shear modulus is then defined as

and the secant bulk modulus as

K Kc=

σax Esεax=

Es
σax
εax
---------=

Es
dσax
dεax
-------------

εax 0=

=

Gs
Es

2 1 ν+( )
---------------------=
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When using the constant bulk modulus assumption, the secant shear modulus is 
instead defined as

H Y P E R B O L I C  L A W

An hyperbolic relation between shear stress and shear strain is obtained by setting the 
secant shear modulus

where the strain exponent n and a reference shear strain γref control the shape of the 
hyperbola.

For hyperbolic material models, the maximum shear modulus is occurs at zero shear 
strain, so practitioners might call G the “maximum shear modulus” and use the 
notation Gmax. Sometimes it is also called “small strain shear modulus”.

H A R D I N - D R N E V I C H

The Hardin-Drnevich model (Ref. 3) is an hyperbolic soil model (with n = 1) defined 
by two input parameters: the initial shear modulus G and a reference shear strain γref 

This nonlinear soil model is commonly used for modeling soil dynamics in earthquake 
engineering problems. 

Since τ = Gsγ, the shear stress is bounded by τmax = Gγref as the shear strain increases.

The hyperbolic Hardin-Drnevich model is normally used for quantifying stiffness 
reduction curves in soils. Commonly, the reference shear strain γref is replaced by the 
reference shear strain at which the secant shear modulus has been decreased to 70% its 
initial value. Calling this shear strain value γ0.7, the reference strain is written as

Ks
Es

3 1 2ν–( )
------------------------=

Gs
3KEs

9K Es–
--------------------=

Gs G 1

1 γ
γref
------- 
  n

+
--------------------------=

Gs G 1

1 γ
γref
-------+

-----------------=
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and the secant shear modulus as 

so that when γ = γ0.7 the secant shear modulus is Gs = 0.7G.

D U N C A N - C H A N G

The original model was originated by Kondner to fit triaxial test data for undrained 
soils. Duncan and Chang (Ref. 4) and other coworkers (Ref. 5) developed this 
hyperbolic model to its current state. The material model is written in terms of the axial 
and radial stresses σ1 and σ3 and the axial strain ε, and it describes the stress-strain 
curve by fitting the hyperbola

here a and b are material parameters obtained by curve fitting data from the triaxial 
test. The parameter a is related to the initial Young's modulus E

and the parameter b defines the asymptote of the hyperbola, which is related to the 
ultimate value of σ1 − σ3 denoted qult

The ultimate value qult is related to the strength of the soil. 

For the triaxial test, the axial strain ε is related to the shear strain γ by the Poisson’s 
ratio as

and the axial and radial stresses are related to the shear stress as .

It is possible then to write the relation between shear stress and shear strain as

γref
7
3
---γ0,7=

Gs G 1

1 3
7
--- γ

γ0,7
---------+

-----------------------=

σ1 σ3–
ε

a bε+
----------------=

a 1
E
----=

1
b
--- σ1 σ3–( )ult qult= =

ε 3
2 1 ν+( )
---------------------γ=

σ1 σ3– 3τ=
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Since the initial shear modulus is related to the initial Young’s modulus as 
, we can alternatively write this stress-strain relation as

which is an hyperbolic law with a secant shear modulus of

D U N C A N - S E L I G

The Duncan-Selig model is a combination of the Duncan’s hyperbolic material model 
(Ref. 4, Ref. 5) and Selig’s model to describe nonlinear bulk modulus behavior. Selig 
(Ref. 6) further developed the model of Duncan et al. in order to include a nonlinear 
volumetric response in soils.

The model defines the nonlinear volumetric response for the pressure as 

where εel,vol is the volumetric strain, and εult is the asymptote of the hyperbola, the 
maximum value for the volumetric compression. Note that K represents the bulk 
modulus at zero strain.

The secant (nonlinear) bulk modulus is defined for this material model as

τ

1
2 1 ν+( )
---------------------γ

1
E
---- 1

qult
-------- 3

2 1 ν+( )
---------------------γ+

---------------------------------------------=

G E 2 1 ν+( )⁄=

τ γ
1
G
---- 3γ

qult
----------+

---------------------=

Gs
G

1 G
qult
-------- 3γ+

-----------------------------=

p K–
εel,vol

1
εel,vol
εult

-------------–

-----------------------=

Ks K 1

1
εel,vol
εult

-------------–

-----------------------=
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U S E R  D E F I N E D

The user defined option allows you to write explicitly how the pressure depends on the 
elastic volumetric strain. This could be an analytic function or data interpolated from 
a table.

Linear Viscoelastic Materials

Viscoelastic materials have a time-dependent response even if the loading is constant 
in time. Many polymers and biological tissues exhibit this behavior. Linear 
viscoelasticity is a commonly used approximation where the stress depends linearly on 
the strain and its time derivatives (strain rate). Also, linear viscoelasticity deals with the 
additive decomposition of stresses and strains. It is usually assumed that the viscous 
part of the deformation is incompressible so that the volumetric deformation is purely 
elastic.

G E N E R A L I Z E D  M A X W E L L  M O D E L

For isotropic linear elastic materials in the absence of inelastic stresses, Hooke’s law in 
Equation 3-11 reduces to 

 

where the elastic strain tensor εel = ε − εinel represents the total strain minus initial and 
inelastic strains, such as thermal strains.

The stress tensor can be decomposed into a pressure and a deviatoric stress:

The pressure, mean stress, or volumetric stress, is given with a positive sign in 
compression

and the deviatoric stress is computed from the total stress minus the volumetric 
contribution

The elastic volumetric strain  can be called in user-defined 
expressions by referencing the variables solid.eelvol, where solid is 
the Name of the physics interface node.

εel,vol

σ C : εel=

σ pI– σd+=

p 1
3
---– trace σ( )=
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The elastic strain tensor εel can in the same way be decomposed into volumetric and 
deviatoric components

with the volumetric elastic strain given by

and the deviatoric contribution by

For isotropic linear elastic materials, the pressure is then related to the volumetric 
elastic deformation by the bulk modulus K

and the deviatoric stress tensor is linearly related to the deviatoric elastic strain tensor 
by the shear modulus G

The total stress in Equation 3-11 is then 

In case of geometric nonlinearity, σ represents the second Piola-Kirchhoff stress tensor 
and εel the elastic Green-Lagrange strain tensor.

For viscoelastic materials, the deviatoric stress σd is not linearly related to the deviatoric 
strain εd but it also depends on the strain history. It is normally defined by the 
hereditary integral:

σd dev σ( ) σ pI+= =

εel
1
3
---εel,volI εd+=

εel,vol trace εel( )=

εd dev εel( )=

p 1
3
---– trace σ( ) Ktrace εel( )– Kεel,vol–= = =

σd dev σ( ) 2Gdev εel( ) 2Gεd= = =

σ Kεel,volI 2Gεd+=

σd 2 Γ t t'–( )
εd∂
t'∂

-------- t'd

0

t

=
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The function Γ(t) is called the relaxation shear modulus function (or just relaxation 
function) and it can be found by measuring the stress evolution in time when the 
material is held at a constant strain.

The relaxation function is often approximated by a Prony series:

A physical interpretation of this approach, often called the generalized Maxwell 
model, is shown in Figure 3-1 

Figure 3-1: Generalized Maxwell model.

Hence, G is the stiffness of the main elastic branch, Gm represents the stiffness of the 
spring in branch m, and τm is the relaxation time constant of the spring-dashpot pair 
in branch m. 

The auxiliary strain variable qm is introduced to represent the extension of the 
corresponding abstract spring, and the auxiliary variables γm = ε − qm represent the 
extensions in the dashpots.

The shear modulus of the elastic branch G is normally called the long-term shear 
modulus, or steady-state stiffness, and is often denoted with the symbol . The 
instantaneous shear modulus G0 is defined as the sum of the stiffness of all the branches

This is the stiffness when the external load is applied much faster than the shortest 
relaxation time of any viscous branch.

Γ t( ) G Gm
t

τm
-------– 

 exp

m 1=

N

+=

σd

σd

ε
η1

τ1

η2

τ2

.....
ηm

τm

G1 G2 Gm
G

qm

γm

σm

G∞

G0 G Gm

m 1=

N

+=
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The relaxations time τm is normally measured in the frequency domain, so the viscosity 
of the dashpot is not a physical quantity but instead it is derived from stiffness and 
relaxation time measurements. The viscosity of each branch can be expressed in terms 
of the shear modulus and relaxation time as

The stress per branch can be written either in terms of the strain in the spring qm or 
the strain in the dashpot γm

The sum of the stresses in the viscoelastic branches is then computed from

The total stress in Hooke’s law (Equation 3-11) is then augmented by the viscoelastic 
stress σq

 (3-15)

Computing the Stress on Each Branch
The auxiliary variable γm is a symmetric strain tensor, which has as many components 
as the number of strain components of the problem class. Since the stress per branch 
is written as

the auxiliary variables γm can be computed by solving the ODE

 (3-16)

The relation between viscosity and relaxation time is

so that Equation 3-16 can equivalently be written as

 (3-17)

ηm Gmτm=

σm 2Gmqm 2ηmγ·m 2Gm ε γm–( )= = =

σq σm

m 1=

N

 2Gm ε γm–( )

m 1=

N

= =

σ σ0 C : εel σq+ +=

σm 2Gmqm 2ηmγ·m 2Gm ε γm–( )= = =

ηmγ·m Gm ε γm–( )=

ηm Gmτm=

τmγ·m γm+ ε=
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The viscoelastic strain variables γm are treated as additional degrees of freedom. The 
shape functions are chosen to be one order lower than those used for the displacements 
because these variables add to the strains and stresses computed from displacement 
derivatives. The viscoelastic strain variables do not require continuity so discontinuous 
shape functions are used.

Energy Dissipation
The dissipated energy density rate (SI unit: W/m3) in each branch m is 

The rate of total dissipated energy density in the Generalized Maxwell material is then

In order to compute the dissipated energy density, the variable  is integrated over 
time. For frequency domain studies, the dissipation of viscous forces averaged over a 
time period 2π/ω is computed from the shear loss modulus G’’ as

The viscoelastic strain variables γm are called solid.lemm1.vis1.ev, 
where solid is the Name of the physics interface node, and lemm1 is the 
name of the elastic material node.

W
·

m σm:γ·m=

W
·

v W
·

m

m 1=

N

=

W
·

v

Wv ωG''εd
˜  : conj εd

˜( )=
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S T A N D A R D  L I N E A R  S O L I D  M O D E L

The standard linear solid model, also called SLS model, Zener model, or 
three-parameter model, is a simplification of the generalized Maxwell model with only 
one spring-dashpot branch: 

Figure 3-2: Standard linear solid (SLS) model.

The stress in the single branch is computed as 

where the relaxation time is related to the stiffness and relaxation time as η1 = τ1G1.

The auxiliary strain tensor γ1 is computed after solving by the ODE

and the dissipated energy density rate of the single branch is calculated from

σd

σd

η1

G1
Gε

τ1 

q1

γ1 

σq

σq 2G1q1 2η1γ·1 2G1 ε γ1–( )= = =

τ1γ·1 γ1+ ε=

W
·

v σq:γ·1=
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K E L V I N - VO I G T  M O D E L

The Kelvin–Voigt viscoelastic model is represented by a spring connected in parallel 
with a damper:

Figure 3-3: Kelvin-Voigt model.

The stress tensor in the viscous branch is computed from the elastic strain rate

 (3-18)

so there is no need to add the extra DOFs to compute the auxiliary strain tensor γ.

The relaxation time relates the viscosity and shear modulus by η = τG.

The dissipated energy density rate of the Kelvin-Voigt model is then computed from 
its rate

TE M P E R A T U R E  E F F E C T S

For many polymers, the viscoelastic properties have a strong dependence on the 
temperature. A common assumption is that the material is thermorheologically simple 
(TRS). In a material of this class, a change in the temperature can be transformed 
directly into a change in the time scale. The reduced time is defined as

where αT(T) is a temperature-dependent shift function. 

The implication is that the problem can be solved using the original material data, 
provided that the time is transformed into the reduced time. 

σd

σd

ε η G

τ

σq

σq 2ηε· 2Gτε·= =

W
·

v σq:ε·=

tr
t'd

αT T t'( )( )
------------------------

0

t

=
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Think of the shift function αT(T) as a multiplier to the viscosity in the dashpot in the 
Generalized Maxwell model. This shifts the relaxation time, so Equation 3-17 for a 
TRS material is modified to

For the SLS model, the shift applies to a single branch

and for the Kelvin-Voigt model, it applies to the viscosity in the damper.

Williams-Landel-Ferry Shift
One commonly used shift function is defined by the WLF (Williams-Landel-Ferry) 
equation:

where a base-10 logarithm is assumed. This shift is only valid over a certain range of 
temperature, typically around the glass transition temperature.

The first step to compute the shift factor αT consists of building a master curve based 
on experimental data. To do this, the curves of the viscoelastic properties (shear 
modulus, Young’s modulus, and so forth.) versus time or frequency are measured at a 
reference temperature T0. Then, the same properties are measured at different 
temperatures.

The shift value of each curve with respect to the master curve obtained at the 
temperature T0 defines the shift factor αT(T). The constants C1 and C2 are material 
dependent and are calculated after plotting log(αT) versus T − T0. 

Since the master curve is measured at an arbitrary reference temperature T0, the shift 
factor αT(T) can be derived with respect to any temperature, and it is commonly taken 
as the shift with respect to the glass transition temperature. The values C1 = 17.4 and 
C2 = 51.6 K are reasonable approximations for many polymers at this reference 
temperature.

αT T( )τmγ·m γm+ ε=

αT T( )τ1γ·1 γ1+ ε=

αT( )log
C– 1 T T0–( )

C2 T T0–( )+
-----------------------------------=

αT(T0) = 1 so that T0 is the temperature at which the master curve is 
given. If the temperature drops below T0 − C2, the WLF equation is no 
longer valid.
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Arrhenius Shift
Below the Vicat softening temperature, the shift factor in polymers is normally 
assumed to follow an Arrhenius law. In this case, the shift factor is given by the 
equation

here, a base-e logarithm is assumed, Q is the activation energy (SI unit: : J/mol), and 
R is the universal gas constant.

S T A T I O N A R Y  A N A L Y S I S

For stationary analysis it is possible to select either the long-term stiffness, in which 
case the stiffness of the viscoelastic branches is neglected, or the instantaneous stiffness, 
in which case the contribution from all branches is used.

The instantaneous shear modulus G0 is defined as the sum of the stiffness of all the 
branches

F R E Q U E N C Y  D O M A I N  A N A L Y S I S  A N D  D A M P I N G

For frequency domain analysis, the frequency decomposition is performed as 

Equation 3-15 and Equation 3-17 are then simplified to

where the shear storage modulus G’ and the shear loss modulus G” are defined for the 
generalized Maxwell model as

 and 

αT( )log Q
R
---- 1

T
---- 1

T0
------– 

 =

G0 G Gm

m 1=

N

+=

σd real s̃dejωt( )=
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˜ ejωt( )=

σ̃d 2 G' jG''+( )εd
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1 ωτm( )2
+

----------------------------

m 1=
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=
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and for the SLS model as

 and 

and for the Kelvin-Voigt model as

 and 

The internal work of viscous forces averaged over a time period 2π/ω is computed as

Large Strain Viscoelasticity

The implementation for large strain viscoelasticity follows the derivation by Holzapfel 
(Ref. 1). 

The generalized Maxwell model is based on the splitting of the strain energy density 
into volumetric, isochoric and the contribution from the viscoelastic branches

The strain energy in the main hyperelastic branch is normally denoted with the 
superscript ∞ to denote the long-term equilibrium (as ).

The second Piola-Kirchhoff stress is computed from

where the auxiliary second Piola-Kirchhoff stress tensors Qm are defined as

G' G G1
ωτ1( )2

1 ωτ1( )2
+

---------------------------+= G'' G1
ωτ1

1 ωτ1( )2
+

---------------------------=

G' G= G'' ηω Gτω= =

Qh ωG''εd
˜  : conj εd

˜( )=

See also the description of Viscoelasticity in the Solid Mechanics interface 
documentation.

Ws Wiso Wvol ψm

m 1=

N

+ +=

t ∞→

S 2
C∂

∂Ws Siso Svol Qm

m 1=

N

+ += =

Qm 2
C∂

∂ψm=
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The time evolution of the auxiliary stress tensor Qm in each viscoelastic branch is given 
by the rate 

here, Siso,m is the isochoric second Piola-Kirchhoff stress tensor in the branch m. 
These tensors are derived from the strain energy density in the main hyperelastic 
branch and the energy factors βm as

so the time evolution of the auxiliary stress tensor Qm is given by

This equation is not well suited for modeling prestressed bodies. Applying the change 
of variables

the time evolution of the auxiliary stress tensor qm reads

TE M P E R A T U R E  E F F E C T S

The same options for defining Temperature Effects as described for Linear Viscoelastic 
Materials are available for large strain viscoelasticity.

Hyperelastic Material Models

A hyperelastic material is defined by its elastic strain energy density Ws, which is a 
function of the elastic strain state. It is often referred to as the energy density. The 
hyperelastic formulation normally gives a nonlinear relation between stress and strain, 
as opposed to Hooke’s law in linear elasticity.

Most of the time, the right Cauchy-Green deformation tensor C is used to describe 
the current state of strain (although one could use the left Cauchy-Green tensor B, the 
deformation gradient tensor F, and so forth), so the strain energy density is written as 
Ws(C).

Q
·

m
1

τm
-------Qm+ S

·
iso,m=

Siso m, 2
C∂

∂Wiso m, 2βm C∂
∂Wiso βmSiso= = =

Q
·

m
1

τm
-------Qm+ βmS

·
iso=

qm βmSiso Qm–=

τmq·m qm+ βmSiso=
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For isotropic hyperelastic materials, any state of strain can be described in terms of 
three independent variables—common choices are the invariants of the right 
Cauchy-Green tensor C, the invariants of the Green-Lagrange strain tensor, or the 
principal stretches.

Once the strain energy density is defined, the second Piola-Kirchhoff stress in the local 
coordinate system is computed as

In the general case, the expression for the energy Ws is symbolically evaluated down to 
the components of C using the invariants definitions prior to the calculations of the 
components of the second Piola-Kirchhoff stress tensor. The differentiation is 
performed in components on the local coordinate system. 

T H E R M A L  E X P A N S I O N

If thermal expansion is present, a stress-free volume change occurs. This is a pure 
volumetric change, so the multiplicative decomposition of the deformation gradient 
tensor in Equation 3-4 implies 

Here, the thermal volume ratio, Jth, depends on the thermal stretch λth, which for 
linear thermal expansion in isotropic materials can be written in terms of the isotropic 
coefficient of thermal expansion, αiso, and the absolute change in temperature

 and 

S 2
C∂

∂Ws=

In Equation View, the definition of the stress components are shown as 
solid.Sl11 = 2*d(solid.Ws,solid.Cl11),
solid.Sl12 = d(solid.Ws,solid.Cl12) etc. 
The factor 2 in front of the differentiation operator for the shear stresses 
is omitted, since the symmetry in the Cauchy-Green tensor will cause two 
equal contributions.

Modeling Geometric Nonlinearity

Jel
det F( )

det Fth( )
--------------------- J

Jth
--------= =

Jth λth
3= λth 1 αiso T Tref–( )+=
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Here, the term αiso(T−Tref) is the thermal strain. The isotropic thermal gradient is 
therefore a diagonal tensor defined as

When the coefficient of thermal expansion α is anisotropic, the thermal strain is 
computed from

and the anisotropic thermal gradient is defined as

H Y G R O S C O P I C  S W E L L I N G

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain depends linearly on the moisture content

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. The coefficient of hygroscopic 
swelling can represent isotropic or anisotropic swelling. The anisotropic hygroscopic 
gradient is defined as

H Y P E R E L A S T I C I T Y  W I T H  P L A S T I C I T Y

It is possible to combine the hyperelastic material models with plasticity. Since these 
models are primarily used for large strain applications, only the large strain plasticity 
formulation is available. The decomposition between elastic and plastic deformation is 
made using a multiplicative decomposition of the deformation gradient tensor,

Fth λthI=

εth α T Tref–( )=

Fth I εth+=

The internal variables for the thermal stretch and the thermal volume 
ratio are named solid.stchth and solid.Jth.

εhs βh cmo cmo,ref–( )=

Fhs I εhs+=

Fel FFpl
 1–

=
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Here, the plastic deformation tensor Fpl depends on the plastic flow rule, yield 
function, and plastic potential.

I S O C H O R I C  E L A S T I C  D E F O R M A T I O N

For some classes of hyperelastic materials it is convenient to split the strain energy 
density into volumetric (also called dilatational) and isochoric (also called 
distortional or volume-preserving) contributions. The elastic deformation tensor is 
then multiplicatively decomposed into the volumetric and isochoric components 

with Fel,vol as the volumetric elastic deformation (a diagonal tensor) and  the 
isochoric elastic deformation gradient. Isochoric deformation means that the volume 
ratio is kept constant during deformation, so the isochoric elastic deformation is 
computed by scaling it by the elastic volume ratio. The elastic volume ratio is defined 
by

and the volumetric deformation as

 

By using Jel it is possible to define the isochoric-elastic deformation gradient

the isochoric-elastic right Cauchy-Green tensor

and the isochoric-elastic Green-Lagrange strain tensor 

This scaling changes the eigenvalues of the tensor, but not its principal directions, so 
the original and isochoric tensors remain coaxial to each other. 

• Multiplicative Decomposition

• Plastic Flow for Large Strains

Fel Fel,volFel=

Fel

Jel det Fel( ) det Fel,vol( )= =

Fel,vol Jel
1 3⁄ I=

Fel Jel
 1/3– Fel=

Cel Fel
T

Fel Jel
 2/3– Cel= =

εel
1
2
--- Cel I–( )=
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Some authors call  and  the modified tensors. Note that

 

The other two invariants normally used together with Jel are the first and second 
invariant of the isochoric-elastic right Cauchy-Green deformation tensor

 and 

In these equations:

Since , the third invariant is never explicitly used. 

The invariants of the isochoric (modified) elastic Green-Lagrange strain tensor are 
related to the invariants of the isochoric-elastic right Cauchy-Green deformation 
tensor

Fel Cel

det Fel( ) det Cel( )= 1=

The internal variables for the isochoric-elastic Cauchy-Green deformation 
tensor in local coordinate system are named solid.CIel11, 
solid.CIel12, and so on.

I1 Cel( ) I2 Cel( )

I1 Cel( ) trace Cel( ) Jel
2/3– I1 Cel( )= =

I2 Cel( ) 1
2
--- I1

2 Cel( ) trace Cel
2

( )–( ) Jel
4/3– I2 Cel( )= =

I3 Cel( ) det Cel( ) 1= =

The internal variables for the invariants Jel, , and  are 
named solid.Jel, solid.I1CIel, and solid.I2CIel.

I1 Cel( ) I2 Cel( )

I1 εel( ) trace εel( ) 1
2
--- I1 Cel( ) 3–( )= =

I2 εel( ) 1
2
--- I1

2 εel( ) trace εel
2( )–( ) 1

4
--- I2 Cel( ) 2I1 Cel( )– 3+( )= =
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s

N E A R L Y  I N C O M P R E S S I B L E  H Y P E R E L A S T I C  M A T E R I A L S

If the Nearly incompressible material check box is selected for the Hyperelastic Material 
node, the total elastic energy function is split into two parts as:

where Wiso is the isochoric strain energy density and Wvol is the volumetric strain 
energy density.

The isochoric strain energy density can be entered as an expression involving the 
following: 

• Components of the isochoric elastic right Cauchy-Green tensor  in the local 
coordinate system.

• Principal invariants of the isochoric elastic right Cauchy-Green tensor .

• Principal invariants of the isochoric elastic Green-Lagrange strain .

The volumetric strain energy density, Wvol, can only be defined as an expression of the 
elastic volumetric deformation. The most commonly used form is:

 (3-19)

where κ is the initial bulk modulus. From here, the volumetric stress (pressure) is 
calculated as

When the expression in Equation 3-19 is used, the pressure becomes linearly related 
to the volume change:

 

The second Piola-Kirchhoff stress is then given by

I3 εel( ) det εel( ) 1
8
--- I1 Cel( ) I2 Cel( )–( )= =

The internal variables for the invariants of the isochoric elastic 
Green-Lagrange strain tensor are named solid.I1eIel, solid.I2eIel, 
and solid.I3eIel.

Ws Wiso Wvol+=

Cel

Cel

εel

Wvol Jel( ) 1
2
---κ Jel 1–( )2

=

pm
Wvol∂

J∂
--------------–=

pm κ J 1–( )–=
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 (3-20)

and the Cauchy stress tensor by

T H E  L O C K I N G  P R O B L E M

A numerical scheme is said to exhibit locking if the accuracy of the approximation 
deteriorates as a parameter tends to a limiting value (Ref. 11). Finite elements in solid 
mechanics are said to “lock” when exhibiting an unphysical response to deformation 
(Ref. 12). Locking can occur for many different reasons. For linear elastic materials, 
this typically happens as Poisson’s ratio tends to 0.5, or the bulk modulus is much 
larger than the shear modulus. Numerical errors arise because the shape functions are 
unable to properly describe the volume preserving deformation.

To avoid the locking problem in computations, the mixed formulation replaces pm in 
Equation 3-20 with a corresponding interpolated pressure help variable pw, which 
adds extra degrees of freedom to the ones defined by the displacement vector u. 

The general procedure is the same as when the Nearly incompressible material check 
box is selected for the Linear Elastic Materials node.

T H E O R Y  F O R  T H E  P R E D E F I N E D  H Y P E R E L A S T I C  M A T E R I A L  M O D E L S

Different hyperelastic material models are constructed by specifying different elastic 
strain energy expressions. This module has several predefined material models and also 
has the option to enter user-defined expressions for the strain energy density.

N E O - H O O K E A N

The strain energy density for the compressible version of the Neo-Hookean material is 
written in terms of the elastic volume ratio Jel and the first invariant of the elastic right 
Cauchy-Green deformation tensor I1(Cel) (Ref. 10).

Here, λ and μ are the Lamé coefficients.

The nearly incompressible version uses the isochoric invariant  and the initial 
bulk modulus κ

S pmJC 1–
– 2

Wiso∂
C∂

--------------+=

σ J 1– FSFT p– mI 2J 1– F
Wiso∂

C∂
--------------FT+= =

Ws
1
2
---μ I 1 3–( ) μ Jel( )ln–

1
2
---λ Jel( )ln[ ]2

+=

I1 Cel( )
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S T  VE N A N T - K I R C H H O F F

One of the simplest hyperelastic material models is the St Venant-Kirchhoff material, 
which is an extension of a linear elastic material into the hyperelastic regime.

The elastic strain energy density is written with two parameters (the two Lamé 
coefficients) and two invariants of the elastic Green-Lagrange strain tensor, I1(εel) and 
I2(εel)

Here, λ and μ are the Lamé parameters.

The nearly incompressible version uses the isochoric invariants  and , 
and the initial bulk modulus κ is calculated from the Lamé parameters κ = λ+2μ/3

M O O N E Y - R I V L I N ,  TW O  P A R A M E T E R S

Only a nearly incompressible version is available, and the elastic strain energy density 
is written in terms of the two isochoric invariants of the elastic right Cauchy-Green 
deformation tensors  and , and the elastic volume ratio Jel

Ws
1
2
---μ I1 3–( ) 1

2
---κ Jel 1–( )2

+=

See also the description of the Neo-Hookean material model in the Solid 
Mechanics interface documentation.

Ws
1
2
--- λ 2μ+( )I1

2 2μI2–=

I1 εel( ) I2 εel( )

Ws
1
2
--- λ 2μ+( )I1

2 2μI2–
1
2
---κ Jel 1–( )2

+=

See also the description of the St Venant-Kirchhoff material model in the 
Solid Mechanics interface documentation.

I1 Cel( ) I2 Cel( )

Ws C10 I1 3–( ) C01 I2 3–( ) 1
2
---κ Jel 1–( )2

+ +=
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The material parameters C10 and C01 are related to the Lamé parameter 
μ = 2(C10+C01).

M O O N E Y - R I V L I N ,  F I V E  P A R A M E T E R S

Rivlin and Saunders (Ref. 2) proposed a phenomenological model for small 
deformations in rubber-based materials on a polynomial expansion of the first two 
invariants of the elastic right Cauchy-Green deformation, so the strain energy density 
is written as an infinite series

with C00 = 0. This material model is sometimes also called polynomial hyperelastic 
material.

In the first-order approximation, the material model recovers the Mooney-Rivlin strain 
energy density

while the second-order approximation incorporates second-order terms

The nearly incompressible version uses the isochoric invariants of the elastic right 
Cauchy-Green deformation tensors

 and 

and it adds a contribution due to the elastic volume ratio. The strain energy density is 
then computed from

See also the description of the Mooney-Rivlin, Two Parameters material 
model in the Solid Mechanics interface documentation.

Ws Cmn I1 3–( )m I2 3–( )n

n 0=

∞


m 0=

∞

=

Ws C10 I1 3–( ) C01 I2 3–( )+=

Ws C10 I1 3–( ) C01 I2 3–( ) C20 I1 3–( )2 C02 I2 3–( )2 C11 I1 3–( ) I2 3–( )+ + + +=

I1 Cel( ) I2 Cel( )

Ws Cmn I1 3–( )m I2 3–( )n 1
2
---κ Jel 1–( )2

+

n 0=

2


m 0=

2

=
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Here, κ is the initial bulk modulus.

M O O N E Y - R I V L I N ,  N I N E  P A R A M E T E R S

The Mooney-Rivlin, nine parameters material model is an extension of the polynomial 
expression to third order terms and the strain energy density is written as

YE O H

Yeoh proposed (Ref. 1) a phenomenological model in order to fit experimental data of 
filled rubbers, where Mooney-Rivlin and Neo-Hookean models were to simple to 
describe the stiffening effect in the large strain regime. The strain energy was fitted to 
experimental data by means of three parameters, and the first invariant of the elastic 
right Cauchy-Green deformation tensors I1(Cel) 

The shear modulus depends on the deformation, and it is calculated as

This imposes a restriction on the coefficients , since .

The nearly incompressible version uses the isochoric invariant of the elastic right 
Cauchy-Green deformation tensor , and it adds a contribution from the elastic 
volume ratio

See also the description of the Mooney-Rivlin, Five Parameters material 
model in the Solid Mechanics interface documentation.

Ws Cmn I1 3–( )m I2 3–( )n 1
2
---κ Jel 1–( )2

+

n 0=

3


m 0=

3

=

See also the description of the Mooney-Rivlin, Nine Parameters material 
model in the Solid Mechanics interface documentation.

Ws c1 I1 3–( ) c2 I1 3–( )2 c3 I1 3–( )3+ +=

μ 2
I1∂

∂Ws
I2∂

∂Ws+
 
 
 

2c1 4c2 I1 3–( ) 6c3 I1 3–( )2+ += =

c1 c2 c3, , μ 0>

I1 Cel( )
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O G D E N

The Neo-Hookean material model usually fits well to experimental data at moderate 
strains but fails to model hyperelastic deformations at high strains. In order to model 
rubber-like materials at high strains, Ogden adapted (Ref. 1) the energy of a 
Neo-Hookean material to

Here αp and μp are material parameters, and λel1, λel2, and λel3 are the principal elastic 
stretches such as Jel = λel1λel2λel3. 

The Ogden model is empirical, in the sense that it does not relate the material 
parameters αp and μp to physical phenomena. The parameters αp and μp are obtained 
by curve-fitting measured data, which can be difficult for N > 2. The most common 
implementation of Ogden material is with N = 2, so four parameters are needed.

The nearly incompressible version uses the isochoric elastic stretches 

and the initial bulk modulus κ

The isochoric elastic stretches define a volume preserving deformation, since

The initial shear modulus is

Ws c1 I1 3–( ) c2 I1 3–( )2 c3 I1 3–( )3 1
2
---κ Jel 1–( )2

+ + +=

See also the description of the Yeoh material model in the Solid 
Mechanics interface documentation.

Ws
μp
αp
------ λel1

αp λel2
αp λel3

αp 3–+ +( )

p 1=

N

=

λeli λeli Jel
1 3⁄⁄=

Ws
μp
αp
------ λel1

αp λel2
αp λel3

αp 3–+ +( )

p 1=

N

 1
2
---κ Jel 1–( )2

+=

λel1λel2λel3 λel1λel2λel3 Jel⁄ 1= =
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S T O R A K E R S

The Storakers material (Ref. 12 and Ref. 15) is used to model highly compressible 
foams. The strain energy density is written in a similar fashion as in Ogden material:

The initial shear and bulk moduli can be computed from the parameters μk and βk as

 and 

for constant parameters βk = β, the initial bulk modulus becomes κ = 2μ(β + 1/3), so a 
stable material requires μ > 0 and β > −1/3. In this case, the Poisson's ratio is given by 
ν = β/(2β+2/3), which means that for a Poisson’s ratio larger than −1, β > −2/9 is 
needed.

VA R G A

The Varga material model (Ref. 1) describes the strain energy in terms of the elastic 
stretches as

μ 1
2
--- αkμk

k 1=

N

=

Sometimes a slightly different definition of the strain energy function for 
the Ogden material is used. If you have material data for an Ogden 
material given, be careful that the definitions used are the same. If not, 
you will need to rescale the μk coefficients.

See also the description of the Ogden material model in the Solid 
Mechanics interface documentation.

Ws
2μk

αk
2

--------- λel1
αk λel2

αk λel3
αk 3–

1
βk
----- Jel

αkβ– k 1–( )+ + + 
 

k 1=

N

=

μ μk

k 1=

N

= κ 2μk βk
1
3
---+ 

 

k 1=

N

=

See also the description of the Storakers material model in the Solid 
Mechanics interface documentation.
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2

The nearly incompressible version uses the isochoric elastic stretches defined as

and the initial bulk modulus κ

The simplest Varga model is obtained by setting c1 = μ and c2 = 0:

A R R U D A - B O Y C E

The other hyperelastic materials described are phenomenological models in the sense 
that they do not relate the different material parameters (normally obtained by 
curve-fitting experimental data) to physical phenomena.

Arruda and Boyce (Ref. 3) derived a material model based on Langevin statistics of 
polymer chains. The strain energy density is defined by

Here, μ0 is the initial macroscopic shear modulus, I1(Cel) is the first invariant of the 
elastic right Cauchy-Green deformation tensor, and the coefficients cp are obtained by 
series expansion of the inverse Langevin function.

Arruda and Boyce truncated the series and used only the first five terms as listed in 
Table 3-2:

Ws c1 λel1 λel2 λel3 3–+ +( ) c2 λel1λel2 λel2λel3 λel1λel3 3–+ +( )+=

λeli λeli Jel
1 3⁄⁄=

Ws c1 λel1 λel2 λel3 3–+ +( ) c2 λel1λel2 λel2λel3 λel1λel3 3–+ +( ) 1
2
---κ Jel 1–( )+ +=

Ws μ λel1 λel2 λel3 3–+ +( ) 1
2
---κ Jel 1–( )2

+=

See also the description of the Varga material model in the Solid 
Mechanics interface documentation.

TABLE 3-2:  FIRST FIVE COEFFICIENTS OF ARRUDA-BOYCE MATERIAL MODEL

C1 C2 C3 C4 C5

1/2 1/20 N 11/1050 N2 19/7000 N3 519/673750 N4

Ws μ0 cp I1
p 3p

–( )

p 1=

∞

=
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The strain energy density is then defined as

Other authors (Ref. 1) use only the first three coefficients of the series. The number of 
segments in the polymeric chain is specified by the parameter N so the material model 
is described by only two parameters, μ0 and N.

This material model is sometimes also called the eight-chain model since it was derived 
for N = 8.

The nearly incompressible version uses the isochoric invariant  and the initial 
bulk modulus κ

G E N T

Many hyperelastic material models are difficult to fit to experimental data. Gent 
material (Ref. 13 and Ref. 14) is a simple phenomenological constitutive model based 
on only two parameters, μ and jm, which defines the strain energy density as:

Here, μ is the shear modulus and jm is a limiting value for I1− 3, which takes care of 
the limiting polymeric chain extensibility of the material.

Since the strain energy density does not depend on the second invariant I2, the Gent 
model is often classified as a generalized Neo-Hookean material. The strain energy 
density tends to be the one of incompressible Neo-Hookean material as .

The nearly incompressible formulation uses the isochoric invariants  and the 
initial bulk modulus κ:

Ws μ0 cp I1
p 3p

–( )

p 1=

5

=

I1 Cel( )

Ws μ0 cp I1
p 3p

–( )

p 1=

5

 1
2
---κ Jel 1–( )2

+=

See also the description of the Arruda-Boyce material model in the Solid 
Mechanics interface documentation.

Ws
μ
2
---– jm 1

I1 3–

jm
--------------–

 
 
 

log=

jm ∞→

I1 Cel( )
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Gent material is the simplest model of the limiting chain extensibility family.

B L A T Z - K O

The Blatz-Ko material model was developed for foamed elastomers and polyurethane 
rubbers, and it is valid for compressible isotropic hyperelastic materials (Ref. 1). 

The elastic strain energy density is written with three parameters and the three 
invariants of the elastic right Cauchy-Green deformation tensor, I1(Cel), I2(Cel), and 
I3(Cel)

Here, φ is an interpolation parameter bounded to 0 < φ < 1, µ is the shear modulus, and 
β is an expression of Poisson’s ratio.

When the parameter , the strain energy simplifies to a similar form of the 
Mooney-Rivlin material model

In the special case of φ = 1, the strain energy reduces to a similar form of the 
Neo-Hookean model

Ws
μ
2
---– jm 1

I1 3–

jm
--------------–

 
 
 

log 1
2
---κ Jel 1–( )2

+=

See also the description of the Gent material model in the Solid 
Mechanics interface documentation.

Ws φμ
2
--- I1 3–( ) 1

β
--- I3

β– 1–( )+ 
  1 φ–( )μ

2
---

I2
I3
----- 3– 
  1

β
--- I3

β 1–( )+ 
 +=

β ∞→

Ws φμ
2
--- I1 3–( ) 1 φ–( )μ

2
---

I2
I3
----- 3– 
 +=

Ws
μ
2
--- I1 3–( ) μ

2β
------ J 2β– 1–( )+=

See also the description of the Blatz-Ko material model in the Solid 
Mechanics interface documentation.
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G A O

Gao proposed (Ref. 16) a simple hyperelastic material where the strain energy density 
is defined by two parameters, a and n, and two invariants of the elastic right 
Cauchy-Green deformation tensors Cel:

Here, the invariant I-1(Cel) is calculated as:

Gao proposed that the material is unconditionally stable when the parameters are 
bounded to 3 > n > 1 and a > 0, and related these parameters under small strain to the 
Young’s modulus and Poisson’s ratio by:

 and 

Since n = (1+ν)/(1−2ν) and it is bounded to 1 < n < 3, this material model is stable for 
materials with an initial Poisson’s ratio in the range of 0 < ν < 2/7.

M U R N A G H A N

The Murnaghan potential is used in nonlinear acoustoelasticity. Most conveniently it 
is expressed in terms of the three invariants of the elastic Green-Lagrange strain tensor, 
I1(εel), I2(εel), and I3(εel)

Here, l, m, and n are the Murnaghan third-order elastic moduli, which can be found 
experimentally for many commonly encountered materials such as steel and aluminum, 
and λ and μ are the Lamé parameters.

Ws a I1
n I 1–

n
+( )=

I 1– trace Cel
1–( )

I2 Cel( )
I3 Cel( )
------------------= =

E 3nn28a
2n 1+

--------------------= ν n 1–
2n 1+
-----------------=

See also the description of the Gao material model in the Solid Mechanics 
interface documentation.

Ws
1
2
--- λ 2μ+( )I1

2 2μI2–
1
3
--- l 2m+( )I1

3 2mI1I2– nI3+ +=

See also the description of the Murnaghan material model in the Solid 
Mechanics interface documentation.
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U S E R  D E F I N E D

When a material model is user-defined, an expression for the elastic strain energy Ws is 
entered, which can include any expressions involving the following: 

• Components of Cel, the elastic right Cauchy-Green deformation tensor in the local 
material coordinate system.

• Principal invariants of Cel

• Components of the elastic Green-Lagrange strain tensor εel in the local coordinate 
system.

• Principal elastic stretches λel1, λel2, and λel3, which are the square-root of the 
eigenvalues of the elastic right Cauchy-Green deformation tensor Cel.

• Invariants of the elastic Green-Lagrange strain tensor. Since

the invariants of εel are written in terms of the invariants of Cel:

I1 Cel( ) trace Cel( )=

I2 Cel( ) 1
2
--- I1

2 Cel( ) trace Cel
2( )–( )=

I3 Cel( ) det Cel( )=

The internal variables for these invariants are named solid.I1Cel, 
solid.I2Cel, and solid.I3Cel.

The internal variables for the principal elastic stretches are named 
solid.stchelp1, solid.stchelp2, and solid.stchelp3.

εel
1
2
--- Cel I–( )=

I1 εel( ) trace εel( ) 1
2
--- I1 Cel( ) 3–( )= =

I2 εel( ) 1
2
--- I1

2 εel( ) trace εel
2( )–( ) 1

4
--- I2 Cel( ) 2I– 1 Cel( ) 3+( )= =
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• When the Nearly incompressible material check box is selected for the Hyperelastic 
Material node, the elastic strain energy is decoupled into the volumetric and 
isochoric components.: 

The volumetric strain energy Wvol, which can be an expression involving the elastic 
volume ratio

The isochoric strain energy, Wiso, as an expression involving the invariants of the 
isochoric elastic right Cauchy-Green tensor

 and 

or the invariants of the isochoric elastic Green-Lagrange strain

, , and  

I3 εel( ) det εel( ) 1
8
--- I3 Cel( ) I– 2 Cel( ) I+

1
Cel( ) 1–( )= =

The internal variables for these invariants are named solid.I1eel, 
solid.I2eel, and solid.I3eel.

Jel det Fel( )=

I1 Cel( ) I2 Cel( )

I1 εel( ) I2 εel( ) I3 εel( )

The internal variables for Jel, , and  are named 
solid.Jel, solid.I1CIel, and solid.I2CIel. 

The internal variables for , , and  are named 
solid.I1eIel, solid.I2eIel, and solid.I3eIel.

The strain energy density must not contain any other expressions 
involving displacement or their derivatives. This excludes components of 
the displacement gradient ∇u and deformation gradient F = ∇u + I 
tensors, their transpose, inversions, as well as the global material system 
components of C and ε. If they occur, such variables are treated as 
constants during symbolic differentiations.

See also the description of the User defined material model in the Solid 
Mechanics interface documentation.

I1 Cel( ) I2 Cel( )

I1 εel( ) I2 εel( ) I3 εel( )
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Elastoplastic Material Models

In this section:

• Introduction to Small and Large Plastic Strains

• Plastic Flow for Small Strains

• Isotropic Plasticity

• Yield Function

• Hill Orthotropic Plasticity

• Isotropic Hardening

• Plastic Flow for Large Strains

• Numerical Solution of the Elastoplastic Conditions 

I N T R O D U C T I O N

Many materials have a distinct elastic regime, in which the deformations are 
recoverable and path independent. When the stresses exceed a certain level, the yield 
limit, permanent plastic strains will appear.

The elastic part of the constitutive relation can be described by either a Linear Elastic 
Material, Nonlinear Elastic Material Models, or by Hyperelastic Material Models.

Elastoplastic material models are common, both when modeling metals and soils.

In geotechnical applications it is common to define compressive stresses as having 
positive signs. In COMSOL Multiphysics, the convention is however to always use 
positive signs for tensile stresses.

D E F I N I N G  T H E  Y I E L D  S U R F A C E

A yield criterion serves to define the stress condition under which plastic deformation 
occurs. Stress paths inside the yield surface result in purely recoverable deformations 
(elastic behavior), while paths intersecting the yield surface produces both recoverable 
and permanent deformations (plastic strains).

In general, the yield surface can be described as

See also Sign Conventions.

F f σ( ) fc– 0= =
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where fc can be a constant value (for perfectly plastic materials), or a variable for 
strain-hardening materials. The yield surface F is a surface in the space of principal 
stresses, in which the elastic regime (F ≤ 0) is enclosed.

For brittle materials, the yield surface represents a failure surface, which is a stress 
level at which the material collapses instead of deforms plastically.

I S O T R O P I C  P L A S T I C I T Y

For isotropic plasticity, the plastic potential Qp is written in terms of at most three 
invariants of Cauchy’s stress tensor

where the invariants of the stress tensor are

so that the increment of the plastic strain tensor  can be decomposed into

The increment in the plastic strain tensor  includes in a general case both deviatoric 
and volumetric parts. The tensor  is symmetric given the following properties

 (3-21)

Some authors define the yield criterion as f (σ) =  fc, while the yield 
surface is an isosurface in the space of principal stresses F = 0, which can 
be chosen for numerical purposes as . F f σ( )2

= fc
2

– 0=

Qp σ( ) Qp I1 σ( ) J2 σ( ) J3 σ( ), ,( )=

I1 σ( ) trace σ( )=

J2 σ( ) 1
2
---dev σ( ):dev σ( )=

J3 σ( ) det dev σ( )( ) =

ε·p

ε·p λ
∂Qp
∂σ

---------- λ
∂Qp
∂I1
----------

∂I1
∂σ
--------

∂Qp
∂J2
----------

∂J2
∂σ
---------

∂Qp
∂J3
----------

∂J3
∂σ
---------+ + 

 = =

ε·p

ε·p

∂I1
∂σ
-------- I=

∂J2
∂σ
--------- dev σ( )=

∂J3
∂σ
--------- dev σ( )dev σ( ) 2

3
---J2I–=
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A common measure of inelastic deformation is the effective plastic strain rate, which 
is defined as

 (3-22)

The trace of the incremental plastic strain tensor, which is called the volumetric plastic 
strain rate , is only a result of dependence of the plastic potential on the first 
invariant I1(σ), since ∂J2/∂σ and ∂J3/∂σ are deviatoric tensors

For metal plasticity under the von Mises or Tresca criteria, the volumetric plastic strain 
rate is always zero because the plastic potential is independent of the invariant I1(σ). 
This is known as J2 plasticity.

Incompressible plastic deformation is experimentally observed in metals, but it not the 
case for most materials used in geotechnical applications. For instance, a nonzero 
volumetric plastic strain is explicitly used in the Cam-Clay material.

Y I E L D  F U N C T I O N

When an associated flow rule is applied, the yield function must be smooth, that is, 
continuously differentiable with respect to the stress. In COMSOL Multiphysics, the 
following form is used:

where σys is the yield stress. The scalar function φ(σ) is called effective stress. The 
default form of the effective stress is the von Mises stress, which is often used in metal 
plasticity:

ε·pe
2
3
---ε·p:ε·p=

ε·pvol

ε·pvol trace ε·p( ) λ trace
∂Qp
∂σ

---------- 
  3λ

∂Qp
∂I1
----------= = =

• The effective plastic strain and the volumetric plastic strain are available 
in the variables solid.epe and solid.epvol.

• In a time dependent analysis, rates of plastic strains can be computed 
with expressions like d(solid.epe,TIME).

Fy φ σ( ) σys–=

σmises 3J2 σ( ) 3
2
---dev σ( ):dev σ( )= =
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Other expressions can be defined, such as Tresca stress, Hill orthotropic plasticity, or 
a user-defined expression.

The Tresca effective stress is calculated from the difference between the largest and the 
smallest principal stress

A user-defined yield function can by expressed in terms of invariants of the stress tensor 
such as the pressure (volumetric stress)

the effective (von Mises) stress σmises, or other invariants, principal stresses, or stress 
tensor components.

von Mises Criterion
The von Mises criterion suggests that the yielding of the material begins when the 
second deviatoric stress invariant J2 reaches a critical value. This criterion can be 
written in terms of the elements of Cauchy’s stress tensor (Ref. 1)

or equivalently .

The von Mises criterion is implemented as

where σys is the yield stress level (yield stress in uniaxial tension).

Tresca Criterion
The Tresca yield surface is normally expressed in terms of the principal stress 
components

σtresca σp1
σp3

–=

p 1
3
---– I1 σ( )=

J2
1
6
--- σ11 σ22–( )2 σ22 σ33–( )2 σ33 σ11–( )2

+ +( ) σ12
2 σ23

2 σ13
2

+ + + k2= =

J2 k=

F 3J2 σys– 0= =

The effective or von Mises stress ( ) is available in the 
variable solid.mises, where solid is the name of the physics interface 
node.

σmises 3J2=

1
2
---max σ1 σ2– σ1 σ3– σ2 σ3–, ,( ) k=
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The Tresca criterion is a hexagonal prism with its axis equally inclined to the three 
principal stress axes. When the principal stresses fulfill σ1 ≥ σ2 ≥ σ3, this criterion is 
written as

By using the representation of principal stresses in term of the invariants J2 and the 
Lode angle 0 ≤ θ ≤ π/3, this criterion can alternatively be written as

or equivalently

The maximum shear stress is reached at the meridians (θ = 0 or θ = π/3). The Tresca 
criterion can be circumscribed by setting the Lode angle θ = 0, or equivalently, by a 
von Mises criterion

The minimum shear is reached at θ = π/6, so the Tresca criterion can be inscribed by 
setting a von Mises criterion

When dealing with soils, the parameter k is also called undrained shear strength.

Tresca criterion can be used with either an associated or non-associated flow rule, in 
which case von Mises stress is applied in order to get better numerical performance.

1
2
--- σ1 σ3–( ) k=

1
2
---

4J2
3

---------- θ( ) θ 2π
3

------+ 
 cos–cos 

  J2 θ π
3
---+ 

 sin k= =

J2 θ π
6
---– 

 cos k=

3J2 2k=

J2 k=

The Tresca effective stress, σtresca = σ1 − σ3, is implemented in the 
variable solid.tresca, where solid is the name of the physics interface 
node.
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Figure 3-4: The upper and lower limits of the Tresca criterion.

Figure 3-5: Classical yield criteria for metals. Tresca criterion (left) and von Mises 
criterion (right).

The von Mises and Tresca criteria are independent of the first stress invariant I1 and 
are mainly used for the analysis of plastic deformation in metals and ductile materials, 
though some researchers also use these criteria for describing fully saturated cohesive 
soils under undrained conditions. The von Mises and Tresca criteria belongs to what 
researchers call volume preserving or J2 plasticity, as the plastic flow is independent on 
the mean pressure.

θ

θ
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PO R O U S  P L A S T I C I T Y

The description of plastic deformation in soils, porous metals and aggregates has a 
main difference with respect to traditional metal plasticity; as the yield function and 
plastic potential are not only defined in terms of the deviatoric stress tensor component 
(or the deviatoric stress invariant J2), but they also include dependencies on the 
hydrostatic pressure.

Shima-Oyane Criterion
Shima and Oyane (Ref. 14) proposed a plastic yield surface for modeling the 
compaction of porous metallic structures fabricated by sintering. This criterion can 
been applied for powder compaction at both low and high temperatures. The yield 
function and associated plastic potential is defined by an ellipsoid in the stress space. 
The plastic potential Qp is written in terms of both von Mises effective stress and mean 
pressure, and it also considers isotropic hardening due to changes in porosity. The 
plastic potential is defined by

here, σe is the effective stress, σ0 is the yield stress, pm is the pressure, and ρrel is the 
relative density, which is related to the porosity φ by ρrel = 1 − φ. The material 
parameters α, γ, and m are obtained from curve fitting experimental data. Typical 
material parameter values for copper powder are α = 6.2, γ = 1.03, and m = 5.

Gurson Criterion
Gurson criterion (Ref. 15) consists in a pressure dependent yield function to describe 
the constitutive response of porous metals, this yield function is derived from the 
analytical expression of an isolated void immersed in a continuum medium. The void 
volume fraction, or porosity φ is chosen as main variable. The yield function and 
associated plastic potential is not an ellipse in the stress space, as in Shima-Oyane 
Criterion, but it is defined in terms of the hyperbolic cosine function. The plastic 
potential for Gurson criterion reads

here, σe is the effective stress, σ0 is the initial yield stress, pm is the pressure, and φ is 
the porosity.

Qp σ( )
σe
σ0
------ 
 

2
α 1 ρrel–( )γ pm

σ0
------- 
 

2
ρrel

m–+=

Qp σ( )
σe
σ0
------ 
 

2
2φ

3pm
2σ0
----------- 
 cosh 1 φ2

+( )–+=
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Gurson-Tvergaard-Needleman Criterion
Tvergaard and Needleman modified Gurson Criterion for porous plasticity to include 
parameters to better fit experimental data (Ref. 16-17). The resulting criterion is called 
in the literature Gurson-Tvergaard-Needleman (GTN) criterion. The plastic potential 
for GTN criterion reads

here, σe is the effective stress, σ0 is the initial yield stress, pm is the pressure, and φe is 
the effective void volume fraction (effective porosity). Typical correction parameter 
values are q1 = 1.5, q2 = 1.03, and q3 = q1

2.

The effective void value fraction (or effective porosity) φe used in the plastic potential 
is a function of the current porosity φ and other material parameters:

here φc is the critical void volume fraction (critical porosity) at which void coalescence 
begins, and φf is the void volume fraction at failure. When the porosity increases up to 
value of failure, the effective porosity takes a maximum value of φm; at this high 
porosity, the porous material loses the capacity to carry stresses. This maximum 
porosity value is derived from other parameters

since typically the correction parameters are related as q3 = q1
2, then φm = 1/q1.

Fleck-Kuhn-McMeeking Criterion
The Fleck-Kuhn-McMeeking criterion (Ref. 19), also called FKM criterion, was 
developed to model the plastic yielding of metal aggregates of high porosity. The yield 
function and associated plastic potential is derived from expressions for randomly 
distributed particles. The criterion is considered relevant for aggregates with porosity 
between 10% and 35%. The plastic potential for FKM criterion reads
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here, σe is the effective stress and pm is the pressure.The flow strength of the material 
under hydrostatic loading, pf, is computed from

here, σ0 is the initial yield stress, and φ is the void volume fraction (porosity). The 
maximum void volume fraction φm typically takes the value of 36%, the limit of dense 
random packing of sintered powder. 

FKM-GTN Criterion
The FKM-GTN criterion is a combination of the Fleck-Kuhn-McMeeking Criterion 
and Gurson-Tvergaard-Needleman Criterion, intended to cover a wider range of 
porosities (Ref. 20-21). For low void volume fractions (porosity lower than 10%), the 
GTN model is used and for void volume fractions higher than 25%, the FKM criterion 
is used. In the transition zone, a linear combination of both criteria is used.

S O I L  P L A S T I C I T Y

Mohr-Coulomb Criterion
The Mohr-Coulomb criterion is the most popular criterion in soil mechanics. It was 
developed by Coulomb before the Tresca and von Mises criteria for metals, and it was 
the first criterion to account for the hydrostatic pressure. The criterion states that 
failure occurs when the shear stress and the normal stress acting on any element in the 
material satisfy the equation

here, τ is the shear stress, c the cohesion, and  denotes the angle of internal friction.

With the help of Mohr’s circle, this criterion can be written as

The Mohr-Coulomb criterion defines an irregular hexagonal pyramid in the space of 
principal stresses, which generates singularities in the derivatives of the yield function. 

pf 2.97 1 φ–( )2φm φ–

φm
----------------σ0=

τ σ φtan c–+ 0=

φ

1
2
--- σ1 σ3–( ) 1

2
--- σ1 σ3+( ) φ c– φcossin+ 0=
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Figure 3-6: The Mohr-Coulomb criterion. The cone opens toward the compressive axis.

The Mohr-Coulomb criterion can be written in terms of the invariants I1 and J2 and 
the Lode angle 0 ≤ θ ≤ π/3 (Ref. 1, Ref. 9) when the principal stresses are sorted as 
σ1 ≥ σ2 ≥ σ3. The yield function then reads

The tensile meridian is defined when θ = 0 and the compressive meridian when θ = π/3.

Rearranging terms, the Mohr-Coulomb criterion reads

where

, , and 

In the special case of frictionless material, ( , α = 0, k = c), the Mohr-Coulomb 
criterion reduces to a Tresca’s maximum shear stress criterion, (σ1 − σ3) = 2k or 
equivalently
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Drucker-Prager Criterion
The Mohr-Coulomb criterion causes numerical difficulties when treating the plastic 
flow at the corners of the yield surface. The Drucker-Prager model neglects the 
influence of the invariant J3 (introduced by the Lode angle) on the cross-sectional 
shape of the yield surface. It can be considered as the first attempt to approximate the 
Mohr-Coulomb criterion by a smooth function based on the invariants I1 and J2 
together with two material constants (which can be related to Mohr-Coulomb’s 
coefficients)

This is sometimes also called the extended von Mises criterion, since it is equivalent to 
the von Mises criterion for metals when setting α = 0.

Figure 3-7: The Drucker-Prager criterion. The cone opens toward the compressive axis.

The coefficients in the Drucker-Prager model can be matched to the coefficients in the 
Mohr-Coulomb criterion by

 and 

Fy J2 θ π
6
---– 

 cos k– 0= =

See also the description of the Mohr-Coulomb material model in the 
Solid Mechanics interface documentation.

Fy J2 αI1 k–+ 0= =

α 2
3

------- φsin
3 φsin±( )

--------------------------⋅= k 2 3c φcos
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---------------------------=
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The symbol ± is related to either matching the tensile meridian (positive sign) or the 
compressive meridian (negative sign) of Mohr-Coulomb’s pyramid.

The matching at the tensile meridian (θ = 0) comes from setting

in the Mohr-Coulomb criterion, and the matching at the compressive meridian (θ = π/
3) from setting

Figure 3-8: The Drucker-Prager criterion showing the tensile and compressive meridians 
(inner and outer circles), and the Lode angle compared to the cross section of 
Mohr-Coulomb criterion in the π-plane.

In the special case of frictionless material, ( , α = 0, ), the Drucker 
-Prager criterion reduces to the von Mises criterion

When matching Drucker-Prager criterion to Mohr-Coulomb criterion in 2D 
plane-strain applications, the parameters are

 and 
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and when matching both criteria in 2D plane-stress applications, the matching 
parameters are:

 and 

Dilatation Angle
The Mohr-Coulomb yield criterion is sometimes used with a non-associated plastic 
potential. This plastic potential could be either a Drucker-Prager criterion, or the same 
Mohr-Coulomb yield function but with a different slope with respect to the 
hydrostatic axis, in which case the angle of internal friction is replaced by the dilatation 
angle, which is normally smaller (Ref. 5).

Also, when using a Drucker-Prager criterion matched to a Mohr-Coulomb criterion, 
the plastic potential could also be non-associated, in which case the difference between 
the dilatation angle and the angle of internal friction would result in a yield surface and 
plastic potential portrayed by two cones with different angles with respect to the 
hydrostatic angle.

Elliptic Cap
The Mohr-Coulomb and Drucker-Prager criteria portray a conic yield surface which 
opens in the hydrostatic axis direction. Normally, these soil models are not accurate 
above a given limit pressure because real-life materials cannot bear infinite loads and 
still behave elastically. A simple way to overcome this problem is to add an elliptical 
end-cap on the compressive side to these models.

The elliptic cap is an elliptic yield surface of semi-axes as shown in Figure 3-9. The 
initial pressure pa (SI units: Pa) denotes the pressure at which the elastic range 
circumscribed by either a Mohr-Coulomb pyramid or a Drucker-Prager cone is not 
valid any longer, so a cap surface is added. The limit pressure pb gives the curvature of 

α = 1
3

------- φsin⋅ k = 2
3

------- c φcos⋅
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the ellipse, and denotes the maximum admissible hydrostatic pressure for which the 
material starts deforming plastically. Pressures higher than pb are not allowed

Figure 3-9: Elliptic cap model in Haigh–Westergaard coordinate system.

Note that the sign convention for the pressure is taken from the Structural Mechanics 
Module: positive sign under compression, so pa and pb are positive parameters. 
Figure 3-9 shows the cap in terms of the variables p and q 

 and 

In terms of these variables, the equation for the elliptic cap reads

the point (pa, qa) in the Haigh–Westergaard coordinate system is where the elliptic cap 
intersects either the Mohr-Coulomb or the Drucker-Prager cone.

Elliptic Cap With Hardening
It is also possible to add isotropic hardening to the cap surface. In this case, the center 
of the ellipse is shifted as the volumetric plastic strain increases, also, the size of the 
ellipse’s semi-axes grow as hardening evolves. The intersection of the elliptic cap with 
the pressure axis is given by

ppbpa

q

q 3J2 σ( )= p I– 1 σ( ) 3⁄=

p pa–

pb pa–
------------------ 
 

2 q
qa
----- 
  2

+ 1=

pb pb0 Kiso 1
εpvol

εpvol,max
--------------------+ 

 log–=
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here, pb0 is the initial value for the limit pressure pb, Kiso is the isotropic hardening 
modulus, εpvol the volumetric plastic strain, and εpvol,max the maximum volumetric 
plastic strain. Instead of providing the value for the initial pressure pa (SI units: Pa), 
the ellipse’s aspect ratio R is entered.

Note that the volumetric plastic strain εpvol is negative in compression, so the limit 
pressure pb is increased from pb0 as hardening evolves.

Matsuoka-Nakai Criterion
Matsuoka and Nakai (Ref. 3) discovered that the sliding of soil particles occurs in the 
plane in which the ratio of shear stress to normal stress has its maximum value, which 
they called the mobilized plane. They defined the yield surface as

where the parameter μ = (τ/σn)STP equals the maximum ratio between shear stress 
and normal stress in the spatially mobilized plane (STP-plane), and the invariants are 
applied over the effective stress tensor (this is the Cauchy stress tensor minus the fluid 
pore pressure).

The Matsuoka-Nakai criterion circumscribes the Mohr-Coulomb criterion in dry soils, 
when

See also the description of the Drucker-Prager material model in the Solid 
Mechanics interface documentation.

Fy 9 9μ2+( )I3 I1I2– 0= =

μ 2 2
3
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and  denotes the angle of internal friction in Mohr-Coulomb criterion.

Figure 3-10: The Matsuoka-Nakai criterion and Mohr-Coulomb criterion in the 
principal stress space.

Lade-Duncan Criterion
The Lade-Duncan criterion was originally developed to model a large volume of 
laboratory sample test data of cohesionless soils. This criterion is defined as

where I1 and I3 are the first and third stress invariants respectively, and k is a parameter 
related to the direction of the plastic strain increment in the triaxial plane. The 
parameter k can vary from 27 for hydrostatic stress conditions (σ1 = σ2 = σ3), up to a 
critical value kc at failure. In terms of the invariants I1, J2,and J3, this criterion can be 
written as

The Lade-Duncan criterion can be fitted to the compressive meridian of the 
Mohr-Coulomb surface by choosing

φ

See also the description of the Matsuoka-Nakai material model in the 
Solid Mechanics interface documentation.
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with  as the angle of internal friction in Mohr-Coulomb criterion

Figure 3-11: Comparing the Mohr-Coulomb, Matsuoka-Nakai, and Lade-Duncan 
criteria when matching the tensile meridian.

Tension Cut-Off
It appears that the Mohr-Coulomb and Drucker-Prager criteria predict tensile 
strengths larger than the experimental measurements on soil samples. This discordance 
can be mended by the introduction of the Rankine or tension cut-off criterion.

The Rankine criterion states that a material stops deforming elastically when the 
biggest principal stress σ1 reaches a maximum tensile stress, also called tension cut-off 
limit σt.

In terms of the principal stress, Rankine criterion reads

For soils and clays, the maximum tensile stress can be estimated from the material 
parameters, such as the cohesion c and the friction angle . For instance, the tip of the 
cone in Mohr-Coulomb criterion is reached when

φ

L

The Lade-Duncan criterion does not match the Mohr-Coulomb criterion 
(nor the Matsuoka-Nakai criterion) at the tensile meridian.

See also the description of the Lade-Duncan material model in the Solid 
Mechanics interface documentation.
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therefore, the tension cut-off should be chosen such as

The Mohr-Coulomb criterion together with a tension cut-off is sometimes called 
modified Mohr-Coulomb criterion (Ref. 19).

H I L L  O R T H O T R O P I C  P L A S T I C I T Y

Hill (Ref. 12, Ref. 13) proposed a quadratic yield function (and associated plastic 
potential) in a local coordinate system given by the principal axes of orthotropy ai

 (3-23)

The six parameters F, G, H, L, M, and N are related to the state of anisotropy. As with 
isotropic plasticity, the elastic region Qp < 0 is bounded by the yield surface Qp = 0.

Hill demonstrated that this type of anisotropic plasticity is volume preserving, this is, 
given the associated flow rule

the trace of the plastic strain rate tensor is zero, which follows from the expressions for 
the diagonal elements of 

so the plastic volumetric strain rate is zero

σt c φcos
φsin

------------<

Tension cut-off is also available with Concrete material models.
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Expressions for the Coefficients F, G, H, L, M, N
Hill noticed that the parameters L, M, and N are related to the yield stress in shear with 
respect to the axes of orthotropy ai, thus they are positive parameters

, , 

Here, σysij represents the yield stress in shear on the plane ij.

The material parameters σys1, σys2, and σys3 represent the tensile yield stress in the 
direction, a1, a2, and a3, and they are related to Hill’s parameters F, G, and H as

 

or equivalently

ε·pvol trace ε·p( ) ε·p11 ε·p22 ε·p33+ + 0= = =

Hill plasticity is an extension of J2 (von Mises) plasticity, in the sense that 
it is volume preserving. Due to this assumption, six parameters are needed 
to define orthotropic plasticity, as opposed to orthotropic elasticity, where 
nine elastic coefficients are needed.
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Note that at most one of the three coefficients F, G, and H can be negative.

In order to define a yield function and plastic potential suitable for isotropic or 
kinematic hardening, the average initial yield stress σys0 is calculated from the Hill’s 
parameters F, G, and H (this is equivalent to the initial yield stress σys0 in von Mises 
plasticity)

 (3-24)

Defining Hill’s effective stress as (Ref. 13)

makes it possible to write the plastic potential in a similar way to von Mises plasticity. 

Isotropic hardening is then applied on the average yield stress variable σys0, by using 
the plastic potential

Here, the average yield stress

now depends on the initial yield stress σys0, the hardening function σh, and the 
effective plastic strain εpe.

I S O T R O P I C  H A R D E N I N G

Plasticity implements seven different kinds of isotropic hardening models for 
elastoplastic materials:

• Perfect plasticity (no isotropic hardening)

• Linear isotropic hardening

• Ludwik

In case of hardening, these coefficients (either Hill’s coefficients or the 
shear and tensile yield stresses) are renamed with the “initial” prefix.
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• Swift

• Voce

• Hockett-Sherby

• User defined

Perfect (or Ideal) Plasticity
For perfect elastoplastic materials, the yield surface is fixed in the space of principal 
stresses, and therefore, plastic deformations occur only when the stress path moves on 
the yield surface (the regime inside the yield surface is elastic, and stress paths beyond 
the yield surface are not allowed).

In this case the plasticity algorithm solves either the associated or non-associated flow 
rule for the plastic potential Qp 

with the yield function

In the settings for plasticity you specify the effective stress φ(σ) for the yield function 
from von Mises stress, Tresca stress, Hill effective stress, or a user-defined expression; 
and σys0 is the initial yield stress that defines the onset of plastic deformation.

Linear Isotropic Hardening
In this case the plasticity algorithm solves either the associated or non-associated flow 
rule for the plastic potential Qp 

with the yield function

where the yield stress σys(εpe) now depends on the effective plastic strain εpe.

ε·p λ
∂Qp
∂σ

----------=

Fy φ σ( ) σys0–=

When Large plastic strain is selected as the plasticity model for the 
Plasticity node, either the associate or non-associated flow rule is applied 
as written in Equation 3-30.

ε·p λ
∂Qp
∂σ

----------=

Fy φ σ( ) σys εpe( )–=
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The yield stress σys(εpe) is then a function of the effective plastic strain and the initial 
yield stress σys0

here, the isotropic hardening modulus Eiso is calculated from

For linear isotropic hardening, the isotropic tangent modulus ETiso is defined as 
(stress increment / total strain increment). A value for ETiso is entered in the isotropic 
tangent modulus section for the Plasticity node. The Young’s modulus E is taken from 
the parent material (Linear Elastic, Nonlinear Elastic or Hyperelastic material model). 
For orthotropic and anisotropic elastic materials, E represents an effective Young’s 
modulus.

Ludwik
In Ludwik model for nonlinear isotropic hardening, the yield stress σys(εpe) is defined 
by a nonlinear function of the effective plastic strain. Ludwik equation (also called 
Ludwik-Hollomon equation) for isotropic hardening is given by the power-law

here, k is the strength coefficient and n is the hardening exponent. Setting n = 1 would 
result in linear isotropic hardening.

Swift
For non-saturating materials, the Swift power-law equation relates the initial yield 
stress σys0 and the isotropic hardening σh, to the effective plastic strain as

here, k is the strength coefficient, n is the hardening exponent and ε0 is a reference 
strain. Noting that at zero plastic strain the initial yield stress is related to the strength 
coefficient and hardening exponent as

the yield stress is written as

σys εpe( ) σys0 Eisoεpe+=
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----------- 1
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-------------- 1

E
----–=
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n

+=

σys εpe( ) σys0 σh εpe( )+ k ε0 εpe+( )n
= =

σys 0( ) σys0 kε0
n

= =
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Voce
Voce rule for nonlinear isotropic hardening is intended for materials that exhibit a 
saturating evolution of hardening. The isotropic hardening σh is exponentially related 
to the effective plastic strain as

The yield stress σys(εpe) is then defined as

The value of the saturation exponent parameter β determines the saturation rate of 
the hysteresis loop for cyclic loading. The saturation flow stress σsat characterizes the 
maximum distance by which the yield surface can expand in the stress space. For values 
εpe >> 1/β, the yield stress saturates to

Hockett-Sherby
Hockett-Sherby rule for nonlinear isotropic hardening is also intended for materials 
which yield stress saturates as effective plastic strain increases. It is similar to Voce rule, 
but it includes an exponential dependency of the form

where σ∝ is the steady-state flow stress, m the saturation coefficient and n the saturation 
exponent. For values mεpe

n >> 1 the yield stress saturates to

User defined
The yield stress versus the effective plastic strain can be specified with the help of a 
hardening curve that could also depend on other variables, such as temperature.

In this case, define the (usually nonlinear) hardening function σh(εpe) such that the 
yields stress reads

σys εpe( ) σys0 1
εpe
ε0
--------+ 
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=
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 += =

σys σys0 σsat+→

σys εpe( ) σys0 σ∞ σys0–( ) 1 e
mεpe

n–
– 

 +=

σys σ∞→
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K I N E M A T I C  H A R D E N I N G

There are few options for computing either linear or nonlinear kinematic hardening 
for plasticity:

• No kinematic hardening (default)

• Linear kinematic hardening

• Armstrong-Frederik 

• Chaboche 

For any of the kinematic hardening models, the algorithm solves either the associated 
or non-associated flow rule for the plastic potential Qp

with the yield function defined as

 

Here, σys is the yield stress (which may include a linear or nonlinear isotropic 
hardening model), and the effective stress φ(σ) is either the von Mises, Tresca, or Hill 
stress; or a user-defined expression. The stress tensor used in the yield function is 
shifted by what is usually called the back stress, σback.

Linear Kinematic Hardening
The back stress is generally not only a function of the current plastic strain but also of 
its history. In the case of linear kinematic hardening, the back stress σback is a linear 
function of the plastic strain tensor εp, this is also known as Prager’s hardening rule. 

σys εpe( ) σys0 σh εpe( )+=

The internal variable for the effective plastic strain is named solid.epe. 
The effective plastic strain evaluated at Gauss points is named 
solid.epeGp.

When Large plastic strain is selected as the plasticity model for the 
Plasticity node, either the associate or non-associated flow rule is applied 
as written in Equation 3-30.

ε·p λ
∂Qp
∂σ

----------=

Fy φ σ σback–( ) σys–=
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The implementation of linear kinematic hardening assumes a linear evolution of the 
back stress tensor with respect to the plastic strain tensor:

where the kinematic hardening modulus Ck is calculated from

The value for Ek is entered in the kinematic tangent modulus section and the Young’s 
modulus E is taken from the linear or nonlinear elastic material model. For orthotropic 
and anisotropic elastic materials, E represents an averaged Young’s modulus. Note that 
some authors define the kinematic hardening modulus as Hk = 2/3Ck.

Armstrong-Frederik Hardening Model
Armstrong and Frederick (Ref. 7) added memory to Prager’s linear kinematic 
hardening model. This nonlinear kinematic hardening model allows to capture the 
Bauschinger effect and nonlinear behavior by non symmetrical tension-compression 
loading.

The nonlinear evolution of the back stress σback is governed by the rate

here, Ck is the kinematic hardening modulus, γk is a kinematic hardening parameter, 
and εpe the effective plastic strain. Setting γk = 0 recovers Prager’s rule for linear 
kinematic hardening.

To solve this rate, internal degrees of freedom are added to account for the back stress 
components. In order to have the same units as used for the plastic strain, the 
algorithm solves for the back strain εback as proposed in (Ref. 8), which is related to 

σback
2
3
---Ckεp=

1
Ck
------- 1

Ek
------- 1

E
----–=

When kinematic hardening is added, both the plastic potential and the 
yield surface are calculated with effective invariants, that is, the invariants 
of the tensor defined by the difference between the stress tensor minus 
the back-stress, . The invariant of effective deviatoric 
tensor is named solid.II2sEff, which is used when a von Mises, Tresca 
or Hill orthotropic plasticity is computed together with kinematic 
hardening.

σeff σ σback–=

σ· back
2
3
---Ckε·p γkε·peσback–=
M A T E R I A L  M O D E L S  |  305



306 |  C H A P T E
the back stress as

The nonlinear evolution for the back strain reads

Chaboche Hardening Model
Chaboche (Ref. 8) proposed a nonlinear kinematic hardening model based on the 
superposition of N back stress tensors

each of these back stress tensors σback,i follows a nonlinear Frederick-Armstrong 
kinematic hardening rule

Practitioners would normally select γk = 0 for one of the back stress equations, thus 
recovering Prager’s linear rule for that branch

The back stress tensor σback is then defined by the superposition of N back stress 
tensors

As done for Armstrong-Frederik kinematic hardening, the algorithm solves for the 
back strain tensors εback,i instead of the back stress tensors. The change of variables is 

and the nonlinear evolution for the back strain tensors reads

σback
2
3
---Ckεback=

ε·back ε·p γkε·peεback–=

σback σback,i

i

N

=

σ· back,i
2
3
---Ciε

·
p γiε

·
peσback,i–=

σback,0
2
3
---C0εp=

σback
2
3
---C0εp σback,i

i 1=

N

+=

σback,i
2
3
---Ciεback,i=
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I N T R O D U C T I O N  T O  S M A L L  A N D  L A R G E  P L A S T I C  S T R A I N S

There are two implementations of plasticity available in COMSOL Multiphysics. One 
is based on the additive decomposition of strains, which is the most suitable approach 
in the case of small strains, and the other one is based on the multiplicative 
decomposition of the deformation gradient, which is more suitable when large plastic 
strains occurs. The additive and multiplicative decomposition of strains is described in 
Inelastic Strain Contributions.

When small plastic strain is selected as the plasticity model, an additive 
decomposition is used. If the elastic or plastic strains are large, the additive 
decomposition might produce incorrect results. As an example, the volume 
preservation, which is an important assumption in metal plasticity, will no longer be 
respected. The additive decomposition of strains is however widely used both for metal 
and soil plasticity.

When large plastic strain is selected as the plasticity model, the total deformation 
gradient tensor is multiplicatively decomposed into an elastic deformation gradient 
and a plastic deformation gradient.

P L A S T I C  F L O W  F O R  S M A L L  S T R A I N S

The flow rule defines the relationship between the increment of the plastic strain 
tensor  and the current state of stress, σ, for a yielded material subject to further 
loading. When Small plastic strain is selected as the plasticity model for the Plasticity 
node, the direction of the plastic strain increment is defined by

ε·back,i ε·p γiε
·
peεback,i–=

When Small plastic strain is selected as the plasticity model for the 
Plasticity node, and the Include geometric nonlinearity check box is 
selected on the study Settings window, a Cauchy stress tensor is used to 
evaluate the yield function and plastic potential. The components of this 
stress tensor are oriented along the material directions, so it can be viewed 
as a scaled second Piola-Kirchhoff stress tensor. The additive 
decomposition of strains is understood as the summation of 
Green-Lagrange strains.

ε·p

ε·p λ
∂Qp
∂σ

----------=
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Here, λ is a positive multiplier (also called the consistency parameter or plastic 
multiplier), which depends on the current state of stress and the load history, and Qp 
is the plastic potential.

The direction of the plastic strain increment  is perpendicular to the surface (in the 
hyperspace spanned by the stress tensor components) defined by the plastic potential 
Qp.

The plastic multiplier λ is determined by the complementarity or Kuhn-Tucker 
conditions

,  and  (3-25)

where Fy is the yield function. The yield surface encloses the elastic region defined by 
Fy < 0. Plastic flow occurs when Fy = 0.

If the plastic potential and the yield surface coincide with each other (Qp = Fy), the 
flow rule is called associated, and the rate in Equation 3-26 is solved together with the 
conditions in Equation 3-25.

 (3-26)

For a non-associated flow rule, the yield function does not coincide with the plastic 
potential, and together with the conditions in Equation 3-25, the rate in 
Equation 3-27 is solved for the plastic potential Qp (often, a smoothed version of Fy).

 (3-27)

The evolution of the plastic strain tensor  (with either Equation 3-26 or 
Equation 3-27, plus the conditions in Equation 3-25) is implemented at Gauss points 
in the plastic element elplastic.

The “dot” (for ) means the rate at which the plastic strain tensor 
changes with respect to ∂Qp/∂σ. It does not represent a true time 
derivative. Some authors call this formulation rate independent 
plasticity.

ε·p

ε·p

λ 0≥ Fy 0≤ λFy 0=

ε·p λ
∂Fy
∂σ
---------=

ε·p λ
∂Qp
∂σ

----------=

ε·p
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P L A S T I C  F L O W  F O R  L A R G E  S T R A I N S

When Large plastic strain is selected as the plasticity model for the Plasticity node, a 
multiplicative decomposition of deformation (Ref. 9, Ref. 10, and Ref. 11) is used, 
and the associated plastic flow rule can be written as the Lie derivative of the elastic 
left Cauchy-Green deformation tensor Bel: 

 (3-28)

The plastic multiplier λ and the yield function Φ (written in terms of the Kirchhoff 
stress tensor τ) satisfy the Kuhn-Tucker condition, as done for infinitesimal strain 
plasticity

,  and  

The Lie derivative of Bel is then written in terms of the plastic right Cauchy-Green rate

 (3-29)

By using Equation 3-28 and Equation 3-29, the either associated or non-associated 
plastic flow rule for large strains is written as (Ref. 10)

 (3-30)

together with the Kuhn-Tucker conditions for the plastic multiplier λ and the yield 
function Fy 

,  and  (3-31)

For the associated flow rule, the plastic potential and the yield surface coincide with 
each other (Qp = Fy), and for the non-associated case, the yield function does not 
coincide with the plastic potential.

In COMSOL Multiphysics, the elastic left Cauchy-Green tensor is written in terms of 
the deformation gradient and the right Cauchy-Green tensor, so Bel = FCp

−1FT. The 
flow rule then reads

1
2
---– L Bel( ) λ∂Φ

∂τ
-------Bel=

λ 0≥ Φ 0≤ λΦ 0=

The yield function Φ in Ref. 9 and Ref. 10 was written in terms of 
Kirchhoff stress τ and not Cauchy stress σ because the authors defined the 
plastic dissipation with the conjugate energy pair τ and d, where d is the 
rate of strain tensor.

L Bel( ) FCp
1–· FT=

1
2
---– FCp

1–· FT λ
∂Qp
∂τ

----------Bel=

λ 0≥ Fy 0≤ λFy 0=
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 (3-32)

The plastic flow rule is then solved at Gauss points in the plastic element elplastic 
for the inverse of the plastic deformation gradient Fp

−1, so that the variables in 
Equation 3-32 are replaced by 

,  and 

After integrating the flow rule in Equation 3-32, the plastic Green-Lagrange strain 
tensor is computed from the plastic deformation tensor

and the elastic Green-Lagrange strain tensor is computed from the elastic deformation 
gradient tensor Fel = FFp

−1

N U M E R I C A L  S O L U T I O N  O F  T H E  E L A S T O P L A S T I C  C O N D I T I O N S

A backward Euler discretization of the pseudo-time derivative is used in the plastic flow 
rule. For small plastic strains, this gives

where “old” denotes the previous time step and Λ = λΔt, where Δt is the pseudo-time 
step length. 

Cp
1–· 2λ– F 1–

∂Qp
∂τ

----------FCp
1–=

Cp
1– Fp

1– Fp
T–= Cp

1–· Fp
1–· Fp

T– Fp
1– Fp

T–·+= Bel FFp
1– Fp

T– FT=

εp
1
2
--- Fp

TFp I–( )=

εel
1
2
--- Fel

T Fel I–( )=

When Large plastic strain is selected as the plasticity model for the 
Plasticity node, the effective plastic strain variable is computed as the true 
effective plastic strain (also called Hencky or logarithmic plastic strain).

When either Large plastic strain or Small plastic strain is selected as the 
plasticity model for the Plasticity node, the out-of-plane shear strain 
components are not computed in 2D, neither for plane stress nor plane 
strain assumption.

εp εp, old– Λ
∂Qp
∂σ

----------=
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For large plastic strains, Equation 3-32 is numerically solved with the so-called 
exponential mapping technique

 

where  and .

For each Gauss point, the plastic state variables (εp or Fp
−1, depending on whether 

small strain or large strain plasticity is selected) and the plastic multiplier, Λ, are 
computed by solving either of the above time-discretized flow rules together with the 
complementarity conditions

This is done as follows (Ref. 9):

1 Elastic-predictor: Try the elastic solution εp = εp,old (or ) and Λ = 0. 
If this satisfies Fy ≤ 0 it is done.

2 Plastic-corrector: If the elastic solution does not work (this is Fy > 0), solve the 
nonlinear system consisting of the flow rule and the equation Fy = 0 using a damped 
Newton method..

E N E R G Y  D I S S I P A T I O N

Since plasticity is an inelastic process, the dissipated energy density can be calculated 
by integrating the pseudo-rate given by

As plasticity is rate independent, the plastic dissipation density Wp is obtained after 
integrating an extra variable in the plastic flow rule.

Cp
1– F 1– 2Λ–

∂Qp
∂σ

---------- 
 FCp, old

1–exp=

Cp
1– Fp

1– Fp
T–= Cp, old

1– Fp, old
1– Fp, old

T–=

Λ 0,≥ Fy 0,≤ ΛFy 0=

Fp
1– Fp, old

1–=

The numerical tolerance to fulfill the condition Fy = 0 is given in SI units 
of Pascals, and it depends on the initial yield stress (in case of plasticity and 
porous plasticity) or it is defined in terms of other material parameter (for 
soil plasticity). This numerical tolerance is 0.1% the value defined in the 
variable item.tol., where item is the name of the node.

W
·

p σ:ε·p λσ:
∂Qp
∂σ

----------= =
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The total energy dissipated by plasticity in a given volume can be calculated by a 
volume integration of the plastic dissipation density Wp.

Failure Criteria for Concrete, Rocks, and Other Brittle Material 

In this section:

• Bresler-Pister Criterion

• Willam-Warnke Criterion

• Ottosen Criterion

• Original Hoek-Brown Criterion

• Generalized Hoek-Brown Criterion

B R E S L E R - P I S T E R  C R I T E R I O N

The Bresler-Pister criterion (Ref. 2) was originally devised to predict the strength of 
concrete under multiaxial stresses. This failure criterion is an extension of the 
Drucker-Prager criterion to brittle materials and can be expressed in terms of the stress 
invariants as

 (3-33)

here, k1, k2, and k3 are material parameters. 

This criterion can also be written (Ref. 17) in term of the uniaxial compressive strength 
fc and the octahedral normal and shear stresses

 and 

so Equation 3-33 simplifies to

When the Calculate dissipated energy check box is selected, the plastic 
dissipation density is available under the variable solid.Wp and the total 
plastic dissipation under the variable solid.Wp_tot.

Fy J2 k1I1
2 k2I1 k3+ + + 0= =

σoct = I1/3 τoct 2J2/3=

Fy
τoct
fc

--------- a– b
σoct
fc

---------- c
σoct

2

fc
2

----------–+ 0= =
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Here, the parameters a, b, and c are obtained from the uniaxial compression, uniaxial 
tension, and biaxial compression tests, respectively. The octahedral normal stress σoct 
is considered positive when tensile, and fc is taken positive.

W I L L A M - WA R N K E  C R I T E R I O N

The Willam-Warnke criterion (Ref. 10) is used to predict failure in concrete and other 
cohesive-frictional materials such as rock, soil, and ceramics. Just as the Bresler-Pister 
criterion, it depends only on three parameters. It was developed to describe initial 
concrete failure under triaxial conditions. The failure surface is convex, continuously 
differentiable, and is fitted to test data in the low compression range. The material is 
considered perfect elastoplastic (no hardening).

The original “three-parameter” Willam-Warnke failure criterion was defined as

 (3-34)

where fc is the uniaxial compressive strength, ft is uniaxial tensile strength, and fb is 
obtained from the biaxial compression test. All parameters are positive. The octahedral 
normal and shear stresses are defined as usual

, and 

This can be written as

with

The function r(θ) describes the segment of an ellipse on the octahedral plane when 
. By using the Lode angle θ, the dimensionless function r(θ) is defined as

Here, the tensile and compressive meridian rt and rc are defined in terms of the positive 
parameters fc, fb, and ft:

Fy
3
5
---

τoct
fc

--------- r θ( ) 1
ft
--- 1

fb
----– 

 σoct 1– 
  0=+=

σoct = I1/3 τoct 2J2/3=

Fy J2
5
2
---r θ( ) 1

3χ
------I1 fc– 
  0=+=

χ fbft/ fbfc ftfc–( )=

0 θ π 3⁄≤ ≤

r θ( )
2rc rc

2 rt
2–( ) θ rc 2rt rc–( ) 4 rc

2 rt
2–( ) θ 5rt

2 4– rcrt+
2

cos+cos

4 rc
2 rt

2–( ) θ rc 2rt–( )2+
2

cos
---------------------------------------------------------------------------------------------------------------------------------------------------------------=
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The function r(θ) can be interpreted as the friction angle which depends on the Lode 
angle (Ref. 10).

Figure 3-12: The deviatoric section of Willam-Warnke failure criterion.

O T T O S E N  C R I T E R I O N

The Ottosen criterion is a four-parameter failure criterion proposed for short-time 
loading of concrete. It corresponds to a smooth convex failure surface with curved 
meridians, which is open in the negative (compressive) direction of the hydrostatic 
axis. The curve in the pi-plane changes from almost triangular to a more circular shape 
with increasing hydrostatic pressure. The criterion is in agreement with experimental 
results over a wide range of stress states, including both triaxial tests along the tensile 
and the compressive meridian and biaxial tests (Ref. 18).

The Ottosen criterion is commonly written as (Ref. 17, Ref. 18):

rt =
6
5
---  

fbft
2fbfc ftfc+
----------------------------

rc = 6
5
---  

fbft
3fbft f+ bfc ftfc–
-------------------------------------------

rc

rt
r θ

π/6

Fy
a
fc
----J2 λ θ( ) J2 bI1 fc–+ + 0= =
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In this formulation, the parameters a>0, b>0, k1>0, and k2>0 are dimensionless, and 
fc>0 is the uniaxial compressive strength of concrete (with a positive sign). The 
function  (dimensionless) is defined as

The parameter k1 is called the size factor. The parameter k2 (also called shape factor) 
is positive and bounded to 0 ≤ k2 ≤ 1(Ref. 17, Ref. 18).

Typical values for these parameters are obtained by curve-fitting the uniaxial 
compressive strength fc, uniaxial tensile strength ft, and from the biaxial and triaxial 
data (for instance, a typical biaxial compressive strength of concrete is 16% higher than 
the uniaxial compressive strength). The parameters fc, fb, and ft are positive.

The compressive and tensile meridians (as defined in the Willam-Warnke criterion) are

For concrete, the ratio

TABLE 3-3:  TYPICAL PARAMETER VALUES FOR OTTOSEN FAILURE CRITERION (Ref. 18).

ft/ fc a b k1 k2 lt  lc
0.08 1.8076 4.0962 14.4863 0.9914 14.4725 7.7834

0.10 1.2759 3.1962 11.7365 0.9801 11.7109 6.5315

0.12 0.9218 2.5969 9.9110 0.9647 9.8720 5.6979

λ θ( ) 0>

λ θ( )

k1
1
3
--- k2 3θ( )cos( )acos 
               J3 0>cos

 

k1
π
3
--- 1

3
---– k– 2 3θ( )cos( )acos 

         J3 0,<cos










=

rc = 1
λc
----- = 1

λ π/3( )
-------------------

rt = 1
λt
----- = 1

λ 0( )
-----------

λc/λt rt/rc=
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normally lies between 0.54~0.58.

O R I G I N A L  H O E K - B R OW N  C R I T E R I O N

The Hoek-Brown criterion is an empirical type of model which is commonly used 
when dealing with rock masses of variable quality. The Hoek-Brown criterion is widely 
used within civil engineering and is popular because the material parameters can be 
estimated based on simple field observations together with knowledge of the uniaxial 
compressive strength of the intact rock material. The Hoek–Brown criterion is one of 
the few nonlinear criteria widely accepted and used by engineers to estimate the yield 
and failure of rock masses. The original Hoek-Brown failure criterion states (Ref. 5)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the principal stresses at failure (as defined in geotechnical 
engineering; that is, an absolute value), σc is the uniaxial compressive strength of the 
intact rock (positive parameter), and m and s are positive material parameters.

If the expression is converted into to the sign convention for principal stresses in the 
Structural Mechanics Module, it becomes

with σc, m, and s positive material parameters. (In this case, note that σ1 <  sσc/m).

As developed originally, there is no relation between the parameters m and s and the 
physical characteristics of a rock mass measured in laboratory tests. However, for intact 
rock, s = 1 and m = mi, which is measured in a triaxial test.

For jointed rock masses, 0 ≤ s < 1 and m < mi. The parameter m usually lies in the 
range 5 < m < 30 (Ref. 7).

The Ottosen criterion is equivalent to Drucker-Prager when a = 0 and 
λ = constant.

TABLE 3-4:  CHARACTERISTIC VALUES FOR DIFFERENT ROCK TYPES

m ROCK TYPE

5 Carbonate rocks, dolomite, limestone

10 Consolidated rocks, mudstone, shale

15 Sandstone

σ1 σ3 mσcσ3 sσc
2++=

σ1 σ3 mσcσ1– sσc
2++=
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The Hoek-Brown criterion can be written in terms of the invariants I1 and J2 and the 
Lode angle 0 ≤ θ ≤ π/3, so 

 

G E N E R A L I Z E D  H O E K - B R O W N  C R I T E R I O N

The generalized Hoek-Brown criterion was developed in order to fit the Geological 
Strength Index (GSI) classification of isotropic rock masses (Ref. 6). A new 
relationship between GSI, m, s and the newly introduced parameter a was developed, 
to give a smoother transition between very poor quality rock masses (GSI < 25) and 
stronger rocks

In terms of the invariants J2 and the Lode angle  this equals

where σ1 ≥ σ2 ≥ σ3 are the principal stresses (using the Structural Mechanics Module 
conventions) of the effective stress tensor (this is, the stress tensor minus the fluid pore 
pressure).

The positive parameter mb is a reduced value of the material constant mi:

s and a are positive parameters for the rock mass given by the following relationships:

20 Fine-grained rocks

25 Coarse grained rocks

TABLE 3-4:  CHARACTERISTIC VALUES FOR DIFFERENT ROCK TYPES

m ROCK TYPE

Fy 2 J2 θ π
3
---+ 

  σc s m
σ1
σc
------– 0=–sin=

σ1 σ3– σc s mb
σ1
σc
------– 

 a
=

0 θ π 3⁄≤ ≤

Fy 2 J2 θ π
3
---+ 

  σc s mb
σ1
σc
------– 

 a
–sin 0= =

mb miexp GSI 100–
28 14D–
-------------------------- 
 =

s = exp GSI 100–
9 3D–

-------------------------- 
                         

a = 1
2
--- 1

6
--- exp GSI–

15
------------- 
  exp 20–

3
--------- 
 – 

 +
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The disturbance factor D was introduced to account for the effects of stress relaxation 
and blast damage, and it varies from 0 for undisturbed in-situ rock masses to 1 for very 
damaged rock masses.

Cam-Clay Material Model

A B O U T  T H E  C A M - C L A Y  M A T E R I A L  M O D E L

The Cam-clay material model was developed at the University of Cambridge in the 
1970s, and since then it has experienced different modifications. The modified 
Cam-clay model is the most commonly used due to the smooth yield surface, and it is 
the one implemented in the Geomechanics Module.

The Cam-clay model is a so-called critical state model, where the loading and 
unloading of the material follows different trajectories in stress space. The model also 
features hardening and softening of clays. Different formulations can be found in 
textbooks about these models (see Ref. 13, Ref. 14, and Ref. 15).

The yield function is written in terms of the variables

 and 

Following the Structural Mechanics Module sign convention:

This is an ellipse in p-q plane, with a cross section independent of Lode angle and 
smooth for differentiation. Note that p, q, and pc are always positive variables.

The material parameter M > 0 defines the slope of a line in the p-q space called critical 
state line, and it can be related to the angle of internal friction  in the 
Mohr-Coulomb criterion

TABLE 3-5:  DISTURBANCE FACTOR IN ROCK MASSES

D DESCRIPTION OF ROCK MASS

0 Undisturbed rock mass

0~0.5 Poor quality rock mass

0.8 Damaged rock mass

1.0 Severely damaged rock mass

q 3J2 σ( )= p I– 1 σ( ) 3⁄=

Fy q2 M2 p pc–( )p+ 0= =

φ

M 6 φ( )sin
3 φ( )sin–
--------------------------=
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Figure 3-13: Modified Cam-clay surface in the pq-plane. The ellipse circumscribes a 
nonlinear elastic region.

In the Cam-clay model, hardening is controlled by the consolidation pressure pc, 
which depends exponentially on the volumetric plastic strain εpl,vol.

 (3-35)

Here, the parameter pc0 is the initial consolidation pressure, and the exponent Bpl is a 
parameter which depends on the initial void ratio e0, the swelling index κ, and the 
compression index λ:

The initial void ratio, the compression index, and the swelling index are all positive 
parameters and must fulfill

, so 

N

s

q

pc/2

pc pc0e
Bplεpl vol,–

=

The volumetric plastic strain is available in the variable solid.epvol and 
the consolidation pressure in the variable solid.Pc.

Bpl
1 e0+

λ κ–
---------------=

0 κ λ< < Bpl 0>
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In this formulation, the compression index λ is the slope of the virgin isotropic 
consolidation line, and κ is the slope of the rebound-reloading line (also called 
loading-reloading line) in the e versus ln(p) plane.

Figure 3-14: Slopes of the virgin isotropic consolidation line and rebound-reloading line 
in the e vs. ln(p) plane. The reference void ratio N is measured at the reference pressure 
prefN.

VO L U M E T R I C  E L A S T I C  B E H A V I O R

The stress-strain relation beyond the elastic range is of great importance in soil 
mechanics. For additive decomposition of strains, Cauchy’s stress tensor is written as

Here, σ is the Cauchy stress tensor, ε is the total strain tensor, εinel is the inelastic strain 
tensor, σ0 is the initial stress tensor, and C is the fourth-order elasticity tensor.

The void ratio e is the ratio between pore volume and solid volume. It can 
be written in terms of the porosity  as e = /(1− ).φ φ φ

ln(p)

λ

κ

N

ln(prefN) ln(pC0)

e

If an Initial Stress and Strain feature subnode is added to the Cam-clay 
material, the initial consolidation pressure pc0 must be made equal or 
bigger than one third of minus the trace of the initial stress tensor, 
otherwise the initial stress state is outside the Cam-clay ellipse.

σ σ0– C: ε εinel–( )=
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For a linear elastic material, the trace of the Cauchy’s stress tensor is linearly related to 
the volumetric elastic strain (the trace of the elastic strain tensor) by the elastic bulk 
modulus

here p0 = −trace(σ0)/3 is the trace of the initial stress tensor σ0, and K is the bulk 
modulus, a constant parameter independent of the stress or strain.

The modified Cam-clay model introduces a nonlinear relation between stress and 
volumetric elastic strain

 with 

and K0 a reference bulk modulus. This formulation gives a tangent bulk modulus 
KT = −Bel(p−p0). The reference bulk modulus is calculated from the initial 
consolidation pressure pc0, and the void ratio at reference pressure N.

H A R D E N I N G  A N D  S O F T E N I N G

The yield surface for the modified Cam-clay model reads

The associated flow rule (Qp = Fy) and the yield surface written in terms of these two 
invariants, Fy(I1, J2), gives a rate equation for the plastic strain tensor calculated from 
the derivatives of Fy with respect to the stress tensor σ

 

The plastic strain rate tensor  includes both deviatoric and isotropic parts. Note that

p I– 1 σ( ) 3⁄ p0 Kεel,vol–= =

The elastic volumetric strain is available in the variable solid.eelvol.

p p0– K– 0e
Belεel vol,–

= Bel
1 e0+

κ
---------------=

Fy q2 M2 p pc–( )p+ 0= =

ε·p λp
∂Qp
∂σ

---------- λp
∂Qp
∂I1
----------

∂I1
∂σ
--------

∂Qp
∂J2
----------

∂J2
∂σ
---------+ 

 = =

Here, λp means the plastic multiplier, see Plastic Flow for Small Strains 
and Isotropic Hardening.

ε·p
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 and 

These relations can be used for writing the plastic flow as

The trace of the plastic strain rate tensor (the volumetric plastic strain rate ) 
then reads

This relation explains the reason why there is isotropic hardening for p > pc/2 and 
isotropic softening for p < pc/2. So the volumetric plastic strain can either increase or 
decrease.

In the Cam-clay model, the hardening is controlled by the consolidation pressure 
variable  as a function of volumetric plastic strain, as written in 
Equation 3-35. Hardening introduces changes in the shape of the Cam-clay ellipse, 
since its major semi-axis depends on the value of pc.

I N C L U D I N G  PO R E  F L U I D  P R E S S U R E

When a pore fluid pressure pf is added to the Cam-clay material, the yield surface is 
shifted on the p axis

The quantity p − pf is normally regarded as the effective pressure, or effective stress, 
which should not be confused with von Mises stress.

∂I1 ∂σ⁄ I= ∂J2 ∂σ⁄ dev σ( )=

ε·p λp
1
3
---

∂Qp
∂p

----------– I
∂Qp
∂q

---------- 3
2q
-------dev σ( )+ 

  λp
1
3
---M2 2p pc–( )– I 3dev σ( )+ 

 = =

ε·pvol

ε·pvol trace ε·p( ) λp M2 2p pc–( )–( )= =

pc εpvol( )

Fy q2 M2 p pf– pc–( ) p pf–( )+ 0= =

See also the description of the Cam-Clay Material material model in the 
Solid Mechanics interface documentation.
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Creep and Viscoplasticity

A B O U T  C R E E P

Creep is an inelastic time-dependent deformation that occurs when a material is 
subjected to stress (typically much less than the yield stress) at sufficiently high 
temperatures.

The creep strain rate, in a general case, depends on stress, temperature, and time, 
usually in a nonlinear manner:

It is often possible to separate these effects as shown in this equation:

Experimental data shows three types of behavior for the creep strain rate at constant 
stress as function of time. Researchers normally subdivide the creep curve into three 
regimes, based on the fact that many different materials show similar responses:

• In the initial primary creep regime (also called transient creep) the creep strain rate 
decreases with time to a minimum steady-state value.

• In the secondary creep regime the creep strain rate is almost constant. This is also 
called steady-state creep.

• In the tertiary creep regime the creep strain increases with time until a failure 
occurs.

When this distinction is assumed, the total creep rate can be additively split into 
primary, secondary, and tertiary creep rates

In most cases, Fcr1 and Fcr3 depend on stress, temperature and time, while secondary 
creep, Fcr2, depends only on stress level and temperature. Normally, secondary creep 

In the literature, the terms viscoplasticity and creep are often used 
interchangeably to refer to the class of problems related to 
rate-dependent plasticity.

ε·cr Fcr σ T t, ,( )=

Fcr σ t T, ,( ) f1 σ( )f2 T( )f3 t( )=

ε·cr Fcr1 Fcr2 Fcr3+ +=
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is the dominant process. Tertiary creep is seldom important because it only accounts 
for a small fraction of the total lifetime of a structure.

Figure 3-15: Uniaxial creep as a function of logarithmic time.

Creep and Viscoplastic Material Models
Despite the fact that the creep response of a given material is related to its atomic 
structure, a macroscopic (continuum mechanics) description is normally appropriate 
for modeling scientific and engineering problems.

In COMSOL Multiphysics, there are several creep models. These models can be split 
into two main groups. One set of models are more general, and you will have to 
express the creep rate yourself, based on other variables as a stress tensor and 
temperature. These models are:

• Creep Potential

• Volumetric Creep

• Deviatoric Creep

• User-Defined Creep

In addition to the basic models for creep described above, there are also predefined 
material models for creep in metals and crystalline solids:

• Norton Law (Power law)

• Norton-Bailey Law

εcr

σ1 > σ2

σ1

σ2

s

p
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• Garofalo Law (Hyperbolic Sine Law)

• Navarro-Herring Creep (Diffusional Creep)

• Coble Creep (Diffusional Creep)

• Weertman Creep (Dislocation Creep)

• Anand Viscoplastic Model

• Chaboche Viscoplastic Model

• Perzyna Viscoplastic Model

All creep models are contributing subnodes to the a basic material model like Linear 

Elastic Material and they can be combined with any other subnodes, such as Plasticity 
or Thermal Expansion to create more advanced models. They can also be combined with 
each other to model several creep mechanisms acting at the same time.

C R E E P  PO T E N T I A L

Some authors use a creep potential to describe the secondary creep rate, so that the 
creep rate is written in a way similar to the flow rule for plasticity:

 and 

Here, Qcr is a user-defined creep potential, which is normally written in terms of 
invariants of the stress tensor.

Volumetric creep is obtained when the creep potential depends only on the first 
invariant of Cauchy stress tensor, I1(σ), since

This is equivalent to that the creep potential would depend on the pressure p = −I1/3.

When the creep potential depends only on the second deviatoric invariant of Cauchy 
stress tensor, J2(σ), the deviatoric creep model is obtained since

This is equivalent to that the creep potential would depend on the effective stress 
σe = √3J2.

ε·cr η
∂Qcr
∂σ

-----------= η 0>

∂Qcr
∂σ

-----------
∂Qcr
∂I1

-----------I=

∂Qcr
∂σ

-----------
∂Qcr
∂J2
-----------dev σ( )=
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When (in SI units) the creep potential, Qcr, is given in units of Pa, the rate multiplier 
η is given in units of 1/s.

VO L U M E T R I C  C R E E P

The creep strain rate is calculated by solving the rate equation

so that the creep rate tensor is a diagonal tensor. The trace of the creep rate tensor, the 
volumetric creep strain rate, equals the user input Fcr

 (3-36)

The creep rate, Fcr, usually depends on the first invariant of Cauchy stress I1(σ) or the 
pressure p = −I1/3, in addition to the temperature and other material parameters.

Volumetric creep is not generally used to model creep in metals, but it is commonly 
used to model creep in soils or other geological materials.

D E V I A T O R I C  C R E E P

The creep strain rate is calculated by solving the rate equation

Here, nD is a deviatoric tensor coaxial to the stress tensor.

The creep rate, Fcr, normally depends on the second deviatoric invariant of the stress 
J2(σ) or the effective or von Mises (effective) stress σe, in addition to the temperature 
and other material parameters.

The deviatoric tensor nD is defined as

 (3-37)

The resulting creep strain rate tensor is also deviatoric, since trace (nD) = 0

Given the property

ε·cr
1
3
---FcrI=

trace ε·cr( ) Fcr=

ε·cr Fcrn
D=

nD 3
2
---dev σ( )

σe
-----------------=

trace ε·cr( ) Fcrtrace nD( ) 0= =

nD:nD 3
2
---=
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the effective creep strain rate equals the absolute value of the user input Fcr

Deviatoric creep is very popular to model creep in metals and alloys. For example, 
Norton’s law is a deviatoric creep model.

U S E R - D E F I N E D  C R E E P

The creep strain rate is calculated by solving the rate equation

where Fcr is a user-defined symmetric tensor field.

N O R T O N  L A W  ( PO W E R  L A W )

The most common model for secondary creep is the Norton equation where the creep 
strain rate is proportional to a power of the effective stress, σe:

 

This is normally true at intermediate to high stress levels and at absolute temperatures 
of T/Tm > 0.5, where Tm is the melting temperature (that is, the temperature in the 
solid is at least as high as half the melting temperature Tm). An “Arrhenius type” 
temperature dependency can also be included. It is defined by

where Q is the activation energy (SI unit: J/mol), R is the gas constant, and T is the 
absolute temperature (SI unit: K).

Norton creep is a deviatoric temperature-dependent creep model, with a creep rate 
equation written as

 (3-38)

ε·cr,e
2
3
---ε·cr:ε

·
cr Fcr= =

The effective creep strain and the effective creep strain rate are available in 
the variables solid.ece and solid.ecet.

ε·cr Fcr=

ε·cr σe
n∝

ε·cr e Q– RT⁄∝

ε·cr A
σe

σref
--------- 
 

n
e

Q
RT
---------–

nD=
M A T E R I A L  M O D E L S  |  327



328 |  C H A P T E
Here, A is the creep rate coefficient (SI unit: 1/s), n is the stress exponent 
(dimensionless), σref a reference stress level (SI unit: Pa), and nD is a deviatoric tensor 
coaxial to the stress tensor as defined in Equation 3-37.

N O R T O N - B A I L E Y  L A W

A common model for modeling primary and secondary creep together is the so-called 
Norton-Bailey (or Bailey-Norton) model. Here, the creep strain is proportional to a 
power of time and to a power of the effective stress

which for the creep strain rate becomes a time hardening formulation of Norton’s law. 
Differentiating with respect to time will give the rate form.

Norton-Bailey creep is a deviatoric temperature-dependent creep model, furbished 
with either a time-hardening or a strain-hardening primary creep model. The creep 
rate equation for the time-hardening model used in COMSOL Multiphysics is written 
as

  (3-39)

where nD is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-37, 
and Fcr is expressed as in the Norton model:

 (3-40)

Here, A is the creep rate coefficient (SI unit: 1/s), n is the stress exponent 
(dimensionless), σref is a reference stress level (SI unit: Pa), tref and tshift are the 

• For a discussion about how to convert common creep data equations 
into the form used in COMSOL Multiphysics, see Converting 
Between Different Creep Data Representations

• See also the description of the Norton material model in the Solid 
Mechanics interface documentation.

εcr σe
ntm∝

ε·cr σe
nmtm 1–∝

ε·cr Fcrm
t t+ shift

tref
------------------- 
 

m 1–
nD=

Fcr A
σe

σref
--------- 
 

n
e

Q
RT
---------–

=
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reference and shift times (SI unit: s), and m is the time-hardening exponent 
(dimensionless).

The strain-hardening variant of this creep law is implemented as

  (3-41)

where εcr,e is the effective creep strain, and εshift is the effective creep strain shift.

The time and frequency shifts in Equation 3-39 and Equation 3-41 serve two 
purposes:

• They can be used to initialize a study where some hardening has already taken place.

• The strain rate expressions actually predicts an infinite creep rate at t = 0, unless a 
shift is used. This singularity is weak in the sense that the time integral is well 
defined, but it will cause problems for the numerical solution. You can then add a 
small shift to overcome this problem. 

G A R O F A L O  L A W  ( H Y P E R B O L I C  S I N E  L A W )

At very high stress levels, the creep rate is proportional to the exponential of the 
effective stress

Garofalo showed (Ref. 8, Ref. 9) that the power-law and exponential creep are limiting 
cases for the general empirical expression

This equation reduces to a power-law (Norton law) for ασe < 0.8 and approaches 
exponential creep for ασe > 1.2, where 1/α is a reference effective stress level.

ε·cr Fcrm
εcr,e ε+ shift

trefFcr
---------------------------
 
 
 

m 1–
m

--------------

nD=

• For a discussion about how to convert common creep data equations 
into the form used in COMSOL Multiphysics, see Converting 
Between Different Creep Data Representations

• See also the description of the Norton-Bailey material model in the 
Solid Mechanics interface documentation.

ε·cr e
ασe∝

ε·cr ασe( )sinh( )n∝
M A T E R I A L  M O D E L S  |  329



330 |  C H A P T E
Garofalo creep is also a deviatoric creep model with a creep rate proportional to the 
hyperbolic sine function. It can also be augmented by an “Arrhenius type” temperature 
dependency such that

where Q is the activation energy (SI unit: J/mol), R is the gas constant, and T is the 
absolute temperature (SI unit: K). The complete creep rate equation as used in 
COMSOL Multiphysics then reads

where, A is the creep rate (SI unit: 1/s), n is the stress exponent (dimensionless), and 
σref a reference effective stress level (SI unit: Pa). nD is a deviatoric tensor coaxial to 
the stress tensor as defined in Equation 3-37.

N AV A R R O - H E R R I N G  C R E E P  ( D I F F U S I O N A L  C R E E P )

At low stress levels and high temperatures, Navarro and Herring (Ref. 6, Ref. 7) 
independently derived an expression for the creep rate as a function of atomic diffusion

Here, d is the grain diameter, Dv is the volume diffusivity through the grain interior, 
b is Burgers vector, kB is the Boltzmann’s constant, and T is the absolute temperature. 
nD is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-37.

ε·cr e Q– RT⁄∝

ε·cr A
σe

σref
--------- 
 sinh 

 
n
e

Q
RT
---------–

nD=

• For a discussion about how to convert common creep data equations 
into the form used in COMSOL Multiphysics, see Converting 
Between Different Creep Data Representations

• See also the description of the Garofalo (hyperbolic sine) material 
model in the Solid Mechanics interface documentation.

ε·cr
7Dvb3

kBTd2
------------------σenD=

See also the description of the Navarro-Herring material model in the 
Solid Mechanics interface documentation.
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C O B L E  C R E E P  ( D I F F U S I O N A L  C R E E P )

Coble creep (Ref. 6, Ref. 7) is closely related to Navarro-Herring creep but takes into 
account the ionic diffusivity along grain boundaries Dgb

WE E R T M A N  C R E E P  ( D I S L O C A T I O N  C R E E P )

At intermediate to high stress levels and temperatures T/Tm > 0.5, the creep 
mechanism is assumed to be diffusion-controlled movements of dislocations in the 
crystal lattices (Ref. 7)

where and nD is a deviatoric tensor coaxial to the stress tensor as defined in 
Equation 3-37. Generally, the stress exponent n takes values between 3 and 5.

A general relation between creep rate and several material parameters is the 
Mukherjee-Bird-Dorn equation (Ref. 6)

Here, T is the temperature, d is the grain size, b is the Burgers vector, D is the self 
diffusion coefficient, G is the shear modulus, and e−Q/RT is an “Arrhenius” type of 
temperature dependency.

For high temperatures, Mukherjee-Bird-Dorn equation describes Weertman creep 
when setting p = 0. Setting n = 0 and p = 2 describes Nabarro-Herring, and setting 

ε·cr
50Dgbb4

kBTd3
-----------------------σenD=

Coble creep is more sensitive to grain size than Navarro-Herring creep.

See also the description of the Coble material model in the physics 
interface documentation.

ε·cr
Db
kBT
-----------σref

σe
σref
--------- 
 

n
nD=

ε·cr
DGb
kBT
-------------

σe
G
------ 
 

n b
d
--- 
  p

e
Q– RT⁄

∝
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n = 0 and p = 3 describes Coble creep. Harper-Dorn creep is obtained by setting n = 1 
and p = 0.

A N A N D  V I S C O P L A S T I C  M O D E L

The Anand viscoplasticity (Ref. 9) is a deviatoric creep model suitable for large, 
isotropic, viscoplastic deformations in combination with small elastic deformations.

The viscoplastic strain rate equation reads

where nD is a deviatoric tensor coaxial to the stress tensor as defined in Equation 3-37, 
and the creep rate is calculated from

Here, A is the creep rate coefficient (SI unit: s−1), Q is the activation energy 
(SI unit: J/mol), m is the stress sensitivity, ξ is the multiplier of stress, R is the gas 
constant, and T is the absolute temperature (SI unit: K).

The internal variable, sa, is called deformation resistance (SI unit: Pa) and is calculated 
from the rate equation

with the initial condition sa(0) = sinit. Here, h0 is the hardening constant 
(SI unit: Pa), and a is the hardening sensitivity.

The variable sa* is the saturation value of the deformation resistance sa, which is 
calculated from the expression

See also the description of the Weertman material model in the Solid 
Mechanics interface documentation.

ε·cr Fcrn
D=

Fcr Ae Q– RT⁄ ξ
σe
sa
----- 

 sinh

1
m
-----

=

sa
· h0 1

sa

sa
*

-----–
a 1–

1
sa

sa
*

-----–
 
 
 

Fcr=

sa
* s0

Fcr
A

-------e Q– RT⁄
 
 

n
=
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where s0 is the deformation resistance saturation coefficient (SI unit: Pa), and n is 
the deformation resistance sensitivity.

C H A B O C H E  V I S C O P L A S T I C  M O D E L

The viscoplastic strain rate tensor is given by 

Here, A is the viscoplastic rate coefficient (SI unit: 1/s), n is the stress exponent 
(dimensionless), σref a reference stress level (SI unit: Pa), and nD is a deviatoric tensor 
coaxial to the stress tensor. The Macaulay brackets are applied on the yield function, 
which is defined as done for plasticity

 

The effective stress φ(σ) is either the von Mises, Tresca, or Hill stress; or a user-defined 
expression, and σys is the yield stress (which may include a linear or nonlinear Isotropic 
Hardening model). The stress tensor used in the effective stress φ(σ) is shifted by what 
is usually called the back stress, σback when Kinematic Hardening is included.

The deviatoric tensor nD is computed from the plastic potential Qp 

When von Misses effective stress is used, the associated flow rule reads Qp = Fy, and 
the deviatoric tensor nD is defined as done for deviatoric creep

 (3-42)

Given the property

the effective viscoplastic strain rate is equivalent to 

ε·vp A
Fy
σref
--------- 

n
nD=

Fy φ σ( ) σys–=

nD
∂Qp
∂σ

----------=

nD 3
2
---dev σ( )

σmises
-----------------=

nD:nD 3
2
---=

ε·vpe
2
3
---ε·vp:ε·vp A

Fy
σref
--------- 

n
= =
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P E R Z Y N A  V I S C O P L A S T I C  M O D E L

Perzyna viscoplastic model is similar to the Chaboche model, with the exception than 
the stress exponent is set equal to one. The viscoplastic strain rate tensor is then given 
by 

Some authors denote the viscosity as the quotient η = σref/A.

E N E R G Y  D I S S I P A T I O N

Since creep and viscoplasticity are inelastic processes, the dissipated energy density can 
be calculated by integrating the creep dissipation rate density (SI unit: W/m3) given 
by

In case many creep sub-nodes are added, the creep dissipation rate density is calculated 
from the cumulative creep strain rate tensor .

The total energy dissipated in a given volume can be calculated by a volume integration 
of the dissipated creep energy density Wc (SI unit: J/m3).

C O N V E R T I N G  B E T W E E N  D I F F E R E N T  C R E E P  D A T A  R E P R E S E N T A T I O N S

The equation forms described in for the different creep models above differ from the 
forms most commonly found in the literature. The difference lies in the introduction 
of normalizing reference values such as the reference stress σref and reference time tref. 

ε·vp
A

σref
--------- Fy nD=

See also the description of Viscoplasticity in the physics interface 
documentation.

W
·

cdr σ:ε·cr=

ε·cr

When the Calculate dissipated energy check box is selected, the dissipation 
rate density due to creep is available under the variable solid.Wcdr and 
the dissipation rate density due to viscoplasticity is available under the 
variable solid.Wvpdr. The dissipated energy density due to creep is 
available under the variable solid.Wc and due to viscoplasticity under the 
variable solid.Wvp. Here solid denotes the name of the physics 
interface node.
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These values are in a sense superfluous, and can in principle be chosen arbitrarily. The 
choice of reference values will however affect the numerical values to be entered for 
the material data. This system has two advantages

• It is possible to use the built-in unit management system in COMSOL Multiphysics.

• You do not need to do any difficult unit conversions when creep data are available 
in units other that the model units. Since many creep models contain the stress or 
time raised to a non-integer power, such conversions are error prone.

Norton law
Material data for a Norton law is often available as the parameters AN and n in the 
equation

The coefficient AN has a physical dimension which depends on the value of n and the 
unit have an implicit dependence on the stress and time units. Converting the data to 
the form used in COMSOL Multiphysics (Equation 3-38) requires the introduction 
of the reference stress σref. It is here convenient to use the implicit stress unit for which 
AN is given as reference stress. The creep rate coefficient A will then have the same 
numerical value as AN, and you do not need to do any conversions.

The physical dimension of A is however (time)-1, whereas the physical dimension of 
AN is (stress)-n(time)-1. 

Another popular way of representing creep data is to supply the stress giving a certain 
creep rate. As an example, σc7 is the stress at which the creep strain rate is 10-7/h. Data 
on this form is also easy to enter: You set the reference stress to the value of σc7, and 
enter the creep rate coefficient as 1e-7[1/h].

Example

Assume that a carbon steel has the following two equivalent descriptions of its creep 
properties at a certain temperature:

• σc7 = 70 MPa, and stress exponent n = 4.5.

• AN  = 4.98·10-16 with respect to units MPa and hours, and stress exponent n = 4.5.

In the first case, enter:

• σref as 70[MPa]

ε·cr ANσe
n

=
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• n as 4.5

• A as 1e-7[1/h]. 

In the second case, enter:

• σref as 1[MPa]

• n as 4.5

• A as 4.98e-16[1/h]

These two sets of data describe the same material.

Norton-Bailey law
Material data for a Norton-Bailey law usually is usually written in terms of the creep 
strain, rather than the creep strain rate, so that the form of the constitutive relation is

In this case, the coefficient ANB has implicit dimension and units which depend on the 
values of n and m, and on the stress and time units.

Converting the data to the form used in COMSOL Multiphysics (Equation 3-39 and 
Equation 3-40) requires the introduction of an both an arbitrary reference stress σref 
and an arbitrary reference time tref. If you use the implicit units for which ANB is given 
as the reference values, then the constant A will have the same numerical value as ANB.

Garofalo Law
Since the stress inside in the Garofalo law appears as an argument to a sinh() function, 
it must necessarily be nondimensionalized. Most commonly this is however written as 

Comparing with the expression in COMSOL Multiphysics,

it is evident that the reference stress should be chosen as

In this case, there is no arbitrariness in the choice of σref, since α is an actual material 
parameter.

εcr ANBσe
ntm

=

ε·cr ασe( )sinh( )n∝

ε·cr
σe

σref
--------- 
 sinh 

 
n

∝

σref
1
α
---=
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Piezoelectric Material

T H E  P I E Z O E L E C T R I C  E F F E C T

The piezoelectric effect manifests itself as a transfer of electric to mechanical energy 
and vice versa. It is present in many crystalline materials, while some materials such as 
quartz, Rochelle salt, and lead titanate zirconate ceramics display the phenomenon 
strongly enough for it to be of practical use.

The direct  piezoelectric effect consists of an electric polarization in a fixed direction 
when the piezoelectric crystal is deformed. The polarization is proportional to the 
deformation and causes an electric potential difference over the crystal.

The inverse piezoelectric effect, on the other hand, constitutes the opposite of the 
direct effect. This means that an applied potential difference induces a deformation of 
the crystal.

P I E Z O E L E C T R I C  C O N S T I T U T I V E  R E L A T I O N S

It is possible to express the relation between the stress, strain, electric field, and electric 
displacement field in either a stress-charge form or strain-charge form:

Stress-Charge

Strain-Charge

In the above relations, the naming convention used in piezoelectricity theory is 
assumed, so that the structural strain is denoted by S, and the stress is denoted by T. 
Thus, the naming convention differs in piezoelectricity theory compared to structural 
mechanics theory.

T cES eTE–=

D eS εSE+=

S sET dTE+=

D dT εTE+=

The Piezoelectric Material uses the structural mechanics nomenclature. 
The strain is named ε (instead of S) and the stresses are denoted by either 
σ or S (instead of T). This makes the names consistent with those used in 
the other structural mechanics interfaces.
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The constitutive relation using COMSOL Multiphysics symbols for the different 
constitutive forms are thus:

S T R E S S - C H A R G E

 (3-43)

The Stress-Charge form is always used in the variational formulation (weak equation 
form) which COMSOL Multiphysics uses for discretization and computation.

S T R A I N - C H A R G E

Most material data appears in the strain-charge form, and it can be easily transformed 
into the stress-charge form. In COMSOL Multiphysics both constitutive forms can be 
used; simply select one, and the software makes any necessary transformations. The 
following equations transform strain-charge material data to stress-charge data:

You find all the necessary material data inputs within the Piezoelectric Material feature 
under the Solid Mechanics interface, which are added automatically when you add a 
predefined Piezoelectric Devices multiphysics interface. Such node can be also added 
manually under any Solid Mechanics interface similar to all other material model 
features. The piezoelectric material uses the Voigt notation for the anisotropic material 
data, as customary in this field. More details about the data ordering can be found in 
Orthotropic and Anisotropic Materials section.

G OV E R N I N G  E Q U A T I O N S

The equations of Piezoelectricity combine the momentum equation Equation 3-51 
with the charge conservation equation of Electrostatics,

 (3-44)

σ cEε eTE–=

D eε ε0εrSE+=

ε sEσ dTE+=

D dσ ε0εrTE+=

cE sE
1–

=

e d sE
1–

=

εS ε0εrS ε0εrT d sE
1– dT

–= =

∇ D⋅ ρV=
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where the  is the electric charge concentration. The electric field is computed from 
the electric potential V as

In both Equation 3-44 and Equation 3-51, the constitutive relations Equation 3-43 
are used, which makes the resulting system of equations closed. The dependent 
variables are the structural displacement vector u and the electric potential V.

WA VE  P R O P A G A T I O N

In case of geometric linearity, the governing equations are linear and have the 
following time-harmonic wave solutions:

where k is the wave number vector that determines the direction of the wave 
propagation, and c is the phase velocity (or wave speed). 

The expressions for the wave speed can be computed analytically for waves of different 
types, polarizations and directions of propagations. For example, the pressure wave 
propagating in the X axis direction is a particular solution, for which

The corresponding pressure wave speed is given by

The shear wave propagation in the X axis direction and with XY plane polarization is 
a solution such that

ρV

E ∇V–=

u û ik r ct+( )[ ]exp=

V V
ˆ

ik r ct+( )[ ]exp=

u û ikX X cXt+( )[ ]exp=

v 0=

w 0=

V V
ˆ

ikX X cXt+( )[ ]exp=

cpX
1
ρ
--- cE 11,

eX1
2

ε0εrS XX,
-----------------------+

1 2⁄

=
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and the corresponding wave speed is computed as

COMSOL Multiphysics provides predefined variables for the waves speeds for waves 
of different types and polarizations propagating in the X, Y and Z directions.

P I E Z O E L E C T R I C  D I S S I P A T I O N

In order to define dissipation in the piezoelectric material for a time-harmonic analysis, 
all material properties in the constitutive relations can be complex-valued matrices 
where the imaginary part defines the dissipative function of the material.

Complex-valued data can be defined directly in the fields for the material properties, 
or a real-valued material X and a set of loss factors ηX can be defined, which together 
form the complex-valued material data

See also the same references for an explanation of the sign convention.

It is also possible to define the electrical conductivity of the piezoelectric material, σ. 
Electrical conductivity appears as an additional term in the variational formulation 
(weak equation form). The conductivity does not change during transformation 
between the formulations.

The energy dissipation modeling is also available in time domain. The options are: 
dielectric dispersion for the electrical part, and Rayleigh damping for the mechanical 
and coupling parts of the problem. The total dissipated energy can be computed as a 
function of time.

u 0=

v v̂ ikX X cXt+( )[ ]exp=

w 0=

V V
ˆ

ikX X cXt+( )[ ]exp=

csXY
1
ρ
--- cE 66,

eX6
2

ε0εrS XX,
-----------------------+

1 2⁄

=

X̃ X 1 jηX±( )=

Piezoelectric Losses
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I N I T I A L  S T R E S S ,  S T R A I N ,  A N D  E L E C T R I C  D I S P L A C E M E N T

Using the functionality available under the Piezoelectric Material feature and Solid 
Mechanics interface, one can define initial stress (S0), initial strain (ε0), and remanent 
electric displacement (Dr) for models. In the constitutive relation for piezoelectric 
material these additions appear in the stress-charge formulation:

When solving the model, the program does not interpret these fields as a constant 
initial state, but they operate as additional fields that are continuously evaluated. Thus 
use these initial field to add, for example, thermal expansion or pyroelectric effects to 
models.

Magnetostrictive Material

M A G N E T O S T R I C T I O N

Magnetostriction describes the change in dimensions of a material due to a change in 
its magnetization. This phenomenon is a manifestation of magnetoelastic coupling, 
which is exhibited by all magnetic materials to some extent. The effects related to 
magnetoelastic coupling are described by various names. The Joule effect describes the 
change in length due to a change in the magnetization state of the material. This 
magnetostrictive effect is used in transducers for applications in sonars, acoustic 
devices, active vibration control, position control, and fuel injection systems.

The inverse effect accounts for the change in magnetization due to mechanical stress 
in the material. This effect is also known Villari effect. This effect is mostly useful in 
sensors.

Magnetostriction has a quantum-mechanical origin. The magneto-mechanical 
coupling takes place at the atomic level due to spin-orbit coupling. From a system level, 
the material can be assumed to consist of a number of tiny ellipsoidal magnets which 
rotate due to the torque produced by the externally applied magnetic field. The 

σ cE ε ε0–( ) eTE– σ0+=

D e ε ε0–( ) ε0 vac, εrSE Dr+ +=
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rotation of these elemental magnets produces a dimensional change leading to free 
strain in the material. 

L I N E A R  M A G N E T O S T R I C T I O N  M O D E L

The magnetostriction has a nonlinear dependence on the magnetic field and the 
mechanical stress in the material. However, the effect can be modeled using linear 
coupled constitutive equations if the response of the material consists of small 
deviations around an operating point (bias point).

It is possible to express the relation between the stress S, strain ε, magnetic field H, 
and magnetic flux density B in either a stress-magnetization form or 
strain-magnetization form:

Stress-Magnetization

Strain-Magnetization

where  is the magnetic permeability of free space,  and  are respectively the 
stiffness and compliance matrices measured at constant magnetic field, and  and 

 are the relative magnetic permeabilities measured at constant strain and constant 
stress, respectively. The matrices  and  are called piezomagnetic coupling 
matrices.

S cHε eHS
T H–=

B eHSεel μ0μrSH+=

ε sHS dHT
T H+=

B dHTS μ0μrTH+=

μ0 cH sH
μrS

μrT
dHT eHS
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In COMSOL Multiphysics, both constitutive forms can be used; simply select one, and 
the software makes all necessary transformations. The following equations transform 
strain-magnetization material data to stress-magnetization data:

You find all the necessary material data inputs within the Magnetostrictive Material 
node under the Solid Mechanics interface, which are added automatically when you 
add a predefined Magnetostriction multiphysics interface. Such a node can be also 
added manually under any Solid Mechanics interface similar to all other material model 
features. The Magnetostrictive Material uses Voigt notation for the anisotropic 
material data. More details about the data ordering can be found in Orthotropic and 
Anisotropic Materials section.

For a crystalline material with tetragonal symmetry, the strain-magnetization form of 
the constitutive relations is the following:

The following material data corresponds to Terfenol-D at 100 kA/m bias and 30 MPa 
prestress (Ref. 5): 

cH sH
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=

eHS dHTsH
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=

μrS μrT
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------dHTsE
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S11

S22

S33

S23

S13

S12

0 0 1
2
---d

33
–

0 0 1
2
---d

33
–

0 0 d33

0 d15 0

d15 0 0

0 0 0

H1

H2

H3

+=

B1

B2

B3

0 0 0 0 d15 0

0 0 0 d15 0 0

1
2
---d

33
–

1
2
---d

33
– d33 0 0 0

S11

S22

S33

S23

S13

S12

μ0

μ11 0 0

0 μ11 0

0 0 μ33

H1

H2

H3

+=
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N O N L I N E A R  M A G N E T O S T R I C T I O N

A commonly accepted micromagnetic description of the magnetostriction is as follows 
(Ref. 2):

All domains have magnetization of the same magnitude , but the 
magnetization can have different orientations characterized by the corresponding 
direction vector  for each domain. The applied magnetic field changes 
the domain orientation.

For a single crystal with cubic symmetry, the magnetostrictive strain tensor can be 
written as the following quadratic form:

 (3-45)

where . Note that the magnetostrictive strain is represented by a 
deviatoric tensor, i.e. . This is because the deformation is related to the 
magnetic domain rotation, and such process should not change the material volume.

The strain in any direction given by the directional cosines  can be written as

sH 10 11–

4.4 1.1– 1.65– 0 0 0
1.1– 4.4 1.65– 0 0 0
1.65– 1.65– 3.8 0 0 0
0 0 0 24 0 0
0 0 0 0 24 0
0 0 0 0 0 11

1 Pa⁄[ ]⋅=

dHT 10 9–
0 0 0 0 16.5 0
0 0 0 16.5 0 0
4.3– 4.3– 8.6 0 0 0

m A⁄[ ]⋅= μrT

8.1 0 0
0 8.1 0
0 0 3

=

M Ms=

m M Ms⁄=

In this section, the term domain refers to a small part of magnetic 
material. This is typical for micromagnetics literature, and it should not 
be mistaken with the concept of domain as part of the model geometry, 
the latter is often used in COMSOL Multiphysics documentation.

εme
3
2
--- λ100 m m 1

3
---I–⊗ 

  λ111 λ100–( ) mimj ei ej⊗( )
i j≠
+=

m m⊗( )ij mimj=

tr εme( ) 0=

βi
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Using Equation 3-45, one gets

 (3-46)

When both magnetization and measurement direction are parallel to the same crystal 
direction [100], one has  and all other components are zero, so that

In a similar way for the [111] direction, one has for all components 
 and . 

If the strain is measured in [100] direction, while all the magnetization vectors are 
aligned perpendicular to it, one has only the following two nonzero components: 

 and consequently:

In many applications, such alignment of the domains is achieved by applying a 
compressive prestress. Thus, the maximum usable magnetostriction is achieved via a 
90 degree rotation of the domains

For an isotropic material, , and Equation 3-45 becomes

λ Δl
l

------ βiβjεij

i j,
= =

The notation lambda is used for strain in this section, which is typical for 
micromagnetics literature. This should not be mistaken with the same 
notation used for stretch in other parts of the theory in COMSOL 
Multiphysics documentation.

λ 3
2
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2 m2
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---–+ + 

 = +
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For a polycrystalline material without preferred orientation, the following 
approximation can be used (Ref. 1):

In COMSOL Multiphysics, this description of the magnetostriction is modeled using 
the following equation for the magnetostrictive strain:

 (3-47)

The strain field is deviatoric, and Equation 3-47 exhibits the same properties as 
Equation 3-45 at saturation, i.e. when . Equation 3-46 is replaced by

Note that the strain vanishes when , which makes the model applicable in 
the whole range from full demagnetization to saturation.

For isotropic materials, the magnetostrictive strain is modeled as the following 
quadratic isotropic form of the magnetization field (Ref. 3):

 (3-48)

The stress in the magnetostrictive material is modeled as

For isotropic materials, the stiffness matrix  can be represented in terms of two 
parameters, for example, using the Young’s modulus and Poisson’s ration. Cubic 
materials possess only three independent components: ,  and .
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Using Equation 3-48, one can derived a linear response around a given bias state 
characterized by a pre-magnetization vector . Thus,

where  is a perturbation, and

If one assumes a unidirectional state, for example

it will further simplify into

M A G N E T I Z A T I O N

Nonlinear magnetization in the magnetostrictive material is found from the following 
nonlinear implicit relation (Ref. 4):

where L is the Langevin function

with  being the magnetic susceptibility in the initial linear region. 
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Other possible choices of the L function are a hyperbolic tangent

and a linear function

The latter option will make it possible to find an explicit expression for the 
magnetization. However, such model does not have a proper saturation behavior, and 
thus it should be used only in the operating range far from saturation. Both the 
Langevin function and hyperbolic tangent models requires the magnetization vector 
components to be treated as extra dependent variables.

For cubic crystals, the effective field in the material is given by

 (3-49)

where H is the applied magnetic field. The second term in Equation 3-49 represents 
the mechanical stress contribution to the effective magnetic field, and thus to the 
material magnetization, which is called the Villari effect. The deviatoric stress tensor 
is related to the strain as

For isotropic materials, the effective magnetic field expression simplifies into

In addition, the magnetization and magnetic field are related to each other and to the 
magnetic flux density (also called the B-field) by

COMSOL Multiphysics solves for the magnetic vector potential A whose curl yields 
the vector B-field. The H-field is then obtained as a function of the B-field and 
magnetization.
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Rigid Domain Material Model

A Rigid Domain, or a rigid body, is an idealization of a body in which the deformation 
is neglected. In other words, the distance between any two given points of a rigid body 
remains constant in time regardless of any external forces acting on it. An object can 
be assumed to be perfectly rigid if its flexibility can be neglected in comparison with 
other flexibilities in the system, and when there is no need to compute the stress in the 
object.

The rigid domain is a material model, which is mutually exclusive to all other material 
models. The only material property needed is the mass density.

R I G I D  D O M A I N  K I N E M A T I C S

When a body is rigid, it is sufficient to describe the motion of at least three 
non-collinear particles. It is then possible to reconstruct the motion of all other 
particles in the body. Usually a mathematically more convenient, but equivalent, 
approach is used. The motion of the whole body is represented by:

• The linear motion of the body. The motion of one of the particles of the body, 
chosen as a reference point (often coinciding with the center of mass).

• The angular motion (also known as orientation or attitude) of the body.

The degrees of freedom needed to represent the linear and angular motion are known 
as rigid body translation and rigid body rotation degrees of freedom.

In 2D, this is represented by two in-plane translations and the rotation around the 
z-axis.

Rigid Domain is available as a material model both in the Solid 
Mechanics, Shell, Beam, and Multibody Dynamics interfaces. This theory 
section applies to all interfaces. There are some minor differences between 
the versions of the Rigid Domain which will be described as they appear.

A Rigid Domain can consist of a selection of several geometrical domains. 
These domains will act as a single rigid object, irrespective of whether 
they are geometrically connected or not.

Adjacent geometrical objects selected in different Rigid Domains nodes 
are independent, and can even penetrate each other.
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In 3D the situation is more complex. Six degrees of freedom are necessary. They are 
usually selected as three translations and three parameters for the rotation. For finite 
rotations any choice of three rotation parameters is however singular at some specific 
set of angles. For this reason, a four-parameter quaternion representation is used for 
the rotations in COMSOL Multiphysics. Thus, each rigid domain in 3D actually has 
seven degrees of freedom: three for the translation, and four for the rotation. The 
quaternion parameters are called a, b, c, and d, respectively. These four parameters are 
not independent, so an extra equation stating that

is added.

The connection between the quaternion parameters and the rotation matrix R is:

For the geometrically linear case, the quaternion constraint and the rotation matrix 
definition are reduced to:

In 2D, the rotational degree of freedom is the angle of rotation about the z-axis , 
and its relation with the rotation matrix R is:

For the geometrically linear case, the 2D rotation matrix is reduced to:

a2 b2 c2 d2
+ + + 1=
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– d2
–+ 2bc 2– ad 2ac 2bd+
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– c2 d2

–+ 2cd 2ab–
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– c2

– d2
+

=

R
1 2d– 2c

2d 1 2b–

2c– 2b 1

=

a 1=

φ

R
φcos φsin– 0
φsin φcos 0

0 0 1

=

R
1 φ– 0
φ 1 0
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=
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Under translation and rotation of a rigid domain, the complete expression for the 
displacement of any point on the rigid body is given by:

where X are the material coordinates of any point in the rigid domain,  is the center 
of mass of the rigid domain, u is the translation vector at the center of mass, and I is 
the identity matrix. 

The rigid body displacement at the center of mass (u) are degrees of freedom. Thus 
the rigid body translational velocity and acceleration can be evaluated by directly taking 
the time derivatives of u. In the time domain it can be expressed as:

In the frequency domain, they can be expressed in terms of frequency (ω):

The same is true for the rotation in 2D since the rigid body rotation  is the degree 
of freedom. The rigid body angular velocity and acceleration can be evaluated by 
directly taking the time derivatives of .

In 3D, the situation is different and the total rotation of the rigid domain can be 
presented as a function of quaternion:

The parameter a can be considered as measuring the rotation, while b, c, and d can be 
interpreted as the orientation of the rotation vector. For small rotations, this relation 
simplifies to:

The angular velocity of the rigid domain is computed as:
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Here  is the conjugate of q, and the symbol  denotes quaternion 
multiplication.

The angular acceleration of the rigid domain can be evaluated by taking the time 
derivative of the angular velocity. 

R I G I D  D O M A I N  D Y N A M I C S

The governing equation for a rigid domain can be written as a balance between the 
inertial (internal) forces and applied external forces. A rigid domain has only one 
internal force, the inertial force. This means that only the mass density of a domain is 
required to define the rigid domain material model.

The inertial forces and inertial moments about the center of mass are:

where  and  are the linear and angular accelerations of a rigid domain. 

The inertial properties mass (m) and moment of inertia tensor (I) of a rigid domain 
are computed as:

where  and  are the identity matrix and the center of mass of a rigid domain, 
respectively. The special case for the Shell interface is described in Rigid Domain for 
Shells.

In 2D, the expressions for inertial forces, inertial moments, and moment of inertia 
reduce to:

Θ·
Q2

Q3

Q4

Q 2 q q·⊗( ) q

a
b
c
d

= = =

q ⊗

F mu·· M IΘ··= =

u·· Θ··

m ρ Vd=

XM

ρX Vd
m

-------------------=

I X XM–( )T X XM–( )⋅( )E3 X XM–( ) X XM–( )T⋅–( )ρ Vd=

E3 XM

F mu·· M Izφ··= =
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where the volume integration has been replaced by an area integration multiplied by 
the out-of-plane thickness h.

The equations of motion for the rigid domain are:

and

Here, the subscripts ‘I’ and ‘ext’ denotes inertial and external forces respectively, and 
R is the current rotation matrix. The inertial forces are contributions from Mass and 
Moment of Inertia nodes.

In 2D, the moment equations are simplified to the scalar equation

I N I T I A L  V A L U E

As a Rigid Domain is a separate material model, it overrides the default Linear Elastic 
Material model and its default Initial Values node. The initial values are given in a 
separate Initial Values subnode for each Rigid Domain.

The initial values for the rigid body translation, rigid body rotation, and the first time 
derivatives can be prescribed about any point—a center of rotation—in a selected 
coordinate system. The center of rotation can be defined using

• The center of mass of the rigid domain

Iz X XM–( ) X XM–( )⋅( )ρh Ad=

mu·· FI+ Fext=

RIRTΘ·· Θ· RIRTΘ·( )× MI Mext=+ +

Izϕ·· MI+ Mext=

In the Multibody Dynamics interface version of the Rigid Domain, it is 
also possible to get initial values for all domains from the interface level 
Initial Values section. This is the default option. The Initial Values subnode 
is only present under Rigid domain if Locally defined has been selected.

If many rigid domains are present in a system and the have the same initial 
values, then it is often better to define initial values at the interface level 
once and to reference it in all features.
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• Global coordinates of the center of rotation

• The centroid of a set of selected entities (boundaries, edges, or points) 

Given the initial values of translation (u), rotation ( ), translational velocity ( ) and 
angular velocity ( ) about a center of rotation ( ), the rigid body displacement and 
quaternion degrees of freedom are initialized as:

In 2D, the expressions for the initial values reduce to:

The variable ur is the translation at the center of mass due to a rotation around the 
center of rotation, and is thus zero when the two points coincide. In the case that you 
are entering the data using a separate center of rotation, you must pay special attention 
to how the initial displacement and velocity are composed if initial rotations and 
rotational velocities are present.
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Figure 3-16: Initial displacement of a rigid body

M A S S  A N D  M O M E N T  O F  I N E R T I A

Sometimes a rigid domain needs the added effect of an associated abstract rigid object, 
which is physically not modeled and where the inertial properties are known. You can 
model this using Mass and Moment of Inertia, where the inertial properties of this 
abstract domain (center of mass, mass, and moment of inertia tensor) can be directly 
entered.

The formulation for an abstract rigid object is similar to the physical rigid domain with 
these exceptions:

• The inertial properties of the abstract rigid object are input by the user instead of 
being computed from a physical domain. 

• No extra degrees of freedom are created. The inertial forces generated by this 
feature will be computed based on the distance from the center of gravity of the rigid 
domain to which it belongs, and the values of the degrees of freedom there.

The inertial force contributions are

where Xmc is the vector from the center of mass of the rigid domain (XM) to the center 
of mass of this contribution (Xm),

The inertial moment contributions are

FI m
t2

2

d

d u R E3–( )Xmc+( )=

Xmc Xm XM–=
M A T E R I A L  M O D E L S  |  355



356 |  C H A P T E
In 2D, there is only a scalar moment contribution:

C O N S T R A I N T S

The constraints for a rigid domain are different in nature than those applied to flexible 
domain. In a flexible domain, a constraint can be applied at various entity levels: 
domains, boundaries, edges, or points. Since the degrees of freedom of the rigid 
domain are global and present only at the center of mass, boundary conditions are used 
to constrain these global degrees of freedom, which is why a global selection is needed. 

The Prescribed Displacement/Rotation node can be used to:

• Prescribe the displacement components in arbitrary directions at a given point.

• Constrain rotations in arbitrary directions.

• Prescribe a non-zero rotation around an arbitrary axis.

The displacement and rotation can be prescribed in a selected coordinate system about 
an arbitrary center of rotation. The center of rotation can be defined using

• The center of mass of the rigid domain.

• Global coordinates of the center of rotation.

• The centroid of a set of selected entities (boundaries, edges, or points).

The displacement at the center of rotation is computed as:

 (3-50)

The components of this displacement vector are prescribed individually in the selected 
coordinate system. Through Equation 3-50, a constraint on a translation will impose 

MI RIRTΘ·· Θ· RIRTΘ·( )× Xmc FI×+ +=

MI Izϕ·· Xmc FI×( ) ez⋅+=

The constraints used for a flexible domain, for example Fixed Constraint, 
Prescribed Displacement, Rigid Connector, or Attachment, are not applicable 
to a rigid domain.

In a rigid domain the Prescribed Displacement/Rotation or Fixed Constraint 
subnode is used instead to constrain its degrees of freedom. 

uc u R I–( )+ Xc XM–( )⋅=
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a relation between translational and rotational degrees of freedom if the center of 
rotation differs from the center of mass.

To prescribe the rotation in 3D, the imaginary part of the quaternion is prescribed as:

where  and  are the axis of rotation and angle of rotation respectively.

In 2D, the out-of-plane rotation angle is directly constrained to the prescribed value 
of the rotation.

L O A D S

The loads available for a flexible domain can also be used for a rigid domain. In 
addition to these boundary conditions, a rigid domain also has global subnodes for 
applying forces and moments. If you use Applied Force, a force and its location can be 
prescribed in a selected coordinate system. A force implicitly also contributes to the 
moment unless it is applied at the center of mass of a rigid domain. If an Applied 

Moment node is used, a moment can be prescribed in a selected coordinate system. 

C O N N E C T I N G  T O  O T H E R  B O D I E S

When a rigid domain and a flexible domain share a boundary (Shell: edge, Beam: 
point), the connection is automatic. All displacements on the flexible domain are 
controlled by the degrees of freedom of the rigid domain, so that

b Ω̂
φ0
2
-----sin=

Ω̂ φ0

uflex R I–( ) X XM–( ) u+⋅=
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where X is a coordinate on the boundary. If rotational degrees of freedom are present, 
which is the case in the Shell and Beam interfaces, the rotations are set equal to those 
of the rigid domain.

Safety Factor Evaluation

There are many theories available in the literature for predicting material failure, these 
can predict, for instance whether a ductile material will yield or not, or if a brittle 
material will crack under a given set of loads. 

Tsai and Wu (Ref. 13, Ref. 22) proposed a stress-dependent criterion intended at 
modeling failure in composites. Under Tsai-Wu criterion, failure occurs when a given 
quadratic function of stress is grater than zero. The failure criterion is given by 

here, σ is the stress tensor, F a fourth rank tensor (SI unit: 1/Pa^2) and f is a second 
rank tensor (SI unit: 1/Pa). For Tsai-Wu criterion, failure occurs when g(σ) ≥ 0.

Due to the symmetry of these tensors, the fourth rank tensor can be represented by a 
symmetric 6-by-6 matrix, and the second rank tensor by a 6-by-1 vector (see Voigt 
order in the section Tensor vs. Matrix Formulations).

Certain constraints ensure that the failure surface g(σ) = 0 forms a closed ellipsoid in 
the stress space. Also, thermodynamic considerations restrict the value of some 
components of the fourth rank tensor to be positive only. These restrictions are 
summarized as (no summation of the indices)

 and 

In the Multibody Dynamics interface, a rigid domain can be also be 
connected to another rigid or flexible domain using joints. A rigid 
component can be directly selected in the joints to establish a connection. 
This stands in contrast to a flexible component, which needs an 
attachment. 

A Rigid Domain which contains a selection of several geometrical 
domains will act as a single rigid object.

Adjacent domains selected in different Rigid Domains nodes are 
independent objects.

g σ( ) σ: Fσ( ) f:σ 1–+=

Fii 0> FiiFjj Fij
2≥
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The failure index is computed from the failure criterion as

so failure is predicted for a failure index greater than one, fi ≥ 1.

The damage index is given by a boolean expression based on the failure criterion

here di = 1 means damage, and di = 0 represents a healthy material.

The safety factor, also called reserve factor or strength ratio, is computed by scaling the 
stress tensor such as the failure criterion is equal to zero

For a quadratic failure criterion, as the Tsai-Wu criterion, this means solving a 
quadratic equation for the safety factor variable sf

the safety factor is then obtained from the smallest positive root.

For a isotropic criteria, such as von Mises criterion, g(σ) = σmises/σts−1, and the safety 
factor is given by sf = σts/σmises.

The margin of safety (Ref. 23) is then computed from the safety factor

Use the Safety subnode to set up variables which can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic Material 
or Nonlinear Elastic Material Models. 

Following Tsai-Wu formalism, different orthotropic criteria can be defined by setting 
appropriate values for the coefficients in F and f tensors.

A N I S O T R O P I C  T S A I - WU  C R I T E R I O N

For this criterion, enter twenty one coefficients to define the 6-by-6 matrix F, and six 
coefficients to define the vector f. The failure criterion is evaluated from the expression

fi g σ( ) 1+=

di
1 g σ( ) 0≥
0 otherwise

=

g sfσ( ) 0=

sf
2 σ: Fσ( )( ) sf f:σ( ) 1–+ 0=

ms sf 1–=
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here, σij are the stress tensor components given in the local coordinate system of the 
parent node.

O R T H O T R O P I C  T S A I - WU  C R I T E R I O N

For this criterion, enter nine coefficients corresponding to the tensile strengths σtsi, 
compressive strengths σcsi, and shear strengths σssij given in the local coordinate 
system of the parent node. Tsai-Wu coefficients are then computed from

, , ,

, , ,

, , 

, , 

all the other coefficients in F and f tensors are set to zero.

O R T H O T R O P I C  T S A I - H I L L  C R I T E R I O N

For this criterion, enter six coefficients corresponding to the tensile strengths σtsi and 
shear strengths σssij given in the local coordinate system of the parent node. Tsai-Wu 
coefficients are then computed from

, , ,

, , ,

g σ( )

σ11

σ22

σ33

σ23

σ13

σ12

T
F11 F12 F13 F14 F15 F16

F12 F22 F23 F24 F25 F26

F13 F23 F33 F34 F35 F36

F14 F24 F34 F44 F45 F46

F15 F25 F35 F45 F55 F56

F16 F26 F36 F46 F56 F66

σ11

σ22

σ33

σ23

σ13

σ12

f1

f2

f3

f4

f5

f6

T
σ11

σ22

σ33

σ23

σ13

σ12

1–+=

F11
1

σcs1σts1
--------------------= F22

1
σcs2σts2
--------------------= F33

1
σcs3σts3
--------------------=

F44
1

σss23
2

------------= F55
1

σss13
2

------------= F66
1

σss12
2

------------=

F12
1
2
--- F11F22–= F13

1
2
--- F11F33–= F23

1
2
--- F22F33–=

f1
1

σts1
--------- 1

σcs1
----------–= f2

1
σts2
--------- 1

σcs2
----------–= f3

1
σts3
--------- 1

σcs3
----------–=

F11
1

σts1
2

----------= F22
1

σts2
2

----------= F33
1

σts3
2

----------=

F44
1

σss23
2

------------= F55
1

σss13
2

------------= F66
1

σss12
2

------------=
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, , 

all the other coefficients in F and f tensors are set to zero. See also Hill Orthotropic 
Plasticity.

O R T H O T R O P I C  H O F F M A N  C R I T E R I O N

For this criterion, enter nine coefficients corresponding to the tensile strengths σtsi, 
compressive strengths σcsi, and shear strengths σssij given in the local coordinate 
system of the parent node. Tsai-Wu coefficients are then computed from

, , ,

, , ,

, , 

, , 

all the other coefficients in F and f tensors are set to zero.

O R T H O T R O P I C  J E N K I N S  C R I T E R I O N

Enter nine coefficients corresponding to the tensile strengths σtsi, compressive 
strengths σcsi, and shear strengths σssij given in the local coordinate system of the 
parent node. The failure criterion is then computed from

here, εsi is either the tensile strength or the compressive strength depending whether 
the stress in the i-direction, σi, is positive or negative. The absolute value of the shear 
stress σij in the ij-plane is compared to the corresponding shear strength σssij.

F12
1
2
--- F11 F22 F33–+( )–= F13

1
2
--- F11 F33 F22–+( )–=

F23
1
2
--- F22 F33 F11–+( )–=

F11
1

σcs1σts1
--------------------= F22

1
σcs2σts2
--------------------= F33

1
σcs3σts3
--------------------=

F44
1

σss23
2

------------= F55
1

σss13
2

------------= F66
1

σss12
2

------------=

F12
1
2
--- F11 F22 F33–+( )–= F13

1
2
--- F11 F33 F22–+( )–=

F23
1
2
--- F22 F33 F11–+( )–=

f1
1

σts1
--------- 1

σcs1
----------–= f2

1
σts2
--------- 1

σcs2
----------–= f3

1
σts3
--------- 1

σcs3
----------–=

g σ( ) max
σ1
σs1
--------

σ2
σs2
--------

σ3
σs3
--------

σ23
σss23
------------

σ13
σss13
------------

σ12
σss12
------------, , , , , 

  1–=
M A T E R I A L  M O D E L S  |  361



362 |  C H A P T E
O R T H O T R O P I C  WA D D O U P S  C R I T E R I O N

Waddoups criterion is similar to Jenkins criterion, but the failure criterion is given in 
terms of strains, not strengths. For this criterion, enter nine coefficients corresponding 
to the ultimate tensile strains εtsi, ultimate compressive strains εcsi, and ultimate shear 
strains γssij given in the local coordinate system of the parent node. The failure 
criterion is then computed from

here, εsi is either the ultimate tensile strain or the ultimate compressive strain 
depending whether the strain in the i-direction, εi, is positive or negative. The absolute 
value of the shear strain γij in the ij-plane is compared to the corresponding ultimate 
shear strain γssij.

M O D I F I E D  T S A I - H I L L  C R I T E R I O N

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress 
problems (Ref. 23). It is available in 2D for the Pate interface and the Solid Mechanics 
interface in plane stress, and for the Shell interface in 3D. Enter the coefficients 
corresponding to the tensile strengths σtsi, compressive strengths σcsi, and shear 
strengths σssij given in the local coordinate system of the parent node. The failure 
criterion is then computed from the in plane stresses

Tsai-Wu coefficients are then computed from

, or 

, or 

 or 

all the other coefficients in F and f tensors are set to zero.

g ε( ) max
ε1
εs1
-------

ε2
εs2
-------

ε3
εs3
-------

γ23
γss23
-----------

γ13
γss13
-----------

γ12
γss12
-----------, , , , , 

  1–=

g σ( ) F11σ11
2 F22σ22

2 2F12σ11σ22 F66σ12
2 1–+ + +=

F11
1

σts1
2

----------= for σ11 0> F11
1

σcs1
2

----------= for σ11 0<

F22
1

σts2
2

----------= for σ22 0> F22
1

σcs2
2

----------= for σ22 0<

F12
1
2
---–

1
σts1

2
----------= for σ11σ22 0> F12

1
2
---–

1
σcs1

2
----------= for σ11σ22 0<

F66
1

σss12
2

------------=
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A Z Z I - T S A I - H I L L  C R I T E R I O N

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress 
problems. It is available in 2D for the Pate interface and the Solid Mechanics interface 
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding 
to the tensile strengths σtsi, compressive strengths σcsi, and shear strengths σssij given 
in the local coordinate system of the parent node. The failure criterion is then 
computed from the in plane stresses

Tsai-Wu coefficients are then computed from

, or 

, or 

 or 

all the other coefficients in F and f tensors are set to zero.

N O R R I S  C R I T E R I O N

This criterion is derived from Tsai-Wu theory for two-dimensional plane stress 
problems. It is available in 2D for the Pate interface and the Solid Mechanics interface 
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding 
to the tensile strengths σtsi, compressive strengths σcsi, and shear strengths σssij given 
in the local coordinate system of the parent node. The failure criterion is then 
computed from the in plane stresses

Tsai-Wu coefficients are then computed from

, or 

g σ( ) F11σ11
2 F22σ22

2 2F12σ11σ22 F66σ12
2 1–+ + +=

F11
1

σts1
2

----------= for σ11 0> F11
1

σcs1
2

----------= for σ11 0<

F22
1

σts2
2

----------= for σ22 0> F22
1

σcs2
2

----------= for σ22 0<

F12
1
2
---–

1
σts1

2
----------= for σ11 0> F12

1
2
---–

1
σcs1

2
----------= for σ11 0<

F66
1

σss12
2

------------=

g σ( ) F11σ11
2 F22σ22

2 2F12σ11σ22 F66σ12
2 1–+ + +=

F11
1

σts1
2

----------= for σ11 0> F11
1

σcs1
2

----------= for σ11 0<
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, or 

all the other coefficients in F and f tensors are set to zero.

I S O T R O P I C  VO N  M I S E S  C R I T E R I O N

Von Mises criterion is one of the simplest isotropic criteria to predict yielding in metals 
and other ductile materials. The failure criterion is computed from the isotropic tensile 
strength σts

The effective von Mises stress σmises is defined from the deviatoric stress tensor, see 
the section about plasticity and von Mises Criterion. For ductile materials the tensile 
strength corresponds to the yield stress, while for brittle materials it corresponds to the 
failure strength.

I S O T R O P I C  TR E S C A  C R I T E R I O N

Tresca criterion is similar to von Mises criterion. The failure criterion is computed from 
the isotropic tensile strength σts

here, Tresca effective stress is defined in terms of principal stresses, σtresca = σ1 − σ3, 
see Tresca Criterion. For ductile materials the tensile strength corresponds to the yield 
stress, while for brittle materials it corresponds to the failure strength.

I S O T R O P I C  R A N K I N E  C R I T E R I O N

St. Venant criterion is similar to Tresca criterion, as the failure criterion is given in terms 
of principal stresses. For this criterion, enter the tensile strength σts, and the 
compressive strength σcs. The failure criterion is then computed from

F22
1

σts2
2

----------= for σ22 0> F22
1

σcs2
2

----------= for σ22 0<

F66
1

σss12
2

------------=

F12
1
2
--- F11F22–=

g σ( )
σmises

σts
-------------- 1–=

g σ( )
σtresca

σts
--------------- 1–=
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here, σs is either the tensile strength or the compressive strength depending whether 
the principal stress, σpi, is positive or negative. For ductile materials the tensile strength 
corresponds to the yield stress, while for brittle materials it corresponds to the failure 
strength.

I S O T R O P I C  S T .  VE N A N T  C R I T E R I O N

St. Venant criterion is similar to Waddoups criterion, as the failure criterion is given in 
terms of strains, not strengths. For this criterion, enter the ultimate tensile strains εts, 
and the ultimate compressive strains εcs. The failure criterion is then computed from

here, εs is either the ultimate tensile strain or the ultimate compressive strain 
depending whether the principal strain, εpi, is positive or negative. For ductile materials 
the ultimate tensile strain corresponds to the strain at yielding, while for brittle 
materials it corresponds to the strain at failure.

I S O T R O P I C  M O H R - C O U L O M B  C R I T E R I O N

Mohr-Coulomb criterion is similar to Tresca criterion, as the failure criterion is given 
in terms of principal stresses, see Mohr-Coulomb Criterion for soil plasticity. For this 
criterion, enter the cohesion c, and the angle of internal friction φ. The failure criterion 
is then computed from 

here, the principal stresses are sorted as σp1≥σp2≥σp3. 

The cohesion and the angle of internal friction are related to the tensile and 
compressive strengths by the expressions

 and 

I S O T R O P I C  D R U C K E R - P R A G E R  C R I T E R I O N

Drucker-Prager criterion approximates the Mohr-Coulomb criterion by a smooth 
function (a cone in the stress space). The failure criterion is computed from the stress 

g σ( ) max
σp1
σs

---------
σp2
σs

---------
σp3
σs

---------, , 
  1–=

g ε( ) max
εp1
εs

--------
εp2
εs

--------
εp3
εs

--------, , 
  1–=

g σ( ) 1
2
---

σp1 σp3–

c φ( )cos
------------------------ 
  1

2
---

σp1 σp3+

c φ( )cos
------------------------- 
  φ( ) 1–sin+=

φ( )sin
σcs1 σts1–

σcs1 σts1+
--------------------------= c φ( )cos

σcs1σts1
σcs1 σts1+
--------------------------=
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invariants I1 and J2, and two material parameters, α and k, see Drucker-Prager 
Criterion for soil plasticity

The material parameters α and k are related to the cohesion c and angle of internal 
friction φ in the Mohr-Coulomb criterion by the expressions 

 and 

The symbol ± is related to either matching the tensile meridian (positive sign) or 
matching the compressive meridian (negative sign) of Mohr-Coulomb’s pyramid. 
Also, the cohesion and the angle of internal friction are related to the tensile and 
compressive strengths, see Isotropic Mohr-Coulomb criterion.

U S E R  D E F I N E D

The user defined option allows you to write explicitly how the failure criterion and the 
safety factor depend on stress and/or strain. These could be analytic functions of stress 
or strain tensor components, principal stresses, principal strains, stress or strain 
invariants, or data interpolated from tables.

You can add any number of Safety nodes to a single material model. The contents of 
this feature will not affect the analysis results as such, as this feature does not account 
for post-failure analysis. You can add Safety nodes after having performed an analysis 
and just do an Update Solution in order to access to the new variables for result 
evaluation.

g σ( )
J2

k αI1–
------------------ 1–=

α 2
3

------- φ( )sin
3 φ( )sin±
--------------------------⋅= k 2 3c φ( )cos

3 φ( )sin±
-------------------------------=
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Fo rmu l a t i o n  o f  t h e  Equ i l i b r i um 
Equa t i o n s

In this section:

• Equation Implementation

Equation Implementation

The equilibrium equations for solid mechanics are given by Newton’s second law. It is 
usually written using a spatial formulation in terms of the Cauchy stress tensor σ:

Here fV is a body force per unit deformed volume, and ρ is the current mass density. 
For the material frame formulation used in COMSOL Multiphysics, it is more 
appropriate to use a Lagrangian version if the equation:

Now that the first Piola-Kirchhoff stress tensor, P, is used. FV is a body force with 
components in the current configuration but given with respect to the undeformed 
volume, and ρ0 is the initial mass density. Note the gradient operators are not the same: 
in the first case the gradient is taken with respect to the spatial coordinates, and in the 
second case with respect to the material coordinates. Using the more common second 
Piola-Kirchhoff stress tensor, S, the same equation reads

 (3-51)

where F is the deformation gradient. The COMSOL Multiphysics implementation of 
the equations in the Solid Mechanics interface is however not based on the equation 
of motion directly, but rather on the principle of virtual work.

The principle of virtual work states that the sum of the internal virtual work and the 
external virtual work are equal. The internal virtual work is the work done by the 

ρ
t2

2

∂
∂ u σ fV+x∇=

ρ0
t2

2

∂
∂ u P FV+X∇=

ρ0
t2

2

∂
∂ u FS( ) FV+X∇=
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current stress state on a kinematically admissible variation in strains. The external 
virtual work is the work done by all forces (acting on domains, boundaries, edges, or 
points) when multiplied with the variation in displacements corresponding to the 
variation in strains. The virtual displacements δu are in the finite element formulation 
represented by the test() operator in COMSOL Multiphysics. For a stationary case, 
the virtual work δW is written as

The strains are computed from the gradients of the displacements, and the stresses are 
given by the constitutive relation.

In a dynamic analysis, the inertial forces are included in the volume forces, according 
to d’Alembert’s principle. 

 (3-52)

Since the equations are formulated on the material frame, all integrals are taken over 
the undeformed geometry. The stress and strain contributions must be interpreted 
differently depending on whether the formulation is geometrically nonlinear or not.

• If the study step is geometrically linear, the strain ε is the engineering strain. The 
stress σ could in principle be any of the stress measures, as they all converge to the 
same engineering stress in this case.

• If the study step is geometrically nonlinear, the strain ε is the Green-Lagrange strain 
and the stress σ is the second Piola-Kirchhoff stress.

The Solid Mechanics interface supports Stationary (static), Eigenfrequency, Time 
Dependent (transient), Frequency Domain, and Modal solver study types as well as 
linear buckling.

δW δε–  : σ δu FV⋅ )dv+(
V +=

δu FS⋅( ) sd
S
 δu FL⋅( ) ld

L
 δu Fp⋅( ) ]

p
+ +

δW δε : – σ δu FV⋅ ρδu utt⋅– )dv+(
V
 +=

δu FS⋅( ) sd
S
 δu FL⋅( ) ld

L
 δu Fp⋅( )

p
+ +
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F R E Q U E N C Y - D O M A I N  S T U D I E S

In the frequency domain, the frequency response is studied when applying harmonic 
loads. Harmonic loads are specified using two components:

• The amplitude value in direction m, Fm

• The corresponding phase, 

To derive the equations for the linear response from harmonic excitation loads

Assume a harmonic response with the same angular frequency as the excitation load

The relationship can also be described using complex notation with

and

The primary results, such as displacements, velocities, accelerations, and stress and 
strain components are all complex valued.

φm

Fm freq, Fm f( ) ωt φm+( )cos=

Ffreq

Fx freq,

Fy freq,

Fz freq,

=

u uamp ωt φu+( )cos=

u
u
v
w

=

u Re uampe
jφuejωt( ) Re ũe

jωt
( )  where ũ uampe

jφu= = =

u Re ũe
jωt

( )=

Fm freq, Re Fm ω( )ejφmejωt( ) Re Fm
˜ ejωt( )= =

F
˜

Fx
˜

Fy
˜

Fz
˜

=
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E I G E N F R E Q U E N C Y  S T U D I E S

The eigenfrequency equations are derived by assuming a harmonic displacement field, 
similar as for the frequency response formulation. The difference is that this study type 
uses a new variable jω explicitly expressed in the eigenvalue jω = −λ. The 
eigenfrequency f is then derived from jω as

Damped eigenfrequencies can also be studied, so λ is not necessarily a purely imaginary 
number. Any damping included in the problem will automatically cause the 
eigenfrequencies to become complex valued.

In addition to the eigenfrequency, the quality factor, Q, and decay factor, δ, for the 
model can be examined:

L I N E A R  B U C K L I N G

The linear buckling analysis consists of two steps. First a stationary problem is solved 
using a unit load of arbitrary size. The critical load is then obtained by solving an 
eigenvalue problem, where the eigenvalue λ is the multiplier to the original load that 
would cause buckling.

The formulation in terms of virtual work is

 (3-53)

Here ε us the engineering strain, εGL is the Green-Lagrange strain and σ1 is the stress 
caused by the unit load. In terms of stiffness matrices, this corresponds to

f λ
2πj
---------–=

Q Im λ( )
2Re λ( )
-------------------=

δ Re λ( )=

For a general introduction, see Linearized Buckling Analysis

δW δε–  : σ λδ εGL ε–( )–  : σ1 )dv(
V 0= =

KL λKNL u0( )+( )u 0=
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where KL is the linear stiffness matrix, and KNL is the nonlinear contribution to the 
full stiffness matrix. The symbolic linearization point u0 is the displacement vector 
caused by the unit load.

Strictly speaking, this formulation assumes that geometric nonlinearity is not used in 
the eigenvalue step. The Green-Lagrange tensor is inserted explicitly in the second 
term of Equation 3-53, while the first term uses the linear (engineering) strain tensor.

If, however, geometric nonlinearity is selected, then Equation 3-53 is replaced by

By using the term (λ-1), the effect of using the Green-Lagrange strain tensor in the 
first term is to a large extent removed. Unless the unit load is significantly larger than 
the buckling load, the result will be the same as the intended, even if geometric 
nonlinearity was inadvertently selected in the eigenvalue study step.

δW δεGL–  : σ λ 1–( )δ εGL ε–( )–  : σ1 )dv(
V 0= =
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Damp i n g

For dynamic problems, the damping of the structure is usually an important property.

In this section:

• Rayleigh Damping

• Loss Factor Damping

• Viscous Damping

Rayleigh Damping

Rayleigh damping is described by two coefficients: the mass damping coefficient αdM 
and the stiffness damping coefficient βdK. Rayleigh damping will give the following 
contribution to the virtual work

Here P is the first Piola-Kirchhoff stress tensor.

Since Rayleigh damping is added directly to the virtual work equation, it does not 
affect the constitutive relation. As a consequence, the stresses and strains will for a 
linear elastic material still be in phase. This stands in contrast to the other damping 
models.

δW δ u∇( ) : – βdK
P∂
t∂

------ αdMρδu u∂
t∂

-------⋅– 
dv



V
=
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Rayleigh damping can be used both in the time domain and in the frequency domain.

Loss Factor Damping

Loss factor damping is only applicable in frequency domain. When using loss factor 
damping, a complex constitutive matrix is used. With an isotropic loss factor , this 
means that

where D is the constitutive matrix computed from the material data, and Dc is the 
complex constitutive matrix used when computing the stresses. For a linear elastic 
material, this would be equivalent to multiplying Young’s modulus by the factor 

. For a nonlinear elastic material, this applies to the tangential stiffness.

It is also possible to give individual loss factors for each entry in the constitutive matrix, 
so that

In the case of an orthotropic material, yet another option is available, where each 
individual component of Young’s modulus and shear modulus can be given an 
individual loss coefficient:

Rayleigh damping is not directly related to any physical property. 
Historically, it was introduced since it was numerically attractive to have 
a damping matrix which was a linear combination of the mass and stiffness 
matrices

This operation is usually implied to be done at the global assembled 
matrix level. Such an interpretation is however only meaningful for pure 
structural mechanics problems, but not in a general multiphysics context. 
For this reason, Rayleigh damping in COMSOL Multiphysics is a material 
property, rather than a global property of the system of equations. If you 
enter the same Rayleigh damping parameters for all materials, and solve a 
pure structural mechanics problem, then the classical definition will be 
retrieved. 

C αM βK+=

ηs

Dc 1 jηs+( )D=

1 jηs+( )

Dmn
c 1 jηs mn,+( )Dmn=
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The complex moduli are then used to form the constitutive matrix.

For hyperelastic materials, the loss information appears as a multiplier in the strain 
energy density, and thus in the second Piola-Kirchhoff stress:

For loss factor damping, the following definition is used for the elastic part of the 
entropy:

note that  here denotes the entropy contribution and not any stress.

This is because the entropy is a function of state and thus independent of the strain 
rate, while the damping represents the rate-dependent effects in the material (for 
example, viscous or viscoelastic effects). The internal work of such inelastic forces 
averaged over the time period 2π/ω can be computed as:

Qh can be used as a heat source for modeling of the heat generation in vibrating 
structures, when coupled with the frequency-domain analysis for the stresses and 
strains.

Viscous Damping

Viscous damping can be added to the material models. It will cause an extra stress  
proportional to the rate of elastic strain in the material,

where  and  are the bulk and shear viscosity coefficients, respectively.

Viscous damping can be used in both frequency and time domain analyses. 

Em
c 1 jηE m,+( )Em=

Gm
c 1 jηG m,+( )Gm=

m 1 2 3, ,=

S 1 jηs+( )
Ws∂
E∂

----------=

Selast α : s jηs C : ε( )–( )=

Selast

Qh
1
2
---ωηsReal ε : Conj C : ε( )( )=

Sq

Sq ηbε·el vol, ηvε·el dev,+=

ηb ηv
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In case of geometric nonlinearity, the viscous stress is treated as being a Cauchy stress 
acting in the actual configuration (spatial frame). The resulting contribution to the 
second Piola-Kirchhoff stress is calculated as

where  is the inverse of the elastic Cauchy-Green tensor, and  is the elastic 
volume ratio.

Sq ηb
2
3
---ηv– 

 J
·
elCel

1–
ηvCel

T– ε·elCel
1–

+=

Cel
1– Jel
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L o ad s  and Bounda r y  Cond i t i o n s

In this section:

• Distributed Loads

• Rotating Frame and Gravity

• Spring Foundation and Thin Elastic Layer

• Added Mass

• Rigid Motion Suppression Boundary Condition

• Low-Reflecting Boundary Condition

• Cyclic Symmetry and Floquet Periodic Conditions

• Thermal Expansion of Constraints

• Rigid Connector Theory

• Contact Analysis Theory

• Energy Quantities

Distributed Loads

The direction of an explicitly applied distributed load must be given with reference to 
a local or global coordinate system in the spatial frame, but its magnitude must be with 
reference to the undeformed reference (or material) area. That is, the relation between 
the true force f acting on the current area da and the specified distributed load F 
acting on the material area dA is f da= FdA. When the solid is subjected to an external 
pressure, p, the true force on a surface element acts with magnitude p in the current 
area da in the normal direction n:

Therefore, the pressure load type specifies the distributed load as

where both the normal n and area element da are functions of the current 
displacement field.

Another view of how to interpret the load, is to express it in the first Piola-Kirchhoff 
stress tensor P via the following formula:

f pnda=

F pn da
dA
--------=
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where the normal n0 corresponds to the undeformed surface element. Such a force 
vector is often referred to as the nominal traction.

Plane Stress
In a plane stress condition the out-of-plane deformation causes the thickness to 
change, and this area effect is included explicitly. The equation transforms to

Axial Symmetry
To account for the radial deformation changing the circumference and therefore the 
area element, the distributed load is applied as

Rotating Frame and Gravity

You can add Rotating Frame and Gravity nodes to create the loads caused by gravity or 
accelerated frames. This gives load contributions from all nodes in the physics interface 
which have a density or mass, such as Linear Elastic Material, Rigid Domain, Added 
Mass, or Point Mass.

In the following, the mass density ρ should be considered as generalized. It can 
represent mass per unit volume, mass per unit area, mass per unit length, or even mass, 
depending on the dimensionality of the object giving the contribution.

R O T A T I N G  F R A M E

Centrifugal, Coriolis and Euler forces are fictitious forces that need to be introduced 
in a rotating frame of reference, since it is not an inertial system. They can be added as 
loads.

F P n0⋅=

F pn da
dA
-------- 1

z∂
∂w

+ 
 =

F pn da
dA
-------- R u+( )

R
-------------------=

Only features which have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Rotating Frame and Gravity nodes.
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Alternatively, the total acceleration in the rotating frame can be augmented to include 
the frame acceleration effects:

G R A V I T Y

The gravity acts in a fixed spatial direction eg. The intensity is

where g is the acceleration of gravity. The action of gravity can also be presented as a 
linearly accelerated frame of reference. Thus, it can be accounted for as a contribution 
into the total acceleration via the frame acceleration term given by:

C E N T R I F U G A L  F O R C E

A centrifugal force acts radially outwards from the axis of rotation defined by the axial 
direction vector eax. The rotation is represented by the angular velocity vector:

where Ω is the angular velocity. In vector form, the acceleration contribution and the 
loads are:

where rp is the rotation position vector that contains the coordinates with respect to 
any point on the axis of rotation. The point is given by its radius vector in the global 
coordinate system rbp.

S P I N - S O F T E N I N G  E F F E C T

The structural displacement can be accounted for when computing the rotation 
position, so that

atot u·· af+=

af acen acor aeul+ +=

g ρgeg=

af g–=

Ω Ωeax=

acen Ω Ω rp×( )×=

Fcen ρacen–=

rp X u rbp–+=
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This results in a contribution from the extra acceleration terms caused by the 
deformation into the system’s stiffness matrix. The effect is often called spin-softening.

C O R I O L I S  F O R C E

For a Coriolis force to appear, the object studied must have a velocity relative to the 
rotating frame. The acceleration contribution and the load are:

This gives a damping contribution since it is proportional to the velocity.

E U L E R  F O R C E

The Euler force occurs when the rate of rotation is not constant in time. The force acts 
in the plane of rotation perpendicular to the centrifugal force. The acceleration 
contribution and the load are:

Spring Foundation and Thin Elastic Layer

In this section, the equations for the spring type physics nodes are developed using 
boundaries, but the generalizations to geometrical objects of other dimensions are 
obvious. Also, for cases where rotational springs are present, the relations between 
moments and rotations are analogous to the relations between forces and 
displacements described below.

S P R I N G  F O U N D A T I O N

A spring gives a force that depends on the displacement and acts in the opposite 
direction. In the case of a force that is proportional to the displacement, this is called 
Hooke’s law. In a suitable coordinate system, a spring condition can be represented as

acor 2Ω
t∂

∂u×=

Fcor ρacor–=

aeul t∂
∂Ω rp×=

Feul ρaeul–=

fs K u u0–( )⋅–=
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where fs is a force/unit area, u is the displacement deforming the spring, and K is a 
stiffness matrix. u0 is an optional deformation offset, which describes the stress-free 
state of the spring.

If the spring stiffness is not constant, then it is in general easier to directly describe the 
force as a function of the displacement, so that

In the same way, a viscous damping can be described as a force proportional to the 
velocity

where D is a matrix representing the viscosity.

Structural (“loss factor”) damping is only relevant for frequency domain analysis and 
is defined as

where η is the loss factor and i is the imaginary unit. It is also possible to give individual 
loss factors for each component in the stiffness matrix K.

If the elastic part of the spring definition is given as a force versus displacement 
relation, the stiffness K is taken as the stiffness at the linearization point at which the 
frequency response analysis is performed. Since the loss factor force is proportional to 
the elastic force, the equation can be written as

The contribution to the virtual work is

T H I N  E L A S T I C  L A Y E R  B E T W E E N  TW O  P A R T S

A spring or damper can also act between two boundaries of an identity pair. The spring 
force then depends on the difference in displacement between the two boundaries.

fs f u u0–( )=

fv D u· u· 0–( )–=

fl iηK u u0–( )⋅–=

fl iηfs=

δW fs fl fv+ +( ) δu⋅ Ad
A
=

fsD fsS– K uD uS u0––( )–= =
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The uppercase indices refer to “source” and “destination”. When a force versus 
displacement description is used, 

The viscous and structural damping forces have analogous properties,

or

The virtual work expression is formulated on the destination side of the pair as

Here the displacements from the source side are obtained using the src2dst operator 
of the identity pair. If there is a difference in mesh density on the two sides of the pair, 
you should select the side with the finer mesh as destination.

T H I N  E L A S T I C  L A Y E R  O N  I N T E R I O R  B O U N D A R I E S

On an interior boundary, the Thin Elastic Layer decouples the displacements between 
two sides of the boundary. The two boundaries are then connected by elastic and 
viscous forces with equal size but opposite directions, proportional to the relative 
displacements and velocities.

The spring force can be written as

fsD fsS– f u u0–( )= =

u uD uS–=

fvD fvS– D u· D u· S u· 0––( )–= =

flD flS– iηK uD uS u0––( )–= =

flD iηfsD=

δW fsD flD fvD+ +( ) δ uD uS–( )⋅ ADd
AD

=

If an interface which is active on boundaries (Shell or Membrane in 3D 
for example) is added on the same interior boundary as a Thin Elastic 

Layer, then the virtual slit between the two sides of the boundary may be 
closed again. This happens if the domain interface and the boundary 
interface share the same displacement degrees of freedom.

fsu fsd– K uu ud u0––( )–= =
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or

The viscous force is

and the structural damping force is

or

The subscripts ‘u’ and ‘d’ denote the “up” and “down” sides of the interior boundary, 
respectively.

The virtual work expression is formulated as

S T I F F N E S S  F R O M  M A T E R I A L  D A T A

When the stiffness is given in terms of actual material data and layer thickness ds, the 
stiffness in the normal direction is computed based on a state of plane strain, so that

The assumption of plane strain conditions is relevant when the material in the elastic 
layer is softer than its surroundings, and this is normally the case.

The shear stiffness is isotropic in the tangential plane, having the value

Since the layer thickness is known in this case, it is also possible to compute a strain in 
the elastic layer. The strain tensor has the is stored in a variable with a name like 
<interface>.<feature>.etelij, for example solid.tel1.etelxx for the normal 

fsu fsd– f u u0–( )= =

u uu ud–=

fvu fvd– D u· u u· d u· 0––( )–= =

flu fld– iηK uu ud u0––( )–= =

flu iηfsu=

δW fsd fld fvd+ +( ) δ uu ud–( )⋅ Aud
Au

=

kn
E 1 ν–( )

ds 1 ν+( ) 1 ν–( )
-----------------------------------------=

kt
G
ds
------ E

2ds 1 ν+( )
---------------------------= =
R  3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



strain. The two shear strains are stored in the xy and xz components of the tensor. In 
3D, the orientation of the two local directions y and z used for the two shear strain 
directions is obtained using the following scheme:

1 Choose an auxiliary direction. Unless the normal to the layer is very close to the 
global X-direction, use . If the X-direction cannot be used, the 
Y-direction is instead used as the auxiliary direction, .

2 The local y-direction is obtained from the part of the auxiliary direction which is 
orthogonal to the normal direction n:

3 The local z-direction is orthogonal to the normal and the local y-direction:

Added Mass

The Added Mass node can be used for supplying inertia that is not part of the material 
itself. Such inertia does not need to be isotropic, in the sense that the inertial effects 
are not the same in all directions. This is, for example, the case when a structure 
immersed in a fluid vibrates. The fluid is added to the inertia for acceleration in the 
direction normal to the boundary, but not tangential to it.

Other uses for added mass are when sheets or strips of a material that is heavy, but 
having a comparatively low stiffness, are added to a structure. The data for the base 
material can then be kept unaltered, while the added material is represented purely as 
added mass.

The value of an added mass can also be negative. You can use such a negative value for 
adjusting the mass when a part imported from a CAD system does not get exactly the 
correct total mass due to simplifications of the geometry.

Added mass can exist on domains, boundaries, and edges. The inertial forces from 
added mass can be written as

eaux eX=

eaux eY=

ey
eaux eaux n⋅( )n–

eaux eaux n⋅( )n–
---------------------------------------------------=

ez n ey×=

Springs and Dampers in the Structural Mechanics Modeling chapter.
L O A D S  A N D  B O U N D A R Y  C O N D I T I O N S  |  383



384 |  C H A P T E
where M is a diagonal mass distribution matrix. For added mass on a boundary (and 
for objects of other dimensions), the contribution to the virtual work is: 

Rigid Motion Suppression Boundary Condition

The Rigid Motion Suppression boundary condition is a convenient way to 
automatically create a set of constraints which are sufficient to inhibit any rigid body 
modes. The constraints are selected so that no reaction forces are introduced as long 
as the external loads are in equilibrium.

3 D  W I T H  TR A N S L A T I O N A L  D E G R E E S  O F  F R E E D O M

In this case, which includes the Solid Mechanics, Multibody Dynamics, Membrane, 
and Truss interfaces, six degrees of freedom must be constrained. As it is not possible 
to directly constrain rotations, this must be done by a proper selection of locations and 
orientations for the constraints.

The following scheme is used:

1 Select three points p1, p2, and p3 that are not located on a common straight line.

2 Compute the unit vectors from p1 to p2 and p3:

3 Compute the normal to the plane spanned by these two vectors.

4 This normal is perpendicular to the line between p1 and p2. Compute a second 
perpendicular direction, orthogonal to en1.

fm M
t2

2

∂
∂ u

–=

δW fm δu⋅ Ad
A
=

e12
X2 X1–

X2 X1–
-----------------------=

e13
X3 X1–

X3 X1–
-----------------------=

en1
e12 e13×
e12 e13×
--------------------------=
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5 Fix the first point is all three directions, so that there are no rigid body translations.

6 Constrain the second point p2 in two directions, so that all possible rotations except 
around the line e12 are suppressed:

7 Constrain the third point p3 so that the remaining rotation is suppressed:

The body is now constrained against rigid body rotations, while still free to stretch in 
any direction.

Figure 3-17: Selection of constraint orientations: P1 is fixed, P2 is constrained so that it 
can only move in the e12 direction, and P3 is constrained in the en1 direction.

en2 e12 en1×=

up1 0=

up2 en1⋅ 0=

up2 en2⋅ 0=

up3 en1⋅ 0=

P1

P2

P3

e12

e13
en1

en2
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3 D  W I T H  R O T A T I O N A L  D E G R E E S  O F  F R E E D O M

In the Shell interface, the rigid body suppression is implemented using the translational 
degrees of freedom in three points, using the same algorithm as above.

In the Beam interface, a single point is constrained in all six degrees of freedom.

2 D  W I T H  TR A N S L A T I O N A L  D E G R E E S  O F  F R E E D O M

In this case, which includes the Solid Mechanics, Multibody Dynamics, and Truss 
interfaces, three degrees of freedom must be constrained. As it is not possible to 
directly constrain the rotations, this must be done by a proper selection of locations 
and orientations for the constraints.

Two points, p1 and p2 are selected. The first point p1 is constrained in both directions 
in order to suppress translational motion. The second point is constrained in the 
direction orthogonal to the line joining the two points, so that rotation around the 
out-of-plane direction is suppressed:

2 D  W I T H  R O T A T I O N A L  D E G R E E S  O F  F R E E D O M

In the Plate interface, you can choose to use either three or six degrees of freedom. 
When six degrees of freedom are used, the same approach as for 3D solids and shells 
is used. In the case of three degrees of freedom, three points which are not located on 
a straight line are constrained against out-of-plane translation.

In the Beam interface, a single point is constrained in all three degrees of freedom.

2 D  A X I A L L Y  S Y M M E T R I C

For both the Solid Mechanics and Membrane interfaces, a single point is constrained 
in the axial (Z) direction.

Low-Reflecting Boundary Condition

The low-reflecting boundary condition is mainly intended for letting waves pass out 
from the model domain without reflection in time-dependent analyses. It is also 

up1 0=

e12
X2 X1–

X2 X1–
-----------------------=

up2 e12 eZ×( )⋅ 0=
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available in the frequency domain, but then adding a perfectly matched layer (PML) is 
usually a better option.

As a default, the low-reflecting boundary condition takes the material data from the 
adjacent domain in an attempt to create a perfect impedance match for both pressure 
waves and shear waves, so that

where n and t are the unit normal and tangential vectors at the boundary, respectively, 
and cp and cs are the speeds of the pressure and shear waves in the material. This 
approach works best when the wave direction in close to the normal at the wall. 

In the general case, you can use

where the mechanical impedance di is a diagonal matrix available as the user input, and 
by default it is set to

Cyclic Symmetry and Floquet Periodic Conditions

These boundary conditions are based on the Floquet theory which can be applied to 
the problem of small-amplitude vibrations of spatially periodic structures.

If the problem is to determine the frequency response to a small-amplitude 
time-periodic excitation that also possesses spatial periodicity, the theory states that the 
solution can be sought in the form of a product of two functions. One follows the 
periodicity of the structure, while the other one follows the periodicity of the 

σ n⋅ ρcp t∂
∂u n⋅ 
 n– ρcs t∂

∂u t⋅ 
  t–=

σ n⋅ di ρ cp cs, ,( )
t∂

∂u
–=

di ρ
cp cs+

2
----------------I=

More information about modeling using low-reflecting boundary 
conditions can be found in Ref. 1.
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excitation. The problem can be solved on a unit cell of periodicity by applying the 
corresponding periodicity conditions to each of the two components in the product.

The problem can be modeled using the full solution without applying the above 
described multiplicative decomposition. For such a solution, the Floquet periodicity 
conditions at the corresponding boundaries of the periodicity cell are expressed as

where u is a vector of dependent variables, r is the position, and the vector kF 
represents the spatial periodicity of the excitation.

The cyclic symmetry boundary condition presents a special but important case of 
Floquet periodicity, for which the unit periodicity cell is a sector of a structure that 
consists of a number of identical sectors. The frequency response problem can then be 
solved in one sector of periodicity by applying the periodicity condition. The situation 
is often referred to as dynamic cyclic symmetry.

For an eigenfrequency study, all the eigenmodes of the full problem can be found by 
performing the analysis on one sector of symmetry only and imposing the cyclic 
symmetry of the eigenmodes with an angle of periodicity , where the cyclic 
symmetry mode number m can vary from 0 to N/2, with N being the total number of 
sectors so that θ = 2π/N.

The Floquet periodicity conditions at the sides of the sector of symmetry can be 
expressed as

where the u represents the displacement vectors with the components given in the 
default Cartesian coordinates. Multiplication by the rotation matrix given by

This section describes the theory for solids in 3D, but is equally applicable 
to shells. In the case of shells, the periodicity condition is applied to edges, 
and the rotational degrees of freedom (displacements of the normal 
vector) are treated in the same way as the translational displacements.

udestination ikF rdestination rsource–( )–[ ]exp usource=

ϕ mθ=

udestination e iϕ– Rθusource
T

=

Rθ

θ( )cos θ( )sin– 0
θ( )sin θ( )cos 0

0 0 1

=
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makes the corresponding displacement components in the cylindrical coordinate 
system differ by the factor  only. For scalar dependent variables, a similar 
condition applies, for which the rotation matrix is replaced by a unit matrix.

The angle  represents either the periodicity of the eigenmode for an eigenfrequency 
analysis or the periodicity of the excitation signal in case of a frequency-response 
analysis. In the latter case, the excitation is typically given as a load vector

when modeled using the Cartesian coordinates. The parameter m is often referred to 
as the azimuthal wave number.

Thermal Expansion of Constraints

Constraints like Fixed Constraint and Prescribed Displacement will in general cause 
stresses near the constrained boundaries when the structure undergoes temperature 
changes. The same is true also for rigid objects like Rigid Domain, Rigid Connector, and 
Attachment. By adding a Thermal Expansion subnode to these features, you can allow 
the constrained boundaries to have a thermal expansion displacement.

The thermal strains will in general have a spatial distribution give by

Note that this is the thermal expansion of the virtual surroundings of the structure 
being analyzed, so it is unrelated to the thermal strains of the structure itself.

The strain field must be converted into a displacement field u(X) such that

If the strain field fulfills the general compatibility relations, it is in principle possible to 
integrate the above relation. The procedure is outlined in Ref. 3, giving

iϕ–( )exp

ϕ

F F0 im Y X⁄( )atan–[ ]exp–=

Ref. 2 contains more information about cyclic symmetry conditions.

ε X( ) α X T,( ) T Tref–( )=

εij
1
2
---

ui∂
Xj∂

--------
uj∂
xi∂

--------+ 
 =

ui X( ) ui X0( ) εil Xk X'k–( )
εil∂
Xk∂

----------
εkl∂
Xi∂

----------– 
 + 

  X'ld
X0

X
+=
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Summation over double indices is implied. The rigid body rotation term given in 
Ref. 3 is omitted, since it cannot be derived from the strain field. The reference point 
is chosen so that the displacement (caused by the strain field) is zero, so that the 

 term can be omitted. The integral is path independent when the compatibility 
is fulfilled. Since the constrained region is a virtual object, the integration path does 
not have to be inside a domain. For simplicity, a straight line from X0 to X is used for 
the integration. Let p be the vector between the two points,

The distance along the integration path can then be parameterized by a parameter s 
running from 0 to 1as

giving

 (3-54)

This integral can be computed using the built-in integrate() operator as long as the 
strain field is an explicit function of the material frame coordinates X.

For the physics interfaces which have rotational degrees of freedom (Beam, Shell and 
Plate), not only the displacement, but also the rotation of the constraint is needed. For 
a given displacement field u(X), the infinitesimal rotation vector  is given by

Applying the rotation operator to Equation 3-54 gives

where εmni is the permutation tensor.

Note that the general compatibility requirements will not be fulfilled for arbitrary 
expressions for the thermal strain distribution. In such cases, the stresses caused by the 
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ui X( ) εil 1 s–( )pk
εil∂
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constraints cannot completely be removed, but they will be significantly decreased. 
The results will then depend on the choice of reference point.

Rigid Connector Theory

The rigid connector is a special kinematic constraint, which can be attached to one or 
several boundaries, edges or points. The effect is that all connected entities behave as 
if they were connected by a common rigid body.

The only degrees of freedom needed to represent this assembly are the ones needed to 
represent the movement of a rigid body. In 2D this is simply two in-plane translations, 
and the rotation around the z-axis.

In 3D the situation is more complex. Six degrees of freedom, usually selected as three 
translations and three parameters for the rotation, are necessary. For finite rotations, 
however, any choice of three rotation parameters is singular at some specific set of 
angles. For this reason, a four-parameter quaternion representation is used for the 
rotations in COMSOL Multiphysics. Thus, each rigid connector in 3D actually has 
seven degrees of freedom, three for the translation and four for the rotation. The 
quaternion parameters are called a, b, c, and d, respectively. These four parameters are 
not independent, so an extra equation stating that the following relation is added:

The connection between the quaternion parameters and a rotation matrix R is

Under pure rotation, a vector from the center of rotation (Xc) of the rigid connector 
to a point X on the undeformed object is rotated into

Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

a2 b2 c2 d2
+ + + 1=

R
a2 b2 c2

– d2
–+ 2bc 2– ad 2ac 2bd+

2ad 2bc+ a2 b2
– c2 d2

–+ 2cd 2ab–

2bd 2– ac 2ab 2cd+ a2 b2
– c2

– d2
+

=

x Xc– R X Xc–( )⋅=
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where x is the new position of the point originally at X. The displacement is by 
definition

where I is the unit matrix.

When the center of rotation of the rigid connector also has a translation uc, then the 
complete expression for the rigid body displacements is

The total rotation of the rigid connector can be also presented as a rotation vector. Its 
definition is

The parameter a can be considered as measuring the rotation, while b, c, and d can be 
interpreted as the orientation of the rotation vector. For small rotations, this relation 
simplifies to

The rotation vector is available as the variables thx_tag, thy_tag, and thz_tag. Here 
tag is the tag of the Rigid Connector node in the Model Builder tree.

It is possible to apply forces and moments directly to a rigid connector. A force 
implicitly contributes also to the moment if it is not applied at the center of rotation 
of the rigid connector. The directions of the forces and moments are fixed in space and 
do not follow the rotation of the rigid connector.

Contact Analysis Theory

In COMSOL Multiphysics you can model contact between a group of boundaries in 
2D or 3D. There are two algorithms available: an augmented Lagrangian method 
and a penalty method.

u x X– R I–( ) X Xc–( )⋅= =

u R I–( ) X Xc–( ) uc+⋅=

Θ 2 a( )acos

b2 c2 d2
+ +

-----------------------------------
b
c
d

=

Θ 2
b
c
d

=
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In the augmented Lagrangian method, the system of equations is solved in a 
segregated way. Augmentation components are introduced for the contact pressure Tn 
and the components Tti of the friction traction vector Tt. An additional iteration level 
is added where the usual displacement variables are solved separated from the contact 
pressure and traction variables. The algorithm repeats this procedure until it fulfills a 
convergence criterion.

In the penalty method, no extra degrees of freedom are needed for the contact pressure 
or the friction traction vector. These results are just computed from the displacements 
and the penalty stiffness. This means that no special solver strategies are necessary.

In the following equations F is the deformation gradient matrix. When looking at 
expressions evaluated on the destination boundaries, the expression map (E) denotes 
the value of the expression E evaluated at a corresponding source point, and g is the 
current gap distance between the destination and source boundary.

Both the contact map operator map (E) and the gap distance variable are defined by 
the contact element elcontact. For each destination point where the operator or gap 
is evaluated, a corresponding source point is sought by searching in the direction 
normal to the destination boundary.

Before the boundaries come in contact, the source point found is not necessarily the 
point on the source boundary closest to the destination point. However, as the 
boundaries approach one another, the source point converges to the closest point as 
the gap distance approaches zero.

• Contact Modeling

• Documentation of the Contact, Friction and Adhesion features

• Identity and Contact Pairs in the COMSOL Multiphysics Reference 
Manual

Source

Destination

x

map(x)

g
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It is possible to add an offset value both to the source (osrc), and to the destination 
(odst). If an offset is used, the gap will be computed with the geometry treated as larger 
(or smaller, in the case of a negative offset) than what is actually modeled. The offset 
is given in a direction normal to the boundary. It can vary along the geometry, and 
may also vary in time (or by parameter value when using the continuation solver).

The effective gap distance dg used in the analysis is thus

The correction of the source side offset is necessary since the normal on the source side 
is not necessarily pointing towards the current point on the destination. When in 
contact, the normals will be exactly opposite.

In some cases, the discretization caused by the meshing of curved boundaries will give 
small irregularities in the gap values. You can then choose to adjust the gap by the 
computed gap value in the initial configuration, ginit. In this case, the effective gap 
distance is

When including friction in the contact problem, it is important to keep track of not 
only the gap in the normal direction, but also the slip between the boundaries in the 
tangential direction. The slip s since the last converged step is defined as

where the index ‘m’ indicates that the coordinates are taken as the mapped coordinates 
from the source side,

and Xm,old is the value of Xm in the last converged time or parameter step. The 
coordinates are material (undeformed) coordinates. The slip vector is thus 
approximated using a backward Euler step. The deformation gradient F contains 
information about the local rotation and stretching.

A U G M E N T E D  L A G R A N G I A N  M E T H O D

Using the special gap distance variable (solid.gap), the penalized contact pressure 
Tnp is defined on the destination boundary as

dg g odst–
osrc

n map n( )⋅( )–
--------------------------------------–=

dg g ginit– odst–
osrc

n map n( )⋅( )–
--------------------------------------–=

s map F( ) Xm Xm old,–( )=

Xm map X( )=
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 (3-55)

pn is the user-defined normal penalty factor.

The penalized friction traction Ttp is defined on the destination boundary as:

 (3-56)

where Tt,trial is defined as

 (3-57)

In Equation 3-57, pt is the user-defined friction traction penalty factor. The critical 
sliding resistance, Tt,crit, is defined as

 (3-58)

In Equation 3-58, μ is the friction coefficient, Tcohe is the user-defined cohesion 
sliding resistance, and Tt,max is the user-defined maximum friction traction.

In the following equation δ is the variation (represented by the test() operator in 
COMSOL Multiphysics). The contact interaction gives the following contribution to 
the virtual work on the destination boundary:

where wcn and wct are contact help variables defined as:

where i is the augmented solver iteration number and γfric is a Boolean variable stating 
if the parts are in contact or not.

PE N A L T Y  M E T H O D

The penalty algorithm is essentially based on the insertion of a stiff spring between the 
contacting boundaries. The penalty factor can be interpreted as the stiffness of that 

Tnp

Tn pndg– if dg 0≤

Tne

pndg

Tn

-----------–

otherwise





=

Ttp min
Tt crit,
Tt trial,
------------------- 1, 
 Tt trial,=

Tt trial, Tt pt– s=

Tt crit, min μTnp Tcohe+ Tt max,,( )=

Tnpδg Ttp map F( )δXm⋅+( ) A wcnδTn wct δTt⋅+( ) Ad
dst
+d

dst


wcn Tnp i, Tn i 1+,–=

wct γfric Ttp n Ttp⋅( )n–( )( )i Tt i 1+,–=
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spring. A high value of the stiffness fulfills the contact conditions more accurately, but 
if it is too high, it makes the problem ill-conditioned and unstable. The contact 
pressure in the normal direction is computed as

where dg is the effective gap distance, pn is the penalty factor, and p0 is the pressure at 
zero gap. The latter parameter can be used to reduce the overclosure between the 
contacting boundaries if an estimate to the contact pressure is known. In the default 
case, when p0 = 0, there must always be some overclosure (a negative gap) in order for 
a contact pressure to develop.

In case of friction, the tangential force Tt is computed as 

where

This can be viewed as a tangential spring giving a force proportional to the sliding 
distance. The penalty factor pt can be identified as the spring constant. The sticking 
condition is thus replaced by a stiff spring, so that there is a small relative movement 
even if the force required for sliding is not exceeded.

The definition of Tt,crit depends on the algorithm used for computing the normal 
contact.

The same notation as for the description of the augmented Lagrangian method above 
is used.

The springs between the contacting boundaries are added using weak expressions on 
the destination boundary.

Tn
pndg– p0  if    dg p0 pn⁄<+

0                 if   dg p0 pn⁄≥






=

Tt min
Tt crit,
Tt trial,
------------------- 1, 
 Tt trial,=

Tt trial, pt– s=

Tt crit,
min μTnp Tcohe+ Tt max,,( )   augmented Lagrangian method

min μTn Tcohe+ Tt max,,( )     penalty method






=
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F R I C T I O N  M O D E L S

The friction model is either no friction or Coulomb friction.

The frictional coefficient μ is defined as

where μs is the static frictional coefficient, μd is the dynamic frictional coefficient, vs is 
the slip velocity, and αdcf is a decay coefficient.

D I R E C T I O N S  O F  T H E  C O N T A C T  F O R C E S

Since the contact model always makes use of the geometric nonlinearity assumption, 
the contact pressure and the friction force represent, respectively, the normal and 
tangential components of the nominal traction. This is the force density with 
components in the current configuration (that is, on the spatial frame) but related to 
the undeformed area of the corresponding surface element.

A D H E S I O N

You can model a situation where two boundaries stick together once the get into 
contact by adding an Adhesion subnode to Contact. Adhesion can be modeled when 
the penalty contact method is used. The adhesion formulation can be viewed as if a 
thin elastic layer is placed between the source and destination boundaries when 
adhesion is activated.

The adhesion starts acting when the adhesion criterion is met in the previous time or 
parameter step. An auxiliary degree of freedom located at Gauss points is used as an 
indicator to whether the adhesion criterion has been met or not.

When adhesion is active, the tensile stress σn in the normal direction is computed from 
the effective gap dg as 

The default value for the stiffness in the normal direction Kp is the penalty stiffness of 
the contact condition, but you can also enter it explicitly. In compression, the penalty 

Tnpδg Ttp map F( )δXm⋅+( ) Ad
dst


μ
μd μs μd–( ) αdcf vs–( )exp   if dynamic friction+

μs                    otherwise






=

σn K– pdg=
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stiffness is always used. This leads to a bilinear stiffness in the normal direction when 
Normal stiffness is User Defined.

The shearing deformation is resisted using a shear stiffness , related to the normal 
stiffness by

where  is a coefficient with the default value 0.17. This coefficient can either be 
input explicitly, or be computed from a Poisson’s ratio. A plane strain assumption is 
used for this conversion, giving

The shear traction is proportional to the relative deformation between the source and 
destination boundaries measured from the position when the adhesion criterion was 
first fulfilled, so that

where s is the slip vector.

D E C O H E S I O N

When adhesion is active, it is possible to break the bond between the source and 
destination boundaries by specifying a Traction separation law. Three different such 
decohesion laws are available.

The decohesion behavior in both tension or shear is based on two quantities, the 
maximum stress and the energy release rate. Tearing in the normal direction is called 
mode I, and shear is called mode II. In the theory below a subscript i can take the 
values I and II.

Up to the maximum stress, the adhesive layer is linearly elastic. At higher deformation, 
the stress decreases, and a damage is assumed to have occurred. The damage function 
is a scalar function of the maximum relative displacement between the two boundaries. 
The stiffness in the damaged state is permanently reduced, even on unloading.

In general, the stress state is a combination of tension and shear, so the data for the 
two modes must be combined into a multiaxial decohesion rule. For two of the 
decohesion laws you can specify details of the multiaxial behavior.

Kτ

Kτ nτKp=

nτ

nτ
1 2ν–

2 1 ν–( )
---------------------=

t KτsFt–=
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As a measure of the displacement in the adhesive layer, the mixed mode relative 
displacement um, is defined as weighted combination of the normal direction 
displacement uI and the tangential displacement uII.

In this expression, the notation

has been used. This is the displacement which is compared with the various mixed 
mode failure displacements described below.

Linear separation law
In the linear separation law, the decreasing part of the stress vs. displacement curve is 
linear. The graph in Figure 3-18 is generic, and valid both for mode I and mode II.

Figure 3-18: Stress vs. displacement curve for the linear separation law

The failure initiation displacement ui0 for each mode is determined from the 
maximum stress and the elastic stiffness, as

um uI 2 uII
2

+=

x  x,  if  x 0≥
0,  if  x 0<




=

ui0 uif
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--------=
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The decohesion displacement uif for each mode is implicitly determined from the 
given energy release rate (which is the area under the stress vs. displacement curve):

The mixed mode failure initiation displacement is then defined as

The implication is that compressive displacements are ignored, and only tensile and 
tangential displacements contribute.

The final mixed mode failure displacement depends on the selected Failure criterion. 
The Power Law failure criterion is defined as

whereas the Benzeggagh-Kenane failure criterion is defined as

The exponent η is called the Mode mixity exponent.

From these relations, the total decohesion failure displacement in the mixed mode can 
be computed. For a power law criterion, the expression is

For the Benzeggagh-Kenane criterion, the corresponding expression is
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The damage function can be described as

The secant stiffness of the damaged adhesive layer (indicated by the red line in 
Figure 3-18) is

Polynomial separation law
The polynomial separation law differs from the linear separation law in that the 
decreasing part of the stress curve is represented by a cubic polynomial. This 
polynomial is chosen so that it has zero slope in both ends, which means that the secant 
stiffness does not have any discontinuities. The area under the cubic function is the 
same as that of the linear function when the failure displacement uif is the same. That 
is, for a given energy release rate Gic, the same uif is obtained.

Figure 3-19: Stress vs. displacement curve for the polynomial separation law
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All expressions presented under Linear separation law are still valid except the damage 
function, which now is

Multilinear separation law
The multilinear separation law introduces a region of constant stress, similar to a 
perfectly plastic material model, as shown in Figure 3-20. 

Figure 3-20: Stress vs. displacement curve for the multilinear separation law

This law requires one more material parameter λ, describing the width of the “plastic” 
region. The Shape factor λ is the ratio between the plastic (constant stress) part of Gic 
and the total “inelastic” part of Gic: 

Note that the shape factor is assumed to be the same for both tension and shear. The 
value λ=0 corresponds to the linear separation law.

The plastic displacement uip can thus be expressed as

The decohesion displacement is
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In this model, a linear mixed mode failure law is assumed:

The mixed mode plastic failure displacement up is defined as

The mixed mode failure displacement is

The damage function can be written as
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S t r e s s  L i n e a r i z a t i o n

Stress linearization is a procedure in which the stress distribution along a line through 
the thickness in a solid is approximated with an equivalent linear stress distribution, 
similar to what would be the result of an analysis using shell theory. The line is 
commonly referred to as a stress classification line, SCL.

First, the computed stresses are transformed into a local orthonormal coordinate 
system x1-x2-x3 where the x1 direction is oriented along the SCL. In 3D, you must 
specify the x2 direction, and thus implicitly the x3 direction. In 2D and 2D axial 
symmetry, the x3 direction is in the out-of-plane direction, that is the Z and azimuthal 
directions respectively.

The length of the SCL, which is assumed to be straight, start on one boundary, and 
end on the opposite boundary, is denoted L.

The membrane stress tensor is the average of each local stress component along the 
SCL:

Each component of the bending stress tensor is assumed to have a linear variation along 
the SCL, with the value being zero at the midpoint.

The maximum bending stress is defined so that the linear stress distribution has the 
same moment as the true stress distribution.

The linearized stress distribution is the sum of the membrane and bending stresses,

σm ij,
1
L
---- σij x1d

0

L

=

σb ij, 1
2x1
L

---------– 
 σb max( ) ij,=

σb max( ) ij,
6

L2
------ σij

L
2
---- x1– 
  x1d

0

L

=

σmb ij, x1( ) σm ij, σb ij, x1( )+=
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Finally the peak stress tensor is defined at the two end points of the SCL. It is the 
difference between the actual stress tensor, and the linearized stress representation.

The stress intensity, also known as the Tresca effective stress, is often the ultimate goal 
of a stress linearization. It is computed as a worst case of the effective stress at the two 
ends of the SCL. The stress intensity is computed from the principal stresses as

When computing the principal stresses at the end points of the SCL, it is customary to 
ignore the bending part of the through-thickness oriented stresses. The principal 
stresses and the stress intensity variables are the end points are thus computed using 
the following stress tensor:

Section forces, similar to what would be computed in a shell or plate analysis, is another 
type of result quantities available for each SCL. The in-plane forces are computed from 
the membrane stresses as

The bending moments are computed from the bending stresses as

σp start( ) ij, σij σmb ij,–[ ]x1 0=
σij[ ]x1 0=

σm ij, σb max( ) ij,+–= =
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The out-of-plane shear forces are computed from the membrane stresses as

Q2

Q3

L
σm 12,

σm 13,

=
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Ene r g y  Quan t i t i e s

There are several energy quantities computed in the Structural Mechanics interfaces. 
This section is a summary of these quantities and how to compute in different 
situations.

Elastic Energy

L I N E A R  E L A S T I C  M A T E R I A L S

The elastic energy is defined as the recoverable energy stored in an elastic material or 
spring. The elastic strain energy density in an elastic material is defined as

 (3-59)

If the linear elasticity is assumed, then

where σi is the initial stress. The integration can then be carried out analytically and 
the result is 

This expression is used for the Linear Elastic Material model in a Stationary or Time 
Dependent analysis. An implication is that if you modify the linear elastic model in a 
way that violates the assumption about stress-strain linearity above, then the computed 
strain energy density may be wrong, for example, using a strain dependent Young’s 
modulus or a non-constant initial stress.

In the case of Frequency Domain analysis, only the harmonic part is considered. That 
is, a constant pre-stress does not contribute to the strain energy density. To emphasize 
this, the concept of stored energy is used. The stored energy is the cycle average of the 
elastic energy; that is,

Ws σ: εeld

0

εel

=

σ σi C:εel+=

Ws σi:εel
1
2
--- C:εel( ):εel+

1
2
--- σi σ+( ):εel= =
E N E R G Y  Q U A N T I T I E S  |  407



408 |  C H A P T E
The harmonic stress and strain components are generally not in phase with each other, 
so the cycle average of the stored energy is computed as

where the stress and strain are considered as complex quantities, and the overbar 
denotes a complex conjugate.

H Y P E R E L A S T I C  M A T E R I A L S

For a Hyperelastic material, the strain energy density function is the fundamental 
quantity from which stresses are derived. The form of the strain energy density 
function is determined by the hyperelastic model used.

Nonlinear Elastic Materials
For a Nonlinear Elastic Material, the strain energy density is computed in different 
ways depending on the material model selected. If the integration in Equation 3-59 
can be performed analytically, then a closed form expression is used, similar to what is 
done in the linear elastic material. If not, then the integral is actually computed using 
the integrate() operator. 

Structural Elements
For structural elements, the strain energy density is split into membrane, bending and 
shear parts, which are then summed into a total strain energy density.

The strain energy density for all elastic domains are integrated to give a total elastic 
strain energy, which contains all elastic energy stored in a certain physics interface.

Elastic boundary conditions, such as Spring Foundation, Thin Elastic Layer, and 
Springs in joints in the Multibody Dynamics interface, also contribute to the total 
elastic strain energy variable. In these cases linearity is assumed, so if you enter 
nonlinear data, you will probably need to adjust the strain energy expressions.

Wh
1
T
---- 1

2
---σ t( ):ε t( ) td

0

T

=

Wh
1
4
--- σ:ε( )real=

The Multibody Dynamics interface is available with the addition of the 
Multibody Dynamics Module.
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Kinetic Energy

For all materials, a kinetic energy density is computed. For a Time Dependent study, 
it is defined as

where ρ is the mass density, and v is the velocity.

In Frequency Domain, the kinetic energy is defined as

which represents the cycle average.

Dissipated Energy

There are many possible mechanisms for energy dissipation in a structure:

• Material damping (Loss factor, Rayleigh damping, or Viscous damping)

• Viscoelasticity

• Dissipation by plasticity or creep

• Viscous damping in boundary conditions, springs and joints

• Friction in mechanical contact

The general form of dissipation loss is

The treatment of dissipated energy is fundamentally different depending on whether 
the analysis is in frequency domain or not. For stationary or time dependent cases, the 
dissipated energy must be accumulated over parameter ranges or time, which means 
extra degrees of freedom must be added. For this reason, you must explicitly select to 
compute the mechanical dissipation in these cases. This is done in the Energy 

Dissipation section of the material model.

In frequency domain, the dissipated energy per cycle is computed using a closed form 
expression. It is always available as postprocessing variables. The expression used is 

Wk
1
2
---ρv2

=

Wk
1
4
---ρω2 v 2

=

Qh σ:ε·=

Qh
1
2
--- σ: iωε( )( )real=
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In the case of Rayleigh damping, the stresses are not directly affected by the damping, 
since it is not part of the stress-strain relation. In a problem which is linear elastic 
except for the Rayleigh damping, the stresses and strains are in phase with each other, 
and does thus not give any damping contribution. This is handled by explicitly adding 
an extra contribution to dissipation.

Mechanical Energy Flux

The mechanical energy flux is a vector formed by the multiplication of the stress tensor 
and the velocity vector

The reason for the minus sign in the definition is that if you put a pressure on an 
external boundary, and it moves in the direction of the load, then a positive power 
input in the direction of the load is obtained.

In the time domain, the expression above is used. In frequency domain, two versions 
are supplied. The complex mechanical energy flux is the complex vector formed by 
multiplying the stress tensor by the complex conjugate of the velocity:

The mechanical energy flux is in the frequency domain defined as a real quantity, the 
cycle average of the complex mechanical energy flux.

Energy Variables

The energy variables used in the Structural Mechanics interfaces are summarized in 
Table 3-6.

I σ v⋅–=

I σ ṽ⋅–=

I 1
2
--- σ ṽ⋅–( )real=

TABLE 3-6:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT

phys.Ws Elastic strain 
energy density

J/m3 solid, mbd, shell, 
plate, mbrn, 
beam, truss

phys.WsM Membrane strain 
energy density

J/m2 shell, plate Contributes to 
phys.Ws
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phys.WsB Bending strain 
energy

J/m2 shell, plate Contributes to 
phys.Ws

phys.WsS Shear strain 
energy

J/m2 shell, plate Contributes to 
phys.Ws

phys.WsM Membrane strain 
energy density

J/m beam Contributes to 
beam.WsL

phys.WsB Bending strain 
energy

J/m beam Contributes to 
beam.WsL

phys.WsS Shear strain 
energy

J/m beam Contributes to 
beam.WsL

beam.WsT Torsional strain 
energy

J/m beam Contributes to 
beam.WsL

phys.WsL Strain energy 
density per unit 
length

J/m beam, truss phys.Ws = 
phys.WsL/area

phys.Ws_tot Total elastic strain 
energy

J solid, mbd, shell, 
plate, mbrn, 
beam, truss

Global variable 
containing 
integration and 
summation of all 
phys.Ws 
contributions in a 
physics interface.

phys.Wk Kinetic energy 
density

J/m3 solid, mbd, shell, 
plate, mbrn, 
beam, truss

phys.Wk_tot Total kinetic 
energy

J solid, mbd, shell, 
plate, mbrn, 
beam, truss

Global variable 
containing 
integration and 
summation of all 
phys.Wk 
contributions in a 
physics interface.

phys.Wp Plastic dissipation 
density

J/m3 solid Energy density 
dissipated by 
plasticity

TABLE 3-6:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT
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phys.Wp_tot Total plastic 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wp 
contributions in a 
physics interface.

phys.Wc Creep dissipation 
density

J/m3 solid Energy density 
dissipated by creep.

phys.Wc_tot Total creep 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wp 
contributions in a 
physics interface.

phys.Wv Viscoelastic 
dissipation density

J/m3 solid Energy density 
dissipated by 
viscosity.

phys.Wv_tot Total viscoelastic 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wv 
contributions in a 
physics interface.

phys.Wed Dielectric 
dissipation density

J/m3 solid Piezoelectric 
electrical damping

phys.Wed_tot Total dielectric 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wed 
contributions in a 
physics interface.

phys.Wmd Damping 
dissipation density

J/m3 solid Piezoelectric 
mechanical damping

TABLE 3-6:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT
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phys.Wmd_tot Total damping 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wmd 
contributions in a 
physics interface.

phys.I* Mechanical 
energy flux, * 
coordinate

W/m2 solid, mbd

phys.Icomplex* Complex 
mechanical 
energy flux, 
*coordinate

W/m2 solid, mbd Frequency domain 
only

1The availability of physics interfaces is based on the license for a module.

TABLE 3-6:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT
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S o l i d  M e c h a n i c s
This chapter describes the Solid Mechanics interface, which is found under the 
Structural Mechanics branch ( ) when adding a physics interface.
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Th e  S o l i d  Me chan i c s  I n t e r f a c e

The Solid Mechanics (solid) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is intended for general structural 
analysis of 3D, 2D, or axisymmetric bodies. In 2D, plane stress or plane strain 
assumptions can be used. The Solid Mechanics interface is based on solving the 
equations of motion together with a constitutive model for a solid material. Results 
such as displacements, stresses, and strains are computed.

The functionality provided by the Solid Mechanics interface depends on the products 
you are using. The Acoustics Module, MEMS Module, and Structural Mechanics 
Module add several features, for example geometric nonlinearity and advanced 
boundary conditions such as contact, follower loads, and non-reflecting boundaries.

The default material is a Linear Elastic Material. With either the Nonlinear Structural 
Materials Module or the Geomechanics Module, the physics interface is extended with 
more materials, for example, material models for plasticity, hyperelasticity, creep, and 
concrete. You can also add your own material models using an External Stress-Strain 
Relation

When this physics interface is added, these default nodes are also added to the Model 

Builder — Linear Elastic Material, Free (a boundary condition where boundaries are free, 
with no loads or constraints), and Initial Values. Then, from the Physics toolbar, you 
can add other nodes that implement, for example, solid mechanics material models, 
boundary conditions, and loads. You can also right-click Solid Mechanics to select 
physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

For a detailed overview of the functionality available in each product, visit 
http://www.comsol.com/products/specifications/
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The default Name (for the first physics interface in the model) is solid.

2 D  A P P R O X I M A T I O N

A X I A L  S Y M M E T R Y  A P P R O X I M A T I O N

From the 2D approximation list select Plane stress or Plane strain (the 
default). Plane stress is relevant for structures which are thin in the 
out-of-plane direction, such as a thin plate. Plane strain is relevant when 
the 2D model can be considered as a cut through an object which is long 
in the out-of-plane direction. For more information see the theory 
section.

When modeling using plane stress, the Solid Mechanics interface solves 
for the out-of-plane strain displacement derivative, , in addition to the 
displacement field u. 

When combining Solid Mechanics with other types of physics, there is 
often an assumption that the out-of-plane extension is infinitely long. This 
is the case in for example Acoustic-Structure interaction problems. In 
these cases, Plane strain is usually the correct choice.

Select Out-of-plane mode extension (time-harmonic) to prescribe an 
out-of-plane wave number to be used in mode analysis, eigenfrequency, 
and frequency domain studies. When selected, enter the Out-of-plane wave 

number kz. Note that the input value will only be taken into account in 
eigenfrequency and frequency domain studies. For mode analysis, the 
out-of-plane wave number is computed as an eigenvalue.

For more information, see Out-of-plane and Circumferential Modes in 
the Structural Mechanics Theory chapter.

w∂
Z∂

-------

Select Circumferential mode extension (time-harmonic) to prescribe a 
circumferential wave number to be used in eigenfrequency or frequency 
domain studies. When selected, enter the Circumferential mode number m.

For more information, see Out-of-plane and Circumferential Modes in 
the Structural Mechanics Theory chapter.
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T H I C K N E S S

S T R U C T U R A L  TR A N S I E N T  B E H AV I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasi-static. Use Quasi-static to treat the dynamic behavior as quasi-static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasi-static is selected.

For problems with creep, and sometimes viscoelasticity, the problem can be considered 
as quasi-static. This is also the case when the time dependence exists only in some other 
physics, like a transient heat transfer problem causing thermal strains.

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the coordinates for the Reference point for moment computation xref (variable 
refpnt). The resulting moments (applied or as reactions) are then computed relative 
to this reference point. During the results and analysis stage, the coordinates can be 
changed in the Parameters section in the result nodes.

TY P I C A L  WA V E  S P E E D

The typical wave speed cref is a parameter for the perfectly matched layers (PMLs) if 
used in a solid wave propagation model. The default value is solid.cp, the 
pressure-wave speed. To use another wave speed, enter a value or expression in the 
Typical wave speed for perfectly matched layers field.

For 2D components, enter a value or expression for the Thickness d. The 
default value of 1 m is suitable for plane strain models, where it represents 
a unit-depth slice, for example. For plane stress models, enter the actual 
thickness, which should be small compared to the size of the plate for the 
plane stress assumption to be valid.

When manually combining Solid Mechanics with other physics interfaces, 
you must make sure that the same thickness assumption is used 
everywhere. In most cases, the default settings will be correct since 
interfaces which do not have an explicit thickness property will implicitly 
assume unit thickness.

Use a Change Thickness node to change thickness in parts of the 
geometry if necessary.
R  4 :  S O L I D  M E C H A N I C S



Note: This section is only available with COMSOL products that include PMLs (see 
http://www.comsol.com/products/specifications/)

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization.

In the Solid Mechanics interface you can choose not only the order of the 
discretization, but also the type of shape functions: Lagrange or serendipity. For 
highly distorted elements, Lagrange shape functions provide better accuracy than 
serendipity shape functions of the same order. The serendipity shape functions will 
however give significant reductions of the model size for a given mesh containing 
hexahedral, prism, or quadrilateral elements.

The default is to use Quadratic serendipity shape functions for the Displacement field. 
Using Linear shape functions will give what is sometimes called constant stress 
elements. Such a formulation will for many problems make the model overly stiff, and 
many elements may be needed for an accurate resolution of the stresses.

D E P E N D E N T  V A R I A B L E S

The physics interface uses the global spatial components of the Displacement field u as 
dependent variables. The default names for the components are (u, v, w) in 3D. In 2D 
the component names are (u, v), and in 2D axisymmetry they are (u, w). You can 
however not use the “missing” component name in the 2D cases as a parameter or 
variable name, since it is still used internally.

You can change both the field name and the individual component names. If a new 
field name coincides with the name of another displacement field, the two fields (and 
the interfaces which define them) share degrees of freedom and dependent variable 
component names. You can use this behavior to connect a Solid Mechanics interface 
to a Shell directly attached to the boundaries of the solid domain, or to another Solid 
Mechanics interface sharing a common boundary.

A new field name must not coincide with the name of a field of another type (that is, 
it must contain a displacement field), or with a component name belonging to some 
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other field. Component names must be unique within a model except when two 
interfaces share a common field name.

Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics 

The Solid Mechanics Interface has these domain, boundary, edge, point, and pair 
nodes and subnodes (listed in alphabetical order), which are available from the Physics 
ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), or 
right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Solid Mechanics interface are added from submenus in the 
Physics toolbar groups or context menu (when you right-click the node). The 
submenu name is the same in both cases.

The submenus at the Domain level are Material Models, Volume Forces, Mass, Spring, and 

Damper, and Domain Constraints.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

• Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics

• Solid Mechanics Theory

• Selecting Discretization

• Stresses in a Pulley: Application Library path COMSOL_Multiphysics/

Structural_Mechanics/stresses_in_pulley

• Eigenvalue Analysis of a Crankshaft: Application Library path 
COMSOL_Multiphysics/Structural_Mechanics/crankshaft

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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The submenus at the Boundary level are Connections, Pairs, Mass, Spring, and Damper, 
and More Constraints.

There are also the Edges and Points submenus.

Note: Some submenus are only present with certain COMSOL products.

F O R C E  L O A D S

Note that you can add force loads acting on all levels of the geometry for the physics 
interface. Add a:

• Body Load to domains (to model gravity effects, for example).

• Boundary Load to boundaries (a pressure acting on a boundary, for example).

• Edge Load to edges in 3D (a force distributed along an edge, for example).

• Point Load to points (concentrated forces at points). 

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence.

For 2D axisymmetric components, COMSOL Multiphysics takes the axial 
symmetry boundaries (at r = 0) into account and automatically adds an 
Axial Symmetry node to the component that is valid on the axial symmetry 
boundaries only.
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• Added Mass

• Antisymmetry

• Attachment

• Beam Connection

• Body Load

• Bolt Pre-Tension

• Bolt Selection

• Boundary Load

• Cam-Clay Material

• Change Thickness

• Contact

• Edge Load

• External Strain

• External Stress

• External Stress-Strain Relation

• Fixed Constraint

• Free

• Gravity

• Hyperelastic Material

• Initial Values

• Linear Elastic Material

• Low-Reflecting Boundary

• Magnetostrictive Material

• Nonlinear Elastic Material

• Periodic Condition

• Piezoelectric Material

• Point Load

• Point Load (on Axis)

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Rigid Motion Suppression

• Rigid Connector

• Rigid Domain

• Ring Load

• Roller

• Rotating Frame

• Shell Connection

• Spring Foundation

• Stress Linearization

• Symmetry

• Thin Elastic Layer

• Thin-Film Damping

In the COMSOL Multiphysics Reference Manual, see Table 2-3 for links 
to common sections and Table 2-4 for common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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These subnodes are available from main parent nodes as indicated in the 
documentation: 

• Adhesion

• Applied Force (Rigid Connector)

• Applied Force (Rigid Domain)

• Applied Moment (Rigid 
Connector)

• Applied Moment (Rigid Domain)

• Center of Mass Nodes (Boundary, 
Edge, Point)

• Center of Rotation Nodes 
(Boundary, Edge, Point)

• Conduction Loss 
(Time-Harmonic)

• Concrete

• Creep

• Damping

• Dielectric Loss

• External Stress

• Fixed Constraint (Rigid Domain)

• Friction

• Hygroscopic Swelling

• Initial Stress and Strain

• Initial Values (Rigid Domain)

• Location Nodes (Boundary, Edge, 
Point)

• Mass and Moment of Inertia (Rigid 
Connector)

• Mass and Moment of Inertia (Rigid 
Domain)

• Mechanical Damping

• Phase

• Plasticity

• Porous Plasticity

• Prescribed Displacement/Rotation

• Predeformation

• Rocks

• Safety

• Soil Plasticity

• Spring Foundation (Rigid 
Connector)

• Spring Foundation (Rigid Domain)

• Thermal Expansion (for constraints)

• Thermal Expansion (for materials)

• Thermal Expansion (Attachment)

• Thermal Expansion (Rigid 
Connector)

• Viscoelasticity

• Viscoplasticity
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Initial Values

The Initial Values node adds initial values for the displacement field and structural 
velocity field that can serve as an initial condition for a transient simulation or as an 
initial guess for a nonlinear analysis. In addition to the default Initial Values node always 
present in the interface, you can add more Initial Values nodes if needed.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the Displacement field u (the 
displacement components u, v, and w in 3D), and the Structural velocity field ∂u/∂t.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Initial Values

Membrane>Initial Values

Truss>Initial Values

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Solid Mechanics>Initial Values

Physics tab with Membrane selected:
Boundaries>Membrane>Initial Values

Physics tab with Truss selected:
Edges>Truss>Initial Values

Change Thickness

Use the Change Thickness node to model domains with a thickness other than the 
overall thickness defined in the physics interface’s Thickness section. The Change 

Thickness node is available in:

• Domains in 2D for the Solid Mechanics and Multibody Dynamics interfaces.

• Boundaries in 3D for the Membrane and Shell interfaces. (See also Change 
Thickness in shell interface documentation).

• Boundaries in 2D axisymmetry for the Membrane interface.
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C H A N G E  T H I C K N E S S

Enter a value for the Thickness d. This value replaces the overall thickness for the 
selected domains or boundaries.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Change Thickness

Multibody Dynamics>Change Thickness

Membrane>Change Thickness

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Domains>Solid Mechanics>Change Thickness

Domains>Multibody Dynamics>Change Thickness

Physics tab with Membrane selected:
Boundaries>Membrane>Change Thickness

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic solid and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

Note: Some options are only available with certain COMSOL products (see http://
www.comsol.com/products/specifications/)

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Porous Plasticity

• Soil Plasticity

• Concrete

• Rocks

• Safety
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used for interpreting directions of 
orthotropic and anisotropic material data and when stresses or strains are presented in 
a local system. The coordinate system must have orthonormal coordinate axes, and be 
defined in the material frame. Many of the possible subnodes inherit the coordinate 
system settings.

L I N E A R  E L A S T I C  M A T E R I A L

To use a mixed formulation by adding the pressure as an extra dependent variable to 
solve for, select the Nearly incompressible material check box. For a material with a very 
low compressibility, using only displacements as degrees of freedom may lead to a 
numerically ill-posed problem.

Define the Solid model and the linear elastic material properties.

Solid Model
Select a linear elastic Solid model: Isotropic (the default), Orthotropic, or Anisotropic. 
Select:

• Isotropic for a linear elastic material that has the same properties in all directions.

• Orthotropic for a linear elastic material that has different material properties in 
orthogonal directions, so that its stiffness depends on the properties Ei, νij, and Gij.

• Anisotropic for a linear elastic material that has different material properties in 
different directions, and the stiffness comes from the symmetric elasticity matrix, D.

Note: The Orthotropic and Anisotropic options are only available with certain 
COMSOL products (see http://www.comsol.com/products/specifications/) 

• Material Models

• Linear Elastic Material

• Orthotropic and Anisotropic Materials
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Density
The default Density ρ uses values From material. For User defined enter another value or 
expression.

Specification of Elastic Properties for Isotropic Materials
For an Isotropic Solid model, from the Specify list select a pair of elastic properties for 
an isotropic material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and 

shear-wave speeds. For each pair of properties, select from the applicable list to use the 
value From material or enter a User defined value or expression.

Each of these pairs define the elastic properties and it is possible to convert from one 
set of properties to another according to Table 4-1.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

TABLE 4-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G) D(λ,μ)
Young’s 
modulus

E = E E

Poisson’s 
ratio

ν = ν

Bulk 
modulus

K = K

Shear 
modulus

G = G G μ

Lamé 
parameter 
λ

λ = λ

Lamé 
parameter 
μ

μ = G G μ

9KG
3K G+
------------------- μ3λ 2μ+

λ μ+
--------------------

E
2G
-------- 1– 1

2
--- 1 3G

3K G+
-------------------– 

  λ
2 λ μ+( )
---------------------

E
3 1 2ν–( )
------------------------ EG

3 3G E–( )
--------------------------- λ 2μ

3
-------+

E
2 1 ν+( )
---------------------

Eν
1 ν+( ) 1 2ν–( )

--------------------------------------- G E 2G–( )
3G E–

---------------------------- K 2G
3

--------–

E
2 1 ν+( )
---------------------
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The individual property parameters are:

• Young’s modulus (elastic modulus) E.

• Poisson’s ratio ν.

• Shear modulus G.

• Bulk modulus K.

• Lamé parameter λ and Lamé parameter μ.

• Pressure-wave speed (longitudinal wave speed) cp.

• Shear-wave speed (transverse wave speed) cs. This is the wave speed for a solid 
continuum. In plane stress, for example, the actual speed with which a longitudinal 
wave travels is lower than the value given.

Specification of Elastic Properties for Orthotropic Materials
When Orthotropic is selected from the Solid model list, the material properties vary in 
orthogonal directions only. The Material data ordering can be specified in either 
Standard or Voigt notation. When User defined is selected in 3D, enter three values in 
the fields for Young’s modulus E, Poisson’s ratio ν, and the Shear modulus G. This 
defines the relationship between engineering shear strain and shear stress. It is 
applicable only to an orthotropic material and follows the equation

 

Specification of Elastic Properties for Anisotropic Materials
When Anisotropic is selected from the Solid model list, the material properties vary in 
all directions, and the stiffness comes from the symmetric Elasticity matrix, D The 
Material data ordering can be specified in either Standard or Voigt notation. When User 

defined is selected, a 6-by-6 symmetric matrix is displayed.

Pressure-
wave speed

cp =

Shear-wave 
speed

cs =

TABLE 4-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G) D(λ,μ)

E 1 ν–( )
ρ 1 ν+( ) 1 2ν–( )
------------------------------------------ G 4G E–( )

ρ 3G E–( )
---------------------------- K 4G 3⁄+

ρ
-------------------------- λ 2μ+

ρ
----------------

E
2ρ 1 ν+( )
------------------------- G ρ⁄ G ρ⁄ μ ρ⁄

εij
τij

Gij
--------=

νij is defined differently depending on the application field. It is easy to 
transform among definitions, but check which one the material uses.
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G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Force linear strains check box to always use a 
small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.
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Note: This section is only available with COMSOL products that support 
geometrically nonlinear analysis (see http://www.comsol.com/products/
specifications/).

E N E R G Y  D I S S I P A T I O N

You can select to compute and store various energy dissipation variables in a time 
dependent analysis. Doing so will add extra degrees of freedom to the model.

To display this section, click the Show button ( ) and select Advanced Physics Options. 

•  There are some cases when a small strain formulation could be useful 
for a certain domain, even though the study step is geometrically 
nonlinear. One such case is in contact analysis, where the study is always 
geometrically nonlinear, but it is possible that a geometrically linear 
formulation is sufficient in the material. 

• When a multiplicative decomposition is used, the order of the 
subnodes to Linear Elastic Material matters. The inelastic deformation 
are assumed to have occurred in the same order as the subnodes appear 
in the model tree.

• In versions prior to 5.3, only the additive strain decomposition method 
was available. If you want to revert to the previous behavior, select 
Additive strain decomposition. If the results then differ significantly, 
probably the assumption of additivity is questionable, however.

• In models created in a version prior to 4.2a, a check box named Include 

geometric nonlinearity may be visible in this section. It is displayed only 
if geometric nonlinearity was originally used for the selected domains. 
Once the check box is cleared in this Settings window, it is permanently 
removed and the study step assumes control over the selection of 
geometric nonlinearity. 
When Include geometric nonlinearity is selected in this section, it 
automatically also selects the Include geometric nonlinearity check box 
in the study Settings window.

• Modeling Geometric Nonlinearity

• Inelastic Strain Contributions

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by for example creep, plasticity, viscoplasticity, viscoelasticity, or damping.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Linear Elastic Material

Multibody Dynamics>Linear Elastic Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Linear Elastic Material

Physics tab with Multibody Dynamics selected:
Domains>Multibody Dynamics>Linear Elastic Material

Nonlinear Elastic Material

The Nonlinear Elastic Material feature is used to model stress-strain relationships which 
are nonlinear even at infinitesimal strains. It is available in the Solid Mechanics and 
Membrane interfaces. This material model requires either the Nonlinear Structural 
Materials Module or the Geomechanics Module.

By adding the following subnodes to the Nonlinear Elastic Material node you can 
incorporate many other effects:

• Dissipated Energy

• Energy Variables

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Porous Plasticity

• Soil Plasticity

• Concrete

• Rocks

• Safety
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Note: Some options are only available with certain COMSOL products (see http://
www.comsol.com/products/specifications/)

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used when stresses or strains are 
presented in a local system. The coordinate system must have orthonormal coordinate 
axes, and be defined in the material frame. Many of the possible subnodes inherit the 
coordinate system settings.

N O N L I N E A R  E L A S T I C  M A T E R I A L

To use a mixed formulation by adding the pressure as an extra dependent variable to 
solve for, select the Nearly incompressible material check box. For a material with a very 
low compressibility, using only displacements as degrees of freedom may lead to a 
numerically ill-posed problem.

The available material models depend on the COMSOL products you are using.

Nonlinear Structural Materials Module: Select a Material model: Ramberg-Osgood, 
Power law, Uniaxial data, Bilinear elastic, or User defined.

Geomechanics Module: Select a Material model: Ramberg-Osgood, Hyperbolic law, 
Hardin-Drnevich, Duncan-Chang, Duncan-Selig, or User defined.

Density
All nonlinear elastic material models have density as an input. The default Density ρ 
uses values From material. For User defined enter another value or expression.

Ramberg-Osgood, Power law, Hyperbolic law, Hardin-Drnevich, Duncan-Chang, or 
Duncan-Selig 
Select from the applicable list to use the value From material or enter a User defined 
value or expression.

From the Specify list select a pair of elastic properties for an isotropic material — 
Young’s modulus and Poisson’s ratio (the default for Ramberg-Osgood, Power law, 

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).
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Duncan-Chang, and Duncan-Selig) or Bulk modulus and shear modulus (the default for 
Hyperbolic law and Hardin-Drnevich). 

Then depending on the selections, define the applicable parameters:

• Young’s modulus E.

• Poisson’s ratio ν.

• Shear modulus G.

• Bulk modulus K.

• For Ramberg-Osgood: 

- Reference stress σref .

- Reference strain εref.

- Stress exponent n.

• For Power law and Hyperbolic law:

- Reference shear strain γref.

- Strain exponent n.

• For Hardin-Drnevich, define the Reference shear strain γref.

• For Duncan-Chang, define the Ultimate deviatoric stress qult.

• For Duncan-Selig:

- Ultimate deviatoric stress qult.

- Ultimate strain εult.

Uniaxial Data
For Uniaxial data enter a value or expression for the Uniaxial stress function σax as a 
function of the uniaxial strain. The default expression is the linear function 
(210[GPa])*solid.eax N/m2, which corresponds to a linear elastic material with 
Young’s modulus 210 GPa.

From the Specify list select how to specify the second elastic property for the material 
— Bulk modulus or Poisson’s ratio. Then depending on the selection, enter a value or 
select from the applicable list to use the value From material or enter a User defined 
value or expression:

• Bulk modulus K.

• Poisson’s ratio ν.

When you select Bulk modulus, the Young’s modulus is computed from the tensile part 
of the Uniaxial stress function σax. When you select Poisson’s ratio, you can either use 
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the tensile part (default), or use the full tensile-compressive function by selecting the 
check box Use nonsymmetric stress-strain data.

Bilinear Elastic
For Bilinear elastic enter a value or select from the applicable list to use the value From 

material or enter a User defined value or expression.

• Bulk modulus in tension Kt.

• Bulk modulus in compression Kc.

• Shear modulus G.

User Defined
In the User defined material model, you specify the bulk modulus implicitly by entering 
the relation between pressure and volumetric elastic strain. Enter a value or select from 
the applicable list to use the value From material (the default) or enter a User defined 
value or expression.

• Pressure p. The default expression is (-160[GPa])*solid.eelvol N/m2, which 
corresponds to a linear elastic material with bulk modulus 160 GPa.

• Shear modulus G.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Force linear strains check box to always use a 
small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.
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E N E R G Y  D I S S I P A T I O N

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Nonlinear Elastic Material

Membrane>Material Models>Nonlinear Elastic Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Nonlinear Elastic Material

Physics tab with Membrane selected:
Boundaries>Material Models>Nonlinear Elastic Material

•  There are some cases when a small strain formulation could be useful 
for a certain domain, even though the study step is geometrically 
nonlinear. One such case is in contact analysis, where the study is always 
geometrically nonlinear, but it is possible that a geometrically linear 
formulation is sufficient in the material. 

• When a multiplicative decomposition is used, the order of the 
subnodes to Nonlinear Elastic Material matters. The inelastic 
deformation are assumed to have occurred in the same order as the 
subnodes appear in the model tree.

• In versions prior to 5.3, only the additive strain decomposition method 
was available. If you want to revert to the previous behavior, select 
Additive strain decomposition. If the results then differ significantly, 
probably the assumption of additivity is questionable, however.

• Modeling Geometric Nonlinearity

• Inelastic Strain Contributions

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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Hyperelastic Material

The Hyperelastic Material subnode adds the equations for hyperelasticity at large 
strains. Hyperelastic materials can be suitable for modeling rubber and other polymers, 
biological tissue, and also for applications in acoustoelasticity. The Hyperelastic Material 
is available in the Solid Mechanics and Membrane interfaces. This material model 
requires the Nonlinear Structural Materials Module.

When a hyperelastic material is included in your model, all studies are geometrically 
nonlinear. The Include geometric nonlinearity check box in the study settings is selected 
and cannot be cleared.

H Y P E R E L A S T I C  M A T E R I A L

Select a hyperelastic Material model from the list and then go to the applicable section 
for more information. 

Density
All hyperelastic material models have density as an input. The default Density ρ uses 
values From material. For User defined enter another value or expression.

See also Hyperelastic Material Models in the Structural Mechanics 
Theory chapter.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

• Neo-Hookean

• St Venant-Kirchhoff

• Mooney-Rivlin, Two Parameters

• Mooney-Rivlin, Five Parameters

• Mooney-Rivlin, Nine Parameters

• Yeoh

• Ogden

• Storakers

• Varga

• Arruda-Boyce

• Gent

• Blatz-Ko

• Gao

• Murnaghan

• User defined
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Neo-Hookean
For Neo-Hookean you can use a mixed formulation by adding the negative mean 
pressure as an extra dependent variable. For this case, select the Nearly incompressible 

material check box. Then if the check box is selected, enter a value for the Initial bulk 

modulus κ.

The default values for both Lamé parameter λ and Lamé parameter μ use values From 

material. 

St Venant-Kirchhoff
For St Venant-Kirchhoff you can use a mixed formulation by adding the negative mean 
pressure as an extra dependent variable. For this case, select the Nearly incompressible 

material check box.

The default values for both Lamé parameter λ and Lamé parameter μ use values From 

material. 

Mooney-Rivlin, Two Parameters
For Mooney-Rivlin, two-parameters the Model parameters C10 and C01 both use values 
From material. Enter the Initial bulk modulus κ.

Mooney-Rivlin, Five Parameters
For Mooney-Rivlin, five-parameters the Model parameters C10, C01, C20, C02, and C11 
all use values From material. Enter the Initial bulk modulus κ.

Mooney-Rivlin, Nine Parameters
For Mooney-Rivlin, nine-parameters the Model parameters C10, C01, C20, C02, C11, C30, 
C03, C21, and C12 all use values From material. Enter the Initial bulk modulus κ.

Yeoh
For Yeoh the Model parameters c1, c2, and c3 all use values From material. Enter the 
Initial bulk modulus κ.

Ogden
For Ogden you can use a mixed formulation by adding the negative mean pressure as 
an extra dependent variable. For this case, select the Nearly incompressible material 
check box.

In the table for the Ogden parameters, enter values or expressions in each column: p, 
Shear modulus (Pa), and Alpha parameter.

If the Nearly incompressible material check box is selected, also enter the Initial bulk 

modulus κ.
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Storakers
For Storakers, in the table for the Storakers parameters, enter values or expressions in 
each column: p, Shear modulus (Pa), Alpha parameter, and Beta parameter.

Varga
For Varga the Model parameters c1, c2, and c3 all use values From material. Enter the 
Initial bulk modulus κ.

Arruda-Boyce
For Arruda-Boyce you can use a mixed formulation by adding the negative mean 
pressure as an extra dependent variable. For this case, select the Nearly incompressible 

material check box.

The default values for the Macroscopic shear modulus μ0 and the Number of segments N 
use values From material. 

If the Nearly incompressible material check box is selected, also enter the Initial bulk 

modulus κ.

Gent
For Gent the default values for the Macroscopic shear modulus μ and the model 
parameter jm is to use values From material. Enter the Initial bulk modulus κ.

Blatz-Ko
For Blatz-Ko the Shear modulus μ and the Model parameters β and φ all use values From 

material. 

Gao
For Gao the Model parameters a and n all use values From material. 

Murnaghan
For Murnaghan the Murnaghan third-order elastic moduli constants l, m, and n and the 
Lamé parameters λ and μ use values From material. 

User defined
For User defined you can use a mixed formulation by adding the negative mean pressure 
as an extra dependent variable. In this case, select the Nearly incompressible material 
check box. 

If the Nearly incompressible material check box is selected, enter the Isochoric strain 

energy density Wsiso and the Volumetric strain energy density Wsvol.
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If the Nearly incompressible material check box is not selected, enter an expression for 
the Strain energy density Ws.

E N E R G Y  D I S S I P A T I O N

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Select the Calculate dissipated energy check box to compute the energy dissipated by 
Plasticity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Hyperelastic Material

Membrane>Material Models>Hyperelastic Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Hyperelastic Material

Physics tab with Membrane selected:
Boundaries>Material Models>Hyperelastic Material

Piezoelectric Material

The Piezoelectric Material node defines the piezoelectric material properties either in 
stress-charge form using the elasticity matrix and the coupling matrix, or in 
strain-charge form using the compliance matrix and the coupling matrix. It is normally 
used together with a Piezoelectric Effect multiphysics coupling node and a 
corresponding Charge Conservation, Piezoelectric node in the Electrostatics interface. 
This node is added by default to the Solid Mechanics interface when adding a 
Piezoelectric Devices interface.

For examples of:

• Mooney-Rivlin, two-parameters and Ogden, see Inflation of a Spherical 
Rubber Balloon. Application Library path: 
Nonlinear_Structural_Materials_Module/Hyperelasticity/balloon_inflation.

• Murnaghan, see Elasto-Acoustic Effect in Rail Steel. Application 
Library path: Nonlinear_Structural_Materials_Module/Hyperelasticity/

rail_steel.
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This material model requires the Structural Mechanics Module, MEMS Module, or 
Acoustics Module.

By adding the following subnodes to the Piezoelectric Material node you can 
incorporate many other effects:

• Initial Stress and Strain

• Thermal Expansion (for materials)

• Mechanical Damping

• Coupling Loss

• Dielectric Loss

• Conduction Loss (Time-Harmonic)

P I E Z O E L E C T R I C  M A T E R I A L  P R O P E R T I E S

Select a Constitutive relation — Stress-charge form or Strain-charge form. For each of the 
following, the default uses values From material. For User defined enter other values in 
the matrix or field as needed.

• For Stress-charge form, select an Elasticity matrix (ordering: xx, yy, zz, yz, xz, xy) (cE). 

• For a Strain-charge form, select a Compliance matrix (ordering: xx, yy, zz, yz, xz, xy) 

(sE). 

• Select a Coupling matrix (ordering: xx, yy, zz, yz, xz, xy) (d). 

• Select a Relative permittivity (erS or erT).

When the Piezoelectric Material node is added to the structural mechanics 
interface in the absence of an active Piezoelectric Effect multiphysics 
coupling node the material behaves similarly to a Linear Elastic Material 
node, with elastic properties as corresponding to the elasticity or 
compliance matrix entered (see below). The piezoelectric effect is then 
not included in the corresponding equation system.

See also Piezoelectric Material in the Structural Mechanics Theory 
chapter.
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• Enter values for the Remanent electric displacement Dr.

• Select a Density (p).

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the Force linear 

strains check box. When selected, a small strain formulation is always used, 
independently of the setting in the study step. The check box is not selected by default 
to conserve the properties of the model.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Piezoelectric Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Piezoelectric Material

Magnetostrictive Material

The Magnetostrictive Material node defines the magnetostrictive material properties. 

For entering these matrices, use the following order (Voigt notation), 
which is the common convention for piezoelectric materials: xx, yy, zz, yz, 
xz, zy.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

• Modeling Piezoelectric Problems

• Modeling Geometric Nonlinearity

• The Electromagnetics Interfaces in the COMSOL Multiphysics 
Reference Manual
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In case of linear magnetostriction model, the material data can be entered either in the 
strain-magnetization form using the elasticity matrix and the coupling matrix, or in 
stress-magnetization form using the compliance matrix and the coupling matrix. It is 
normally used as part of Magnetostriction multiphysics interface together with a 
Magnetostriction multiphysics coupling node and Ampère’s Law, Magnetostrictive node 
in the corresponding Magnetic Fields interface. Magnetostrictive Material node is added 
by default to the Solid Mechanics interface when adding a Magnetostriction 
multiphysics interface. The interface requires the AC/DC Module and at least one of 
the following modules: Structural Mechanics, MEMS, Acoustics.

By adding the following subnodes to the Magnetostrictive Material node you can 
incorporate other effects:

• Initial Stress and Strain

• Thermal Expansion (for materials)

• Mechanical Damping

L I N E A R  M A G N E T O S T R I C T I V E  M A T E R I A L  P R O P E R T I E S

Select a Constitutive relation — Strain-magnetization form or Stress-magnetization form. 
For each of the following, the default uses values From material. For User defined, enter 
other values in the matrix or field as needed.

• For Strain-magnetization form, select a Compliance matrix (ordering: xx, yy, zz, yz, xz, 

xy) (sH).

• For a Stress-magnetization form, select an Elasticity matrix (ordering: xx, yy, zz, yz, xz, 

xy) (cH).

When the Magnetostrictive Material node is added to the Structural 
Mechanics interface in the absence of an active Magnetostriction 
multiphysics coupling node, the material behaves similarly to a Linear 
Elastic Material node with some limitations on the format for the elastic 
material data input. All the magnetic material data and coupling data will 
have no effect. The magnetostrictive effect is then not included in the 
corresponding equation system.

See also Magnetostrictive Material in the Structural Mechanics Theory 
chapter.
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• Select a Piezomagnetic coupling matrix (ordering: xx, yy, zz, yz, xz, xy) (dHT or eHS). 

• Select a Relative permeability (μrT or μrS).

• Select a Density (p).

N O N L I N E A R  M A G N E T O S T R I C T I V E  M A T E R I A L  P R O P E R T I E S

See the corresponding the theory section Nonlinear Magnetostriction.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the Force linear 

strains check box. When selected, a small strain formulation is always used, 
independently of the setting in the study step. The check box is not selected by default 
to conserve the properties of the model.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Magnetostrictive Material

For entering these matrices, use the following order (Voigt notation), 
which is the common convention for magnetostrictive materials: xx, yy, 
zz, yz, xz, zy.

The density is needed for dynamic analysis. It is also used when computing 
mass forces for gravitational or rotating frame loads, and when computing 
mass properties (Computing Mass Properties).

• Magnetostriction

• Modeling Magnetostrictive Materials

• Modeling Geometric Nonlinearity

• Ampère’s Law, Magnetostrictive

• The Magnetic Fields Interface in the COMSOL Multiphysics 
Reference Manual
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Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Magnetostrictive Material

Cam-Clay Material

The Cam-Clay Material node adds the equations and interface for defining the material 
properties for the modified Cam-clay material. This material model requires the 
Geomechanics Module.

The Thermal Expansion (for materials) and Initial Stress and Strain subnodes can be 
added to the Cam-Clay Material.

M O D E L  I N P U T S

The Pore fluid pressure pfluid is user-defined by default. The default value is 1 atm, but 
you can change it to another value or expression for the pore fluid pressure. If there 
are other physics interfaces (like Darcy’s law) in the model that make a pressure 
variable available, such variables will be available in the list.

C A M - C L A Y  M A T E R I A L

To use a mixed formulation by adding the negative mean pressure as an extra 
dependent variable to solve for, select the Nearly incompressible material check box. 

From the Specify list, define the elastic properties either in terms of Poisson’s ratio or 
Shear modulus.

The defaults for the Poisson’s ratio ν or the Shear modulus G, Density ρ, Cam-Clay M 

parameter M, Swelling index κ, Compression index λ, and Void ratio at reference pressure 

N are taken From material. For User defined enter other values or expressions.

See also Cam-Clay Material Model in the Structural Mechanics Theory 
chapter.

For the Cam-Clay M parameter you can alternatively select Match to 

Mohr-Coulomb criterion which then matches the slope of the virgin 
consolidation line to the Angle of internal friction. Then select the Angle 

of internal friction  as From material (the default) or User defined.φ
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Enter a value or expression for the Reference pressure for the parameter N prefN , the 
Initial void ratio e0,and the Initial consolidation pressure pc0.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use the 
Green-Lagrange strain in all domains. There are, however, some cases when the use of 
a small strain formulation for a certain domain is needed. In those cases, select the Force 

linear strains check box. When selected, a small strain formulation is always used, 
independently of the setting in the study step. The check box is not selected by default 
to conserve the properties of the model. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Cam-Clay Material

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Cam-Clay Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to an elastic material 
model, This material model is available in the Solid Mechanics and Membrane 
interfaces, and can be used together with Linear Elastic Material, Nonlinear Elastic 
Material, and Hyperelastic Material.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

Isotropic Compression with Cam-Clay Material Model: Application 
Library path Geomechanics_Module/Verification_Examples/

isotropic_compression

See also Linear Viscoelastic Materials and Large Strain Viscoelasticity in 
the Structural Mechanics Theory chapter.
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T H E R M A L  E F F E C T S

Viscoelastic properties have a strong dependence on the temperature. For 
thermorheologically simple materials, a change in the temperature can be transformed 
directly into a change in the time scale. Thus, the relaxation time is modified to 
aT(T)τm, where aT(T) is a shift function.

Select a Shift function — None (the default), Williams-Landel-Ferry, Arrhenius, or User 

defined. 

• When the default, None, is kept, the shift function aT(T) is set to unity and the 
relaxation time is not modified.

• For Williams-Landel-Ferry enter values or expressions for these properties then the 
shift function aT(T) is computed from these parameters and the relaxations time is 
shifted according to it:

- Reference temperature TWLF The default is 293.15 K.

- WLF constant 1 C1WLF. The default is 17.44.

- WLF constant 2 C2WLF. The default is 51.6 K.

• For Arrhenius enter values or expressions for these properties then the shift function 
aT(T) is computed from these parameters and the relaxations time is shifted 
according to it:

- Reference temperature T0. The default is 293.15 K.

- Activation energy Q.

• For User defined enter a value or expression for the shift function aT.

V I S C O E L A S T I C I T Y  M O D E L

Select a Material model — Generalized Maxwell (the default), Standard linear solid, or 
Kelvin-Voigt. Then see the settings for each option that follows.

For any material model, you can select the shear modulus to use when solving a 
stationary problem. Choose the Static stiffness for the material model — Long-term 
(the default) or Instantaneous. 

Generalized Maxwell
For Generalized Maxwell in the table enter the values for the parameters that describe 
the viscoelastic behavior as a series of spring-dashpot pairs. 

For linear viscoelasticity, in each Branch row enter the stiffness of the spring Gm in the 
Shear modulus (Pa) column and the relaxation time constant τm in the Relaxation time 

(s) column for the spring-dashpot pair in branch m. 
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For large strain viscoelasticity, in each Branch row enter βm (the energy factor of the 
branch) in the Energy factor (1) column and the relaxation time constant τm in the 
Relaxation time (s) column for the spring-dashpot pair.

• Use the Add button ( ) to add a row to the table and the Delete button ( ) to 
delete a row in the table. 

• Using the Load from file button ( ) and the Save to file button ( ) load and 
store data for the branches in a text file with three space-separated columns (from 
left to right): the branch number, the shear modulus or energy factor, and the 
relaxation time for that branch.

Standard Linear Solid
For Standard linear solid enter the values for the parameters that describe the 
viscoelastic behavior of the single spring-dashpot branch.

For linear viscoelasticity, select an option from the Relaxation data list and edit the 
default as needed:

• Relaxation time τv. The default is 3000 s.

• Viscosity ηv of the dash-pot. The default is 6 x 1013 Pa⋅s.

In the Shear modulus field, enter the stiffness of the spring Gv. The default is 
2 x 1010 Pa.

For large strain viscoelasticity, enter the Relaxation time τv, which default is 3000 s, and 
the Energy factor βv of the dash-pot. The default is 0.2.

Kelvin-Voigt
For Kelvin-Voigt enter the values for the parameter that describes the viscous behavior 
of the single dash-pot. 

For linear viscoelasticity, select an option from the Relaxation data list and edit the 
default as needed:

• Relaxation time τv. The default is 3000 s.

• Viscosity ηv of the dash-pot. The default is 6 x 1013 Pa⋅s.

For large strain viscoelasticity, enter the Relaxation time τv. The default is 3000 s.

D I S C R E T I Z A T I O N

Select a Shape function type — Discontinuous Lagrange (default) or Gauss point data for 
the components of the auxiliary viscoelastic tensor. When the discontinuous Lagrange 
discretization is used, the shape function order is selected as one order less than what 
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is used for the displacements. This results in that fewer extra degrees of freedom are 
added to the model than when using Gauss point data. The accuracy does in general 
not differ much. If you want to enforce that the constitutive law is fulfilled at the 
integration points, select Gauss point data.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Viscoelasticity

Solid Mechanics>Nonlinear Elastic Material>Viscoelasticity

Solid Mechanics>Hyperlastic Material>Viscoelasticity

Membrane>Linear Elastic Material>Viscoelasticity

Membrane>Nonlinear Elastic Material>Viscoelasticity

Membrane>Hyperlastic Material>Viscoelasticity

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Viscoelasticity

Plasticity

Using the Plasticity subnode you define the properties for modeling elastoplastic 
materials. This material model is available in the Solid Mechanics, Membrane and 
Truss interfaces, and can be used together with Linear Elastic Material, Nonlinear 
Elastic Material, and Hyperelastic Material.

To compute the energy dissipation caused by viscoelasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node.

• Viscoelastic Structural Damper: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency

• Viscoelastic Structural Damper—Transient Analysis: Application 
Library path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_transient
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The Nonlinear Structural Material Module or the Geomechanics Module are required 
for this material model, and the available options depend on the products used. For 
details, see http://www.comsol.com/products/specifications/.

P L A S T I C I T Y  M O D E L

Use this section to define the plastic properties of the material.

Plasticity Model
Select Small plastic strains or Large plastic strains to apply either an additive or 
multiplicative decomposition between elastic and plastic strains.

• When using plasticity together with a hyperelastic material, only the option Large 
plastic strains is available.

• When using plasticity in the Membrane and Truss interfaces, only the option Small 

plastic strains is available.

Yield Function F
The Yield function F defines the limit of the elastic regime F(σ, σys) ≤ 0.

Select a Yield function F criterion — von Mises stress, Tresca stress, Hill orthotropic 

plasticity, or User defined.

• The default is von Mises stress with associate plastic potential.

• Select Tresca stress to use a Tresca yield criterion. The plastic potential can be an 
Associated or non associated flow rule with the von Mises stress as plastic potential.

• Select Hill orthotropic plasticity to use Hill’s criterion. For Hill orthotropic plasticity 
from the Specify list select either the Initial tensile and shear yield stresses σys0ij or 
Hill’s coefficients F, G, H, L, M, and N. The default for either selection uses values 
From material (if it exists) or User defined. The principal directions of orthotropy are 
inherited from the coordinate system selection in the Linear elastic feature.

• For User defined enter a different value or expression. Write any expression in terms 
of the stress tensor variables or its invariants in the φ(σ) field.

- For User defined also select the Plastic potential Q related to the flow rule — 
Associated (the default), von Mises, or User defined (non associated). Enter a User 

defined value in the Q field as needed.

See also Elastoplastic Material Models in the Structural Mechanics 
Theory chapter.
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Initial Yield Stress
For all yield criteria, the default Initial yield stress σys0 uses values From material and 

represents the stress level where plastic deformation starts. 

Isotropic Hardening Model
For all yield criteria, select the type of linear or nonlinear isotropic hardening model 
from the Isotropic hardening model list.

• Select Perfectly plastic (ideal plasticity) if the material can undergo plastic 
deformation without any increase in yield stress.

• For Linear isotropic hardening the default Isotropic tangent modulus ETiso uses values 
From material (if it exists) or User defined. The yield level σys is modified as 
hardening occurs, and it is related to the effective plastic strain εpe as

 with 

For the linear isotropic hardening model, the yield stress increases proportionally to 
the effective plastic strain εpe. The Young’s modulus E is taken from the elastic 
material properties. 

• Select Ludwik from the list to model nonlinear isotropic hardening. The yield level 
σys is modified by the power-law

the Strength coefficient k and the Hardening exponent n use values From material (if 
it exists) or User defined.

• For Swift nonlinear isotropic hardening, the Reference strain ε0 and the Hardening 

exponent n use values From material (if it exists) or User defined. The yield level σys 
is modified by the power-law

• Select Voce from the list to model nonlinear isotropic hardening. The yield level σys 
is modified by the exponential law

the Saturation flow stress σsat and the Saturation exponent β use values From material 
(if it exists) or User defined.
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• For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress σ∝, 
the Saturation coefficient m, and the Saturation exponent n use values From material 
(if it exists) or User defined. The yield level σys is increased by the exponential law

• For User defined isotropic hardening the Hardening function σh(εpe) uses values From 

material. The yield level σys is modified as

This definition implies that the hardening function σh(εpe) must be zero at zero 
plastic strain. In other words, σys = σys0 when εpe = 0. With this option it is 
possible to fit nonlinear isotropic hardening curves. The hardening function can 
depend on more variables than the effective plastic strain, for example the 
temperature.

Kinematic Hardening Model
For all yield function criteria, select the type of kinematic hardening model (not 
available for hyperelastic materials) from the Kinematic hardening model list.

• Select No kinematic hardening (when either ideal plasticity or an isotropic hardening 
model is selected as isotropic hardening model) if it is a material that can undergo 
plastic deformation without a shift in the yield surface.

• If Linear kinematic hardening is selected as the Kinematic hardening model, the default 
Kinematic tangent modulus Ek uses values From material. This parameter is used to 
calculate the back stress σb as plasticity occurs: 

 with 

This is Prager’s linear kinematic hardening model, so the back stress σb is 
collinear to the plastic strain tensor εp.

• If Armstrong-Frederick is selected from the list, the default Kinematic hardening 

modulus Ck and Kinematic hardening parameter γk use values From material. These 
parameters are used to calculate the back stress σb from the rate equation

This is Armstrong-Frederik nonlinear kinematic hardening model.

σys εpe( ) σys0 σ∞ σys0–( ) 1 e
mεpe

n–
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 +=

σys σys0 σh εpe( )+=

σb Ck
2
3
---εp⋅=

1
Ck
------- 1

Ek
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E
----–=

σ· b
2
3
---Ckε·p γkε·peσb–=
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• When Chaboche is selected from the Kinematic hardening model list, the default 
Kinematic hardening modulus C0 uses values From material. Add branches as needed 
to solve N rate equations for the back stresses:

The total back stress σb is then computed from the sum

For each Branch row, enter Ci (the hardening modulus of the branch i) in the 
Hardening modulus (Pa) column and γi (the hardening parameter of the branch i) in 
the Hardening parameter (1) column. 

Use the Add button ( ) and the Delete button ( ) to add or delete a row in the 
table. Use the Load from file button ( ) and the Save to file button ( ) to load 
and store data for the branches in a text file with three space-separated columns 
(from left to right): the branch number, the hardening modulus for that branch, and 
the hardening parameter for that branch.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Plasticity

Solid Mechanics>Nonlinear Elastic Material>Plasticity

Solid Mechanics>Hyperelastic Material>Plasticity

Membrane>Linear Elastic Material>Plasticity

σ· b,i
2
3
---Ciε

·
p γiε

·
peσb,i–=

σb
2
3
---C0εp σb,i

i 1=

N

+=

To compute the energy dissipation caused by plasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node.

• Sheet Metal Forming: Application Library path 
Nonlinear_Structural_Materials_Module/Plasticity/sheet_metal_forming

• For an example of Large plastic strains, see Necking of an Elastoplastic 
Metal Bar: Application Library path 
Nonlinear_Structural_Materials_Module/Plasticity/bar_necking.
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Membrane>Nonlinear Elastic Material>Plasticity

Truss>Linear Elastic Material>Plasticity

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperlastic Material 

node selected in the model tree:
Attributes>Plasticity

Creep

Use the Creep subnode to define the creep properties of the material model. This 
material model is available in the Solid Mechanics and Membrane interfaces, and can 
be used together with Linear Elastic Material and Nonlinear Elastic Material.

The Nonlinear Structural Material Module or the Geomechanics Module are required 
for this material model, and the available options depend on the products used. For 
details, see http://www.comsol.com/products/specifications/.

C R E E P  D A T A

Nonlinear Structural Materials Module
Select a Material model — Norton, Norton-Bailey, Garofalo (hyperbolic sine), 
Navarro-Herring, Coble, Weertman, Potential, Volumetric, Deviatoric, or User defined. 
Then follow the instructions as below.

Geomechanics Module
Select a Material model — Potential, Volumetric, Deviatoric, or User defined. Then follow 
the instructions as below.

Norton
For Norton enter the following settings:

• Creep rate coefficient A.

• Reference creep stress σref. The default is 1 MPa.

• Stress exponent n.

• Select the Include temperature dependency check box to add an “Arrhenius-type” 
temperature dependence. Then enter a Creep activation energy Q.

See also Creep and Viscoplasticity in the Structural Mechanics Theory 
chapter.
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Norton-Bailey
For Norton-Bailey enter the following settings:

• Creep rate coefficient A.

• Reference creep stress σref. The default is 1 MPa.

• Stress exponent n.

• Select a Hardening model — Time hardening or Strain hardening.

- For Time hardening, enter the hardening exponent m, the Time shift tshift and the 
Reference time tref.

- For Strain hardening, enter the hardening exponent m, the Effective creep strain 

shift εshift, and the Reference time tref.

• Select the Include temperature dependency check box to add an “Arrhenius-type” 
temperature dependence. Then enter a Creep activation energy Q.

Garofalo (hyperbolic sine)
For Garofalo (hyperbolic sine) enter the following settings:

• Creep rate coefficient A.

• Reference creep stress σref. The default is 1 MPa.

• Garofalo n parameter n.

• Select the Include temperature dependency check box as needed. Then enter a Creep 

activation energy Q.

Navarro-Herring
For Navarro-Herring enter the following settings:

• Volume diffusivity Dv.

• Burgers vector b.

• Grain diameter d.

Coble
For Coble enter the following settings:

• Ionic diffusivity Dgb.

• Burgers vector b.

• Grain diameter d.
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Weertman
For Weertman enter the following settings:

• Diffusivity D0.

• Burgers vector b.

• Stress exponent n.

• Reference creep stress σref. The default is 1 MPa.

Potential
For Potential enter the following settings:

• Rate multiplier η.

• Creep potential Qcr.

Deviatoric
For Deviatoric enter the Creep rate Fcr.

Volumetric
For Volumetric enter the Creep rate Fcr.

User defined
For User defined enter each element for the symmetric Creep rate tensor Fcr. The tensor 
components are interpreted in the coordinate system of the parent node. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Creep

Solid Mechanics>Nonlinear Elastic Material>Creep

Membrane>Linear Elastic Material>Creep

Membrane>Nonlinear Elastic Material>Creep

To compute the energy dissipation caused by creep, enable the Calculate 

dissipated energy check box in the Energy Dissipation section of the parent 
material node (Linear Elastic Material or Nonlinear Elastic Material).

For an example of Norton and Norton-Baily material models, see 
Combining Creep Material Models: Application Library path 
Nonlinear_Structural_Materials_Module/Creep/combined_creep.
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Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Creep

Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of the material 
model. This material model is available in the Solid Mechanics and Membrane 
interfaces, and can be used together with Linear Elastic Material and Nonlinear Elastic 
Material.

The Nonlinear Structural Material Module is required for this material model.

V I S C O P L A S T I C I T Y  M O D E L

Select a Viscoplasticity model — Anand, Chaboche, or Perzyna. Then follow the 
instructions as below.

Anand
For Anand enter the following data:

• Creep rate coefficient A.

• Creep activation energy Q.

• Multiplier of stress ξ.

• Stress sensitivity m.

• Deformation resistance saturation coefficient s0.

• Deformation resistance initial value sinit.

• Hardening constant h0.

• Hardening sensitivity a.

• Deformation resistance sensitivity n.

See also Creep and Viscoplasticity in the Structural Mechanics Theory 
chapter.
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Each of the material properties can either be defined obtained From material, or as User 

defined. In the latter case, enter a value or an expression.

Chaboche
For Chaboche enter the following settings:

• Viscoplastic rate coefficient A.

• Reference creep stress σref. The default is 1 MPa.

• Stress exponent n.

Yield Function F
The Yield function F defines the limit of the elastic regime F(σ, σys) ≤ 0.

Select a Yield function F criterion — von Mises stress, Tresca stress, Hill orthotropic 

plasticity, or User defined.

• The default is von Mises stress with associate plastic potential.

• Select Tresca stress to use a Tresca yield criterion. The plastic potential can be an 
Associated or non associated flow rule with the von Mises stress as plastic potential.

• Select Hill orthotropic plasticity to use Hill’s criterion. For Hill orthotropic plasticity 
from the Specify list select either the Initial tensile and shear yield stresses σys0ij or 
Hill’s coefficients F, G, H, L, M, and N. The default for either selection uses values 
From material (if it exists) or User defined. The principal directions of orthotropy are 
inherited from the coordinate system selection in the parent feature.

• For User defined enter a different value or expression. In the φ(σ) field write any 
expression in terms of the stress tensor components or its invariants.

- For User defined also select the Plastic potential Q related to the flow rule — 
Associated (the default), von Mises, or User defined (non associated). Enter a User 

defined value in the Q field as needed.

Initial Yield Stress
The default Initial yield stress σys0 uses values From material and represents the stress 
level where viscoplastic deformation starts. 

Viscoplastic Creep in Solder Joints: Application Library path 
Nonlinear_Structural_Materials_Module/Viscoplasticity/

viscoplastic_solder_joints
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Isotropic Hardening Model
Select the type of linear or nonlinear isotropic hardening model from the Isotropic 

hardening model list.

• Select Perfectly plastic (ideal viscoplasticity) if the material can undergo viscoplastic 
deformation without any increase in yield stress.

• For Linear isotropic hardening the default Isotropic tangent modulus ETiso uses values 
From material (if it exists) or User defined. The yield level σys is modified as 
hardening occurs, and it is related to the effective viscoplastic strain εvpe as

 with 

For the linear isotropic hardening model, the yield stress increases proportionally to 
the effective viscoplastic strain εvpe. The Young’s modulus E is taken from the elastic 
material properties. 

• Select Ludwik from the list to model nonlinear isotropic hardening. The yield level 
σys is modified by the power-law

the Strength coefficient k and the Hardening exponent n use values From material (if 
it exists) or User defined.

• For Swift nonlinear isotropic hardening, the Reference strain ε0 and the Hardening 

exponent n use values From material (if it exists) or User defined. The yield level σys 
is modified by the power-law

• Select Voce from the list to model nonlinear isotropic hardening. The yield level σys 
is modified by the exponential law

the Saturation flow stress σsat and the Saturation exponent β use values From material 
(if it exists) or User defined.

• For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress σ∝, 
the Saturation coefficient m, and the Saturation exponent n use values From material 
(if it exists) or User defined. The yield level σys is increased by the exponential law

σys σys0 Eisoεvpe+=
1

Eiso
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ETiso
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E
----–=

σys σys0 kεvpe
n

+=
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----------+ 
 

n
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σys σys0 σsat 1 e
βεvpe–

– 
 +=
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• For User defined isotropic hardening the Hardening function σh(εvpe) uses values 
From material. The yield level σys is modified as

This definition implies that the hardening function σh(εvpe) must be zero at zero 
viscoplastic strain. In other words, σys = σys0 when εvpe = 0. With this option it 
is possible to fit nonlinear hardening curves. The hardening function can depend 
on more variables than the effective viscoplastic strain, for example the 
temperature.

Kinematic Hardening Model
Select the type of kinematic hardening model from the Kinematic hardening model list.

• Select No kinematic hardening when the material can undergo viscoplastic 
deformation without a shift in the yield surface.

• If Linear kinematic hardening is selected as the Kinematic hardening model, the default 
Kinematic tangent modulus Ek uses values From material. This parameter is used to 
calculate the back stress σb as: 

 with 

This is Prager’s linear kinematic hardening model, so the back stress σb is 
collinear to the viscoplastic strain tensor εvp.

• If Armstrong-Frederick is selected from the list, the default Kinematic hardening 

modulus Ck and Kinematic hardening parameter γk use values From material. These 
parameters are used to calculate the back stress σb from the rate equation

This is Armstrong-Frederik nonlinear kinematic hardening model.

• When Chaboche is selected from the Kinematic hardening model list, the default 
Kinematic hardening modulus C0 uses values From material. Add branches as needed 
to solve N rate equations for the back stresses:
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For each Branch row, enter Ci (the hardening modulus of the branch i) in the 
Hardening modulus (Pa) column and γi (the hardening parameter of the branch i) in 
the Hardening parameter (1) column. 

Use the Add button ( ) and the Delete button ( ) to add or delete a row in the 
table. Use the Load from file button ( ) and the Save to file button ( ) to load 
and store data for the branches in a text file with three space-separated columns 
(from left to right): the branch number, the hardening modulus for that branch, and 
the hardening parameter for that branch.

The total back stress σb is then computed from the sum

Perzyna
For Perzyna enter the following settings:

• Viscoplastic rate coefficient A.

• Reference creep stress σref. The default is 1 MPa.

The other settings are the same as for Chaboche.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Viscoplasticity

Solid Mechanics>Nonlinear Elastic Material>Viscoplasticity

Membrane>Linear Elastic Material>Viscoplasticity

Membrane>Nonlinear Elastic Material>Viscoplasticity

σ· b,i
2
3
---Ciε

·
vp γiε

·
vpeσb,i–=

σb
2
3
---C0εvp σb,i

i 1=

N

+=

To compute the energy dissipation caused by viscoplasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node (Linear Elastic Material or Nonlinear Elastic 

Material).
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Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Viscoplasticity

Porous Plasticity

Use the Porous Plasticity subnode to define the properties of a plasticity model for a 
porous material. 

PO R O U S  P L A S T I C I T Y  M O D E L

Use this section to define the plastic properties of the porous material.

Yield Function F
The Yield function F defines the limit of the elastic regime F(σ, σys) ≤ 0.

Select a Yield function F for the porous plasticity criterion — Shima-Oyane, Gurson, 
Gurson-Tvergaard-Needleman, Fleck-Kuhn-McMeeking, or FKM-GTN.

Shima-Oyane
For Shima-Oyane enter the following data:

• Initial yield stress σys0.

• Shima-Oyane parameter α.

• Shima-Oyane parameter γ.

• Shima-Oyane parameter m.

• Initial void volume fraction f0.

Gurson
For Gurson enter the following data:

• Initial yield stress σys0.

• Initial void volume fraction f0.

Gurson-Tvergaard-Needleman
For Gurson-Tvergaard-Needleman enter the following data:

• Initial yield stress σys0.

• Tvergaard correction coefficient q1.

• Tvergaard correction coefficient q2.

• Initial void volume fraction f0.
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• Critical void volume fraction fc.

• Failure void volume fraction ff.

Fleck-Kuhn-McMeeking
For Fleck-Kuhn-McMeeking enter the following data:

• Initial yield stress σys0.

• Initial void volume fraction f0.

• Maximum void volume fraction fmax.

FKM-GTN
For FKM-GTN enter the following data:

• Initial yield stress σys0.

• Tvergaard correction coefficient q1.

• Tvergaard correction coefficient q2.

• Initial void volume fraction f0.

• Maximum void volume fraction fmax.

• Void volume fraction cut-off for GTN model fGTN.

• Void volume fraction cut-off for FKM model fFKM.

Each of the material properties can either be defined obtained From material, or as User 

defined. In the latter case, enter a value or an expression.

.

See also Porous Plasticity in the Structural Mechanics Theory chapter.

To compute the energy dissipation caused by porous compaction, enable 
the Calculate dissipated energy check box in the Energy Dissipation section 
of the parent material node (Linear Elastic Material or Nonlinear Elastic 

Material).
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Porous Plasticity

Solid Mechanics>Nonlinear Elastic Material>Porous Plasticity

Membrane>Linear Elastic Material>Porous Plasticity

Membrane>Nonlinear Elastic Material>Porous Plasticity

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Porous Plasticity

Soil Plasticity

In the Soil Plasticity subnode you define the properties for modeling materials 
exhibiting soil plasticity. This material model can be used together with Linear Elastic 
Material and Nonlinear Elastic Material. It is available with the Geomechanics Module.

The yield criteria are described in the theory section:

• Drucker-Prager Criterion

• Mohr-Coulomb Criterion

• Matsuoka-Nakai Criterion

• Lade-Duncan Criterion

S O I L  P L A S T I C I T Y

Select a Yield criterion — Drucker-Prager, Mohr-Coulomb, Matsuoka-Nakai, or 
Lade-Duncan. Most values are taken From material. For User defined choices, enter other 
values or expressions.

Drucker-Prager
In the standard Drucker-Prager formulation, the material parameters are given in 
terms of the α and k coefficients. Often material data is expressed in the parameters c 
and φ used in the Mohr-Coulomb model. You can the choose to use there parameters 
instead. If so, select the Match to Mohr-Coulomb criterion check box (see 
Mohr-Coulomb Criterion). If this check box is selected, the default values for Cohesion 
c and the Angle of internal friction φ are taken From material. 

If required, select the Use dilatation angle in plastic potential check box. If this check 
box is selected, then enter a value or expression for the Dilatation angle ψ. Alternatively, 
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select From material. The dilatation angle replaces the angle of internal friction when 
defining the plastic potential.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Drucker-Prager alpha coefficient α and Drucker-Prager k coefficient are taken From 

material. 

If required, select the Include elliptic cap check box. Select from the list the hardening 
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to 
define the semi-axes of the ellipse under Elliptic cap parameter pa and Elliptic cap 

parameter pb. When Isotropic hardening is selected from the list, the default Isotropic 

hardening modulus Kiso, the Maximum plastic volumetric strain εpvol,max, and the Ellipse 

aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value 
or expression to define the initial semi-axis of the ellipse under the Initial location of the 

cap pb0.

Mohr-Coulomb
The default Angle of internal friction  and Cohesion c are taken From material.

If required, select the Use dilatation angle in plastic potential check box. If this check 
box is selected, then enter a value or expression for the Dilatation angle ψ. Alternatively, 
select From material. The dilatation angle replaces the angle of internal friction when 
defining the plastic potential.

Under Plastic potential select either Drucker-Prager matched at compressive meridian, 
Drucker-Prager matched at tensile meridian, or Associated.

If required, select the Include elliptic cap check box. Select from the list the hardening 
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to 
define the semi-axes of the ellipse under Elliptic cap parameter pa and Elliptic cap 

parameter pb. When Isotropic hardening is selected from the list, the default Isotropic 

hardening modulus Kiso, the Maximum plastic volumetric strain εpvol,max, and the Ellipse 

aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value 
or expression to define the initial semi-axis of the ellipse under the Initial location of the 

cap pb0.

Matsuoka-Nakai
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is 
selected, the default Angle of internal friction φ is taken From material. 

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Matsuoka-Nakai mu coefficient μ is taken From material. 

φ
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Lade-Duncan
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is 
selected, then enter a value or expression for the Angle of internal friction φ. 
Alternatively, select From material.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Lade-Duncan k coefficient k is taken From material. 

TE N S I O N  C U T - O F F

If required, select the Include tension cut-off check box (see Tension Cut-Off). Enter a 
value or expression for the Max tensile stress σt. Use this to constrain the soil plasticity 
model with an extra yield surface, which limits the maximum principal stress.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Soil plasticity

Solid Mechanics>Nonlinear Elastic Material>Soil plasticity

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Soil plasticity

Concrete

In the Concrete subnode you define the properties for modeling materials with failure 
criteria representative of concrete. This material model can be used together with 
Linear Elastic Material and Nonlinear Elastic Material. It is available with the 
Geomechanics Module.

The failure criteria are described in the theory section:

• Bresler-Pister Criterion

• Deep Excavation: Application Library path Geomechanics_Module/Soil/

deep_excavation

• Flexible and Smooth Strip Footing on Stratum of Clay: Application 
Library path Geomechanics_Module/Soil/flexible_footing
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• Willam-Warnke Criterion

• Ottosen Criterion 

C O N C R E T E  M O D E L

Select a Concrete criterion — Bresler-Pister, Willam-Warnke, or Ottosen. The defaults are 
taken From material. For User defined choices, enter other values or expressions.

Bresler-Pister
The defaults for the Uniaxial tensile strength σt, Uniaxial compressive strength σc, and 
Biaxial compressive strength σb are taken From material. 

Willam-Warnke
The defaults for the Uniaxial tensile strength σt, Uniaxial compressive strength σc, and 
Biaxial compressive strength σb are taken From material. 

Ottosen
The defaults for the Uniaxial tensile strength σc, Ottosen’s parameters a and b , Size 
factor k1, and Shape factor k2 are taken From material. 

TE N S I O N  C U T - O F F

If required, select the Include tension cut-off check box (see Tension Cut-Off). Enter a 
value or expression for the Max tensile stress σt. Use this to constraint the concrete 
model with an extra yield surface, which limits the maximum principal stress.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Concrete

Solid Mechanics>Nonlinear Elastic Material>Concrete

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Concrete

Rocks

In the Rocks subnode you define the properties for modeling materials with failure 
criteria representative of rocks. This material model can be used together with Linear 
Elastic Material and Nonlinear Elastic Material. It is available with the Geomechanics 
Module.
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The failure criterion are described in the theory section:

• Original Hoek-Brown Criterion

• Generalized Hoek-Brown Criterion

R O C K  M O D E L

Select a Rock criterion — Original Hoek-Brown or Generalized Hoek-Brown. The defaults 
are taken From material. For User defined choices, enter other values or expressions.

Original Hoek-Brown
The defaults for the Uniaxial compressive strength σc, Hoek-Brown m parameter m, and 
Hoek-Brown s parameter s are taken From material. 

Generalized Hoek-Brown
The defaults for the Uniaxial compressive strength σc, Geological strength index GSI, 
Disturbance factor D, and Intact rock parameter mi are taken From material.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Rocks

Solid Mechanics>Nonlinear Elastic Material>Rocks

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Rocks

Thermal Expansion (for materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

The Thermal Expansion subnode is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

M O D E L  I N P U T S

From the Temperature T list, select an existing temperature variable from a heat transfer 
interface (for example, Temperature (ht)), if any temperature variables exist, or select 
User defined to enter a value or expression for the temperature.
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T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to select how the thermal strain is specified. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where α is the secant coefficient of thermal expansion. α can be temperature 
dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where αt is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a non-isotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

Enter a value or expression for the Strain reference temperature Tref which is the 
reference temperature that defines the change in temperature together with the actual 
temperature.

εth α T Tref–( )=

εth αt τ( ) τd
Tref

T

 
 
 

exp 1–=

A heat source term will be created by this node. It can be accessed from 
a Thermoelastic Damping node in a heat transfer interface in order to 
incorporate the reversed effect that heat is produced by changes in stress. 
The heat source term is only present when Structural Transient Behavior 
is set to Include inertial terms.

• Thermoelastic Damping

• Entropy and Thermoelasticity
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Thermal Expansion

Solid Mechanics>Nonlinear Elastic Material>Thermal Expansion

Solid Mechanics>Hyperelastic Material>Thermal Expansion

Solid Mechanics>Piezoelectric Material>Thermal Expansion

Solid Mechanics>Cam-Clay Material>Thermal Expansion

Membrane>Linear Elastic Material>Thermal Expansion

Membrane>Nonlinear Elastic Material>Thermal Expansion

Membrane>Hyperelastic Material>Thermal Expansion

Multibody Dynamics>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material, Hyperelastic Material, Nonlinear Elastic Material, 
Piezoelectric Material, or Cam-Clay Material node selected in the model tree:
Attributes>Thermal Expansion 

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as 

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration.

The Hygroscopic Swelling subnode is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. The unit for the input depends on the setting of 

Thermal Stresses in a Layered Plate: Application Library path 
Structural_Mechanics_Module/Thermal-Structure_Interaction/layered_plate

MEMS_Module/Actuators/layered_plate

εhs βh cmo cmo,ref–( )=
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  475

http://www.comsol.com/products/specifications/


476 |  C H A P T E
Concentration type in the Hygroscopic Swelling Properties section. Only concentration 
variables having the chosen physical dimension are available in the Concentration list.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration or Mass concentration, 
depending on the units used for the concentration.

Enter a Strain reference concentration cref . This is the concentration at which there are 
no strains due to hygroscopic swelling.

If Molar concentration is selected as the Concentration type, enter also the Molar mass of 
the fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling βh uses values From material. For 
User defined, select Isotropic, Diagonal, or Symmetric from the list to enter one or more 
components for a general coefficient of hygroscopic swelling tensor βh. The default 
value for the User defined case is 1.5e-4 m3/kg. When a non-isotropic coefficient of 
hygroscopic swelling is used, the axis orientations are given by the coordinate system 
selection in the parent node.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Hygroscopic Swelling

Solid Mechanics>Nonlinear Elastic Material>Hygroscopic Swelling

Solid Mechanics>Hyperelastic Material>Hygroscopic Swelling

Membrane>Linear Elastic Material>Hygroscopic Swelling

Membrane>Nonlinear Elastic Material>Hygroscopic Swelling

Membrane>Hyperelastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperelastic 

Material node selected in the model tree:
Attributes>Hygroscopic Swelling
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Initial Stress and Strain

You can add the Initial Stress and Strain subnode to several material models, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation.

The Initial Stress and Strain subnode is only available with some COMSOL products 
(see http://www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The given initial stresses 
and strains are interpreted in this system.

I N I T I A L  S T R E S S  A N D  S T R A I N

Enter values or expressions for the Initial stress S0 and Initial strain ε0. For both, enter 
the diagonal and off-diagonal components (based on space dimension):

• For a 3D Initial stress model, diagonal components S0x, S0y, and S0z and 
off-diagonal components S0xy, S0yz, and S0xz, for example.

• For a 3D Initial strain model, diagonal components ε0x, ε0y, and ε0z and off-diagonal 
components ε0xy, ε0yz, and ε0xz, for example.

In a geometrically nonlinear analysis, the stresses should be interpreted as Second 
Piola-Kirchhoff stresses, and the strains should be interpreted as Green-Lagrange 
strains. 

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

• For details about the different strain measures, see Deformation 
Measures.

• For details about the different stress measures, see Defining Stress.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Initial Stress and Strain

Solid Mechanics>Nonlinear Elastic Material>Initial Stress and Strain

Solid Mechanics>Piezoelectric Material>Initial Stress and Strain

Solid Mechanics>Cam-Clay Material>Initial Stress and Strain

Multibody Dynamics>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Piezoelectric Material, 
or Cam-Clay Material node selected in the model tree:
Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to several material models, in order to specify 
an additional stress contribution which is not part of the constitutive relation. The 
external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

The External Stress subnode is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

E X T E R N A L  S T R E S S

Select a Stress input — Stress tensor (Material), Stress tensor (Spatial) or Pore pressure.

• When Stress tensor (Material) is selected, you enter the external stress in the form of 
a Second Piola-Kirchhoff stress tensor. The External stress tensor drop-down list will 
contain all stress tensors announced by any physics interface, and also the entry User 

defined. When User defined is selected, you can enter the data for the External stress 

tensor Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the 

Prestressed Micromirror: Application Library path MEMS_Module/

Actuators/micromirror

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.
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tensor. The tensor components are interpreted in the selected coordinate system. If 
a stress tensor announced by a physics interface is selected, the coordinate system 
setting is ignored — the orientation is handled internally. Choose a Contribution type 

— Add to stress tensor or Load contribution only — to determine the effect of the 
contribution.

• When Stress tensor (Spatial) is selected, you enter the external stress in the form of 
Cauchy stress tensor. The components are interpreted in the selected coordinate 
system. Depending on the properties of the tensor, you can enter the data for the 
External stress tensor σext as Isotropic, Diagonal, or Symmetric. Choose a Contribution 

type — Add to stress tensor or Load contribution only — to determine the effect of 
the contribution.

• When Pore pressure is selected, the Absolute pressure drop down menu will always 
contain the entry User defined, in which case you manually enter a value or an 
expression for the absolute pressure pA. If there are other physics interfaces (like 
Darcy’s Law) which compute and announce a pressure variable, such variables are 
also present in the list. You can also enter a Reference pressure level pref, which is the 
pressure level at which the pore pressure does not give any stress contribution. Enter 
the Biot-Willis coefficient aB to specify the fraction of the pore pressure to use. As a 
default, its value is taken From material. Choose User defined to enter another value 
or expression. When using Pore pressure, there is no contribution to the stress 
tensor, the only effect of the pressure is as a load.

• Selecting a stress tensor announced by the same physics interface as 
where the External Stress node is added, will result in an error 
(‘Circular variable dependency detected’). This operation 
would imply that the computed stress depends on itself.

• You can use a stress tensor from the same physics interface, but a 
previous solution step. Select the User defined input type and enter 
expressions where the withsol operator is used to point to the intended 
solution.

• Since all stress tensor representations coincide in a geometrically linear 
analysis, Stress tensor (Spatial) is needed only in the case of a 
geometrically nonlinear analysis. The stress tensor is entered using a 
Cauchy stress tensor representation, and is internally transformed to a 
Second Piola-Kirchhoff stress tensor. 
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>External Stress
Solid Mechanics>Nonlinear Elastic Material>External Stress
Solid Mechanics>Hyperelastic Material>External Stress
Membrane>Linear Elastic Material>External Stress
Membrane>Nonlinear Elastic Material>External Stress
Membrane>Hyperelastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperelastic 

Material node selected in the model tree:
Attributes>External Stress

External Strain 

The External Strain subnode allows you to provide inelastic strain contributions to the 
material models Linear Elastic Material, Nonlinear Elastic Material, and Hyperelastic 
Material on a variety of formats, including using external coded functions.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Coordinate system. All inputs that you give below are interpreted in the given 
coordinate system. This also implies that external code should assume that strains are 
passed with its local orientations. Deformation gradients are rotated by the local 
system in both indices.

E X T E R N A L  S T R A I N

Select the type of Strain input — External material, Strain tensor, Deformation gradient, 
Deformation gradient, inverse, or Stretches. The option Strain tensor is not available for 
the Hyperelastic Material.

• For theory, see External Stress.

• For details about the different stress measures, see Defining Stress.

Deep Excavation: Application Library path
Geomechanics_Module/Soil/Deep Excavation
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External material
For External material, the computation of an additional inelastic strain contribution is 
delegated to external code which has been compiled into a shared library. External 
libraries must first be imported into an External Material node under Global 

Definitions>Materials.

Select an External material from the list of compatible external materials added under 
Global Definitions>Materials.

For a material to be compatible with this External Strain subnode, its Interface type 
must be set to a type whose required input quantities are all defined in this node. 
Allowed required inputs include Green-Lagrange strains, the deformation gradient, 
second Piola-Kirchoff stress as well as all standard model inputs. Select Inelastic residual 

quantity — Strain or Deformation gradient to define the type of quantity by which you 
want communicate with the external code. 

• If the Interface type in the External material node is Inelastic residual strain, then 
select Strain. 

• If the Interface type in the External material node is Inelastic residual deformation, 
then select Deformation gradient. 

Strain tensor
For Strain tensor, enter an inelastic strain contribution εext. From the Strain tensor list, 
you can choose User defined, or any strain tensor which is announced by another 
physics interface. If you select User defined, enter values or expressions for the upper 
diagonal part of the symmetric strain tensor.

Deformation gradient
For Deformation gradient, enter an inelastic deformation gradient contribution Fext. 
From the External deformation gradient list, you can choose User defined, or any 
deformation gradient tensor which is announced by another physics interface. If you 
select User defined, enter values or expressions for the components of the deformation 
gradient tensor.

Deformation gradient, inverse
For Deformation gradient, inverse, enter an inelastic inverse deformation gradient 
contribution . From the External deformation gradient inverse list, you can choose 
User defined, or any inverse deformation gradient tensor which is announced by 
another physics interface. If you select User defined, enter values or expressions for the 
components of the inverse deformation gradient tensor.

Fext
1–
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Stretches
For Stretches, enter values or expressions for the three principal stretches. Entering 
data on this form is convenient for some simple geometries and strain states, but in 
general it is difficult to provide suitable a coordinate system for the principal 
orientations.

The External Strain node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

• Selecting a tensor announced by the same physics interface as where 
the External Strain node is added, may result in an error (‘Circular 
variable dependency detected’). This operation is usually 
meaningless.

• You can use a tensor from the same physics interface, but from a 
previous solution step. Select the User defined input type and enter 
expressions where the withsol operator is used to point to the intended 
solution.

• If you select Deformation gradient form the Strain input list, and the 
Additive strain decomposition check-box is selected in the parent 
material node during a geometrically nonlinear study step, the 
Green-Lagrange strain tensor is computed from

• If you select Deformation gradient form the Strain input list when 
engineering strains are expected, the engineering strain tensor is 
computed from

This is the case ff the study step is geometrically linear, or when the 
Force Linear Strains check-box is selected in the parent material node,

• If you select Strain tensor form the Strain input list, and a the parent 
material node operates with multiplicative strain decomposition, the 
external strain is converted into a deformation gradient using the 
infinitesimal strain assumption

εext
1
2
--- Fext

T Fext I–( )=

εext
1
2
--- Fext Fext

T
+( ) I–=

Fext I εext+=
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>External Strain

Solid Mechanics>Nonlinear Elastic Material>External Strain

Solid Mechanics>Hyperelastic Material>External Strain

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperelastic 

Material node selected in the model builder tree:
Attributes>External Strain

Safety

Use the Safety subnode to set up variables which can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic Material 
and Nonlinear Elastic Material. Four different variables describing the failure risk will 
be defined, as described in Table 4-2.

You can add any number of Safety nodes to a single material model. The contents of 
this feature will not affect the analysis results as such, so you can add Safety nodes after 
having performed an analysis and just do an Update Solution in order to access to the 
new variables for result evaluation.

For orthotropic and anisotropic failure criteria, the directions are given by the 
coordinate system selection in the parent node.

See also External Material and Working with External Materials in the 
COMSOL Multiphysics Reference Manual.

TABLE 4-2:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the ratio 
between the computed value and the 
given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is based 
on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0
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The Safety node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/)

F A I L U R E  M O D E L

Select a Failure Criterion. The available choices depend on the physics interface, as 
indicated in Table 4-3.

• When Failure Criterion is von Mises Isotropic, enter Tensile strength σts.

• When Failure Criterion is Tresca Isotropic, enter Tensile strength σts.

• When Failure Criterion is Rankine Isotropic, enter Tensile strength σts and Compressive 

strength σcs.

• When Failure Criterion is St. Venant Isotropic, enter Ultimate tensile strain εts.and 
Ultimate compressive strain εcs.

• When Failure Criterion is Mohr-Coulomb Isotropic, select Material parameters — 
Cohesion and angle of friction or Tensile and compressive strengths to determine the 

TABLE 4-3:  AVAILABLE FAILURE CRITERIA BY PHYSICS INTERFACE

CRITERION SOLID 
MECHANICS

SHELL, 
PLATE

MEMBRANE BEAM TRUSS

von Mises X X X X X

Tresca X X X X X

Rankine X X X X X

St. Venant X X X X X

Mohr-Coulomb X - - - -

Drucker-Prager X - - - -

Jenkins X X X - -

Waddoups X X X - -

Azzi-Tsai-Hill Plane stress X - - -

Norris Plane stress X - - -

Modified Tsai-Hill Plane stress X - - -

Tsai-Hill X X X - -

Hoffman X X - - -

Tsai-Wu 
Orthotropic

X X - - -

Tsai-Wu 
Anisotropic

X X - - -

User defined X X X - -
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type of input data.
When Cohesion and angle of friction is used, enter Cohesion c and Angle of internal 

friction φ. 
When Tensile and compressive strengths is used, enter Tensile strength σts and 
Compressive strength σcs. 
In either case, you can select Include elliptic cap to limit the allowed compressive 
stress. When selected, enter the Elliptic cap parameters pa and pb.

• When Failure Criterion is Drucker-Prager Isotropic, select Material parameters — 
Drucker-Prager parameters, Tensile and compressive strengths, or Mohr-Coulomb 

parameters to determine the type of input data. 
When Drucker-Prager parameters is used, enter Drucker-Prager alpha coefficient α and 
Drucker-Prager k coefficient k.
When Tensile and compressive strengths is used, enter Tensile strength σts and 
Compressive strength σcs. 
When Mohr-Coulomb parameters is used, enter Cohesion c and Angle of internal friction 

φ.
In either case, you can select Include elliptic cap to limit the allowed compressive 
stress. When selected, enter the Elliptic cap parameters pa and pb.

• When Failure Criterion is Jenkins Orthotropic, enter Tensile strengths σts, Compressive 

strengths σcs, and Shear strengths σss. All entries have three components, related to 
the principal axes of orthotropy.

• When Failure Criterion is Waddoups Orthotropic, enter Ultimate tensile strains εts, 
Ultimate compressive strains εcs, and Ultimate shear strains γss. All entries have three 
components, related to the principal axes of orthotropy.

• When Failure Criterion is Azzi-Tsai-Hill Orthotropic, enter Tensile strengths σts, 
Compressive strengths σcs, and Shear strengths σss. All entries have three 
components, related to the principal axes of orthotropy.

• When Failure Criterion is Norris Orthotropic, enter Tensile strengths σts, Compressive 

strengths σcs, and Shear strengths σss. All entries have three components, related to 
the principal axes of orthotropy.

• When Failure Criterion is Modified Tsai-Hill Orthotropic, enter Tensile strengths σts, 
Compressive strengths σcs, and Shear strengths σss. All entries have three 
components, related to the principal axes of orthotropy.

• When Failure Criterion is Tsai-Hill Orthotropic, enter Tensile strengths σts, Compressive 

strengths σcs, and Shear strengths σss. All entries have three components, related to 
the principal axes of orthotropy.
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• When Failure Criterion is Hoffman Orthotropic, enter Tensile strengths σts, Compressive 

strengths σcs, and Shear strengths σss. All entries have three components, related to 
the principal axes of orthotropy.

• When Failure Criterion is Tsai-Wu Orthotropic, enter Tensile strengths σts, Compressive 

strengths σcs, and Shear strengths σss. All entries have three components, related to 
the principal axes of orthotropy.

• When Failure Criterion is Tsai-Wu Anisotropic, enter Second rank tensor, Voigt notation 
f, and Fourth rank tensor F. Enter the components of the tensors with respect to the 
directions of the coordinate system in the parent node.

• When Failure Criterion is User defined, you enter two expressions describing the 
Failure criterion g(S), used in the failure index, and the Safety factor sf(S) 
respectively. As an example, if you would like to replicate the von Mises Isotropic 
criterion with tensile strength 350 MPa, you could enter g(S) as solid.mises/
350[MPa]-1 and sf(S) as 350[MPa]/(solid.mises+eps).

For all input fields, the default is to take the value From material. Change to User 

defined to enter other values or expressions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Safety

Solid Mechanics>Nonlinear Elastic Material>Safety

Membrane>Linear Elastic Material>Safety

Membrane>Nonlinear Elastic Material>Safety

Shell>Linear Elastic Material>Safety

Plate>Linear Elastic Material>Safety

Beam>Linear Elastic Material>Safety

Truss>Linear Elastic Material>Safety

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model builder tree:
Attributes>External Strain

For a detailed description of the various criteria, see Safety Factor 
Evaluation in the Structural Mechanics Theory chapter.
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Damping

Using the Damping subnode, you can add several types of damping to the material 
model. Damping can be used in Time Dependent, Eigenfrequency, and Frequency 
Domain studies; for other study types the settings in the Damping subnode are ignored. 

You can add the Damping subnode to the Linear Elastic Material, the Nonlinear Elastic 
Material, and the Hyperelastic Material.

The following types of damping are available:

• Rayleigh Damping

• Isotropic Loss Factor Damping

• Anisotropic Loss Factor Damping

• Orthotropic Loss Factor Damping

• Viscous Damping

The available damping models differs between various COMSOL products (see http:/
/www.comsol.com/products/specifications/).

The applicability of the different types of damping are summarized in Table 4-4.

Mechanical Damping and Losses

TABLE 4-4:  AVAILABLE DAMPING TYPES

DAMPING TYPE PHYSICS INTERFACES MATERIAL 
MODELS

STUDY TYPES

Rayleigh damping All All Time domain, 
frequency domain

Isotropic loss factor All All Frequency domain

Anisotropic loss factor All, except Beam 
and Truss

Linear Elastic Frequency domain

Orthotropic loss factor All, except Beam 
and Truss

Orthotropic 
Linear Elastic

Frequency domain

Viscous damping Solid Mechanics, 
Membrane, 
Multibody Dynamics

All Time domain, 
frequency domain
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D A M P I N G  S E T T I N G S

Select a Damping type, and enter settings depending on the type.

Rayleigh Damping
In this damping model, the damping parameter ξ is expressed in terms of the mass m 
and the stiffness k as

That is, Rayleigh damping is proportional to a linear combination of the stiffness and 
mass; there is no direct physical interpretation of the mass damping parameter αdM 
and the stiffness damping parameter βdM.

Select Input parameters — Alpha and beta — to enter the damping parameters explicitly, 
or Damping ratios to derive the damping parameters from the relative damping at two 
frequencies.

When Alpha and beta is selected, the Mass damping parameter αdM and the Stiffness 

damping parameter βdK.

When Damping ratios is selected, enter two pairs of frequencies, f1 and f2, and the 
corresponding damping ratios ζ1 and ζ2 at these frequencies. The Rayleigh damping 
parameters are computed as

Isotropic Loss Factor Damping
The isotropic loss factor damping is described by the single isotropic loss factor ηs, 
which acts on all entries in the elastic constitutive matrix. It can be used for isotropic, 
orthotropic, and anisotropic materials.

When Isotropic loss factor is selected, use the Isotropic structural loss factor list to select 
the way to enter ηs. The default is to take the value From material. For User defined, 
enter another value or expression.

Anisotropic Loss Factor Damping
An elastic material is in general described by a symmetric 6-by-6 elasticity matrix D. 
The loss can be isotropic or anisotropic, and is described by either the isotropic loss 

ξ αdMm βdKk+=

αdM 4πf1f2
ς1f2 ς2f1–

f2
2 f1

2
–

---------------------------=

βdK
ς2f2 ς1f1–

π f2
2 f1

2
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factor ηs or by a symmetric anisotropic 6-by-6 loss factor matrix ηD or ηDVo. The 
orientations are the same as in the parent node.

When Anisotropic loss factor is selected, use the Loss factor for elasticity matrix D list to 
select the way to enter ηD or ηDVo. The default is to take the values From material. For 
User defined enter the components of ηD or ηDVo in the upper-triangular part of a 
symmetric 6-by-6 matrix.

Orthotropic Loss Factor Damping
This option is only available when Orthotropic is selected as the Linear Elastic Material 
Solid model.

An orthotropic material is described by three Young’s modulus components (Ex, Ey, 
and Ez) and three shear modulus components (Gxy, Gyz, and Gxz). For an orthotropic 
material, loss factors can be specified in three different ways:

• Isotropic, as described under Isotropic Loss Factor Damping.

• Anisotropic, as described under Anisotropic Loss Factor Damping.

• Orthotropic, described by three plus three orthotropic loss factors corresponding to 
the elastic moduli components for the orthotropic material. The orientations are the 
same as in the parent Linear Elastic Material node.

When Orthotropic loss factor is selected, use the Loss factor for orthotropic Young’s 

modulus list to select the way to enter ηE. The default is to take the values From 

material. For User defined enter other values or expressions.

The values for the loss factors are ordered in two different ways, 
consistent with the selection of either Standard (XX, YY, ZZ, XY, YZ, XZ) 
or Voigt (XX, YY, ZZ, YZ, XZ, XY) notation in the corresponding Linear 
Elastic Model. If the values are taken from the material, these loss factors 
are found in the Anisotropic or Anisotropic, Voigt notation property group 
for the material. For an isotropic material, the anisotropic loss factor is 
always given as ηD using the standard notation.
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Use the Loss factor for orthotropic shear modulus list to select the way to enter ηG or 
ηGVo. The default is to take the values From material. For User defined enter other 
values or expressions.

Viscous Damping
With viscous damping, the material will get additional stresses proportional to the 
strain rate. Enter Bulk viscosity ηb and Shear viscosity ηv to model damping.caused by 
volume change and deformation respectively.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Damping

Solid Mechanics>Nonlinear Elastic Material>Damping

Solid Mechanics>Hyperelastic Material>Damping

Membrane>Linear Elastic Material>Damping

Membrane>Nonlinear Elastic Material>Damping

Membrane>Hyperelastic Material>Damping

The values for the shear modulus loss factors are ordered in two different 
ways, consistent with the selection of either Standard (XX, YY, ZZ, XY, YZ, 

XZ) or Voigt (XX, YY, ZZ, YZ, XZ, XY) notation in the corresponding 
Linear Elastic Model. If the values are taken from the material, these loss 
factors are found in the Orthotropic or Orthotropic, Voigt notation property 
group for the material.

• The time-stepping algorithms also add numerical damping, which is 
independent of any explicit damping added. For the generalized alpha 
time-stepping algorithm you can control the amount of numerical 
damping.

• In a study using modal superposition, you can add damping to the 
individual eigenmodes.

For an example of Damping, see Heat Generation in a Vibrating 
Structure: Application Library path Structural_Mechanics_Module/

Thermal-Structure_Interaction/vibrating_beam
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Truss>Linear Elastic Material>Damping

Multibody Dynamics>Linear Elastic Material>Damping

Ribbon
Physics tab with Linear Elastic Material, Hyperelastic Material, or Nonlinear Elastic 

Material node selected in the model tree:
Attributes>Damping

Mechanical Damping

The Mechanical Damping subnode allows you to model mechanical losses in the 
Piezoelectric Material, either via using the loss factor material data for the stiffness, or 
in form of the Rayleigh proportional damping.

D A M P I N G  S E T T I N G S

Select a Damping type — Loss factor for cE (the default), Isotropic loss factor, or Rayleigh 

damping. 

Loss Factor for cE
By default the Loss factor for elasticity matrix cE ηcE uses values From material. For User 

defined enter other values or expressions in the matrix.

Isotropic Loss Factor
By default the Isotropic structural loss factor ηs uses values From material. For User 

defined enter another value or expression.

Rayleigh Damping
Enter the Mass damping parameter αdM and the Stiffness damping parameter βdK.

In this damping model, the damping parameter ξ is expressed in terms of the mass m 
and the stiffness k as

That is, Rayleigh damping is proportional to a linear combination of the stiffness and 
mass; there is no direct physical interpretation of the mass damping parameter αdM 
and the stiffness damping parameter βdM. Note that the beta-damping is applied only 

ξ αdMm βdKk+=
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to the mechanical part of the problem. To include the Rayleigh damping effect for the 
piezoelectric coupling terms, add a Coupling Loss subnode.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Mechanical Damping

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:
Attributes>Mechanical Damping

Coupling Loss

The Coupling Loss subnode allows you to model losses in the piezoelectric coupling in 
a Piezoelectric Material, either by using the loss factor material data for the coupling 
matrix or as Rayleigh proportional damping. 

C O U P L I N G  L O S S  S E T T I N G S

Select a Coupling loss — Loss factor for e (the default) or Rayleigh damping.

• For Loss factor for e select a Loss factor for coupling matrix e from the list. Select User 

defined to enter values or expressions for ηe in a 3-by-6 matrix.

• For Rayleigh damping enter a Stiffness damping parameter βdC.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Coupling Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:
Attributes>Coupling Loss

See also Piezoelectric Losses. 

See also Piezoelectric Losses. 
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Dielectric Loss

The Dielectric Loss subnode allows you to model electrical losses in the Piezoelectric 
Material, The losses can be prescribed either by using a loss factor for the electrical 
permittivity, or in the form of dielectric dispersion.

D I E L E C T R I C  L O S S  S E T T I N G S

From the Dielectric loss list, select Loss factor for εS (the default) or Dispersion.

For Loss factor for εS select a Loss factor for electrical permittivity εS. Select From 

material (the default) to use the value from the material or select User defined to enter 
values or expressions for the loss factor in the associated fields. Select Symmetric to 
enter the components of ηeS in the upper-triangular part of a symmetric 3-by-3 matrix, 
select Isotropic to enter a single scalar loss factor, or select Diagonal. The default values 
are 0. 

For Dispersion enter the Relaxation time τd, and the Relative permittivity increment 
 in the associated fields. For the latter, you can select Isotropic, Diagonal, or 

Symmetric matrix input options.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Dielectric Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:
Attributes>Dielectric Loss

Conduction Loss (Time-Harmonic)

The Conduction Loss (Time-Harmonic) subnode allows you to model possible conductive 
losses in a Piezoelectric Material. The effect is only active in a Eigenfrequency or 
Frequency response study.

ΔεrS

See also Piezoelectric Losses. 
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C O N D U C T I O N  C U R R E N T

By default, the Electrical conductivity σe for the media is defined From material. You can 
also select User defined or Linearized resistivity.

• For User defined select Isotropic, Diagonal, Symmetric, or Anisotropic depending on 
the characteristics of the electrical conductivity, and then enter values or expressions 
for the Electrical conductivity σe in the field or matrix. 

• For Linearized resistivity the default Reference temperature T0, and Resistivity 

temperature coefficient αr, and Reference resistivity ρ0 are taken From material, which 
means that the values are taken from the domain (or boundary) material. T is the 
current temperature, which can be a value that is specified as a model input or the 
temperature from a heat transfer interface. The definition of the temperature field 
appears in the Model Inputs section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Conduction Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:
Attributes>Conduction Loss

External Stress-Strain Relation

The External Stress-Strain Relation is a special type of material model where the 
computation of second Piola-Kirchoff stress is delegated to external code which has 
been compiled into a shared library. External libraries must first be imported into an 
External Material feature under Global Definitions>Materials. 

The External Stress-Strain Relation node is only available with some COMSOL 
products (see http://www.comsol.com/products/specifications/).

See also Piezoelectric Losses. 

See also External Material and Working with External Materials in the 
COMSOL Multiphysics Reference Manual.
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M A T E R I A L

Select an External material from the list of compatible External Materials added under 
Global Definitions>Materials. For a material to be compatible with this External Material 
material model node, its Interface type must be set to a type whose required input 
quantities are all defined by this External Material. Allowed required inputs include 
Green-Lagrange strains, the deformation gradient, as well as all standard model inputs.

G E O M E T R I C  N O N L I N E A R I T Y

The use of an External Stress-Strain Relation will always force the study to be 
geometrically nonlinear. The default behavior is then to use a large strain formulation 
in all domains. There are, however, some cases when the use of a small strain 
formulation for a certain domain is needed. This will for example be the case if the 
material model you have implemented is formulated using engineering strains.

In such cases, select the Force linear strains check box. When selected, a small strain 
formulation is always used, independently of the setting in the study step.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>External Stress-Strain Relation

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>External Stress-Strain Relation

Rigid Domain

Add the Rigid Domain node and select one or more geometrical objects to make them 
a rigid body. Rigid Domain is a material model, with only one material property: the 
mass density. It can be used for

• Domains in the Solid Mechanics interface (2D and 3D).

• Boundaries in the Shell interface.

• Boundaries (2D) and edges (3D) in the Beam interface.

By default, an Initial Values node is added (see Initial Values (Rigid Domain)).

• Modeling Geometric Nonlinearity

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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You can add functionality to the rigid domain through the following subnodes:

• Fixed Constraint (Rigid Domain) to fully constrain the rigid domain.

• Prescribed Displacement/Rotation to prescribe the displacement of individual 
degrees of freedom.

• Applied Force (Rigid Domain) to apply a force in given point.

• Applied Moment (Rigid Domain) to apply a moment.

• Mass and Moment of Inertia (Rigid Domain) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Domain) to add a translational or rotational spring or 
damper in a given point.

The Rigid Domain node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

D E N S I T Y

The default Density ρ is taken From material. In this case the material assignment for 
the domain supplies the mass density. For User defined enter another value or 
expression. 

C E N T E R  O F  R O T A T I O N

Select a Center of Rotation — Center of mass, Centroid of selected entities, or User 

defined. The center of rotation affects how displacements are interpreted, and is also 
used as the default in various subnodes.

• For Center of mass, the center of rotation is taken as the center of mass of the rigid 
domain.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
center of rotation is located at the centroid of the selected entities, which do not 

The density is needed for dynamic analysis. It is also used when computing 
mass forces for gravitational or rotating frame loads, and when computing 
mass properties (Computing Mass Properties).

If the density is set to zero, the center of mass of the rigid domain will be 
the same as if a uniform non-zero density had been given.
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need to be related to rigid domain itself. As a special case, you can select a single 
point, and thus use that point as center of rotation.

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

  

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Rigid Domain

Shell>Material Models>Rigid Domain

Beam>Material Models>Rigid Domain

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Material Models>Rigid Domain

Physics tab with Shell selected:
Boundaries>Material Models>Rigid Domain

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

XP XP,input Xoffset+=

Rigid Domain Material Model

Modeling Rigid Bodies: Application Library path 
Structural_Mechanics_Module/Connectors_and_Mechanisms/rigid_domain
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Physics tab with Beam selected:
Edges>Material Models>Rigid Domain (3D)
Boundaries>Material Models>Rigid Domain (2D)

Initial Values (Rigid Domain)

The Initial Values node is automatically added as a default node to a Rigid Domain 
node. You can enter initial values for the rigid body displacement, rotation and 
velocities, which can serve as an initial condition for a transient simulation or as an 
initial guess for a nonlinear analysis. The initial values that you specify are interpreted 
in the selected coordinate system.

C E N T E R  O F  R O T A T I O N

Select an option from the list: From parent, Centroid of selected entities, or User defined. 
The given initial values are interpreted at the center of rotation.

• For From parent, the center of rotation is taken as the one defined in the parent Rigid 

Domain node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The initial 
conditions act at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
prescribe the initial conditions at that point

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

I N I T I A L  V A L U E S :  TR A N S L A T I O N A L

• Displacement at center of rotation u.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

XP XP,input Xoffset+=
R  4 :  S O L I D  M E C H A N I C S



• Velocity at center of rotation ∂u/∂t.

I N I T I A L  V A L U E S :  R O T A T I O N A L

• For 3D components only: Axis of rotation Ω

• Angle of rotation φ.

• Angular velocity ω (3D components) and ∂φ/∂t (2D components)

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when the Rigid Domain node is created. It cannot 
be added or removed manually.

Fixed Constraint (Rigid Domain)

The Fixed Constraint node adds a condition that makes the entire rigid domain fixed 
(fully constrained). The displacements and rotations are zero in all directions. There 
are no settings for this node. See Rigid Domain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Fixed Constraint

Shell>Rigid Domain>Fixed Constraint

Beam>Rigid Domain>Fixed Constraint

Multibody Dynamics>Rigid Domain>Fixed Constraint

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Fixed Constraint

When this node has been added once, it is no longer available for selection in the 
context menu or ribbon.

The Fixed Constraint and Prescribed Displacement/Rotation. subnodes 
cannot be combined for a Rigid Domain.
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Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation subnode can be used to selectively constrain or 
prescribe degrees the of freedom of a Rigid Domain:

• One or several displacement components can be constrained or prescribed at an 
arbitrary point.

• One or several rotation components can be constrained.

• The rotation around a given axis can be prescribed.

The prescribed values that you specify are interpreted in the selected coordinate 
system.

C E N T E R  O F  R O T A T I O N

The selection of the center of rotation only affects the prescribed displacements, not 
the rotations.

Select an option from the list: From parent, Centroid of selected entities, or User defined. 

• For From parent, the center of rotation is taken as the one defined in the parent Rigid 

Domain node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension.The 
constraints act at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
constrain that point

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The Fixed Constraint and Prescribed Displacement/Rotation. subnodes 
cannot be combined for a Rigid Domain.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.
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The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

Select one or several of the Prescribed in x direction, Prescribed in y direction, and 
Prescribed in z direction (3D components only) check boxes. Then enter a value or 
expression for u0x, u0y, and u0z (3D components). 

P R E S C R I B E D  R O T A T I O N

Select an option from the By list: Free (the default), Constrained rotation, or Prescribed 

rotation.

XP XP,input Xoffset+=

For 2D components, and if Prescribed rotation is selected, enter a value or 
expression for the Angle of rotation φ0.

For 3D components:

• For Constrained rotation select one or several of the Constrain rotation 

around x-axis, Constrain rotation around y-axis, and Constrain rotation 

around z-axis check boxes.

• For Prescribed rotation enter values or expressions in the table for the 
Axis of rotation Ω . Then enter a value or expression for the Angle of 

rotation φ0.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by the prescribed 
motion. The default is to not compute the reaction force. When selected, the 
prescribed motion is implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing the prescribed motion. The default is that bidirectional constraints are used. 
This setting is useful in a situation where a bidirectional constraint would give an 
unwanted coupling in the equations. This would happen if the prescribed value of the 
motion is a variable solved for in other equations. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Prescribed Displacement/Rotation

Shell>Rigid Domain>Prescribed Displacement/Rotation

Beam>Rigid Domain>Prescribed Displacement/Rotation

Multibody Dynamics>Rigid Domain>Prescribed Displacement/Rotation

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Prescribed Displacement/Rotation

When this node has been added once, it is no longer available for selection in the 
context menu or ribbon.

Applied Force (Rigid Domain)

The Applied Force subnode is t is used to apply forces on a rigid domain. The force can 
act at an arbitrary position in space. A force implicitly contributes also to the moment 
if it is not applied at the center of mass of a rigid domain. The force that you specify is 
interpreted in the selected coordinate system.

L O C A T I O N

Select an option from the list: Center of rotation, Centroid of selected entities, or User 

defined. This is the location where the force is applied.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Domain node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The force 
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acts at the centroid of the selected entities, which do not need to be related to rigid 
domain itself. As a special case, you can select a single point, and thus place the force 
at that point

• For User defined, enter the Location (global coordinates), Xp, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

A P P L I E D  F O R C E

Enter values or expressions for the components of the Applied force F.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Applied Force

Shell>Rigid Domain>Applied Force

Beam>Rigid Domain>Applied Force

Multibody Dynamics>Rigid Domain>Applied Force

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Applied Force

Once chosen, a default Location: Boundary, Location: Edge, or 
Location: Point subnode is automatically added.

XP XP,input Xoffset+=

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Location Nodes

L O C A T I O N :  B O U N D A R Y

The Location: Boundary subnode is used to select a set of boundaries whose centroid 
represents the point of application of a force on a rigid domain.

L O C A T I O N :  E D G E

The Location: Edge subnode is used to select a set of edges whose centroid represents 
the point of application of a force on a rigid domain.

L O C A T I O N :  PO I N T

The Location: Point subnode is used to select a set of points whose centroid represents 
the point of application of a force on a rigid domain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent Applied Force node. They cannot be added or removed manually.

Applied Moment (Rigid Domain)

Use the Applied Moment subnode to apply moments on a rigid domain. The moment 
that you specify is interpreted in the selected coordinate system.

A P P L I E D  M O M E N T

Enter values or expressions for the components of the Applied moment.

• For 3D components, this is the x, y, and z components for M.

• For 2D components, this is for the applied moment around the z axis Mz.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Applied Moment

Shell>Rigid Domain>Applied Moment

Beam>Rigid Domain>Applied Moment

Multibody Dynamics>Rigid Domain>Applied Moment

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Applied Moment

Mass and Moment of Inertia (Rigid Domain)

Use the Mass and Moment of Inertia subnode to add an effect of associated abstract rigid 
domain, which is physically not modeled and whose inertial properties are known. 
These inertial properties can be specified at an arbitrary point in space which is 
assumed to be the center of gravity of this extra mass. The moment of inertia tensor 
that you specify is interpreted in the selected coordinate system.

C E N T E R  O F  M A S S

Here you specify the location of the center of mass for the contribution given in this 
node. Select an option from the list: Center of rotation, Centroid of selected entities, or 
User defined.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Domain node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension.The center 
of mass is located at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
position the mass at that point

• For User defined, enter the Global coordinates of center of mass, Xm, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

Once chosen, a default Center of Mass: Boundary, Center of Mass: Edge, 
or Center of Mass: Point subnode is automatically added.
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The center of mass used is the sum of the vector obtained from any of the input 
methods and the offset vector.

M A S S  A N D  M O M E N T  O F  I N E R T I A

Enter values or expressions for the Mass m. Then for the Moment of inertia the axis 
directions of the moment of inertia tensor are given by the selected coordinate system.

• For 3D components, select Isotropic (the default), Diagonal, or Symmetric and enter 
one or more components for the tensor I.

• For 2D components, enter a value or expression for Iz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Mass and Moment of Inertia

Shell>Rigid Domain>Mass and Moment of Inertia

Beam>Rigid Domain>Mass and Moment of Inertia

Multibody Dynamics>Rigid Domain>Mass and Moment of Inertia

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Mass and Moment of Inertia

Center of Mass Nodes

C E N T E R  O F  M A S S :  B O U N D A R Y

Use the Center of Mass: Boundary subnode to select a set of boundaries whose centroid 
represents the center of mass of a Mass and Moment of Inertia (Rigid Domain).

C E N T E R  O F  M A S S :  E D G E

The Center of Mass: Edge subnode to select a set of edges whose centroid represents the 
center of mass of a Mass and Moment of Inertia (Rigid Domain).

C E N T E R  O F  M A S S :  P O I N T

The Center of Mass: Point subnode to select a set of points whose centroid represents 
the center of mass of a Mass and Moment of Inertia (Rigid Domain).

Xm Xm,input Xoffset+=
R  4 :  S O L I D  M E C H A N I C S



L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent Mass and Moment of Inertia (Rigid Domain) node. They cannot be added 
or removed manually.

Spring Foundation (Rigid Domain)

The Spring Foundation subnode is used to specify a spring or damper connecting the 
rigid domain to a fixed ground. The spring can act at an arbitrary position in space. A 
translational spring implicitly contributes also to the moment if it is not applied at the 
center of mass of a rigid domain. The data that you specify is interpreted in the selected 
coordinate system.

L O C A T I O N

Select an option from the list: Center of rotation, Centroid of selected entities, or User 

defined. This is the location where the spring will be attached.

• For Center of rotation, the location of the spring is taken as the center of rotation as 
defined in the parent Rigid Domain node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
spring is attached at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
attach the spring at that point.

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

S P R I N G

Select a Spring type — Spring constant or Force as function of extension.

Once chosen, a default Location: Boundary, Location: Edge, or 
Location: Point subnode is automatically added.

XP XP,input Xoffset+=
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When Spring constant is selected, the translational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Anisotropic. For Isotropic the same spring constant is 
used in all the diagonal elements of the spring matrix.

When Force as function of extension is selected, enter the force vector Fs. It must be a 
a function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example solid.rd1.uspring1_spf1.

R O T A T I O N A L  S P R I N G

Select a Spring type — Spring constant or Moment as function of rotation.

When Spring constant is selected, the rotational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Anisotropic. For Isotropic the same spring constant is 
used in all the diagonal elements of the spring matrix.

When Moment as function of rotation is selected, enter the moment vector Ms. It must 
be a a function of the built-in variables describing the spring extension. The default 
value indicates the correct variable name, for example solid.rd1.thspring1_spf1.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components. 

• For Scalar (Same for all components) enter a single Loss factor for spring ηu,s, which 
is used to multiply all values of the spring matrix or spring force vector. 

• For Individual components select Isotropic, Diagonal, Symmetric, or Anisotropic, then 
enter values or expressions in the table for the Loss factor for spring ηu,k or ηf based 
on space dimension. The loss factors act on the corresponding components of the 
spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

All settings in the Rotational Loss Factor Damping section are analogous to the 
corresponding settings in the Loss Factor section. In 2D, only one scalar loss factor, 
corresponding to rotation around the out-of-plane axis, is given.

In 2D the Spring constant is only a single scalar, representing the stiffness 
for rotation around the out-of-plane direction. Similarly, the Moment as 

function of rotation is a single scalar.
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V I S C O U S  D A M P I N G

Select Isotropic, Diagonal, Symmetric, or Anisotropic, then enter values or expressions for 
the damping constants du in the table. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

V I S C O U S  R O T A T I O N A L  D A M P I N G

All settings in the Viscous Rotational Damping section are analogous to the 
corresponding settings in the Viscous Damping section. In 2D, only one scalar viscous 
damping, corresponding to rotation around the out-of-plane axis, is given.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Domain>Spring Foundation

Multibody Dynamics>Rigid Domain>Spring Foundation

Shell>Rigid Domain>Spring Foundation

Beam>Rigid Domain>Spring Foundation

Ribbon
Physics tab with Rigid Domain node selected in the model tree:
Attributes>Spring Foundation

Free

The Free node is the default boundary condition. It means that there are no constraints 
and no loads acting on the boundary. When the physics interfaces is added, a default 
Free node is added. If you look at the selections for this node, it will show all 
boundaries which do not have any boundary conditions applied. 

In each physics interface, the Free node applies to a geometric entity which is one level 
below the one on which the physics is active:

• For the Solid Mechanics and Multibody Dynamics interfaces, the Free node applies 
to boundaries.

• For the Shell and Membrane interfaces, the Free node applies to edges.

• For the Beam and Truss interfaces, the Free node applies to points.

You can manually add Free nodes to override other boundary conditions. This is 
however seldom needed.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Free

Shell>Free

Membrane>Free

Beam>Free

Truss>Free

Multibody Dynamics>Free

Ribbon
Physics tab with a physics interface selected:
Boundaries>Solid Mechanics>Free

Boundaries>Multibody Dynamics>Free

Edges>Shell>Free

Edges>Membrane>Free

Points>Beam>Free

Points>Truss>Free

Prescribed Displacement

The Prescribed Displacement node adds a condition where the displacements are 
prescribed in one or more directions to the geometric entity (domain, boundary, edge, 
or point). 

If a displacement is prescribed in one direction, this leaves the solid free to deform in 
the other directions.

You can also define more general displacements as a linear combination of the 
displacements in each direction.

If a zero displacement is applied in all directions, this is the same as a Fixed 
Constraint. 

For details, see Prescribed Displacements, Velocities, and Accelerations.
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P R E S C R I B E D  D I S P L A C E M E N T

Define the prescribed displacements using a Standard notation (the default) or a General 

notation.

Standard Notation
To define the displacements individually, click the Standard notation button.

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
components, Prescribed in z direction check boxes. Then enter a value or expression for 
u0, v0, and for 3D components, w0. For 2D axisymmetric components, select one or 
both of the Prescribed in r direction and Prescribed in z direction check boxes. Then 
enter a value or expression for u0 and w0.

General Notation
Click the General notation to specify the displacements using a general notation that 
includes any linear combination of displacement components. For example, for 2D 
components, use the relationship

For H matrix H select Isotropic, Diagonal, Symmetric, or Anisotropic and then enter 
values as needed in the field or matrix. Enter values or expressions for the R vector R.

For example, to achieve the condition u = v, use the settings

which force the domain to move only diagonally in the xy-plane.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

H u
v
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H 1 1–

0 0
,= R 0
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In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Displacement

Solid Mechanics>Prescribed Displacement (Boundary)
Solid Mechanics>Edges>Prescribed Displacement

Solid Mechanics>Points>Prescribed Displacement

Membrane>Face Constraints>Prescribed Displacement

Membrane>Prescribed Displacement (Edge)
Membrane>Points>Prescribed Displacement

Truss>Line Constraints>Prescribed Displacement

Truss>Prescribed Displacement (Point)
Multibody Dynamics>Domain Constraints>Prescribed Displacement

Multibody Dynamics>Prescribed Displacement (Boundary)
Multibody Dynamics>Edges>Prescribed Displacement

Multibody Dynamics>Points>Prescribed Displacement

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Domain Constraints>Prescribed Displacement

Boundaries>Solid Mechanics>Prescribed Displacement

When Individual dependent variables is selected in the Apply reaction terms 

on drop-down list, the constraint forces are applied directly on the degrees 
of freedom, which are the displacements along the global coordinate axes. 
If you use this setting together with a local coordinate system, the results 
will be inconsistent since the constraint forces will not match the 
constraint orientation.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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Edges>Solid Mechanics>Prescribed Displacement

Points>Solid Mechanics>Prescribed Displacement

Physics tab with Membrane selected:
Boundaries>Face Constraints>Prescribed Displacement

Edges>Membrane>Prescribed Displacement

Points>Membrane>Prescribed Displacement

Physics tab with Truss selected:
Edges>Line Constraints>Prescribed Displacement

Points>Truss>Prescribed Displacement

Physics tab with Multibody Dynamics selected:
Domains>Domain Constraints>Prescribed Displacement

Boundaries>Multibody Dynamics>Prescribed Displacement

Edges>Multibody Dynamics>Prescribed Displacement

Points>Multibody Dynamics>Prescribed Displacement

Prescribed Velocity

The Prescribed Velocity node adds a boundary or domain condition where the velocity 
is prescribed in one or more directions. The prescribed velocity condition is applicable 
for Time Dependent and Frequency Domain studies. It is possible to prescribe a 
velocity in one direction, leaving the solid free in the other directions. The Prescribed 

Velocity node is a constraint and overrides any other constraint on the same selection.

The Prescribed Velocity node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the given velocity components will be interpreted.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used for a prescribed velocity.
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P R E S C R I B E D  VE L O C I T Y

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
components, Prescribed in z direction check boxes. Then enter a value or expression for 
vx, vy, and for 3D components, vz. For 2D axisymmetric components, select one or 
both of the Prescribed in r direction and Prescribed in z direction check boxes. Then 
enter a value or expression for vr and vz.

In a stationary study, this node can either be ignored or treated as a constraint (similar 
to a Prescribed Displacement node with zero displacement). To control this, select an 
option from the Displacement in stationary study list — Free or Constrained.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Velocity

Solid Mechanics>More Constraints>Prescribed Velocity (Boundary)
Membrane>Face Constraints>Prescribed Velocity

Membrane>More Constraints>Prescribed Velocity (Edge)
Truss>Line Constraints>Prescribed Velocity

Truss>More Constraints>Prescribed Velocity (Point)

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Domain Constraints>Prescribed Velocity

Boundaries>More Constraints>Prescribed Velocity

Physics tab with Membrane selected:
Boundaries>Face Constraints>Prescribed Velocity

Edges>More Constraints>Prescribed Velocity

Physics tab with Truss selected:
Edges>Line Constraints>Prescribed Velocity

Points>More Constraints>Prescribed Velocity

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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Prescribed Acceleration

The Prescribed Acceleration node adds a boundary or domain condition, where the 
acceleration is prescribed in one or more directions. The prescribed acceleration 
condition is applicable for Time Dependent and Frequency Domain studies. It is 
possible to prescribe a acceleration in one direction, leaving the solid free in the other 
directions. The Prescribed Acceleration node is a constraint and overrides any other 
constraint on the same selection.

The Prescribed Acceleration node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the given acceleration components will be 
interpreted.

P R E S C R I B E D  A C C E L E R A T I O N

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
components, Prescribed in z direction check boxes. Then enter a value or expression for 
ax, ay, and for 3D components, az. For 2D axisymmetric components, select one or 
both of the Prescribed in r direction and Prescribed in z direction check boxes. Then 
enter a value or expression for ar and az.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used for a prescribed acceleration. 
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In a stationary study, this node can either be ignored or treated as a constraint (similar 
to a Prescribed Displacement node with zero displacement). To control this, select an 
option from the Displacement in stationary study list — Free or Constrained.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Acceleration

Solid Mechanics>More Constraints>Prescribed Acceleration (Boundary)
Membrane>Face Constraints>Prescribed Acceleration

Membrane>More Constraints>Prescribed Acceleration (Edge)
Truss>Line Constraints>Prescribed Acceleration

Truss>More Constraints>Prescribed Acceleration (Point)

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Domain Constraints>Prescribed Acceleration

Boundaries>More Constraints>Prescribed Acceleration

Physics tab with Membrane selected:
Boundaries>Face Constraints>Prescribed Acceleration

Edges>More Constraints>Prescribed Acceleration

Physics tab with Truss selected:
Edges>Line Constraints>Prescribed Acceleration

Points>More Constraints>Prescribed Velocity

Fixed Constraint

The Fixed Constraint node adds a condition that makes the geometric entity fixed (fully 
constrained); that is, the displacements are zero in all directions. If there are rotational 
degrees of freedom, they will also be zero.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Fixed Constraint

Solid Mechanics>Fixed Constraint (Boundary)
Solid Mechanics>Edges>Fixed Constraint

Solid Mechanics>Points>Fixed Constraint

Shell>Face Constraints>Fixed Constraint

Shell>Fixed Constraint (Edge)
Shell>Points>Fixed Constraint

Plate>Face Constraints>Fixed Constraint

Plate>Fixed Constraint (Boundary)
Plate>Points>Fixed Constraint

Membrane>Face Constraints>Fixed Constraint

Membrane>Fixed Constraint (Edge)
Membrane>Points>Fixed Constraint

Beam>Line Constraints>Fixed Constraint

Beam>Fixed Constraint (Point)
Multibody Dynamics>Domain Constraints>Fixed Constraint

Multibody Dynamics>Fixed Constraint (Boundary)

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter..

Bracket—Frequency-Response Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_frequency
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Multibody Dynamics>Edges>Fixed Constraint

Multibody Dynamics>Points>Fixed Constraint

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Domain Constraints>Fixed Constraint

Boundaries>Solid Mechanics>Fixed Constraint

Edges>Solid Mechanics>Fixed Constraint

Points>Solid Mechanics>Fixed Constraint

Physics tab with Shell selected:
Boundaries>Face Constraints>Fixed Constraint

Edges>Shell>Fixed Constraint

Points>Shell>Fixed Constraint

Physics tab with Plate selected:
Domains>Face Constraints>Fixed Constraint

Boundaries>Plate>Fixed Constraint

Points>Plate>Fixed Constraint

Physics tab with Membrane selected:
Boundaries>Face Constraints>Fixed Constraint

Edges>Membrane>Fixed Constraint

Points>Membrane>Fixed Constraint

Physics tab with Beam selected:
Edges>Line Constraints>Fixed Constraint

Points>Truss>Fixed Constraint

Physics tab with Multibody Dynamics selected:
Domains>Domain Constraints>Fixed Constraint

Boundaries>Multibody Dynamics>Fixed Constraint

Edges>Multibody Dynamics>Fixed Constraint

Points>Multibody Dynamics>Fixed Constraint

Thermal Expansion (for constraints)

Add the Thermal Expansion subnode to a constraint (Fixed Constraint or Prescribed 

Displacement) to prescribe a deformation of the constrained boundary caused by 
changes in temperature of the surroundings. This makes it possible to reduce the 
stresses caused by such boundary conditions.
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The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

The Thermal Expansion subnode is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from domain to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the domain 
itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries, edges, or points 
where the constraint is active.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 
non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 

εth α T Tref–( )=
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different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Fixed Constraint>Thermal Expansion

Solid Mechanics>Prescribed Displacement>Thermal Expansion

Membrane>Fixed Constraint>Thermal Expansion

Membrane>Prescribed Displacement>Thermal Expansion

Multibody Dynamics>Fixed Constraint>Thermal Expansion

Multibody Dynamics>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Fixed Constraint or Prescribed Displacement node selected in the model 
tree:
Attributes>Thermal Expansion 

Roller

The Roller node adds a roller constraint as the boundary condition; that is, the 
displacement is zero in the direction perpendicular (normal) to the boundary, but the 
boundary is free to move in the tangential direction. A Roller condition is equivalent 
to a Symmetry condition.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Roller

Multibody Dynamics>Roller

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>Solid Mechanics>Roller

Physics tab with Multibody Dynamics selected:
Boundaries>Multibody Dynamics>Roller

Symmetry

The Symmetry node adds a boundary condition that represents symmetry in the 
geometry and in the loads. A symmetry condition is free in the plane and fixed in the 
out-of-plane direction.

When applied to an edge (in the Membrane interface) the symmetry plane is formed 
by the normal to the boundary and the edge tangent.

The Symmetry node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More Constraints>Symmetry

Membrane>More Constraints>Symmetry

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>More Constraints>Symmetry

Physics tab with Membrane selected:
Edges>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds a boundary condition for an antisymmetry boundary. An 
antisymmetry condition is fixed in the plane and free in the out-of-plane direction.

When applied to an edge (in the Membrane interface) the antisymmetry plane is 
formed by the normal to the boundary and the edge tangent.

The Antisymmetry node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

In a geometrically nonlinear analysis, large rotations must not occur at the 
antisymmetry plane because this causes artificial straining.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More Constraints>Antisymmetry

Membrane>More Constraints>Antisymmetry

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>More Constraints>Antisymmetry

Physics tab with Membrane selected:
Edges>More Constraints>Antisymmetry

Rigid Motion Suppression

The Rigid Motion Suppression node adds a minimum number of constraints required to 
suppress any rigid body modes. The constraints are selected so that there will be no 
reaction forces if the external loads are self-equilibrating.

The constraint will, depending on physics interface and geometrical dimension, be 
applied to one, two, or three points as needed. These points are automatically picked 
from the selected geometrical objects.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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If you need to constrain several objects which are not physically connected, you must 
add as many Rigid Motion Suppression nodes as there are disconnected objects.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Rigid Body Suppression

Shell>Face Constraints>Rigid Body Suppression

Plate>Face Constraints>Rigid Body Suppression

Membrane>Face Constraints>Rigid Body Suppression

Beam>Line Constraints>Rigid Body Suppression

Multibody Dynamics>Domain Constraints>Rigid Body Suppression

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Domains>Domain Constraints>Rigid Body Suppression

Physics tab with Shell or Membrane selected:
Boundaries>Face Constraints>Rigid Body Suppression

Physics tab with Plate selected:
Domains>Face Constraints>Rigid Body Suppression

Physics tab with Beam or Truss selected:
Edges>Line Constraints>Fixed Constraint

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Rigid body motion in the Structural Mechanics Modeling chapter.

• Rigid Motion Suppression Boundary Condition in the Structural 
Mechanics Theory chapter.

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Body Load

Add a Body Load to domains for modeling volumetric loads.

F O R C E

Select a Load type — Force per unit volume (the default), Total force, or for 2D 
components, Force per unit area.

Then enter values or expressions for the components in the matrix based on the 
selection and the space dimension.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can 
provide this type of load, it is also possible to choose a predefined load 
from this list.

• For Total force COMSOL Multiphysics divides the total force by the 
volume of the domains where the load is active. For 2D components, 
and if Force per unit area is selected, the body load as force per unit 
volume is then the value of F divided by the thickness.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit volume FV N/m3 domains 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)

Force per unit area FA N/m2 domains 2D (x, y)

Total force Ftot N domains 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Body Load

Membrane>Face and Volume Loads>Body Load

Multibody Dynamics>Volume Forces>Body Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Domains>Volume Forces>Body Load

Physics tab with Membrane selected:
Boundaries>Face and Volume Loads>Body Load

Gravity

When you add a Gravity node, gravity forces are applied to all selected features in the 
physics interface with a density, mass, or mass distribution. You select objects having 
the highest geometrical dimension of the interface, and all objects with a lower 
dimensionality which belong to the selection are automatically included.

The gravity acts in a fixed spatial direction. The load intensity is g = ρgeg where g as a 
default is the acceleration of gravity (a predefined physical constant). The action of 
gravity can also be seen as a linearly accelerated frame of reference.

The Gravity node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. It can be used when 
prescribing the direction of the gravitational forces.

G R A V I T Y

Enter the components of the Gravity g. The default value is g_const which is the 
physical constant having the value 9.8066 m/s2.
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For 2D components, the default is that the gravity acts in the negative y direction. For 
3D and 2D axisymmetric components, the default is that the gravity acts in the 
negative z direction. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Gravity

Shell>Face and Volume Loads>Gravity

Plate>Face and Volume Loads>Gravity

Membrane>Face and Volume Loads>Gravity

Beam>Line and Volume Loads>Gravity

Truss>Line and Volume Loads>Gravity

Multibody Dynamics>Volume Forces>Gravity

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Domains>Volume Forces>Gravity

Physics tab with Shell or Membrane selected:
Boundaries>Face and Volume Loads>Gravity

Physics tab with Plate selected:
Domains>Face and Volume Loads>Gravity

Physics tab with Beam or Truss selected:
Edges>Line and Volume Loads>Gravity

Rotating Frame and Gravity

Only features which have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Gravity.

You can assign this load to a load group. See Load Cases in the Structural 
Mechanics Modeling chapter.
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Rotating Frame

Centrifugal, Coriolis, and Euler forces are “fictitious” volume forces that need to be 
introduced in a rotating frame of reference, since it is not an inertial system. Use a 
Rotating Frame node to add the effect of these forces. The forces are generated by all 
selected features in the physics interface having a density, mass, or mass distribution. 
You select objects having the highest geometrical dimension of the interface, and all 
objects with a lower dimensionality which belong to the selection are automatically 
included.

The Rotating Frame node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

R O T A T I N G  F R A M E

Select an Axis of rotation — x-axis, y-axis, z-axis, or User defined. For User defined enter 
a Rotation axis base point rbp and Rotation axis direction eax.

Select a Rotational direction — Counterclockwise or Clockwise. The rotational direction 
does not make any difference for a centrifugal force.

Select a Rotational frequency — Angular velocity, RPM, or Revolutions per time. Then 
enter a value as needed for Angular velocity magnitude Ω , RPM, or Revolutions per time.

For 3D and 2D components, use the Centrifugal force, Coriolis force, or Euler force 
check boxes to determine which effects of a rotating frame that are to be incorporated 
in the analysis. Only Centrifugal force is selected by default.

For 2D axisymmetric components, the only effect from a rotating frame is the 
centrifugal force, which is then always included.

The Spin softening check box is selected by default. When including spin-softening 
effects, an extra contribution to the centrifugal force from deformation is taken into 
account. The Spin softening check box is only available if Centrifugal force or Euler force 

is selected.

Rotating Frame and Gravity
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Rotating Frame

Shell>Face and Volume Loads>Rotating Frame

Plate>Face and Volume Loads>Rotating Frame

Membrane>Face and Volume Loads>Rotating Frame

Beam>Line and Volume Loads>Rotating Frame

Truss>Line and Volume Loads>Rotating Frame

Multibody Dynamics>Volume Forces>Rotating Frame

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Domains>Volume Forces>Rotating Frame

Physics tab with Shell or Membrane selected:
Boundaries>Face and Volume Loads>Rotating Frame

Physics tab with Plate selected:
Domains>Face and Volume Loads>Rotating Frame

Physics tab with Beam or Truss selected:
Edges>Line and Volume Loads>Rotating Frame

Boundary Load

Use a Boundary Load to apply tractions or pressure to boundaries. 

Only features which have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Rotating Frame.

You can assign this load to a load group. See Load Cases in the Structural 
Mechanics Modeling chapter.
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F O R C E

Select a Load type — Force per unit area (the default), Pressure, Total force, or for 2D 
components, Force per unit length. Then enter values or expressions for the 
components in the matrix based on the selection and the space dimension.

• For Force per unit area, the body load as force per unit volume is then the value of 
F divided by the thickness.

• For Total force, COMSOL Multiphysics then divides the total force by the area of 
the surfaces where the load is active.

• For Pressure, a scalar input is given, and the orientation of the load is given by the 
normal to the boundary. The pressure is positive when directed toward the solid. In 
a geometrically nonlinear analysis, the load current surface normal is used.

After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit area FA N/m2 boundaries 3D (x, y, z) 

2D (x, y)

2D axisymmetric (r, z)

Force per unit length FL N/m boundaries 2D (x, y)

Total force Ftot N boundaries 3D (x, y, z) 

2D (x, y)

2D axisymmetric (r, z)

Pressure p Pa boundaries 3D (x, y, z) 

2D (x, y)

2D axisymmetric (r, z)
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Boundary Load

Multibody Dynamics>Boundary Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Boundaries>Solid Mechanics>Body Load

Boundaries>Multibody Dynamics>Body Load

Edge Load

Add an Edge Load to 3D components to apply a force distributed along an edge.

F O R C E

Select a Load type — Force per unit length (the default) or Total force. Then enter values 
or expressions for the components in the matrix based on the selection: 

• The load per unit length FL.

• The total force Ftot. COMSOL Multiphysics then divides the total force by the 
volume where the load is active.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Edges>Edge Load

Multibody Dynamics>Edges>Edge Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Edges>Edge Load

Point Load

Add a Point Load to points for concentrated forces at points in 2D and 3D.

F O R C E

Enter values or expressions for the components of the point load Fp.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

The Load list normally only contains User defined. When combining with 
another physics interface that can provide this type of load, it is also 
possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Point Load

Multibody Dynamics>Points>Point Load

Truss>Point Load

Multibody Dynamics>Points>Point Load

Ribbon
Physics tab with Solid Mechanics, Multibody Dynamics, or Multibody Dynamics selected:
Points>Point Load

Physics tab with Truss selected:
Points>Truss>Point Load

Ring Load

Add a Ring Load to points located at R > 0 in axially symmetric models. Select this 
feature from the Points submenu.

F O R C E

Select the Load type — Force per unit length (the default) or Total force. Enter values 
or expressions for FL or Ftot.f

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Ring Load

Membrane>Ring Load

• The Load list normally only contains User defined. When combining 
with another physics interface that can provide this type of load, it is 
also possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  533



534 |  C H A P T E
Ribbon
Physics tab with Solid Mechanics selected:
Points>Ring Load

Physics tab with Membrane selected:
Points>Membrane>Ring Load

Point Load (on Axis)

A Point Load (on Axis) node can be added to points located at R = 0 in axially symmetric 
models. This is the only true point load an axisymmetric model, since loads applied at 
points having non-zero radial coordinates actually represent a Ring Load.

F O R C E

Enter values or expressions for the Force Fz in the axial direction.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Point Load (on Axis)

Membrane>Point Load (on Axis)

Ribbon
Physics tab with Solid Mechanics selected:
Points>Point Load (on Axis)

Physics tab with Membrane selected:
Points>Membrane>Point Load (on Axis)

• The Load list normally only contains User defined. When combining 
with another physics interface that can provide this type of load, it is 
also possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Spring Foundation

Use the Spring Foundation node to apply elastic and damping boundary conditions for 
domains, boundaries, edges, and points.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a non-zero spring extension.

The Spring Foundation and Thin Elastic Layer nodes are similar, with the difference that 
a Spring Foundation connects the structural part on which it is acting to a fixed 
“ground”, while a Thin Elastic Layer acts between two parts, either on an interior 
boundary or between two boundaries forming a pair.

The Spring Foundation node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The spring and damping constants are given with respect to the selected coordinate 
system.

S P R I N G

Select the Spring type and its associated spring constant or force using Table 4-5 as a 
guide. The default option is the spring type for the type of geometric entity and space 
dimension, and there are different combinations available based on this.

When the option is of the type ‘force as function of extension’, then the built-in 
variables describing the spring extension must be used in the expression as described 
in Springs and Dampers. The spring matrix can be entered as Isotropic, Diagonal, 
Symmetric, or Anisotropic. For Isotropic the same spring constant is used in all the 
diagonal elements of the spring matrix.

When Use material data is selected as Spring type, the spring stiffness values are 
computed from the given material data and a layer thickness. From the Specify list, 
select a pair of elastic properties — Young’s modulus and Poisson’s ratio, Young’s modulus 

and shear modulus, or Bulk modulus and shear modulus. Each of these pairs define the 
elastic properties and it is possible to convert from one set of properties to another 
according to Table 4-6. For the chosen properties, select from the applicable list to use 
the value From material or enter a User defined value or expression. In order to use From 

material, you must have assigned a material to the selected boundaries.
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Enter a Layer thickness, ds, to specify the physical thickness of the elastic layer.

TABLE 4-5:  SPRING TYPES FOR THE SPRING FOUNDATION FEATURE

SPRING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY 
LEVEL

SPACE DIMENSION

Spring constant per 
unit volume

kV N/(m⋅m3) domains 3D, 2D, and 2D 
axisymmetric

Total spring constant ktot N/m domains, edges 3D, 2D, and 2D 
axisymmetric

Spring constant per 
unit area

kA N/(m⋅m)2 boundaries 3D, 2D

Spring constant per 
unit length

kL N/(m⋅m) edges, boundaries 
(2D)

3D, 2D

Spring constant kP N/m points 3D, 2D, and 2D 
axisymmetric

Force per volume as 
function of 
extension

FV N/m3 domains 3D, 2D, and 2D 
axisymmetric

Total force as 
function of 
extension

Ftot N domains, 
boundaries, edges

3D, 2D, and 2D 
axisymmetric

Force per area as 
function of 
extension

FA N/m2 domains, 
boundaries

3D, 2D

Force per length as 
function of 
extension

FL N/m edges 3D

Force as function of 
extension

FP N points 3D, 2D, and 2D 
axisymmetric

Use material data N/A N/A boundaries 3D, 2D, and 2D 
axisymmetri

TABLE 4-6:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G)
Young’s 
modulus

E = E E

Poisson’s 
ratio

ν = ν

9KG
3K G+
-------------------

E
2G
-------- 1– 1

2
--- 1 3G

3K G+
-------------------– 
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R O T A T I O N A L  S P R I N G

This section is available for the Beam interface. All settings in the Rotational Spring 
section are analogous to the corresponding settings in the Spring section, but with 
forces replaced by moments and displacements replaced by rotations.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components. 

• For Scalar (Same for all components) enter a single Loss factor for spring ηs which is 
used to multiply all values of the spring matrix or spring force vector. 

• For Individual components select Isotropic, Diagonal, Symmetric, or Anisotropic, then 
enter values or expressions in the table for the Loss factor for spring ηk or ηf based 
on space dimension. The loss factors act on the corresponding components of the 
spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

This section is available for the Beam interface. All settings in the Rotational Loss Factor 

Damping section are analogous to the corresponding settings in the Loss Factor section.

V I S C O U S  D A M P I N G

Select the Damping type using Table 4-7 as a guide. The default option is the default 
damping type for the type of geometric entity and space dimension, and there are 
different combinations available based on this. The damping matrix can be entered as 

Bulk 
modulus

K = K

Shear 
modulus

G = G G

TABLE 4-6:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE D(E,ν) D(E,G) D(K,G)

E
3 1 2ν–( )
------------------------ EG

3 3G E–( )
---------------------------

E
2 1 ν+( )
---------------------
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  537



538 |  C H A P T E
Isotropic, Diagonal, Symmetric, or Anisotropic. For Isotropic the same viscous constant is 
used in all the diagonal elements of the damping matrix

R O T A T I O N A L  V I S C O U S  D A M P I N G

This section is available for the Beam interface. All settings in the Rotational Viscous 

Damping section are analogous to the corresponding settings in the Viscous Damping 

section, but with forces replaced by moments and velocities replaced by angular 
velocities.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Spring Foundation (Domain, Boundary)
Solid Mechanics>Edges>Spring Foundation

Solid Mechanics>Points>Spring Foundation

Shell>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Shell>Points>Spring Foundation

TABLE 4-7:  DAMPING TYPES FOR THE SPRING FOUNDATION FEATURE

DAMPING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY 
LEVEL

SPACE DIMENSION

Damping constant 
per unit volume

dV N⋅s/(m⋅m3) domains, 
boundaries (2D)

3D, 2D

Damping constant 
per unit area 

dA N⋅s/(m⋅m2) domains, 
boundaries

3D, 2D, and 2D 
axisymmetric

Total damping 
constant

dtot N⋅s/m domains, 
boundaries, 
edges, points

3D, 2D, and 2D 
axisymmetric

Damping constant 
per unit length

dL N⋅s/(m⋅m) edges 3D

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Springs and Dampers in the Structural Mechanics Modeling chapter.

• Spring Foundation and Thin Elastic Layer in the Structural Mechanics 
Theory chapter.
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Plate>Mass, Spring, and Damper>Spring Foundation (Domain, Boundary)
Plate>Points>Spring Foundation

Membrane>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Membrane>Points>Spring Foundation

Beam>Mass, Spring, and Damper>Spring Foundation

Truss>Mass, Spring, and Damper>Spring Foundation

Multibody Dynamics>Mass, Spring, and Damper>Spring Foundation (Domain)
Multibody Dynamics>Spring Foundation (Boundary)
Multibody Dynamics>Edges>Spring Foundation

Multibody Dynamics>Points>Spring Foundation

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Solid Mechanics>Spring Foundation

Points>Solid Mechanics>Spring Foundation

Physics tab with Shell or Membrane selected:
Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Mass, Spring, and Damper>Spring Foundation

Points>Shell>Spring Foundation

Points>Membrane>Spring Foundation

Physics tab with Plate selected:
Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Mass, Spring, and Damper>Spring Foundation

Points>Plate>Spring Foundation

Physics tab with Beam or Truss selected:
Edges>Mass, Spring, and Damper>Spring Foundation

Points>Mass, Spring, and Damper>Spring Foundation

Physics tab with Multibody Dynamics selected:
Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Multibody Dynamics>Spring Foundation

Edges>Multibody Dynamics>Spring Foundation

Points>Multibody Dynamics>Spring Foundation
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Thin Elastic Layer

Use the Thin Elastic Layer node to apply elastic and damping conditions between two 
parts, either on an interior boundary or on a boundary pair. 

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a non-zero spring extension.

The Thin Elastic Layer and Spring Foundation nodes are similar, with the difference that 
a Spring Foundation connects the structural part on which it is acting to a fixed 
“ground”.

The Thin Elastic Layer node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair on which to apply this 
condition. An identity pair has to be created first. Ctrl-click to deselect.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The spring and damping constants are given with respect to the selected coordinate 
system, with the exception that when the stiffness is specified by Use material data, the 
coordinate system selection is not used.

S P R I N G

Select the Spring type and its associated spring constant or force using Table 4-8 as a 
guide. The default option is the spring type for the type of geometric entity and space 
dimension, and there are different combinations available based on this.

When the option is of the type ‘force as function of extension’, then the built-in 
variables describing the spring extension must be used in the expression as described 
in Springs and Dampers. The spring matrix can be entered as Isotropic, Diagonal, 
Symmetric, or Anisotropic. For Isotropic the same spring constant is used in all the 
diagonal elements of the spring matrix.

When Use material data is selected as Spring type, the spring stiffness values are 
computed from material data and layer thickness. From the Specify list, select a pair of 
elastic properties — Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, or Bulk modulus and shear modulus. Each of these pairs define the elastic 
properties and it is possible to convert from one set of properties to another according 
to Table 4-6. For the chosen properties, select from the applicable list to use the value 
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From material or enter a User defined value or expression. In order to use From material, 
you must have assigned a material to the selected boundaries. 

Enter a Layer thickness, ds, to specify the physical thickness of the elastic layer.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components. 

• For Scalar (Same for all components) enter a single Loss factor for spring ηs which is 
used to multiply all values of the spring matrix or spring force vector. 

• For Individual components select Isotropic, Diagonal, Symmetric, or Anisotropic and 
enter values or expressions in the table for the Loss factor for spring ηk or ηf based 
on space dimension. The loss factors act on the corresponding components of the 
spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

V I S C O U S  D A M P I N G

Select the Damping type using Table 4-9 as a guide. The default option is the default 
damping type for the space dimension. The damping matrix can be entered as Isotropic, 

TABLE 4-8:  SPRING TYPES FOR THE THIN ELASTIC LAYER FEATURE

SPRING TYPE VARIABLE SI UNITS SPACE DIMENSION

Total spring constant ktot N/m 3D, 2D, and 2D 
axisymmetric

Spring constant per unit area kA N/(m⋅m)2 3D, 2D, and 2D 
axisymmetric

Spring constant per unit length kL N/(m⋅m) 2D

Total force as function of extension Ftot N 3D, 2D, and 2D 
axisymmetric

Force per area as function of 
extension

FA N/m2 3D, 2D, and 2D 
axisymmetric

Force per length as function of 
extension

FL N/m 2D

Use material data N/A N/A 3D, 2D, and 2D 
axisymmetric
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Diagonal, Symmetric, or Anisotropic. For Isotropic the same viscous constant is used in 
all the diagonal elements of the damping matrix

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Thin Elastic Layer

Solid Mechanics>Pairs>Thin Elastic Layer

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>Mass, Spring, and Damper>Thin Elastic Layer

Pairs>Solid Mechanics>Thin Elastic Layer

Predeformation

Use the Predeformation subnode to specify that the elastic forces in Spring Foundation 
or Thin Elastic Layer are non-zero at zero displacement. Thus you can model cases 
where the unstressed state of the spring is in another configuration than the one 
described by the geometry.

TABLE 4-9:  DAMPING TYPES FOR THE THIN ELASTIC LAYER FEATURE

DAMPING TYPE VARIABLE SI UNITS SPACE DIMENSION

Damping constant per unit area dA N⋅s/(m⋅m2) 3D, 2D, and 2D 
axisymmetric

Total damping constant dtot N⋅s/m 3D, 2D, and 2D 
axisymmetric

Damping constant per unit 
length

dL N⋅s/(m⋅m) 2D

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Springs and Dampers in the Structural Mechanics Modeling chapter.

• Spring Foundation and Thin Elastic Layer in the Structural Mechanics 
Theory chapter.
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The value of the predeformation can vary during the simulation, so it should not be 
interpreted as an initial value.

S P R I N G  P R E D E F O R M A T I O N

Based on space dimension, enter the values for the Spring Predeformation u0.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Spring Foundation>Predeformation

Solid Mechanics>Thin Elastic Layer>Predeformation

Shell>Spring Foundation>Predeformation

Plate>Spring Foundation>Predeformation

Membrane>Spring Foundation>Predeformation

Beam>Spring Foundation>Predeformation

Truss>Spring Foundation>Predeformation

Multibody Dynamics>Spring Foundation>Predeformation

Ribbon
Physics tab with Spring Foundation or Thin Elastic Layer node selected in the model tree:
Attributes>Predeformation

Added Mass

The Added Mass node is available on domains, boundaries, and edges and can be used 
to supply inertia that is not part of the material itself. Such inertia does not need to be 
isotropic, in the sense that the inertial effects are not the same in all directions.

The Added Mass node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The added mass values are given with respect to the selected coordinate directions.

You can assign the load caused by the predeformation to a load group. 
See Load Cases in the Structural Mechanics Modeling chapter.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  543

http://www.comsol.com/products/specifications/
http://www.comsol.com/products/specifications/


544 |  C H A P T E
A D D E D  M A S S

Select a Mass type using Table 4-10 as a guide. The default option is the type for the 
geometric entity. The added mass matrix can be entered as Isotropic, Diagonal, or 
Symmetric. For Isotropic the same mass is used in all the diagonal elements of the mass 
matrix.

F R A M E  A C C E L E R A T I O N  F O R C E S

Select the Exclude contribution check box to switch off the loads that can be caused by 
the added mass when the frame is accelerated when using a Gravity or Rotating Frame 
feature. The setting will also determine whether the node will contribute when 
Computing Mass Properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Added Mass (Domain, Boundary)
Solid Mechanics>Edges>Added Mass

Shell>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Plate>Mass, Spring, and Damper>Added Mass (Domain, Boundary)
Membrane>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Beam>Mass, Spring, and Damper>Added Mass (Edge)
Truss>Mass, Spring, and Damper>Added Mass (Edge)
Multibody Dynamics>Mass, Spring, and Damper>Added Mass (Domain)
Multibody Dynamics>Added Mass (Boundary)
Multibody Dynamics>Edges>Added Mass

Ribbon
Physics tab with Solid Mechanics selected:
Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Solid Mechanics>Added Mass

TABLE 4-10:  AVAILABLE MASS TYPES BASED ON GEOMETRIC ENTITY

MASS TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL

Mass per unit volume pV kg/m3 domains

Mass per unit area pA kg/m2 domains, boundaries

Mass per unit length pL kg/m edges

Total mass m kg domains, boundaries, edges
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Physics tab with Shell or Membrane selected:
Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Mass, Spring, and Damper>Added Mass

Physics tab with Plate selected:
Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Mass, Spring, and Damper>Added Mass

Physics tab with Beam or Truss selected:
Edges>Mass, Spring, and Damper>Added Mass

Physics tab with Multibody Dynamics selected:
Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Multibody Dynamics>Added Mass

Edges>Multibody Dynamics>Added Mass

Periodic Condition

Use a Periodic Condition to prescribe that the displacements on two different sets of 
boundaries with the same geometrical shape are related, as in a periodic structure.

Several different types of periodicity properties of the solution can be prescribed using 
this boundary condition.

• The Continuity, Antiperiodicity, and User defined periodic conditions directly 
prescribe relations between displacements and can be used for any type of study.

• The Floquet periodicity can be used for frequency domain problems with a spatial 
periodicity of the geometry and solution. The modeled structure is typically a unit 
cell of a repetitive structure.

• The Cyclic symmetry is a special case of a Floquet condition, intended for structures 
which consist of a number of sectors which are identical when rotated around a 
common axis, like in a fan.

The Floquet periodicity and Cyclic symmetry options are available only with some 
COMSOL products (see http://www.comsol.com/products/specifications/).

The two sets of boundaries between which there is a periodicity condition are called 
the source and destination respectively. It is not required to have the same mesh on 
the source and destination, but the local accuracy of the solution at the boundaries will 
be better if you use the same mesh.
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B O U N D A R Y  S E L E C T I O N

Select both the source and destination boundaries.

The software automatically identifies the boundaries as either source boundaries or 
destination boundaries. This works fine for cases like opposing parallel boundaries. In 
more general cases, use the Destination Selection subnode to specify the boundaries 
which constitute the destination. By default this node contains the selection that 
COMSOL Multiphysics has identified.

In cases where the periodic boundary is split into several boundaries within the 
geometry, it might be necessary to apply separate periodic conditions to each pair of 
geometry boundaries for the matching to work properly.

P E R I O D I C I T Y  S E T T I N G S

With Type of periodicity you select the form of periodicity that your solution should 
have.

• For Continuity the displacements on the destination are set equal to the 
displacements on the source; . If the source and destination 
boundaries are rotated with respect to each other, a transformation is automatically 
performed, so that corresponding displacement components are connected.

• For Antiperiodicity the displacements on the destination are set equal to the 
displacements on the source with the sign reversed; . If the source 
and destination boundaries are rotated with respect to each other, a transformation 
is automatically performed, so that corresponding displacement components are 
connected.

• For Floquet periodicity enter a k-vector for Floquet periodicity kF. This is the wave 
number vector for the excitation.

• For Cyclic symmetry chose how to define the sector angle that the geometry 
represents using Sector angle. If Automatic is selected, the program attempts to find 
out how many full repetitions of the geometry there will be on a full revolution. If 
User defined is selected, enter a value for the sector angle θS. In both cases, also enter 
an Azimuthal mode number for the mode to be studied. It can vary from 0 to N/2, 
where N is the total number of sectors on a full revolution.

• For User defined select the check box for any of the displacement components as 
needed. Then for each selection, choose the Type of periodicity — Continuity or 
Antiperiodicity. Each selected displacement component will be connected by 

 or  respectively. If the source and destination 

u xd( ) u xs( )=

u xd( ) u– xs( )=

ui xd( ) ui xs( )= ui xd( ) ui xs( )–=
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boundaries are rotated with respect to each other, a transformation is automatically 
performed, so that corresponding displacement components are connected.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

O R I E N T A T I O N  O F  S O U R C E

For information about the Orientation of Source section, see Orientation of Source and 
Destination in the COMSOL Multiphysics Reference Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Periodic Condition

Solid Mechanics>Connections>Periodic Condition>Destination Selection

Ribbon
Physics tab with Solid Mechanics selected: 
Boundaries >Connections>Periodic Condition

Physics tab with Periodic Condition node selected in the model tree:
Attributes>Destination Selection

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Cyclic Symmetry and Floquet Periodic Conditions

Vibrations of an Impeller: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/impeller
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Low-Reflecting Boundary

Use the Low-Reflecting Boundary node to let waves pass out from the model without 
reflection in time-dependent or frequency domain analysis. As a default, it takes 
material data from the domain in an attempt to create a perfect impedance match for 
both pressure waves and shear waves. It can be sensitive to the direction of the 
incoming wave.

The Low-Reflecting Boundary node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

D A M P I N G

Select a Damping type — P and S waves (the default) or User defined. For User defined 
enter values or expressions for the Mechanical impedance di. The defaults for all values 
are 0.5*solid.rho*(solid.cp+solid.cs).

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Low-Reflecting Boundary

Ribbon
Physics tab with Solid Mechanics selected: 
Boundaries >Mass, Spring, and Damper>Low-Reflecting Boundary

Thin-Film Damping

Use the Thin-Film Damping node to apply boundary loads to the surface of a resonator 
that result from squeeze-film or slide-film damping. Squeeze-film damping occurs 
when a thin film of gas is “squeezed” between two parallel plates, one of which is in 
motion normal to its surface. Slide-film damping occurs in similar situations except 

Low-Reflecting Boundary Condition

The MEMS Module also includes the Thin-Film Flow interface, which, 
when appropriately coupled with the Solid Mechanics interface, is 
equivalent to using the Thin-Film Damping boundary condition.
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that the direction of motion of the moving plate is tangential to its surface. Examples 
of common situations in which these types of damping are appropriate are parallel plate 
capacitive and comb drive actuators for squeeze-film and slide-film damping, 
respectively. The thin-film damping boundary condition can accommodate general 
displacements of the moving plates specified by means of the Fluid-Film Properties 
node.

The Thin-Film Damping node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

The Fluid-Film Properties node and the Border node are added by default. These 
additional subnodes are available: Fluid-Film Properties, Border, Inlet, Outlet, Wall, and 
Symmetry.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Thin-Film Damping

Ribbon
Physics tab with Solid Mechanics selected: 
Boundaries>Mass, Spring, and Damper>Thin-Film Damping

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. The selected boundaries will move as a 
single rigid object, irrespective of whether they are geometrically adjacent or not.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account. The feature is similar to the rigid connectors in the Beam and Shell 
interfaces. Rigid connectors from Beam, Shell, and Solid Mechanics interfaces can be 
attached to each other.

The Fluid-Film Properties, Inlet, Outlet, Border, Wall, and Symmetry 
nodes are all described for The Thin-Film Flow Interfaces.

Also see Theory for the Thin-Film Flow Interfaces as the Thin-Film 

Damping boundary condition is equivalent to an appropriately coupled 
Thin-Film Flow interface — so its theory is described in full for that 
physics interface.
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You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.

The Rigid Connector node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. Prescribed displacements 
and rotations are specified along the axes of this coordinate system. It is also used for 
defining the axis directions of the moment of inertia tensor of the Mass and Moment of 

Inertia subnode.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to use. An identity pair has 
to be created first. The rigid connector applies to the common part of the boundaries, 
and makes the parts behave as if there were an infinitely stiff layer between them.

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the place where it is 
fixed.

• Results are interpreted with respect to the center of rotation.

In versions prior to 4.4, it was also possible to add a Rigid Domain subnode 
to the Rigid Connector. This node still appears and functions when you 
open an old model where it was used, but it is not possible add a new one.

The functionality has been superseded by the more powerful concept of a 
Rigid Domain as a material model.

For information about the old functionality, see the documentation for 
version 4.3b or earlier.
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Select a Center of rotation—Automatic, Centroid of selected entities, or User defined.

• For Automatic the center of rotation is at the geometrical center of the selected 
geometrical objects.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
center of rotation is located at the centroid of the selected entities, which do not 
need to be related to rigid connector itself. As a special case, you can select a single 
point, and thus use that point as center of rotation.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement at the center of rotation for each space direction, 
select one or several of the available check boxes then enter values or expressions for 
the prescribed displacements. The direction coordinate names can vary depending on 
the selected coordinate system.

• Prescribed in x direction u0x

• Prescribed in y direction u0y 

• For 3D components: Prescribed in z direction u0z

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

XC XC,input Xoffset+=
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P R E S C R I B E D  R O T A T I O N  A T  C E N T E R  O F  R O T A T I O N

Specify the rotation at the center of rotation. Select from the By list: Free (the default), 
Constrained rotation, or Prescribed rotation at center of rotation.

Constrained Rotation (3D Components)
For Constrained rotation select one or more of the available check boxes to enforce zero 
rotation about the corresponding axis in the selected coordinate system: 

• Constrain rotation about x-axis 

• Constrain rotation about y-axis 

• Constrain rotation about z-axis 

Prescribed Rotation at Center of Rotation
For Prescribed rotation at center of rotation enter an Angle of rotation φ0. For 3D 
components also enter an Axis of rotation Ω for the x, y, and z coordinates. 

 For 2D components, the Constrained rotation and Prescribed rotation at 

center of rotation is always about the z-axis, so no component selection is 
necessary.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Rigid Connector Theory

• Harmonic Perturbation 

• Load Cases
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Rigid Connector

Multibody Dynamics>Rigid Connectior

Ribbon
Physics tab with Solid Mechanics selected: 
Boundaries>Connections>Rigid Connector

Physics tab with Multibody Dynamics selected: 
Boundaries>Multibody Dynamics>Rigid Connector

Center of Rotation Nodes

For each of the following physics features, a subnode is automatically added as 
indicated.

• Rigid Connector

• Initial Values (Rigid Domain)

• Prescribed Displacement/Rotation

C E N T E R  O F  R O T A T I O N :  B O U N D A R Y

Use the Center of Rotation: Boundary subnode to select a set of boundaries whose 
centroid represents the center of rotation.

C E N T E R  O F  R O T A T I O N :  E D G E

Use the Center of Rotation: Edge subnode to select a set of edges whose centroid 
represents the center of rotation.

C E N T E R  O F  R O T A T I O N :  PO I N T

Use the Center of Rotation: Point subnode to select a set of points whose centroid 
represents the center of rotation.

Assembly with a Hinge: Application Library path 
Structural_Mechanics_Module/Connectors_and_Mechanisms/hinge_assembly
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L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent node. They cannot be added or removed manually.

Thermal Expansion (Rigid Connector)

Add the Thermal Expansion subnode to prescribe a deformation of the rigid connector 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the rigid connector being rigid, while there are thermal deformations in the flexible 
body to which it is attached.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the rigid connector.

Select Inherit from domain to take the thermal expansion data from the domain to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the rigid connector has the same thermal expansion as the 
domain itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the rigid connector. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries of the rigid 
connector selection.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 

εth α T Tref–( )=
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non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements in the rigid connector..

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid connector>Thermal Expansion

Multibody Dynamics>Rigid connector>Thermal Expansion

Ribbon
Physics tab with Rigid connector node selected in the model tree:
Attributes>Thermal Expansion

Applied Force (Rigid Connector)

Use the Applied Force to apply a force to the rigid connector. The force can act at an 
arbitrary position in space, and if it is not located at the center of rotation, there it is 
also a moment contribution. The directions of the force is fixed in space and does not 
follow the rotation of the rigid connector.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Coordinate system for specifying the directions of the force.

L O C A T I O N

Select an option from the list: Center of rotation or User defined. This is the location 
where the force is applied.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Connector node.

• For User defined, enter the Location (global coordinates), Xp, in the table.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

A P P L I E D  F O R C E

Enter values or expressions for the components of the Applied force F. The direction 
coordinate names can vary depending on the selected coordinate system.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Applied Force

Shell>Rigid Connector>Applied Force

Beam>Rigid Connector>Applied Force

Multibody Dynamics>Rigid Connector>Applied Force

Ribbon
Physics tab with Rigid Connector node selected in the model tree:
Attributes>Applied Force

Applied Moment (Rigid Connector)

Use the Applied Moment subnode to apply a moment at the center of rotation. The 
direction of the moment is fixed in space and does not follow the rotation of the rigid 
connector.

XP XP,input Xoffset+=

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

This section is only available for 3D components. The Global coordinate system is 
selected by default. The Coordinate system list contains any additional coordinate 
systems that the model includes. Select a Coordinate system for specifying the directions 
of the moment.

A P P L I E D  M O M E N T

Enter values or expressions for the components of the Applied moment M 

• For 3D components, this is the x, y, and z components for M. The direction 
coordinate names can vary depending on the selected coordinate system.

• For 2D components, this is for the applied moment in the z direction Mz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Applied Moment

Shell>Rigid Connector>Applied Moment

Beam>Rigid Connector>Applied Moment

Multibody Dynamics>Rigid Connector>Applied Moment

Ribbon
Physics tab with Rigid Connector node selected in the model tree:
Attributes>Applied Moment

Mass and Moment of Inertia (Rigid Connector)

Use the Mass and Moment of Inertia subnode to add inertia properties to the rigid 
connector for dynamic analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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C E N T E R  O F  M A S S

Here you specify the location of the center of mass for the contribution given in this 
node. Select an option from the list: Center of rotation or User defined.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Connector node.

• For User defined, enter the Global coordinates of center of mass, Xm, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The center of mass used is the sum of the vector obtained from any of the input 
methods and the offset vector.

M A S S  A N D  M O M E N T  O F  I N E R T I A

Enter values or expressions for the Mass m. Also enter values or expressions for the 
Moment of inertia I. The axis directions of the moment of inertia tensor are given by 
the coordinate system selection in the parent Rigid Connector node.

• For 3D components, select Isotropic (the default), Diagonal, or Symmetric and enter 
one or more components for the tensor I.

• For 2D components, enter a value or expression for Iz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Mass and Moment of Inertia

Shell>Rigid Connector>Mass and Moment of Inertia

Multibody Dynamics>Rigid Connector>Mass and Moment of Inertia

Ribbon
Physics tab with Rigid Connector node selected in the model tree:
Attributes>Mass and Moment of Inertia

Spring Foundation (Rigid Connector)

Add a Spring Foundation subnode to specify a spring or damper connecting the rigid 
connector to a fixed ground. The spring can act at an arbitrary position in space. A 
translational spring implicitly contributes also to the moment if it is not applied at the 

Xm Xm,input Xoffset+=
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center of rotation of the rigid connector. The data that you specify is interpreted in the 
selected coordinate system.

L O C A T I O N

Select an option from the list: Center of rotation or User defined. This is the location 
where the spring is attached.

• For Center of rotation, the spring will be attached to the center of rotation as defined 
in the parent Rigid Connector node.

• For User defined, enter the Location (global coordinates), Xp, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

S P R I N G

Select a Spring type — Spring constant or Force as function of extension.

When Spring constant is selected, the translational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Anisotropic. For Isotropic the same spring constant is 
used in all the diagonal elements of the spring matrix.

When Force as function of extension is selected, enter the force vector Fs. It must be a 
a function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example solid.rig1.uspring1_spf1.

R O T A T I O N A L  S P R I N G

Select a Spring type — Spring constant or Moment as function of rotation.

When Spring constant is selected, the rotational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Anisotropic. For Isotropic the same spring constant is 
used in all the diagonal elements of the spring matrix.

XP XP,input Xoffset+=
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When Moment as function of rotation is selected, enter the moment vector Ms. It must 
be a a function of the built-in variables describing the spring extension. The default 
value indicates the correct variable name, for example solid.rig1.thspring1_spf1.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components. 

• For Scalar (Same for all components) enter a single Loss factor for spring ηu,s, which 
is used to multiply all values of the spring matrix or spring force vector. 

• For Individual components select Isotropic, Diagonal, Symmetric, or Anisotropic, then 
enter values or expressions in the table for the Loss factor for spring ηu,k or ηf based 
on space dimension. The loss factors act on the corresponding components of the 
spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

All settings in the Rotational Loss Factor Damping section are analogous to the 
corresponding settings in the Loss Factor section. In 2D, only one scalar loss factor, 
corresponding to rotation around the out-of-plane axis, is given.

V I S C O U S  D A M P I N G

Select Isotropic, Diagonal, Symmetric, or Anisotropic, then enter values or expressions for 
the damping constants du in the table. If you select Isotropic, the effect is the same as 
when you selecting Diagonal and enter the same value for all diagonal elements.

V I S C O U S  R O T A T I O N A L  D A M P I N G

All settings in the Viscous Rotational Damping section are analogous to the 
corresponding settings in the Viscous Damping section. In 2D, only one scalar viscous 
damping, corresponding to rotation around the out-of-plane axis, is given.

In 2D the Spring constant is only a single scalar, representing the stiffness 
for rotation around the out-of-plane direction. Similarly, the Moment as 

function of rotation is a single scalar.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Spring Foundation

Multibody Dynamics>Rigid Connector>Spring Foundation

Shell>Rigid Connector>Spring Foundation

Beam>Rigid Connector>Spring Foundation

Ribbon
Physics tab with Rigid Connector node selected in the model tree:
Attributes>Spring Foundation

Attachment

The Attachment node is used to define a set of boundaries on a flexible domain which 
can be used to connect it with other components through a joint in the Multibody 
Dynamics interface. All the selected boundaries behave as if they were connected by a 
common rigid body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell interface, or to points in a Beam interface. This 
makes it possible to use a joint in the Multibody Dynamics interface for connecting 
parts modeled in different physics interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Attachment

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>Connections>Attachment

The Attachment node is available with the addition of the Multibody 
Dynamics Module. The Attachments is included in the Multibody 
Dynamics Module User’s Guide. 
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Thermal Expansion (Attachment)

Add the Thermal Expansion subnode to prescribe a deformation of the attachment 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the attachment being rigid, while there are thermal deformations in the flexible body 
to which it is attached.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the attachment.

Select Inherit from domain to take the thermal expansion data from the domain to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the attachment has the same thermal expansion as the 
domain itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the attachment. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries of the attachment 
selection.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 

εth α T Tref–( )=
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non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements in the attachment.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Attachment>Thermal Expansion

Multibody Dynamics>Attachment>Thermal Expansion

Ribbon
Physics tab with Attachment node selected in the model tree:
Attributes>Thermal Expansion

Beam Connection

In 2D, a solid can be connected to a beam by adding a Beam Connection node in the 
Solid Mechanics interface and a Solid Connection node in the Beam interface. The 
connection can either be from a point on the beam to a boundary on the solid, or 
between two boundaries. The first case is intended for modeling a transition from a 
beam to a solid where beam theory assumptions are valid on both sides of the 
connection. The second case is for adding a beam on top of a solid as stiffener or 
cladding.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.

The Beam Connection node is obsolete, and has been superseded by the 
Solid-Beam Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Beam Connection node will be removed in 
future versions.
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The Beam Connection node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

B E A M  C O N N E C T I O N

Select a Connected entity — Beam point or Beam edge.

When Beam point is selected, select the name of the corresponding Solid Connection 
node defined at the point level in the Beam interface to specify the connected parts.

Select an option from the Connected area defined by list: Section height (the default), 
Selected boundaries, or Distance from beam axis. This parameter determines how much 
of the selected solid boundaries are actually connected to the beam. The default is that 
a distance from the beam point having the size of the half the beam section height in 
both directions is connected. Using Selected boundaries connects the entire selected 
boundaries to the beam. If you select Distance from beam axis, enter a Distance d. This 
is used instead of the section height for defining the connection distance.

For Beam edge select the name of the corresponding Solid Connection node defined at 
the boundary level in the Beam interface to specify the connected parts.

Select a Distance evaluation: Section height (the default), Geometrical distance, or User 

defined. This parameter determines how the coupling treats the determination of the 
connection distance. The default is that a distance equal to half the section height is 
used. If you select Geometrical distance, the connection distance is computed from the 
geometrical distance between the solid boundary and the beam boundary. For User 

defined enter a Distance d. This defines the connection distance.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Beam Connection

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>Connections>Beam Connection

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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Shell Connection

In 3D, a solid can be connected to a shell by adding a Shell Connection node in the Solid 
Mechanics interface and a Solid Connection node in the Shell interface. The 
connection can either be from an edge of the shell to a boundary on the solid, or 
between two boundaries. The first case is intended for modeling a transition from a 
shell to a solid where shell assumptions are valid on both sides of the connection. The 
second case is for adding a shell on top of a solid.

The Shell Connection node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

S H E L L  C O N N E C T I O N

Select a Connected entity — Shell edge or Shell boundary.

When Shell edge is selected, select the name of the corresponding Solid Connection node 
defined at the edge level in the Shell interface to specify the connected parts.

Select an option from the Connected area defined by list: Shell thickness (the default), 
Selected boundaries, or Distance from shell midsurface. This parameter determines how 
much of the selected solid boundaries are connected to the shell. The default is that a 
distance from the shell edge (having the size of the half the shell thickness in both 
directions) is connected. Using Selected boundaries connects the entire selected 
boundaries to the shell. If you select Distance from shell midsurface, enter a Distance d. 
This is used instead of the shell thickness for defining the connection distance.

The Shell Connection node is obsolete, and has been superseded by the 
Solid-Shell Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Shell Connection node will be removed in future 
versions.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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For Shell boundary select the name of the corresponding Solid Connection node defined 
at the boundary level in the Shell interface to specify the connected parts.

Select a Boundary type — Shared (the default) or Parallel. For Parallel, select a Distance 

evaluation — Shell properties (the default), Geometrical distance, or User defined. This 
parameter determines how the coupling treats the determination of the connection 
distance. The default is that a distance equal to half the shell thickness is used. If you 
select Geometrical distance, the connection distance is computed from the geometrical 
distance between the solid boundary and the shell boundary. For User defined enter a 
Distance d. This defines the connection distance.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Shell Connection

Ribbon
Physics tab with Solid Mechanics selected:
Boundaries>Connections>Shell Connection

Contact

In the Contact node, you define the mechanical and numerical properties for a set of 
contact pairs in a contact analysis. Use it for modeling structural contact and 
multiphysics contact. In the latter case, you will also need to add corresponding pair 
conditions in the other participating physics interfaces.

If friction is to be included in the modeling, add a Friction subnode.

Do not select the same contact pair in more than one Contact node. Doing so may 
produce error messages or unpredictable results.
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The Contact node is only available with some COMSOL products (see http://
www.comsol.com/products/specifications/).

C O N T A C T  P R E S S U R E  M E T H O D

Select the algorithm used for computing the contact in the normal direction, 
Augmented Lagrangian (default) or Penalty.

Enter a value for Characteristic stiffness Echar. The default is solid.Eequ, the 
equivalent Young’s modulus as defined by most materials. The characteristic stiffness 
(stored in a variable named solid.<contact_tag>.E_char) is used in expressions for 
the default penalty factors for both the Augmented Lagrangian and Penalty methods. It 
should be representative for the stiffness of the destination domain material in a 

In order to specify contact conditions, one or more Contact Pair nodes 
must be available in the Definitions branch.

If you have several interfaces with displacement degrees of freedom in 
your model, only the last physics interface in the model tree can contain 
contact physics features since that is the physics interface in which the 
displacements controls the spatial frame.

When a contact feature is present in your model, all studies are 
geometrically nonlinear. The Include geometric nonlinearity check box on 
the study step Settings window is selected and cannot be cleared.

A Contact node will override all previous nodes in the Model Tree sharing 
the same boundary selections. If you want to add a load (such as the 
pressure of a surrounding fluid), the best way of doing that is to select a 
Boundary Load from the Fallback Features of the Contact node. Such a load 
will then act only on the portions of the boundaries not being in contact.

If an ordinary Boundary Load node is added after the Contact node in the 
Model Tree, it will contribute to the load on the boundaries, but without 
taking the contact state into account.

• Contact Modeling

• Contact Analysis Theory
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direction normal to the boundary. You may for example need to adjust the default 
value in for the following cases:

• The material is strongly anisotropic. The default value is based on an average in all 
directions.

• The material is highly nonlinear. The default value is based on the stiffness at zero 
strain.

• The variable solid.Eequ is not defined by the material. This is the case for some 
user defined materials.

P E N A L T Y  F A C T O R

If Contact Pressure Method is Augmented Lagrangian, select the type of Penalty factor 

control — Preset (default), Manual tuning, or User defined. The settings give access to 
an increasing level of detailed control of the penalty factor.

If you select Preset, you have the choices to select Tuned for as Stability (default) and 
Speed. If the contact boundaries move towards each other, so that large interferences 
can be expected in the initial iterations, then is Stability is the better choice. In many 
models, where the contact state does not change much, using Speed gives significant 
performance improvements.

The Penalty factor control selection Manual tuning gives you access to a number of 
detailed settings for the penalty factor.

Enter a Penalty factor multiplier. The default value is 1. Increasing this factor gives a 
higher penalty factor. From Use relaxation, select Always (default), Never, or Conditional. 
When using relaxation, the penalty factor is decreased during the first iterations in each 
parameter or time step. 

In the augmented Lagrangian method, the penalty factor controls how 
“hard” the interface surface is during the iterations, but it does not affect 
the converged result. You can consider the penalty factor as a spring giving 
a resisting force if the boundaries in the contact pair have an interference. 
A larger value gives faster, but less stable, convergence to the state where 
there is no interference. A too large value can create convergence 
difficulties, particularly if the interference is large

In the penalty method, the penalty factor is the actual stiffness of a spring 
inserted between the boundaries in the contact pair.
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If relaxation is used, enter the Initial Relaxation Factor. The default is 0.005. This factor 
multiplies the penalty factor in the first iteration. Enter Number of iterations with 

relaxation. The default value is 4. The penalty factor is gradually increased up to its full 
value, which is used in the iteration after the one where the specified number of 
iterations with relaxation have been reached.

If Use relaxation is set to Conditional, enter a Suppression criterion. The default is 0, 
which means that the relaxation is used for all parameter or time steps. This is a 
Boolean expression which, when fulfilled, suppresses the relaxation. If you, for 
example, know that your problem needs relaxation only during the initial phase of the 
solution, you could enter en expression like load_parameter>0.1. It is also possible 
to use expressions based on the solution, for example 
abs(solid.cnt1.gap)<0.05*h. This expression is true when the gap or interference 
is small compared to the mesh size. It could be taken as an indication that the contact 
problem is almost converged, and thus not in need of any relaxation of the penalty 
factor.

Using the Penalty factor control selection User defined gives you the possibility to enter 
an explicit expression for penalty factor. Edit or use the default Contact pressure penalty 

factor pn.The default value is 
min(1e-3*5^niterCMP,1)*solid.<contact_tag>.E_char/solid.hmin_dst. 
The default value causes the penalty factor to be increased during the iterations and 
takes material stiffness and element size at the contact surface into account. The 
variable solid.<contact_tag>.E_char is the characteristic stiffness as defined in the 
Contact Pressure Method section, and hmin_dst is the minimum element size on the 
destination.

When Contact Pressure Method is Penalty, enter the Contact pressure penalty factor pn. 
The default value is solid.<contact_tag>.E_char/solid.hmin_dst. Click to 
select Offset penalty function if you want the contact pressure to be nonzero when the 
gap is zero. In that case, also enter a value for the Contact pressure at zero gap T0.

TR I G G E R  C U T B A C K

This section is only available when Contact Pressure Method is Augmented Lagrangian. 
Select the Trigger cutback check box to enable additional control over solver cutbacks 
in Time Dependent study or Stationary study with a Parametric continuation solver. 
Enter a logical expression for Cutback criterion. When this expression evaluates to a 
nonzero value, the iterations are immediately terminated, and the solver tries to use a 
smaller value of the time or parameter. You can use this setting to avoid that the solver 
spends many iterations trying to recover from an unphysical state. As an example, if 
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you know that the destination boundary is confined so that it does not move more 
than 1 mm anywhere, an entry like solid.disp > 5[mm] can be useful, since it is 
unlikely that a displacement of this size should appear during a successful iteration 
history.

O F F S E T  A N D  A D J U S T M E N T

Enter a value or expression for Contact surface offset from geometric destination surface 
doffset,d. The offset is subtracted from the gap in the normal direction of the 
destination surface.

Enter a value or expression for Contact surface offset from geometric source surface 
doffset,s. The offset is subtracted from the gap in the normal direction of the source 
surface.

Select Force zero initial gap to compensate for any difference caused by irregularities in 
geometry or mesh when the two contacting boundaries should exactly touch each 
other in the initial state. The gap is adjusted to zero before any offset is added.

In the COMSOL Multiphysics Reference Manual:

• Time Dependent and Stationary 

• About the Time-Dependent Solver and About the Parametric Solver

Use the offset properties to adjust initial clearances (negative values) or 
interference fits (positive values) without having to change the geometry. 
These properties are also useful for studying the effects of geometrical 
tolerance when the structure is still modeled using its nominal size.

When combined with Force zero initial gap, the offset will be exact in the 
sense that it is not affected by mesh irregularities.

The adjustment made by Force zero initial gap does not move any nodes 
in the mesh. Effectively it adds an extra hidden offset, which compensates 
for any initial distance between source and destination boundaries.

Offset and Adjustment
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I N I T I A L  V A L U E S

This section is only available when Contact Pressure Method is Augmented Lagrangian. 
Enter an initial value for the Contact pressure Tn.

D I S C R E T I Z A T I O N

This section is only available when Contact Pressure Method is Augmented Lagrangian. 
To display this section, click the Show button ( ) and select Discretization. Select a 
shape-function order for Contact pressure — Linear (the default), Quadratic, Cubic, 
Quartic, or (in 2D) Quintic. This setting should usually not be changed. Selecting 
anything else than Linear requires that the solver sequence is modified manually 
because the lumped solver is then no longer optimal for the contact pressure update.

A D V A N C E D

To display this section, click the Show button ( ) and select Advanced Physics Options.

When analyzing a multiphysics contact problem, the state of being in contact or not 
will be passed from the contact analysis in the structural mechanics interface to other 
participating physics interfaces. For numerical reasons, the gap value will however not 
be exactly zero even when the boundaries are in contact. A certain small positive value 
of the gap will thus be considered as being in contact. The default Multiphysics contact 

tolerance is Automatic. If you want to explicitly specify the limit of the gap considered 
as being in contact, select Manual, and enter the Contact tolerance Δcontact.

Select Add contact status to solver log to get printout about the changes in the solver 
log window. Doing this will add extra dependent variables used for tracking the contact 
state on the destination boundaries.

If you have more than one contact pair selected in the Contact node, and the 
augmented Lagrangian method is used, the check box Group contact variables in solver 

per pair will be shown. When selected, a new Lumped Step will be generated in the 
segregated solver for each contact pair. This will not affect the solution, but will give 
more granular output in the convergence plots.

If not all the contacting parts are fully constrained, it is important to 
supply a value here in order to avoid singular problems.

Speed up the convergence by supplying a guess of the correct order of 
magnitude of the contact pressure.
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Select Store energy variables to get access to 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Pairs>Contact

Multibody Dynamics>Pairs>Contact

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:
Pairs>Contact

Friction

Using the Friction subnode, you can add friction to a Contact node.

The selection of the Friction node is the same as that of its parent Contact node. If you 
add more than one Friction node under the same parent, the last one will override all 
the preceding nodes. If Friction and Adhesion are present under the same Contact node, 
the friction settings will be ignored once the adhesion criterion is fulfilled.

F R I C T I O N

Select a Friction model — Static Coulomb friction or Exponential dynamic Coulomb 

friction. The latter can only be used in a time dependent analysis, since the value of the 
frictional coefficient depends on the slip velocity. Enter the following data:

• Static frictional coefficient μstat to give the static coefficient of friction.

• Cohesion sliding resistance Tcohe. Supply a traction which must be overcome before 
sliding can occur.

• Maximum tangential traction Tt,max. When the tangential traction exceeds this value, 
slip will occur, independent of the normal pressure. The default expression is Inf, 
indicating that no limit on the tangential traction is active.

• When Exponential dynamic Coulomb friction is selected, also enter the Dynamic 

frictional coefficient μdyn and the Friction decay coefficient αdcf.

TA N G E N T I A L  F O R C E  M E T H O D

Select the algorithm used for computing the tangential forces and sliding criteria, 
Augmented Lagrangian or Penalty. The method can be selected independently of the 
corresponding Contact Pressure Method setting in the parent Contact node.
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PE N A L T Y  F A C T O R

If Tangential Force Method is Augmented Lagrangian, select the type of Penalty factor 

control — From parent (default), Preset, Manual tuning, or User defined. The settings 
give access to an increasing level of detailed control of the penalty factor for the sliding.

In the default case the settings are taken from the Contact node to which the current 
Friction node is a child. For a description of the settings, see the documentation of 
Penalty Factor under Contact. The only difference is that the default value of the User 

defined penalty factor is 
min(1e-3*5^niterCMP,1)*solid.<contact_tag>.E_char/3/solid.hmin_dst.

If Tangential Force Method is Penalty, select the type of Penalty factor control — From 

parent or User defined. The choice From parent is only available if Contact Pressure 

Method is set to Penalty in the parent Contact node. In that case, the settings are taken 
from the Contact node to which the current Friction node is a child. When User defined 
is selected, enter Tangential pressure force factor pt. The default value is 
solid.<contact_tag>.E_char/3/solid.hmin_dst.

I N I T I A L  V A L U E S

If Tangential Force Method is Augmented Lagrangian, enter values or expressions for the 
components of the initial force acting on the destination surface as Friction force Tt.

To determine whether friction effects are active when starting the solution or not, 
select the Previous contact state — Not in contact (the default) or In contact.

For In contact enter values or expressions for the Previous mapped source coordinates 

xm, old. These serve as initial values to compute the tangential slip. The default value 
is (X, Y, Z) and indicates that the contacting boundaries are perfectly coincident in the 
initial state. The mapped source coordinates are defined as the location on the source 
boundary where it is hit by a certain point on the destination boundary.

D I S C R E T I Z A T I O N

This section can only be displayed if Tangential Force Method is Augmented Lagrangian. 
To display it, click the Show button ( ) and select Discretization. Select a 
shape-function order for Friction force — Linear (the default), Quadratic, Cubic, Quartic, 
or (in 2D) Quintic. This setting should usually not be changed. Selecting anything else 

The entries in this section should be given as components in the material 
frame.
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than Linear requires that the solver sequence is modified manually because the lumped 
solver is then no longer optimal for the update of the tangential forces. 

A D V A N C E D

To display this section, click the Show button ( ) and select Advanced Physics Options. 

For numerical reasons, the gap value will not be exactly zero even when the boundaries 
are in contact. A certain small positive value of the gap must thus be used to determine 
that the boundaries touch each other. so that friction forces can be introduced. Select 
a Friction detection — Automatic or Manual. For Manual enter an absolute value for the 
Friction detection tolerance Δcontact, which is the gap when the friction becomes active.

You can also request that the total accumulated slip distance it stored by selecting the 
Store accumulated slip check-box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Friction

Multibody Dynamics>Contact>Friction

Ribbon
Physics tab with Contact selected in the Model Builder tree:
Atributes>Friction

Adhesion

Using the Adhesion subnode, you can add adhesion and decohesion properties to a 
contact pair. This functionality requires that the contact is modeled using the penalty 
method, and that no offset is used in the penalty stiffness function.

The selection of the Adhesion node is the same as that of its parent Contact node. If you 
add more than one Adhesion node under the same parent, the last one will override all 

The contact tolerance is the gap distance between the surfaces at which 
friction starts to act. The default value is 10−6 times smaller than the 
overall size of the model. 
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the preceding nodes. If Adhesion and Friction are present under the same Contact node, 
the friction settings will be ignored once the adhesion criterion is fulfilled.

A D H E S I V E  A C T I V A T I O N

Select an Activation criterion, to describe the onset of the adhesion between the source 
and destination boundaries. 

When the criterion is Pressure, enter the minimum contact pressure pn0, at which 
adhesion is initiated.

When the criterion is Gap, enter the distance between the source and destination 
boundaries δ0, at which adhesion is initiated. A negative value indicates that there must 
be a certain overlap before adhesion is activated.

When the criterion is User Defined, enter a boolean expression such that when it 
evaluates to true, adhesion is initiated.

When the criterion is Always active, the source and destination boundaries are in always 
in adhesive contact, unless broken by decohesion.

A D H E S I V E  S T I F F N E S S

In this section, you specify the stiffness of the adhesive layer in the normal and 
tangential directions.

Select how to specify the Normal stiffness of the adhesive layer. The default is to use 
From contact penalty factor, in which case the stiffness is the same as the one given as 
Contact pressure penalty factor in the settings of the parent Contact node.

To use another stiffness, select User defined, and enter the stiffness in the normal 
direction Kp explicitly. This value is used in tension only; in compression the penalty 
factor is always used.

Select Shear stiffness defined using to be either Normal to shear ratio or Adhesive 

Poisson’s ratio. 

Adhesion is only available in the context menu and ribbon if

• Contact Pressure Method is set to Penalty in the Contact settings.

• Offset penalty function is not selected in the Contact settings.

An existing Adhesion node will be disabled if any of these settings are 
changed later.
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For Normal to shear ratio, enter the ratio between the shear stiffness and the normal 
stiffness .

For Adhesive Poisson’s ratio, enter Poisson’s ratio for the adhesive layer, v, explicitly.

D E C O H E S I O N

Select a Traction separation law. The default is No separation, in which case no 
decohesion will occur.

For Linear separation, Polynomial separation, or Multilinear separation enter:

• Tensile strength σIc. This is the peak stress in pure tension.

• Shear strength τIIc. This is the peak stress in pure shear.

• Tensile energy release rate GIc. This is the energy released during the whole 
decohesion process, in pure tension.

• Shear energy release rate GIIc. This is the energy released during the whole 
decohesion process, in pure shear.

For Linear separation or Polynomial separation, select the Failure criterion to be either 
Power law or Benzeggagh-Kenane. In either case, enter the Mode mixity exponent η.

For Multilinear separation enter the Shape factor λ.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Adhesion

Multibody Dynamics>Contact>Adhesion

Ribbon
Physics tab with Contact selected in the Model Builder tree:
Atributes>Adhesion

Bolt Pre-Tension

Use the Bolt Pre-Tension node to define the pre-stress force in pre-tensioned bolts. It 
is available for 3D models only.

nτ

• Adhesion and Decohesion, and Adhesion in the Structural Mechanics 
Modeling chapter.

• Adhesion and Decohesion in the Structural Mechanics Theory chapter.
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A default Bolt Selection subnode is automatically added. Use one such node to select 
each individual bolt. Additional Bolt Selection subnodes are available from the context 
menu (right-click the parent node) or from the Physics toolbar, Attributes menu. 

The Bolt Pre-Tension node is only available with some COMSOL products (see http:/
/www.comsol.com/products/specifications/).

B O L T  P R E - T E N S I O N

Select a Pre-tension type — Pre-tension force (the default) or Pre-tension stress.

• For Pre-tension force enter a value or expression for Fp, the pre-tension force in the 
bolt.

• For Pre-tension stress enter a value or expression for σp, the pre-tension stress in the 
bolt. The pre-tension force is computed through multiplication by the actual area 
of each selected bolt.

• Pre-tensioned Bolts in the Structural Mechanics Modeling chapter for 
an complete description of how to model pre-tensioned bolts.

• Bolt Pre-Tension Study for information about the Bolt Pre-Tension 
study type.
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S O L V E R  S U G G E S T I O N

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Bolt Pre-Tension

Ribbon
Physics tab with Solid Mechanics selected in the Model Builder tree:
Global>Bolt Pre-Tension

Bolt Selection

The Bolt Selection subnode is automatically added as a default node to the Bolt 
Pre-Tension node. It is used for selecting the bolts. One Bolt Selection node is required 
for each bolt.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define a cross section of a single bolt. 
This cross section must be an internal boundary. It is the section where the stress in 
the bolt is measured.

This section is present only in models created in versions prior to 5.3, in 
which the new Bolt Pre-Tension study type was introduced. The purpose is 
to maintain backwards compatibility for older models.

Select Solve in bolt pre-tension study only check box to make the bolt 
pre-tension degrees of freedom behave as in a version 5.3 model, that is 
being solved for only in a study step of the Bolt Pre-Tension type. By 
default, the check box is cleared, and then the bolt pre-tension degrees of 
freedom are solved for in any type of study step, unless you explicitly 
suppress that.

The settings of the Solve in bolt pre-tension study only check box only 
affects new study sequences being generated. Existing study sequences 
will keep the current state for the bolt pre-tension degrees of freedom.

Once you select the Solve in bolt pre-tension study only check box, the 
Solver Suggestion section will be hidden. Thus, it is not possible to clear 
the check box again. The degrees of freedom created under this Bolt 

Pre-Tension node from now on assumes the version 5.3 behavior.
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B O L T  S E L E C T I O N

Enter a Bolt label. The default is Bolt_1. The label is used for identification during 
postprocessing.

S Y M M E T R Y  D E T E C T I O N

If a bolt is cut by a symmetry plane, the force in the modeled part is only half of the 
force in the real bolt. When Automatic symmetry detection is selected, this is 
compensated for. The program will then automatically detect when a bolt is located in 
a symmetry plane, and apply corrections.

• If the input of the pre-tension load in the parent node is by Pre-tension force, the 
given force is interpreted as force for the whole bolt.

• All results are given for the whole bolt.

When Automatic symmetry detection is cleared, the inputs and outputs are based on the 
modeled cross section area. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Bolt Pre-Tension>Bolt Selection

Ribbon
Physics tab with Bolt Pre-Tension selected in the Model Builder tree:
Attributes>Bolt Selection

Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

As default, Automatic symmetry detection is selected. When opening 
models created in versions prior to 5.3, the check box is cleared in order 
to be compatible with the previous behavior.

Pre-tensioned Bolts in the Structural Mechanics Modeling chapter.
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For modeling the frequency response the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Enter the components of Load phase  in radians (for a pressure the load phase  is a 
scalar value). Add [deg] to a phase value to specify it using degrees.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Body Load>Phase

Solid Mechanics>Boundary Load>Phase

Solid Mechanics>Edge Load>Phase

Solid Mechanics>Point Load>Phase

Solid Mechanics>Rigid Connector>Applied Force>Phase

Solid Mechanics>Rigid Connector>Applied Moment>Phase

Solid Mechanics>Rigid Domain>Applied Force>Phase

Solid Mechanics>Rigid Domain>Applied Moment>Phase

Membrane>Body Load>Phase

Membrane>Face Load>Phase

Membrane>Edge Load>Phase

Membrane>Point Load>Phase

Multibody Dynamics>Body Load>Phase

Multibody Dynamics>Boundary Load>Phase

Multibody Dynamics>Edge Load>Phase

Multibody Dynamics>Point Load>Phase

φ

Ffreq F f( ) 2πft φ+( )cos⋅=

φ φ

Typically the load magnitude is a real scalar value. If the load specified in 
the parent feature contains a phase (using a complex-valued expression), 
the software adds the phase from the Phase node to the phase already 
included in the load.
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Multibody Dynamics>Rigid Connector>Applied Force>Phase

Multibody Dynamics>Rigid Connector>Applied Moment>Phase

Multibody Dynamics>Rigid Domain>Applied Force>Phase

Multibody Dynamics>Rigid Domain>Applied Moment>Phase

Ribbon
Physics tab with Body Load, Boundary Load, Face Load, Edge Load, Point Load, Applied 

Force, or Applied Moment selected:
Attributes>Phase

Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of non-zero 
prescribed displacements, rotations, velocities, or accelerations. This node is used if the 
study step contains frequency response of a perturbation type.

The settings are the same as in the parent Prescribed Displacement, Prescribed 
Velocity, Prescribed Acceleration, Prescribed Displacement/Rotation or Rigid 
Connector node. Only degrees of freedom selected as prescribed in the parent node 
can be assigned a value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Prescribed Displacement>Harmonic Perturbation

Solid Mechanics>Prescribed Velocity>Harmonic Perturbation

Solid Mechanics>Prescribed Acceleration>Harmonic Perturbation

Solid Mechanics>Rigid Domain>Prescribed Displacement/Rotation>Harmonic Perturbation

Solid Mechanics>Rigid Connector>Harmonic Perturbation

Membrane>Prescribed Displacement>Harmonic Perturbation

Membrane>Prescribed Velocity>Harmonic Perturbation

Membrane>Prescribed Acceleration>Harmonic Perturbation

Truss>Prescribed Displacement>Harmonic Perturbation

Truss>Prescribed Velocity>Harmonic Perturbation

Truss>Prescribed Acceleration>Harmonic Perturbation

Multibody Dynamics>Prescribed Displacement>Harmonic Perturbation

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.
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Multibody Dynamics>Rigid Domain>Prescribed Displacement/Rotation>

Harmonic Perturbation

Multibody Dynamics>Rigid Connector>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement, Prescribed Velocity, Prescribed Acceleration, 
Prescribed Displacement/Rotation, or Rigid Connector node selected in the model tree:
Attributes>Harmonic Perturbation

Stress Linearization

Use the Stress Linearization node to define a line (stress classification line; SCL) along 
which a linearization of the stress state will be made. A number of result variables are 
created for each SCL. Add one Stress Linearization node for each SCL along which you 
want to compute linearized stresses.

When a Stress Linearization node has been added, you do not need to compute a new 
solution. It is sufficient to perform an Update Solution to make the variables for the new 
SCL available.

The line selection can consist of several edges, but they are assumed to form a straight 
line from one free boundary to another. For 2D and 2D Axisymmetric geometries, the 
only input is the line selection. For 3D, you also need to specify the orientation of the 
local coordinate system in which the linearized stresses are represented.

The Stress Linearization node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/).

S E C O N D  A X I S  O R I E N T A T I O N

This section is present only in 3D. Here you specify the orientation of the local 
coordinate system in which the components of the linearized stress tensor are 
represented. The first direction is always along the SCL, and you indicate the second 
direction. The third direction is automatically formed by being orthogonal to the line 
and the second direction.

Select Reference point or Orientation vector. When a reference point is used, the second 
local direction will be in the plane formed by the SCL and the selected point. When an 
orientation vector is used, the second local direction will be directed in the plane 
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formed by the SCL and the selected orientation. The orientation is always adjusted so 
that it is orthogonal to the SCL.

• For Reference point, select Defined by — Point or Coordinates. When Point is used, 
select the reference point in the Second Axis Orientation Reference Point section. 
When Coordinates is used, enter the coordinates for the reference point in the 
Reference point defining local 2 direction table.

• For Orientation vector select Defined by — Edge or Coordinates. When Edge is used, 
select an edge in the geometry as orientation vector in the Second Axis Orientation 

Reference Vector section. When Coordinates is used, enter the orientation vector 
manually in the Orientation vector defining local 2 direction table.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Variables>Stress Linearization

Ribbon
Physics tab with Solid Mechanics selected in the Model Builder tree:
Global>Variables>Stress Linearization

Important Variables in the Solid Mechanics Interface

In each node in the physics interface, a number of variables are defined. In Table 4-11, 
you can find a list of variables that you as a user may want to use when, for example, 
creating your own variables and expressions. This list is far from exhaustive but 
contains some of the most commonly used variables. To see all variables defined by a 
certain node in the Model Builder tree, enable the Equation View, and examine the 
contents in the Equation View node under each physics node in the Model Builder tree.

The scopes of the variables in the table serve as examples only and assume the default 
first instance of a certain feature in the Model Builder tree. The actual scope will 
depend on the tag of a certain node in the model tree.

In the case of vectors and tensors, only a single component is shown. The actual indices 
can depend on the dimensionality of the problem and names of coordinate system axis 
directions.

• Stress Linearization in the Structural Mechanics Modeling Chapter.

• Stress Linearization in the Structural Mechanics Theory Chapter.
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Variables created in contact analysis are summarized in Dependent Variables in Contact 
Analysis and Important Contact Variables

In the COMSOL Multiphysics Reference Manual:

• For more information about the Equation View node, see Equation 
View 

• For more information about variable scopes, see Variable Naming 
Convention and Namespace.

• For more information about tags in the model tree, see Displaying 
Node Names, Tags, and Types in the Model Builder.

TABLE 4-11:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS

solid.disp Total displacement All materials1

solid.vel Velocity magnitude All materials1

solid.u_tX Velocity, X 
component

All materials1

solid.acc Acceleration 
magnitude

All materials1

solid.u_ttX Acceleration, X 
component

All materials1

solid.eXX Strain tensor, XX 
component

All materials1 Total 
(Green-Lagrange) 
strain in global 
directions. See 
also Deformation 
Measures.

solid.el11 Strain tensor, local 
coordinate system, 11 
component

All materials1 Total strain in the 
local directions.

solid.eel11 Elastic strain tensor, 
local coordinate 
system, 11 
component

All materials1
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solid.eeldev11 Deviatoric elastic 
strain tensor, local 
coordinate system, 11 
component

All materials1

solid.eiel11 Inelastic strain tensor, 
local coordinate 
system, 11 
component

All materials1 See also Inelastic 
Strain 
Contributions.

solid.FdxX Deformation gradient, 
xX component

All materials1 See also 
Deformation 
Measures.

solid.Fdlx1 Deformation gradient, 
local, x1 component

All materials1

solid.J Volume ratio All materials1 Total relative 
volume change.

solid.Cel11 Elastic Cauchy-Green 
tensor, local 
coordinate system, 11 
component

All materials1

solid.Jel Elastic volume ratio All materials1 Elastic relative 
volume change.

solid.Ldxy Rate of strain tensor, 
xy component

All materials1 See also Strain 
Rate and Spin.

solid.Lwxy Spin tensor, xy 
component

All materials1 See also Strain 
Rate and Spin.

solid.SXX Second 
Piola-Kirchhoff stress, 
XX component

All materials1 See also Defining 
Stress.

solid.Sl11 Second 
Piola-Kirchhoff stress, 
local coordinate 
system, 11 
component

All materials1

solid.SdevX Deviatoric second 
Piola-Kirchhoff stress, 
X component

All material1 See also 
Invariants of the 
Stress Tensor.

solid.PxX First Piola-Kirchhoff 
stress, xX component

All materials1 See also Defining 
Stress.

TABLE 4-11:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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1 - All materials: Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, 
Piezoelectric Material, Magnetostrictive Material, Cam-Clay Material.

solid.sxy Stress tensor, xy 
component

All materials1 Cauchy stress, 
See also Defining 
Stress.

solid.sdevx Deviatoric stress 
tensor, x component

All materials1 Deviatoric 
Cauchy stress, 
See also 
Invariants of the 
Stress Tensor.

solid.mises von Mises stress All materials1 See also 
Invariants of the 
Stress Tensor.

solid.tresca Tresca stress All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I1s First principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I2s Second principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I3s Third principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.II2s Second invariant of 
stress deviator

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.II3s Third invariant of 
stress deviator

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.RFx Reaction force, x 
component

All materials1

solid.RMx Reaction moment, y 
component

All materials1

solid.Tax Traction (force/area), 
x component

All materials1

TABLE 4-11:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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S h e l l  a n d  P l a t e
This chapter describes the Shell and Plate interfaces, which are found under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for Shell and Plate Interfaces

• The Shell and Plate Interfaces
 587
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Th eo r y  f o r  S h e l l  a nd P l a t e  I n t e r f a c e s

The theory for the Shell and Plate interfaces is discussed in this section:

• About Shells and Plates

• Theory Background for the Shell and Plate Interfaces

• Reference for the Shell Interface

About Shells and Plates

A shell is a thin-walled structure in 3D where a simple form is assumed for the variation 
of the displacement through the thickness. Using this approximation, it is possible to 
develop a model for the deformation that is more similar to a 2D plane stress condition 
than to a full 3D state.

Plates are similar to shells but act in a single plane and usually with only out-of-plane 
loads. The plate and shell elements in COMSOL Multiphysics are based on the same 
formulation. The Plate interface for 2D models is a specialization of the Shell interface. 
In the following, the text fully describes the Shell interface, and the Plate interface is 
mentioned only where there are nontrivial differences.

A Shell interface can be active either on free surfaces embedded in 3D or on the 
boundary of a solid 3D object. In the latter case, it can be used to model a 
reinforcement on the surface of a 3D solid. A Plate interface can only be active on 
domains in 2D.

To describe a shell, you provide its thickness, a possible offset, and the elastic material 
properties.

The element used for the shell interface is of Mindlin-Reissner type, which means that 
transverse shear deformation is accounted for. It can thus also be used for rather thick 
shells. It has an MITC formulation where MITC means mixed interpolation of 

For a shell to give accurate results it is important that the structure can 
really be described as being thin-walled. When modeling using shells you 
should in general model the faces at the midplane of the real geometry. 
You can use the offset setting if the midsurface of the shell does not 
coincide with the boundary of your geometry.
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tensorial components. A general description of this element family is in Ref. 1.

The dependent variables are the displacements u, v, and w in the global x, y, and z 
directions, and the displacements of the shell normals ax, ay, and az in the global x, y, 
and z directions.

Figure 5-1: The degrees of freedom in the shell interface. N is the normal vector in the 
original configuration and n is the normal in the deformed state.

The degrees of freedom represent the displacements on the reference surface. The 
reference surface is the boundary where the shell element mesh is created. If an offset 
property is used, the reference surface differs from the physical shell midsurface. The 
displacement vector on the midsurface, u, can be expressed as 

where uR is the displacement on the reference surface (the displacement degrees of 
freedom) and ζ0 is the offset. The rotational displacement a is the same on both 
midsurface and reference surface. 

u uR ζ0a+=
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For input and output, the Shell interface to a large extent replaces the displacements 
of the shell normals by the more customary rotations θx, θy, and θz about the global 
axes. For a geometrically linear analysis, the relation between normal displacement and 
rotation vector is simple:  where n is the unit normal of the shell.

For a standard plate analysis only three degrees of freedom are needed: the 
out-of-plane displacement w and the displacements of the shell normals ax and ay. It 
is also possible to activate all six degrees of freedom, so that any type of analysis of a 
shell initially positioned in the xy-plane can be performed using the Plate interface. 
Using six degrees of freedom is the default, but three degrees of freedom can be 
selected instead for efficiency. 

Also for plates, the rotations θx, θy (and possibly θz) are used to a large extent.

Theory Background for the Shell and Plate Interfaces

Several topics are discussed in this section:

a θ n×=

When six degrees of freedoms are used in the Plate interface, there must 
be enough constraints to suppress any in-plane rigid body motions.

In the Shell interface, the coordinates are usually denoted with lower case 
letters (x, y, z). If a Solid Mechanics or Membrane interface is present in 
the same model, then it becomes necessary to make a difference between 
the material frame and the spatial frame (Material and Spatial 
Coordinates). In this case the coordinates in the Shell interface changes 
to (X, Y, Z).

• Geometry and Deformation

• Strains

• Offset

• Rotation Representation

• The MITC Shell Formulation

• Initial Values and Prescribed Values

• Symmetry and Antisymmetry 
Boundary Conditions

• External Loads

• Stress and Strain Calculations

• Local Coordinate Systems

• Connection Between Shells and 
Solids

• Connection Between Shells and 
Beams
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G E O M E T R Y  A N D  D E F O R M A T I O N

Let r be the undeformed shell midsurface position, ξi be element local (possibly 
nonorthogonal) coordinates with origin in the shell midsurface, and n be the normal 
to the undeformed midsurface. The thickness of the shell is d, which can vary over the 
element. The local coordinates ξ1 and ξ2 follow the midsurface, and ξ3 is the 
coordinate in the normal direction. The normal coordinate has a value of −d/2 on the 
bottom side of the element, and +d/2 on the top side.

The position of the deformed midsurface is r + u, and the normal after deformation is 
n + a. To keep the normal a unit vector requires that

 (5-1)

In a geometrically linear analysis Equation 5-1 is replaced by the simpler linearized 
form

since the formulation in that case assumes that

The vectors r, u, n, and a are interpolated by the nth-order Lagrange basis functions. 
The basic assumption is that the position of a point within the shell after deformation 
has a linear dependence of the thickness coordinate, and thus is

The superscripts indicate contravariant indices, while subscripts indicate covariant 
indices.

S T R A I N S

The in-plane Green-Lagrange strain in the local covariant components can then be 
written as

The indices α and β range from 1 to 2. The transverse shear strains in local covariant 
components are

n a+ 1=

n a⋅ 0=

a 1«

x ξ1 ξ2 ξ3, ,( ) r ξ1 ξ2( , ) u ξ1 ξ2( , ) ξ3 n ξ1 ξ2( , ) a ξ1 ξ2( , )+( )+ +=

εαβ
1
2
---

ξα∂

∂ r u ξ3 n a+( )+ +( )
ξβ∂

∂ r u ξ3 n a+( )+ +( )⋅

ξα∂
∂ r ξ3n+( )

ξβ∂
∂ r ξ3n+( )⋅

–

γαβ ξ3χαβ ξ3( )
2
καβ+ +

=

=

T H E O R Y  F O R  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  591



592 |  C H A P T E
The constitutive relation for the shell elements is a plane stress assumption, as is 
customary in shell theory. The strain component in the normal direction ε33 is thus 
irrelevant. The different parts of the strain tensors above can be written out as

In a geometrically linear analysis, the nonlinear terms (products between u, a, and 
their derivatives) disappear. In all study types, the contributions from the parts καβ and 
ωα are ignored. They are small unless the element has an extremely high ratio between 
thickness and radius of curvature, in which case the errors from using shell theory are 
large anyway.

O F F S E T

It is possible to model a shell with a midsurface that is not located at the meshed 
surface but at a certain offset from it. The offset is assumed to occur along the normal 
of the shell surface. In this case,

ε3α εα3

1
2
---

ξα∂
∂ r u ξ3 n a+( )+ +( ) n a+( )⋅

ξα∂
∂ r ξ3n+( ) n⋅– ζα ξ3ωα+

= =

=

γαβ
1
2
--- u∂

ξα∂
--------- r∂

ξβ∂
-------- r∂

ξα∂
--------- u∂

ξβ∂
-------- u∂

ξα∂
--------- u∂

ξβ∂
--------+ +=

χαβ
1
2
--- r∂

ξα∂
--------- a∂

ξβ∂
-------- a∂

ξα∂
--------- r∂

ξβ∂
-------- u∂

ξα∂
--------- n∂

ξβ∂
-------- n∂

ξα∂
--------- u∂

ξβ∂
-------- u∂

ξα∂
--------- a∂

ξβ∂
-------- a∂

ξα∂
--------- u∂

ξβ∂
--------+ + + + +=

καβ
1
2
--- a∂

ξα∂
--------- n∂

ξβ∂
-------- n∂

ξα∂
--------- a∂

ξβ∂
-------- a∂

ξα∂
--------- a∂

ξβ∂
--------+ +=

ζα
1
2
--- r∂

ξα∂
--------- a⋅ u∂

ξα∂
--------- n⋅ u∂

ξα∂
--------- a⋅+ +=

ωα
1
2
--- n∂

ξα∂
--------- a⋅ a∂

ξα∂
--------- n⋅ a∂

ξα∂
--------- a⋅+ +=

Note that  here is a strain component, not to be confused with the 
local coordinate in the normal direction or offset.

ζα

r ξ1 ξ2( , ) rR ξ1 ξ2( , ) ζon ξ1 ξ2( , )+=
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where rR is the position of the meshed reference surface and ζo is the offset distance.

Since all geometric derivatives are computed at the mesh on the reference surface, the 
following type of expressions are used when evaluating the strains:

The degrees of freedom are located on the reference surface.

All loads and boundary conditions are assumed to be applied at the midsurface, so a 
force acting in the plane of the shell does not cause any bending action if there is an 
offset.

The numerical integration of the element is performed over the reference surface. If 
the shell is curved, the area of the actual midsurface and the reference surface differ. 
This is compensated for by multiplying the weak expressions with an area scale factor, 
defined as

Any expressions depending on the coordinates are evaluated on the shell reference 
surface.

R O T A T I O N  R E P R E S E N T A T I O N

In a geometrically linear analysis, a rotation vector is defined as

In a geometrically nonlinear analysis, the rotation vector axis is defined by

while the amplitude of the rotation vector is computed as

r∂
ξα∂

---------
rR∂

ξα∂
--------- ζo

n∂

ξα∂
---------+=

ASF ξ1∂
∂r

ξ2∂
∂r×

ξ1∂

∂rR

ξ2∂

∂rR×

----------------------------=

θ n a×=

eθ
n a×
n a×
-----------------=

θ 1 n a⋅+( )acos=
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This representation is unique only for rotations up to 180 degrees, but since the 
rotation vector representation is only an output convenience, it has no impact on the 
analysis.

T H E  M I T C  S H E L L  F O R M U L A T I O N

The MITC formulation (Ref. 1) does not take the strain components directly from the 
shape functions of the element. Instead, meticulously selected interpolation functions 
are selected for the individual strain components. The values of the interpolated strains 
are then at selected points in the element tied to the value that would be computed 
from the shape functions. The interpolation functions and tying points are specific to 
each element shape and order.

Each contribution to the virtual work of the element is numerically integrated over the 
reference surface while the integration in the thickness direction is performed 
analytically. The computation of the strain energy from transverse shear deformations 
uses a correction factor of 5/6 to compensate for the difference between the assumed 
constant average shear strain and the true parabolic distribution.

In regions where the discretized surface is smooth (which is always the case for plates), 
the normal of the shell surface is uniquely defined. When two or more shell elements 
meet at an angle, each element must however keep its own normal direction. It is thus 
not possible to have the same set of degrees of freedom for the displacement of the 
normal in such a point. This is automatically handled by the program. The automatic 
search for these fold lines compares the normals of all boundaries sharing an edge. If 
the angle between the normals is larger than a certain angle (with a default of 
3 degrees) it is considered as a fold line. For a fold line, the assumption is that the angle 
between the shell normals remains constant. This gives

or

 (5-2)

where the values or j and k range over the number of shells elements with different 
normals. The third term in Equation 5-2 is relevant only in a large deformation analysis 
because it is nonlinear. A special case occurs when two adjacent boundaries are parallel 
but their normal vectors have opposite directions. In this case the special constraint

nj nk⋅ nj aj+( ) nk ak+( )⋅=

nj ak⋅ aj nk⋅ aj ak⋅+ + 0=

ak a– j=
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is applied along their common edge.

I N T E G R A T I O N

All volume integrals over a shell element are split into a surface integral, which is 
performed numerically, and a thickness direction integral which is performed 
analytically. It is thus not possible to enter data which depend on the thickness 
direction. All material properties are evaluated at the reference surface. Formally this 
can be written as

All functions of ζ are assumed to be of the form ζn. Odd powers will integrate to zero, 
so typically the cross thickness integration will give factors d (for the case n=0) and 
d3/12 (for the case n=2). The thickness d can be a function of the position.

I N I T I A L  V A L U E S  A N D  P R E S C R I B E D  V A L U E S

Because the normal vector displacements are quantities which are less intuitive than the 
more customary nodal rotations, it is possible to specify the prescribed values in terms 
of nodal rotations as well as in terms of the normal vector displacement. The 
representation by normal vector direction is insensitive to whether the analysis is 
geometrically nonlinear or not. The direction of the shell normal is prescribed in the 
deformed state, n0. The prescribed values for the actual degrees of freedom, a0, are 
internally computed as

If the rotation vector input is used, and the analysis is geometrically linear, then

where Ω0 is the vector of prescribed nodal rotations. This relation is fully defined only 
when all three components of Ω0 are given. It is also possible to prescribe only one or 
two of the components of Ω0, while leaving the remaining components free. Because 
it has no relevance to prescribe the rotation about the normal direction of the shell, it 
is only possible prescribe individual rotations in a shell local system. In this case, the 
result becomes one or two constraint relations between the components of a0. The 
directions are the edge local coordinate system where t1 is the tangent to the edge and 

f ξ1 ξ2 ξ3, ,( ) Vd
V
 f1 ξ1 ξ2,( )f2 ξ3( ) ςd Ad

d– 2⁄

d 2⁄


A
 f1 ξ1 ξ2,( )F2 d( ) Ad

A
= =

a0
n0
n0
--------- n–=

a0 Ω0 n×=
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t2 is perpendicular and inward from the edge, in the plane of the shell. These 
constraints are formulated as 

Here Ω0i is the prescribed rotation around the axis ti.

In a geometrically nonlinear analysis, it is not possible to prescribe individual elements 
of the rotation vector. If only one or two components have been specified, the 
remaining components are set to zero. The actual degrees of freedom are then 
computed as

where R is a standard rotation matrix, representing the finite rotation about the given 
rotation vector.

Initial velocities are always given using an angular velocity vector ω as

S Y M M E T R Y  A N D  A N T I S Y M M E T R Y  B O U N D A R Y  C O N D I T I O N S

It is possible to prescribe symmetry and antisymmetry boundary conditions. As a 
default, they are expressed in a shell local coordinate system. If applied to a boundary, 
the normal to the shell is assumed to be the normal to the symmetry or antisymmetry 
plane. The conditions are

for the symmetry case and

for the antisymmetry case. Here t1 and t2 are two perpendicular directions in the plane 
of the shell.

t2 a0⋅ Ω– 01=

t1 a0⋅ Ω02=

a0 R Ω0( ) I–( )n=

a· ω n a0+( )×=

u n⋅ 0=

a t1⋅ 0=

a t2⋅ 0=

u t1⋅ 0=

u t2⋅ 0=
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When applied to an edge, there is a local coordinate system where t1 is the tangent to 
the edge, and t2 is perpendicular and in the plane of the shell. The assumption is then 
that t2 is the normal to the symmetry or antisymmetry plane. The constraints are

for the symmetry case and

for the antisymmetry case.

When symmetry or antisymmetry conditions are specified in a general coordinate 
system with axis directions ei, i = 1, 2, 3 with e1 as the normal to the 
symmetry/antisymmetry plane the constraints are 

or the symmetry case and

for the antisymmetry case. Using a general coordinate system sometimes leads to 
higher accuracy, since there is no element interpolation of the constraint directions 
involved.

E X T E R N A L  L O A D S

Contributions to the virtual work from the external load is of the form

u t2⋅ 0=

a t2⋅ 0=

u n⋅ 0=

u t1⋅ 0=

a t1⋅ 0=

u e1⋅ 0=

a e2 n×( )⋅ 0=

a e3 n×( )⋅ 0=

u e2⋅ 0=

u e3⋅ 0=

a e1 n×( )⋅ 0=
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where the forces (F) and moments (M) can be distributed over a boundary or an edge 
or concentrated in a point. The contribution from the normal vector displacement a 
is only included in a geometrically nonlinear analysis. Loads are always referred to the 
midsurface of the element. In the special case of a follower load, defined by its pressure 
p, the force intensity is

For a follower load, the change in midsurface area is not taken into account, in order 
to be consistent with the assumption that thickness changes are ignored.

S T R E S S  A N D  S T R A I N  C A L C U L A T I O N S

The strains calculated in the element are, as described above, the covariant tensor 
components. They have little significance for the user, and are internally transformed 
to a Cartesian coordinate system. This system can be global or element local. The 
stresses are computed by applying the constitutive law to the thus computed strain 
tensor.

Each part of the covariant strain (γαβ, χαβ, ζα) is transformed separately. They 
correspond to membrane, bending, and shear action, respectively, and it is thus 
possible to separate the stresses from each of these actions. The membrane stress is 
defined as 

where D is the plane stress constitutive matrix, Ni are the initial membrane forces, and 
γi the initial membrane strains. The influence of thermal strains is included through the 
midsurface temperature Tm, and the hygroscopic swelling through the midsurface 
moisture concentration, cm.The membrane stress can be considered as the stress at the 
mid-surface, or as the average through the thickness.

The bending stress is defined as

where χi is the initial value of the bending part of the strain tensor (actually: the 
curvature), and Mi are the initial bending and twisting moments. ΔT is the 
temperature difference between the top and bottom surface of the shell, and Δcmo is 

utest F⋅ atest M n a+( )×[ ]⋅+

F p n a+( )–=

σm D γ γi– α Tm Tref–( )– βh cm cmo,ref–( )–[ ]
Ni
d
------+=

σb
Dd
2

-------- χ χi– αΔT
d

--------– βh
Δcmo

d
-------------–

6Mi

d2
-----------+=
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the difference in moisture concentration between the top and bottom. The bending 
stress is the stress at the top surface of the shell if no membrane stress is present.

The average transverse shear stress is defined as

where G represent the transverse shear moduli, ζi is the initial average shear strain, and 
Qi are the initial transverse shear forces. The correction factor 5/6 ensures that the 
stresses are averaged so that they correspond to the ratio between shear force and 
thickness. The corresponding strains ζ and ζi are averaged in an energy sense.

The actual in-plane stress at a certain level in the element is then

where z is a parameter ranging from −1 (bottom surface) to +1 (top surface). The 
computation of the shear stress at a certain level in the element uses the following 
analytical parabolic stress distribution:

The shell section forces (membrane forces, bending moments, and shear forces) are 
computed from the stresses as

L O C A L  C O O R D I N A T E  S Y S T E M S

Boundaries
Many quantities for a shell can best be interpreted in a local coordinate system aligned 
to the shell surface. Material data and initial stresses and stress results are always 
represented in this local coordinate system. You specify the orientation of the local 
directions in a Shell Local System node under the Linear Elastic Material.

σs
5
6
--- 2G ζ ζi–( )⋅

Qi
d
------+=

σ σm zσb+=

3σs 1 z2
–( )

2
-----------------------------

N dσm=

M d2

6
------σ

b
=

Q dσs=
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The local system for stress output coincides with the orientations defined for the 
material input. Stresses are also available transformed to the global coordinate system.

The definition of the local shell surface coordinate system is as follows:

1. The local z direction ezl is the positive normal of the shell surface.

2. The local x direction exl is the projection of the first direction in the material 
coordinate system (ex1) on the shell surface

This projection cannot be performed if ex1 is normal to the shell. In that case the 
second axis ex2 of the material system instead defines exl using the same procedure. 
Thus, if

then

3. At last, the second in-plane direction is generated as

This procedure is followed irrespective of whether a global or a local coordinate system 
defines the directions.

Note the following:

• When using an isotropic material, the only effect of selecting a local coordinate 
system is that the definition directions of local stresses change.

• When defining orthotropic and anisotropic materials, local coordinate systems do 
not need to be created so that they exactly follow the shell surface. It is sufficient 
that the local system when projected as described above gives the intended in-plane 
directions.

• For shells in the X-Y plane, and for plates, the global and local directions coincide 
by default.

exl
ex1 ex1 ezl⋅( )ezl–

ex1 ex1 ezl⋅( )ezl–
----------------------------------------------------=

ex1 ezl 0.99>⋅

exl
ex2 ex2 ezl⋅( )ezl–

ex2 ex2 ezl⋅( )ezl–
----------------------------------------------------=

eyl ezl exl×=
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• On curved shells, local stress components can become discontinuous if there is a 
location where ex1 becomes perpendicular to the shell surface.

• In this section, every reference to stresses is equally valid for strains.

Local edge system
Many features, such as an edge load, allow input in an edge local coordinate system. 
The orthogonal local edge coordinate system directions xl, yl, and zl are defined so 
that:

• The first direction (xl) is along the edge. This direction can be visualized by 
selecting the Show edge directions arrows check box in the View settings.

• The third direction (zl) is the same as the shell normal direction. The shell normal 
direction can be visualized in the default plot named Undeformed geometry, or by 
adding a Coordinate System Surface plot and selecting the Shell, Local System.

• The second direction (yl) is in the plane of the shell and orthogonal to the edge. It 
is formed by the cross product of zl and xl; .

When an edge is shared between two or more boundaries, the directions may not 
always be unique. It is then possible to use the control Face Defining the Local Edge 

System to select from which boundary the normal direction zl should be picked. The 
default is Use face with lowest number. If the geometry selection contains several edges, 
the only available option is Use face with lowest number, since the list of adjacent 
boundaries would then be different for each edge.

R E S U L T S  E V A L U A T I O N

For visualization and results evaluation, predefined variables include all nonzero stress 
and strain tensor components, principal stresses and principal strains, in-plane and 
out-of-plane forces, moments, and von Mises and Tresca effective stresses. It is 
possible to evaluate the stress and strain tensor components and effective stresses at an 
arbitrary distance from the midsurface. The parameter zshell (variable name shell.z) 
is found in, for example, the Parameters table of the Settings window of for example a 
surface plot. Its can be set to a value from −1 (downside) to +1 (upside). A value of 0 
means the midsurface of the shell. The default value is given in the Default 

through-thickness result location section of the Shell interface.

Stresses and strains are available both in the global coordinate system and in the shell 
local system as described in Local Coordinate Systems.

yl zl xl×=
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R I G I D  D O M A I N  F O R  S H E L L S

The inertial properties mass (m) and moment of inertia tensor (I) of a rigid shell takes 
the finite thickness into account. They are computed as:

where  and  are the identity matrix and the center of mass of the rigid domain, 
respectively. The last term in I is accounting for the finite thickness, and there the fact 
that  has been taken into account.

C O N N E C T I O N  B E T W E E N  S H E L L S  A N D  S O L I D S

This section describes the theory and assumptions behind the multiphysics couplings 
Solid-Shell Connection and Solid-Beam Connection. Only the shell version of the 
connection is described in detail, since the beam version is a direct specialization to 2D.

There are three types of connections between a shell and a solid of interest:

• Type 1 connection: The shell connects to the solid in a thin region (having the same 
thickness as the shell), so that shell theory is valid on both sides. This connection is 
the most important from the application point of view and the most difficult to 
create manually.

m ρ Vd
V
 ρd Ad

A
= =

XM
1
m
----- ρX Vd

V
 1

m
----- ρ r ςn+( ) Vd

V
 1

m
----- ρdr Ad

A
= = =

I X XM–( )T X XM–( )⋅( )E3 X XM–( ) X XM–( )T⋅–( )ρ Vd
V
= =

r XM–( )T r XM–( )⋅( )E3 r XM–( ) r XM–( )T⋅–( )ρd Ad
A
 +

E3 nnT
–( )ρd3

12
------ Ad

A


E3 XM

nT n⋅ 1=

Solver Settings
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• Type 2 connection: The tangent plane to the shell is perpendicular to the face of a 
‘thick’ solid, in which case the physics of the connection can, at best, be 
approximative.

• Type 3 connection: The shell acts as cladding on a solid. 

The first two cases have similar physics and can be treated more or less as one case. 
Usually, the shell should not connect to parts on the solid boundary further away than 
what is represented by the shell thickness (or some other user-defined distance).

Shell Perpendicular to Solid
Figure 5-2 illustrates the first two cases. The shell edge can be part of the definition of 
the solid but there is no assumption about that.

Figure 5-2: An example of a shell extending perpendicular to the solid boundary.

The connection of a solid to a shell is based on that shell theory is valid on both sides 
of the connection. This can be divided into these assumptions:

• The dimension of the solid in the shell thickness direction is the same as the 
thickness variable in the shell, shell.d.

• The midsurface of the shell to be connected to the solid is positioned at the 
midsurface of the solid. The reference surface of the shell can be placed anywhere.

• The cut in the solid is orthogonal to the tangent of the shell (that is, the shell normal 
vector is in the plane of the cut).

• Basic shell theory assumptions are valid, for example, the direct stress in the 
transverse direction is negligible.

One basic shell theory assumption is actually not valid in practice: plane sections do 
not always remain plane under deformation. A detailed analysis shows that if there is a 
transverse shear force in the section, there must be a deviation from planarity to get the 
correct shear strain distribution. This is more important as the shell grows thicker, but 
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without it, it is not possible to get a perfect connection. In Mindlin plate theory, shear 
is related to the difference between rotation and the derivative of displacement, so that 
plane sections remain plane, but no longer perpendicular to the midsurface. This gives 
an average shear strain, while it is known from analytical solutions that the shear strain 
has a parabolic distribution through the thickness.

Consider a cut where the local coordinates are defined as follows:

• x′ is the outward normal to the solid boundary

• z′ is along the shell normal

• y′ is the tangent to the shell edge, directed so that x′-y′-z′ form a right-hand system

Using the plane section assumption in the shell gives the displacements in the solid as:

where the subscripts sld and sh represent ‘solid’ and ‘shell’, respectively, and a′ is the 
displacement of the shell normal, represented in the local directions.

The values on the solid boundaries should be interpreted as mapped using an extrusion 
operator from the shell edge.

A simple connection for the transverse direction can be generated by

This connection, however, enforces a ‘plane strain condition’ in the solid, which is not 
consistent with shell theory and which causes local unphysical stresses if Poisson’s ratio 
is nonzero. This effect disappears within a few elements from the connection, and the 
approximation can, in many situations, be acceptable. This constraint is enforced if 
Method is set to Rigid in the multiphysics coupling.

A more accurate connection is derived in the following. The first approximation of the 
stress state in a moderately curved shell is

u'sld y' z'( , ) u'sh y' 0( , ) z'a'x y' 0( , )+=

v'sld y' z'( , ) v'sh y' 0( , ) z'a'y y' 0( , )+=

w'sld y' z'( , ) w'sh y' 0( , )=
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where the relative thickness coordinate  has been introduced.

Assuming that Hooke’s law and plane stress conditions are valid, the transverse direct 
strain can be computed as

The transverse displacement is then, after integration with respect to z′: 

Thus, in order to obtain a stress-free transverse displacement, this deformation must 
be allowed. Note that the last term makes the solid thinner on one side of the 
midsurface and thicker on the other. The constant term—that is, the displacement at 
the midsurface of the solid—is known from the shell midsurface displacement. The 
other two terms depend on the stress state and thus on derivatives of the displacement, 
which are not readily available. The K1 term is caused by the membrane action and the 
K2 term by the bending action.

For the transverse shear stress, Hooke’s law gives

which can be reformulated as

Note that as the K1 term is related to membrane action, it cannot contribute to the 
transverse shear stress. Since the derivative in the x′ direction cannot be controlled by 

σx' A1 B1z'+=

σy' A2 B2z'+=

σz' 0=

τx'y' B3z'=

τx'z' C1 1 z2
–( )=

τy'z' C2 1 z2
–( )=















z 2z'
d

-------=

εz'
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E
---- σx' σy'+( )– K1 x' y'( , ) 2K2 x' y'( , )z'+= =
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a condition on the boundary, it is necessary to make an assumption about u′(z′). An 
integration with respect to z′ gives 

This shows that a third power of z′ is required in order to be able to represent the 
correct shear strain contribution.

It is, however, not possible to directly determine the coefficients in front of the 
additional terms, since they depend on the actual stress state. The idea is here to 
introduce them as dependent variables in the problem. These variables are defined by 
extra shape functions on the shell edge.

The constraints applied on the solid can then be written as

Here qu, qw1, and qw2 are the new dependent variables defined on the shell edge. They 
are dimensionless, due to the multiplication with the shell thickness, d. The constants 

 and are explained below. The variable qw1 is proportional to 
the membrane axial strain, the variable qw2 is proportional to the bending strain, and 
the variable qu is proportional to the transverse shear strain. Since these variable are 
directly related to strains, the shape function order used is one order lower than for the 
displacements.

If no extra equations defining qu, qw1, and qw2 are introduced, these variables try to 
adapt to proper values through the reaction forces on the solid. The reaction force for 
u′ is the traction σx′ and the reaction force for w′ is the traction τx′z′. When taking the 
variation of the new dependent variables, these enforce the following constraints:

u' M0 x' y'( , ) M1 x' y'( , )z'+ M3 x' y'( , )z'3+=

u'sld y' z'( , ) u'sh y' 0( , ) z'a'x y' 0( , ) qu y' 0( , ) z3 kuz–( )d+ +=

v'sld y' z'( , ) v'sh y' 0( , ) z'a'y y' 0( , )+=

w'sld y' z'( , ) w'sh y' 0( , ) qw1 y' 0( , )zd qw2 y' 0( , ) z2 kw2–( )d+ +=

ku 3 5⁄= kw2 1 5⁄=
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The equation with qw1 is trivially fulfilled because the shear stress is an even function 
of z′. Inserting the known stress distributions gives equations that can be solved for ku 
and kw2.

The constraint expressions must now be formulated in global directions. As a start, the 
constraints are written on vector form in local directions as 

 (5-3)

where 

The fact that  has been used when formulating Equation 5-3.

All coordinate directions are retrieved from the shell, because the normal to the solid 
boundary is not necessarily constant.

The only coordinate value needed is actually z′. For the other two coordinates only the 
direction is important. The coordinate in the normal direction can be computed as 

test qu( ) z3 kuz–( )σx' z'd

d–
2

-------

d
2
----

 0=

test qw1( ) zτx'z' z'd

d–
2

-------

d
2
----

 0=

test qw2( ) z2 kw2–( )τx'z' z'd

d–
2

-------

d
2
----

 0=

u'sld u'sh z'a' q+ +=

q
qu y' 0( , ) z3 kuz–( )

0

qw1 y' 0( , )z qw2 y' 0( , ) z2 kw2–( )+

=

az' 0=

z' Xsld Xsh–( ) Nsh⋅=
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This definition of z′ assumes that the thickness of the solid does not change 
significantly. Under geometric nonlinearity, the computation should be based on the 
current geometry. 

The latter expression introduces additional nonlinearities in the model because it 
depends on deformed position and deformed normal. Also, the position of the shell 
midsurface with respect to the solid is actually part of the solution.

Let Φ be the matrix that transforms displacements from the global system to the local 
system:

The expression for the constraints in global directions then becomes 

The only transformation actually needed is thus the projection of the q vector. For a 
linear case, the transformation can be written as

where N is the undeformed shell normal (shell.an) and tl is the shell edge tangent 
(shell.tle). The coefficient s is either 1 or −1, and is selected so that the x′ direction 
coincides with the outward normal of the solid.

For a geometrically nonlinear case, the corresponding deformed directions are used.

When an offset is used for the shell, it is assumed that the center of the connection is 
at the actual shell midsurface.

Beam Perpendicular to Solid
This is the analogous case in 2D. Beam theory assumes that the stress in the 
out-of-plane direction is zero. It is thus only physically sound to connect to a model 
where the plane stress assumption is used. The derivation above still remains valid with 
the following exceptions: the displacements in the local y’ direction are zero and the 
tangent direction tl is replaced by the out-of-plane direction.

The shell thickness is replaced by twice the effective radius of the beam in the equations 
defining the displacements.

z' xsld xsh–( ) nsh⋅=

Φ ex' ey' ez'=

usld ΦTu'sld ΦT u'sh z'a' q+ +( ) ush z'a ΦTq+ += = =

Φ stl Nsh× stl Nsh=
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Shell Parallel to Solid
The case where the shell is parallel to the boundary of the solid exists in two versions 
- Shared and Parallel. 

In the shared case, the shell is modeled on a boundary which is a face of the solid. In 
this case, it assumed that the names of the displacement degrees of freedom in the solid 
and shell interfaces are not the same. If the same names are used, there is no need to 
use a connection feature, since the coupling is then automatic. A shell offset can be 
used to model an actual distance between the boundaries. For a layer ‘glued’ on the 
solid, the offset would equal half the shell thickness.

In the parallel case, a separate boundary is used for modeling the shell. The distance 
between the shell and the face of the solid is taken into account when setting up the 
constraints, so that

where ζ is a distance from the solid to the shell. The right hand side is mapped from 
the shell to the solid using an extrusion operator. The default is that ζ is half the shell 
thickness, but you can also use the geometrical distance between the boundaries, or a 
user defined distance.

C O N N E C T I O N  B E T W E E N  S H E L L S  A N D  B E A M S

When connecting elements from the Shell interface with elements from the Beam 
interface, the following must be noted:

• The rotational degrees of freedom have different definitions in the two interfaces. 
The Beam interface uses a rotation vector representation, whereas the Shell interface 
uses the normal vector displacements.

• In general, a shell element locally has three translational, but only two rotational, 
degrees of freedom. The rotation around the normal is not part of the shell theory 
and is constrained to zero. The corresponding rotational degree of freedom in a 
beam should not thus not be connected to the shell.

You can create the appropriate couplings by adding a Solid-Shell Connection 
multiphysics coupling. The theory of this connection is outlined below.

usld ushl ζa–=
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Beam Edge to Shell Edge
This coupling is intended for the common situation where beams are attached along a 
plate to act as stiffeners. There are two variants of the coupling:

• The beam is modeled at an edge which is also an edge in the beam interface. This 
case is called Shell and beam shared edges in the Shell-Beam Connection node. In 
practice, the beam is usually placed on one side of the shell, and this offset plays an 
important role in the stiffness of the combined section. The offset, d0, can be given 
as a user input.

• The beam is modeled at a separate edge, representing the actual center line. This 
case is called hell and beam parallel edges in the Shell-Beam Connection node, and the 
closest geometrical distance between the edges directly gives d0. You do not need 
to use the same mesh on both lines. Since the constraints are formed for the shell 
edge, some parts of the beams could however become unconnected if the beam 
elements are very short when compared to the shell element size.

The displacement at the centerline of the beam can then be written in therms of the 
degrees of freedom in the shell as

where n is the normal to the shell. The rotation vector in the beam can be expressed 
in the shell degrees of freedom as

For a geometrically linear case, the constraint

is enforced by the shell interface for each shell boundary. This is why there are only two 
active rotational degrees of freedom. To avoid propagating this constraint to the beam, 
only the those components of the beam that act in the plane of the shell should be 
constrained. This can be expressed as

which can be simplified to

ub us d0 n⋅( )a+=

θb n a×=

n a⋅ 0=

θb n a×–( ) ti       i⋅ 1 2,=

θb t1⋅ a t2⋅+ 0=

θb t2⋅ a t1⋅– 0=
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The constraints are actually formed on the shell edge, and the degrees of freedom are 
taken from the beam using a General Extrusion operator which maps values from the 
closest point on the beam to the shell.

The definitions of n, t1, and t2 may however be discontinuous over a shell edge. For 
this reason, the constraint is formed using values from one boundary only if several 
boundaries share the edge. Another complications arises when the edge is a fold line, 
that is when the boundaries that meet do not have a common normal direction. On a 
fold line all three rotational degrees of freedom do exist in the shell and should then 
be connected to the corresponding degrees of freedom in the shell. In this case, also a 
third rotational constraint is formed.

Beam Point to Shell Boundary
This coupling is intended for the case when the beam is not in the same plane as the 
boundary modeled by shell theory. This case is called Shell boundaries to beam points 

in the Shell-Beam Connection node. Physically, this can be seen as a beam with one end 
welded to a plate. In order to get a correct stiffness representation of such a 
connection, it is necessary that the beam is connected to an area of the shell which is 
similar to the actual physical width of the beam. The connected area on the shell does 
not have to fit a boundary in the geometry. It is however necessary that the mesh size 
is such that there are at least three nodes within the connected area.

You can then select the region to connect using three different criteria.

The connected region is treated as rigid. The displacement of the shell is controlled by 
the displacement and rotation of the beam endpoint through

The coordinates of the shell are evaluated at the reference surface.

As it is only possible to constrain the in-plane rotations of the shell, the continuity in 
rotation is projected onto the shell, giving

The rotation of the beam around the normal of the shell, which does not participate 
in the rotation constraints, is indirectly connected through the displacement equation, 
so it implicitly receives an appropriate stiffness.

us ub θb Xs Xb–( )×+=

θb t1⋅ a t2⋅+ 0=

θb t2⋅ a t1⋅– 0=
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Beam Point to Shell Edge
This case is identical to the previous case, with the only exception that the selection in 
the Shell interface is an edge. The beam can have any orientation relative to the shell 
edge. This case is called Shell edges to beam points in the Shell-Beam Connection node.

Reference for the Shell Interface

1. D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells—
Fundamentals, Springer-Verlag, Berlin Heidelberg, 2003.
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Th e  S h e l l  a nd P l a t e  I n t e r f a c e s

The Shell ( ) interface, found under the Structural Mechanics branch ( ) when 
adding a physics interface, is used to model structural shells on 3D boundaries. Shells 
are thin flat or curved structures, having significant bending stiffness. The interface 
uses shell elements of the MITC type, which can be used for analyzing both thin 
(Kirchhoff theory) and thick (Mindlin theory) shells. Geometric nonlinearity can be 
taken into account.

The Plate ( ) interface, found under the Structural Mechanics branch ( ) when 
adding a physics interface, provides the ability to model structural plates in 2D. Plates 
are thin flat structures with significant bending stiffness, being loaded in a direction 
out of the plane.

The Linear Elastic Material is the only available material model. It adds a linear elastic 
equation for the displacements and has a Settings window to define the elastic material 
properties.

When this interface is added, these default nodes are also added to the Model Builder—
Linear Elastic Material, Free (a boundary condition where edges are free, with no loads 
or constraints), and Initial Values. Then, from the Physics toolbar, add other nodes that 
implement, for example, boundary conditions. You can also right-click Shell or Plate to 
select physics features from the context menu. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is shell or plate.

The Shell interface is for 3D models.

The Plate interface is for 2D models—domains are selected instead of 
boundaries, and boundaries instead of edges. Otherwise the Settings 
windows are similar to those for the Shell interface.
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T H I C K N E S S

Define the Thickness d by entering a value or expression in the field. The default is 
0.01 m. Use the Change Thickness node to define a different thickness in parts of the 
shell or plate. The thickness can be variable if an expression is used.

Offset Definition

If the actual shell midsurface is not the boundary on which the mesh exists, it is 
possible to prescribe an offset in the direction of the surface normal by using an offset 
definition. The offset is defined as positive if the shell midsurface is displaced from the 
meshed boundary in the direction of the positive shell normal. 

Select an option from the Offset definition list—No offset (the default), Physical offset, 
or Relative offset. The default No offset means that the modeled boundary coincides 
with the shell midsurface.

• For Physical offset enter a value or expression in the zoffset field for the actual 
distance from the meshed boundary to the shell midsurface.

Figure 5-3: Meshed boundary indicated in red. The vector n indicates the positive 
orientation of the shell normal.

• For Relative offset enter a value or expression in the zrel_offset field for the offset as 
the ratio between the offset distance and half the shell thickness. A value of +1 means 
that the actual shell bottom surface is located on the meshed boundary, and a value 
of −1 means that the shell top surface is located on the meshed boundary.

This section is available for the Shell interface only. For theory, see Offset.
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Figure 5-4: Meshed boundary indicated in red.The vector n indicates the positive 
orientation of the shell normal.

S T R U C T U R A L  TR A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasi-static. Use Quasi-static to treat the dynamic behavior as quasi-static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasi-static is selected.

This is often the case when the time dependence exists only in some other physics, like 
a transient heat transfer problem causing thermal strains.

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the default coordinates for the Reference point for moment computation xref. The 
resulting moments (applied or as reactions) are then computed relative to this 
reference point. During the results and analysis stage, the coordinates can be changed 
in the Parameters section in the result nodes.

F O L D - L I N E  L I M I T  A N G L E

The fold-line limit angle α is the smallest angle between the normals of two boundaries 
that makes their intersection to be treated as a fold line. The normal to the shell is 
discontinuous along a fold-line. Enter a value or expression in the α field. The default 

Use the Change Thickness node to define a different offset in parts of the 
shell.

This section is available for the Shell interface only. Also see The MITC 
Shell Formulation.
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value is 0.05 radians (approximately 3 degrees). The value must be larger than 0, and 
less than π/2, but angles larger than a few degrees are not usually meaningful.

D E F A U L T  T H R O U G H - T H I C K N E S S  R E S U L T  L O C A T I O N

Enter a number between -1 and 1 for the Local z-coordinate [-1,1] for 

thickness-dependent results Z. The value can be changed from −1 (downside) to +1 
(upside). The default is +1. A value of 0 means the midsurface of the shell. This is the 
default position for stress and strain evaluation during the results analysis. During the 
results and analysis stage, the coordinates can be changed in the Parameters section in 
the result features.

A D V A N C E D  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
Normally these settings do not need to be changed.

The Use MITC interpolation check box is selected by default, and this interpolation, 
which is part of the MITC shell formulation, should normally always be active.

For the Plate interface, the Use 3D formulation check box is used to select whether six 
or three variables are used in the formulation. For geometrically nonlinear analyses, or 
when in-plane (membrane) forces are active, six variables must be used. This check box 
is selected by default.

If the Solve for out-of-plane strain components check box is selected, extra degrees of 
freedom will be added for computing the out-of-plane strain components. This 
formulation is similar to what is used for plane stress in the Solid Mechanics and 
Membrane interfaces and it is computationally somewhat more expensive than the 
standard formulation. In the default formulation, the out-of-plane strain in the shell is 
explicitly computed from the stress. This may cause circular references of variables if 
you for example want the constitutive law to be strain dependent. If you encounter 
such problems, use the alternative formulation.
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D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization.

Select the order of the Displacement field — Linear or Quadratic. The degrees of 
freedom for the displacement of the shell normals will always have the same shape 
functions as the displacements.

D E P E N D E N T  V A R I A B L E S

Both interfaces define two dependent variables (fields)—the displacement field u and 
the field of normal displacements ar. The names can be changed but the names of 
fields and dependent variables must in general be unique within a model. If you 
intentionally use the same name for fields from different physics interfaces, these 
degrees of freedom are treated as being the same. This can be used when mixing 
different type of structural mechanics interfaces, where you often want the 
displacements to be the equal.

• Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and 
Plate Interfaces

• Theory for Shell and Plate Interfaces

• Vibrations of a Disk Backed by an Air-Filled Cylinder: Application 
Library path 
Structural_Mechanics_Module/Acoustic-Structure_Interaction/coupled_vibr

ations_manual

• Pinched Hemispherical Shell: Application Library path 
Structural_Mechanics_Module/Verification_Models/pinched_hemispherical_s

hell
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Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and 
Plate Interfaces

The Shell and Plate Interfaces have the following domain, boundary, edge, point, and 
pair nodes available from the Physics ribbon toolbar (Windows users), Physics context 
menu (Mac or Linux users), or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Shell or Plate interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

The submenus at the Boundary (Shell interface) or Domain (Plate interface) level are

• Material Models

• Face and Volume Loads,

• Mass, Spring, and Damper

• Connections

• Face Constraints

The submenus at the Edge (Shell interface) or Boundary (Plate interface) level are

• Mass, Spring, and Damper

• Connections (Shell interface only)

• More Constraints

• Pairs

There is also the Points submenu.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes are described in this section (listed in alphabetical order):

• Antisymmetry

• Attachment

• Beam Connection

• Body Load

• Change Thickness

• Edge Load

• External Stress

• Face Load

• Hygroscopic Swelling

• Initial Values

• Initial Stress and Strain

• Linear Elastic Material

• No Rotation

• Periodic Condition

• Phase

• Pinned

• Point Load

• Point Mass

• Point Mass Damping

• Prescribed Acceleration 

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Rigid Connector

• Shell Local System

• Simply Supported

• Solid Connection

• Symmetry

• Thermal Expansion (for constraints)

• Thermal Expansion (for materials)

• Thermal Expansion (Attachment)

• Thermal Expansion (Rigid 
Connector)

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence. The exception is that “Pinned” and 
“No Rotation” boundary conditions do not override each other.
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These nodes are described in the documentation for the Solid Mechanics interface: 

Initial Values

The Initial Values node adds initial values for the translational displacement and velocity 
field as well as the for the normal displacement and velocity field. It can serve as an 
initial condition for a transient simulation or as an initial guess for a nonlinear analysis. 
In addition to the default Initial Values node always present in the interface, you can 
add more Initial Values nodes if needed.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values:

• Displacement field u (the displacement components u, v, and w)

• Velocity field 

• Added Mass

• Applied Force (Rigid Connector)

• Applied Moment (Rigid Connector)

• Damping

• Free

• Mass and Moment of Inertia (Rigid 
Connector)

• Fixed Constraint2

• Gravity1

• Predeformation

• Rigid Domain

• Rotating Frame1

• Spring Foundation

1 This is selected from the Face and Volume Loads submenu for this interface.

2 This is selected from the Face Constraints submenu for this interface.

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis 
in the COMSOL Multiphysics Reference Manual

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

∂u
∂t
------
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• Displacement of shell normals ar 

• Displacement of shell normals, first time derivative 

Context Menus
Shell>Initial Values

Shell>Boundaries>Initial Values

Plate>Initial Values

Plate>Domains>Initial Values

Ribbon
Physics tab with Shell selected:
Boundaries>Shell>Initial Values

Physics tab with Plate selected:
Domains>Plate>Initial Values

Change Thickness

Use the Change Thickness node to model regions with a thickness or offset other than 
the overall values defined in the interface Thickness section.

C H A N G E  T H I C K N E S S

Enter a value for the Thickness d. This value replaces the overall thickness for the 
boundaries selected above. The thickness can be variable if an expression is used.

Offset Definition
If the actual shell midsurface is not the boundary on which the mesh exists, it is 
possible to prescribe an offset in the direction of the surface normal by using an offset 
definition. The offset is defined as positive if the shell midsurface is displaced from the 
meshed boundary in the direction of the positive shell normal.

Select an option from the Offset definition list—From parent (the default), No offset, 

Physical offset, or Relative offset. The default From parent means that the offset is as 
defined in the Thickness section of the shell interface.

• For No offset it means that the modeled boundary coincides with the shell 
midsurface.

∂ar
∂t

----------
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• For Physical offset enter a value or expression in the zoffset field for the actual 
distance from the meshed boundary to the shell midsurface.

Figure 5-5: Meshed boundary indicated in red. The vector n indicates the positive 
orientation of the shell normal.

• For Relative offset enter a value or expression in the zrel_offset field for the offset as 
the ratio between the offset distance and half the shell thickness. A value of +1 means 
that the actual shell bottom surface is located on the meshed boundary, and a value 
of -1 means that the shell top surface is located on the meshed boundary.]

Figure 5-6: Meshed boundary indicated in red. The vector n indicates the positive 
orientation of the shell normal.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Change Thickness

Plate>Change Thickness

Ribbon
Physics tab with Shell selected:
Boundaries>Shell>Change Thickness

Physics tab with Plate selected:
Domains>Plate>Change Thickness

For theory, see Offset.
R  5 :  S H E L L  A N D  P L A T E



Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic shell and an 
interface for defining the elastic material properties. 

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress 

• Damping

A Shell Local System subnode is always added. In this node you specify the coordinate 
system in which material orientations and results are interpreted. You can add several 
Shell Local System nodes in order to control the local directions on different 
boundaries.

L I N E A R  E L A S T I C  M A T E R I A L

Select a linear elastic Solid model—Isotropic, Orthotropic, or Anisotropic and enter the 
settings as described for the Linear Elastic Material for the Solid Mechanics interface. 
Note that:

• For Orthotropic no values for Ez, νyz, or νxz need to be entered due to the shell 
assumptions.

• For User defined Anisotropic a 6-by-6 symmetric matrix is displayed. Due to the shell 
assumptions, you only need to enter values for D11, D12, D22, D14, D24, D55, D66, 
and D56.

• The material orientation is always interpreted in a local coordinate system aligned 
with the shell boundary as described in Local Coordinate Systems.

G E O M E T R I C  N O N L I N E A R I T Y

In this section there is always one check box. Either Force linear strains or Include 

geometric nonlinearity is shown.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are however some cases when you would still want 
to use a small strain formulation for a certain domain. In those cases, select the Force 
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linear strains check box. When selected, a small strain formulation is always used, 
independently of the setting in the study step. 

The default value is that the check box is cleared, except when opening a model created 
in a version prior to 4.3. In this case the state is chosen so that the properties of the 
model are conserved.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Material Models>Linear Elastic Material

Plate>Material Models>Linear Elastic Material

Ribbon
Physics tab with Shell selected:
Boundaries>Material Models>Linear Elastic Material

Physics tab with Plate selected:
Domains>Material Models>Linear Elastic Material

Shell Local System

The Shell Local System subnode is used for interpreting directions of orthotropic and 
anisotropic material data and when stresses or strains are presented in a local system.

The Include geometric nonlinearity check box is displayed only if the model 
was created in a version prior to 4.3, and geometric nonlinearity was 
originally used for the selected domains. It is then selected and forces the 
Include geometric nonlinearity check box in the study step to be selected. 
If the check box is cleared, it is permanently removed and the study step 
assumes control over the selection of geometric nonlinearity.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate system that the model includes. The coordinate system given 
is projected onto the shell surface as described in Local Coordinate Systems.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Shell Local System

Plate>Linear Elastic Material>Shell Local System

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Shell Local System

Thermal Expansion (for materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature. The thermal strain depends on the coefficient of thermal expansion 
(CTE) α, the temperature T, and the strain-free reference temperature Tref as

It is possible to model bending due to a temperature gradient in the thickness direction 
of the shell. The temperature is then assumed to vary linearly through the thickness.

M O D E L  I N P U T S

From the Temperature T list, select an existing temperature variable from a heat transfer 
interface (for example, Temperature (htsh/sol1)), if any temperature variables exist. For 
User defined enter a value or expression for the temperature. This is the mid-surface 
temperature of the shell, controlling the membrane part of the thermal expansion. Iff 

When a Shell or Plate interface is added, there is also a Shell Local System 
node added under Definitions. This coordinate can be used to reference 
the local directions selected in a Shell interface. It is used internally in the 
Shell interface, and can also be accessed from other physics interfaces. The 
coordinate system can also be used in a Coordinate System Surface plot to 
visualize the local directions.

Do not edit the Shell Local System node added under Definitions.

εth α T Tref–( )=
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  625



626 |  C H A P T E
needed, you can add a through-thickness temperature gradient in the Thermal Bending 
section.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain.

From the Coefficient of thermal expansion α list, select From material to use the 
coefficient of thermal expansion from the material, or User defined to enter a value or 
expression for α. Select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 
non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selection in the parent node.

Enter a value or expression of the Strain reference temperature Tref, which is the 
reference temperature where the thermal strain is zero.

T H E R M A L  B E N D I N G

Enter the Temperature difference in thickness direction ΔTz, which affects the thermal 
bending. This is the difference between the temperatures at the top and bottom 
surfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Thermal Expansion

Plate>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as 

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. It is possible to model bending 

εhs βh cmo cmo ,ref–( )=
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due to a concentration gradient in the thickness direction of the shell. The 
concentration is then assumed to vary linearly through the thickness.

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. This is the mid-surface concentration in the shell, 
controlling the membrane part of the hygroscopic swelling.

The unit for the input depends on the setting of Concentration type in the Hygroscopic 

Swelling Properties section. Only concentration variables having the chosen physical 
dimension are available in the Concentration list.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration (the default) or Mass 

concentration, depending on the units used for the concentration.

Enter a Strain reference concentration cref. This is the concentration at which there are 
no strains due to hygroscopic swelling.

If Molar concentration is selected as Concentration type, also enter the Molar mass of the 
fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling βh uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric to enter one or more 
components for a general coefficient of hygroscopic swelling tensor βh.The default 
value for the User defined case is 1.5e-4 m3/kg. When a non-isotropic coefficient of 
hygroscopic swelling is used, the axis orientations are given by the coordinate system 
selection in the parent node.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

H Y G R O S C O P I C  B E N D I N G

Enter the Concentration difference in thickness direction Δcgy, which affects the 
hygroscopic bending. This is the difference between the concentrations at the top and 
bottoms surfaces.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Hygroscopic Swelling

Plate>Linear Elastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation 

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The given initial stresses and strains are interpreted in this system. 

The Shell local system is selected by default. This means that the orientations are the 
same as used for the material description.

If you select Projected from coordinate system, you can select any coordinate system 
present in the model. The Coordinate system list will then contain any coordinate 
system present in the model. The coordinate system given is projected onto the shell 
surface as described in Local Coordinate Systems.

I N I T I A L  S T R E S S

Specify the initial stress as the Initial in-plane force, the Initial moment, and the Initial 

out-of-plane shear force. Enter values or expressions in the applicable fields for the:

• Initial in-plane force Ni

• Initial moment Mi

• Initial out-of-plane shear force Qi

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.
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I N I T I A L  S T R A I N

Specify the initial strain as the Initial membrane strain, the Initial bending strain, and the 
Initial transverse shear strain. Enter values or expressions in the applicable fields for the:

• Initial membrane strain γi

• Initial bending strain χi

• Initial transverse shear strain ζi

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Initial Stress and Strain

Plate>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to several material models, in order to specify 
an additional stress contribution which is not part of the constitutive relation. The 
external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate system that the model includes. The user defined external 
stresses and strains are interpreted in this system. The coordinate system given is 

• For definitions of the generalized strains, see Theory for Shell and Plate 
Interfaces.

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.
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projected onto the shell surface as described in Local Coordinate Systems.

E X T E R N A L  S T R E S S

Select a Stress input—Stress tensor or In-plane force.

• When Stress tensor is selected, you enter the external stress in the form of Second 
Piola-Kirchhoff stress tensors. The Membrane part of external stress, Bending part of 

external stress, and Shear part of external stress drop-down lists all behave the same 
way: Depending on the type, they will contain all membrane (bending, shear) stress 
tensors announced by any physics interface, and also the entry User defined. When 
User defined is selected, you can enter the data for the membrane (bending, shear) 
part of the External stress tensor σext,m (σext,b, σext,s) as Isotropic, Diagonal, or 
Symmetric depending on the properties of the tensor. The tensor components are 
interpreted in the selected coordinate system. If a stress tensor announced by a 
physics interface is selected, the coordinate system setting is ignored — the 
orientation is handled internally.

Choose a Contribution type—Add to stress tensor or Load contribution only to 
determine the effect of the contribution.

• When In-plane force is selected, you enter the external stress in the form of section 
forces. Specify the external stress as values or expressions for the In-plane force Next, 
the Moment Mext, and the Out-of-plane shear force Qext. Choose a Contribution 

type—Add to stress tensor or Load contribution only to determine the effect of the 
contribution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>External Stress

Plate>Linear Elastic Material>External Stress

Selecting a stress tensor announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed stress depends on itself.

For theory, see External Stress.
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Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>External Stress

Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation node adds an edge, boundary, domain, or point 
condition to a model where the displacements and rotations are prescribed in one or 
more directions.

With this condition it is possible to prescribe a displacement in one direction or one of 
the rotations, leaving the shell free to deform or rotate in the other directions. 

• If zero displacements and rotations are prescribed in all directions, this is the same 
as Fixed Constraint.

• If zero displacements are prescribed in all directions, this is the same as Pinned.

• If zero rotations are prescribed in all directions, this is the same as No Rotation.

F A C E  D E F I N I N G  T H E  L O C A L  E D G E  S Y S T E M

This setting is used in conjunction with a Local edge system. If displacement or 
rotations is prescribed for an edge which is shared between boundaries, the edge 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed 
displacement/rotation. The coordinate system selection is based on the geometric 
entity level.

Boundaries (Plate interface: Domains)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Any additional user-defined coordinate system

This section is available only for edges in the Shell interface.
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Edges (Plate interface: Boundaries)
From the Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

Points
From the Coordinate system list select from:

• Global coordinate system (the default)

• Any additional user-defined coordinate system

Depending on the selected coordinate system, the displacement and rotation 
components change accordingly.

P R E S C R I B E D  D I S P L A C E M E N T

To define a prescribed displacement for each spatial direction (x, y, and z), select one 
or all of the Prescribed in x direction, Prescribed in y direction, and Prescribed in 

z direction check boxes. Then enter a value or expression for the prescribed 
displacements u0, v0, or w0.

P R E S C R I B E D  R O T A T I O N S

Select a prescribed rotation from the By list—Free, Rotation, or Normal vector. Select:

• Free (the default) to leave the rotations unconstrained.

• Rotation to activate a prescribed rotation in a direction. Enter a value or expression 
for the prescribed rotation θ in each row for the local tangential directions t1 and 
t2. Under For small strains, select one or both of the Free rotation around t1 direction 
and Free rotation around t2 direction check boxes to remove the constraint for the 
corresponding rotation component. If unchecked, the rotations are constrained to 
either the input value or to the default zero rotation. The status of the check boxes 
has no effect when the geometric nonlinearity is activated under the study settings. 

For details about the definition of local edge systems, see Local edge 
system. 
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This is because the constraints put on different rotation components are not 
independent of each other in case of finite rotations.

• Normal vector to describe the rotational degrees of freedom as a prescribed normal 
vector. Enter the components of the Prescribed normal vector N0.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Displacement/Rotation

Shell>Prescribed Displacement/Rotation (Edge)

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

When Individual dependent variables is selected in the Apply reaction terms 

on drop-down list, the constraint forces are applied directly on the degrees 
of freedom, which are the displacements along the global coordinate axes. 
If you use this setting together with a local coordinate system, the results 
will be inconsistent since the constraint forces will not match the 
constraint orientation.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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Shell>Points>Prescribed Displacement/Rotation

Plate>Face Constraints>Prescribed Displacement/Rotation

Plate>Prescribed Displacement/Rotation (Boundary)
Plate>Points>Prescribed Displacement/Rotation

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Prescribed Displacement/Rotation

Edges>Shell>Prescribed Displacement/Rotation

Points>Shell>Prescribed Displacement/Rotation

Physics tab with Plate selected:
Domains>Face Constraints>Prescribed Displacement/Rotation

Boundaries>Plate>Prescribed Displacement

Points>Plate>Prescribed Displacement

Thermal Expansion (for constraints)

Add the Thermal Expansion subnode to Fixed Constraint to prescribe a deformation of 
the constrained edge caused by changes in temperature of the surroundings. This 
makes it possible to reduce the stresses caused by such boundary conditions.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of the urroundings idealized by the constraints.

Select Inherit from boundary to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the domain 
itself.

εth α T Tref–( )=
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When Inherit from boundary is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries, edges, or points 
where the constraint is active.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 
non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Fixed Constraint>Thermal Expansion

Ribbon
Physics tab with Fixed Constraint or Prescribed Displacement node selected in the model 
tree:
Attributes>Thermal Expansion 

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Prescribed Velocity

The Prescribed Velocity node adds an edge, boundary, domain, or point condition 
where the translational or rotational velocity is prescribed in one or more directions. 
The prescribed velocity condition is applicable for Time Dependent and Frequency 
Domain studies. With this condition it is possible to prescribe a velocity in one 
direction, leaving the shell free in the other directions.

The Prescribed Velocity node is a constraint, and overrides any other constraint on the 
same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed velocity. The 
coordinate system selection is based on the geometric entity level. 

Boundaries
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Any additional user-defined coordinate system

Edges
From the Coordinate system list select from:

• Local edge system (the default) 

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used. If you choose another, local coordinate system, the acceleration 
components change accordingly.

For details about the definition of local edge systems, see Local edge 
system. 
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• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

Points
From the Coordinate system list select from:

• Global coordinate system (the default)

• Any additional user-defined coordinate system

Depending on the selected coordinate system, the velocity components change 
accordingly.

F A C E  D E F I N I N G  T H E  L O C A L  E D G E  S Y S T E M

This setting is used in conjunction with a Local edge system. If the velocity is prescribed 
for an edge which is shared between boundaries, the edge system can be ambiguous. 
Select the boundary which should define the edge system. The default is Use face with 

lowest number.

P R E S C R I B E D  VE L O C I T Y

To define a prescribed velocity for each spatial direction (x, y, and z), select one or 
more of the Prescribed in x direction, Prescribed in y direction, and Prescribed in 

z direction check boxes. Then enter a value or expression for the prescribed velocity 
components vx, vy, and vz.

P R E S C R I B E D  A N G U L A R  VE L O C I T Y

To define a prescribed angular velocity for each spatial direction (x, y, and z), select one 
or all of the Prescribed around x direction, Prescribed around y direction, and Prescribed 

around z direction check boxes and enter a value or expression for in each , 
, or  field.

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system.

∂θx ∂⁄ t
∂θy ∂⁄ t ∂θz ∂⁄ t

You can add a Harmonic Perturbation subnode for specifying a harmonic 
variation of the values of the prescribed velocity in a frequency domain 
analysis of perturbation type.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Velocity

Shell>More Constraints>Prescribed Velocity (Edge)
Plate>Face Constraints>Prescribed Velocity

Plate>More Constraints>Prescribed Velocity (Boundary)

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Prescribed Velocity

Edges>>More Constraints>Prescribed Velocity

Physics tab with Plate selected:
Domains>Face Constraints>Prescribed Velocity

Boundaries>>More Constraints>Prescribed Velocity

Prescribed Acceleration

The Prescribed Acceleration node adds an edge, boundary, domain, or point condition 
where the translational or rotational acceleration is prescribed in one or more 
directions. The prescribed acceleration condition is applicable for Time Dependent 
and Frequency Domain studies. With this condition it is possible to prescribe an 
acceleration in one direction, leaving the shell free in the other directions.

The Prescribed Acceleration node is a constraint, and overrides any other constraint on 
the same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed acceleration. The 
coordinate system selection is based on the geometric entity level. 

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used. If you choose another, local coordinate system, the acceleration 
components change accordingly.
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Boundaries
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Any additional user-defined coordinate system

Edges
From the Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

Points
From the Coordinate system list select from:

• Global coordinate system (the default)

• Any additional user-defined coordinate system

Depending on the selected coordinate system, the acceleration components change 
accordingly.

F A C E  D E F I N I N G  T H E  L O C A L  E D G E  S Y S T E M

This setting is used in conjunction with a Local edge system. If the acceleration is 
prescribed for an edge which is shared between boundaries, the edge system can be 
ambiguous. Select the boundary which should define the edge system. The default is 
Use face with lowest number.

P R E S C R I B E D  A C C E L E R A T I O N

To define a prescribed acceleration for each spatial direction (x, y, and z), select one or 
more of the Prescribed in x direction, Prescribed in y direction, and Prescribed in 

For details about the definition of local edge systems, see Local edge 
system. 

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system.
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  639



640 |  C H A P T E
z direction check boxes. Then enter a value or expression for the prescribed 
acceleration components ax, ay, and az.

P R E S C R I B E D  A N G U L A R  A C C E L E R A T I O N

To define a prescribed angular acceleration for each spatial direction (x, y, and z), select 
one or all of the Prescribed around x, y, and z direction check boxes and enter a value 
or expression for in each , , or  field.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Acceleration

Shell>More Constraints>Prescribed Acceleration (Edge)
Plate>Face Constraints>Prescribed Acceleration

Plate>More Constraints>Prescribed Acceleration (Boundary)

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Prescribed Acceleration

Edges>>More Constraints>Prescribed Acceleration

Physics tab with Plate selected:
Domains>Face Constraints>Prescribed Acceleration

Boundaries>>More Constraints>Prescribed Acceleration

Pinned

The Pinned node adds an edge, boundary, domain, or point condition that fixes the 
translations in all directions, that is, all displacements are zero. The rotations are not 
constrained.

∂2θx ∂⁄ t2 ∂2θy ∂⁄ t2 ∂2θz ∂⁄ t2

You can add a Harmonic Perturbation subnode for specifying a harmonic 
variation of the values of the prescribed acceleration in a frequency 
domain analysis of perturbation type.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Pinned

Shell>More Constraints>Pinned (Edge)
Shell>Points>Pinned

Plate>Face Constraints>Pinned

Plate>More Constraints>Pinned (Boundary)
Plate>Points>Pinned

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Pinned

Edges>More Constraints>Pinned

Points>Shell>Pinned

Physics tab with Plate selected:
Boundaries>Face Constraints>Pinned

Edges>More Constraints>Pinned

Points>Plate>Pinned

No Rotation

The No Rotation node adds an edge, boundary, domain, or point condition that fixes 
the rotations around all axes. The translations are not constrained. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>No Rotation

Shell>More Constraints>No Rotation (Edge)
Shell>Points>No Rotation

Plate>Face Constraints>No Rotation

Plate>More Constraints>No Rotation (Boundary)
Plate>Points>No Rotation

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>No Rotation

Edges>More Constraints>No Rotation

Points>Shell>No Rotation

Physics tab with Plate selected:
Boundaries>Face Constraints>No Rotation

Edges>More Constraints>No Rotation

Points>Plate>No Rotation

Simply Supported

The Simply Supported node adds an edge condition that constrains the displacement in 
the direction perpendicular to the shell. The in-plane rotation perpendicular to the 
edge is also constrained. Optionally you can constrain the in-plane displacements.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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I N - P L A N E  D I S P L A C E M E N T  C O N S T R A I N T S

Select Along edge to constrain the in-plane translation along the edge.

Select Perpendicular to edge to constrain the in-plane displacement perpendicular to the 
edge.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>More Constraints>Simply Supported

Plate>More Constraints>Simply Supported

Ribbon
Physics tab with Shell selected:
Edges>More Constraints>Simply Supported

Physics tab with Plate selected:
Boundaries>More Constraints>Simply Supported

Symmetry

The Symmetry node adds an edge or boundary condition that defines a symmetry edge 
or boundary. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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F A C E  D E F I N I N G  T H E  L O C A L  E D G E  S Y S T E M  ( E D G E S  O N L Y )

This setting is used in conjunction with a Local edge system. If symmetry is prescribed 
for an edge which is shared between boundaries, the edge system can be ambiguous. 
Select the boundary which should define the edge system. The default is Use face with 

lowest number.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N  ( E D G E S  O N L Y )

Specify the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

S Y M M E T R Y  ( E D G E S  O N L Y )

If another coordinate system than the Local edge system is used, select an Axis to use as 

symmetry plane normal. Select 1, 2, or 3 for the first, second, or third axis, respectively.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.  

This section is available only for edges in the Shell interface.

For details about the definition of local edge systems, see Local edge 
system. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry and Antisymmetry Boundary Conditions
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Symmetry

Shell>More Constraints>Symmetry (Edge)
Plate>More Constraints>Symmetry (Boundary)

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Symmetry

Edges>More Constraints>Symmetry

Physics tab with Plate selected:
Boundaries>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds an edge or boundary condition that defines an 
antisymmetry edge or boundary.

F A C E  D E F I N I N G  T H E  N O R M A L  D I R E C T I O N  ( E D G E S  O N L Y )

This setting is used in conjunction with a Local edge system. If antisymmetry is 
prescribed for an edge which is shared between boundaries, the edge system can be 
ambiguous. Select the boundary which should define the edge system. The default is 
Use face with lowest number.

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

This section is available only for edges in the Shell interface.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N  ( E D G E S  O N L Y )

Specify the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

A N T I S Y M M E T R Y  ( E D G E S  O N L Y )

If another coordinate system than the Local edge system is used, select an Axis to use as 

symmetry plane normal. Select 1, 2, or 3 for the first, second, or third axis, respectively.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.  

For details about the definition of local edge systems, see Local edge 
system. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry and Antisymmetry Boundary Conditions

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Antisymmetry

Shell>More Constraints>Antisymmetry (Edge)
Plate>More Constraints>Antisymmetry (Boundary)

Ribbon
Physics tab with Shell selected:
Boundaries>Face Constraints>Antisymmetry

Edges>More Constraints>Antisymmetry

Physics tab with Plate selected:
Boundaries>More Constraints>Antisymmetry

Body Load

Add a Body Load to boundaries (for the Plate interface add it to domains). The loads 
are defined in the given coordinate system. 

F O R C E

Enter values or expressions for the components (x. y, z) of the body load FV. 

M O M E N T

Enter values or expressions for the components (x. y, z) of the moment body load ML.

After selecting a Load type, the Load list normally only contains User 

defined. When combining the Shell interface with another physics 
interface, it is also possible to select a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face and Volume Loads>Body Load

Plate>Face and Volume Loads>Body Load

Ribbon
Physics tab with Shell selected:
Boundaries>Face and Volume Loads>Body Load

Physics tab with Plate selected:
Domains>Face and Volume Loads>Body Load

Face Load

Add a Face Load to boundaries (for the Plate interface add it to domains), to use it as 
a pressure or tangential force acting on a surface. The loads are defined in the given 
coordinate system.

F O R C E

Select a Load type—Force per unit area, Total force, or Pressure.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit area FA N/m2 boundaries

domains

3D (x, y, z)

2D (x, y, z)

Total force Ftot N boundaries

domains

3D(x, y, z)

2D(x, y, z)

Pressure p Pa boundaries

domains

3D

2D

• A positive pressure is directed in the negative element normal 
direction.

• The pressure load is a ‘follower load’. The direction changes with 
deformation in a geometrically nonlinear analysis.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface, it is also 
possible to choose a predefined load from this list.
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M O M E N T

Enter values or expressions for the components of the moment face load MA.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face and Volume Loads>Face Load

Plate>Face and Volume Loads>Face Load

Membrane>Face and Volume Loads>Face Load

Ribbon
Physics tab with Shell or Membrane selected:
Boundaries>Face and Volume Loads>Face Load

Physics tab with Plate selected:
Domains>Face and Volume Loads>Face Load

Edge Load

Add an Edge Load as a force or moment distributed along an edge (for the Plate 
interface add it to boundaries). The load is defined in the given local coordinate 
system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the load. From the Coordinate 

system list select from:

• Global coordinate system (the standard global coordinate system).

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Local edge system (Shell only) 

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  E D G E  S Y S T E M

This setting is used in conjunction with a Local edge system. When the load is applied 
to an edge which is shared between boundaries, the edge system can be ambiguous. 
Select the boundary which should define the edge system. The default is Use face with 

lowest number.

F O R C E

Select a Load type—Force per unit length (the default), Force per unit area, or Total 

Force. Enter values or expressions for the components (x, y, z).

M O M E N T

Select a Load type to define the moment load—Moment per unit length (the default) or 
Moment per unit area. Enter values or expressions for the components (x, y, z).

For details about the definition of local edge systems, see Local edge 
system. 

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION

Force per unit length FL N/m edges

boundaries

3D

2D

Force per unit area FA N/m2 edges

boundaries

3D

2D 

Total force Ftot N edges

boundaries

3D

2D 

After selecting a Load type, the Load list normally only contains User 

defined. When combining the Shell interface with another physics 
interface, it is also possible to choose a predefined load from this list.
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This section is available only in the Shell and Plate interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Edge Load

Plate>Edge Load

Membrane>Edge Load

Ribbon
Physics tab with Shell or Membrane selected:
Boundaries>Shell>Edge Load

Boundaries>Membrane>Edge Load

Physics tab with Plate selected:
Domains>Plate>Edge Load

Point Load

Add a Point Load to points for concentrated forces or moments at points. The loads are 
defined in the given coordinate system.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION

Moment per unit length ML N edges

boundaries

3D

2D

Moment per unit area MA N⋅m/m2 edges

boundaries

3D

2D

Total moment Mtot N⋅m edges

boundaries

3D

2D

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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F O R C E

Enter values or expressions for the components (x. y, z) of the point load FP.

M O M E N T

Enter values or expressions for the components (x. y, z) of the point moment MP.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Points>Point Load

Plate>Points>Point Load

Ribbon
Physics tab with Shell or Plate selected:
Points>Point Load

Point Mass

Use the Point Mass node to model a discrete mass or mass moment of inertia that is 
concentrated at a point.

The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

With the Coordinate system list, control the coordinate system around the axis of which 
the principal mass moment of inertias are defined.

The Load list normally only contains User defined. When combining the 
Shell interface with another physics interface, it is also possible to choose 
a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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PO I N T  M A S S

Enter a Point mass m. 

Enter a single value for an isotropic Mass moment of inertia J, or select Diagonal or 
Symmetric to enter a full moment of inertia tensor.

F R A M E  A C C E L E R A T I O N  F O R C E S

Click to select the Exclude contribution check box to switch off the loads that can be 
caused by the point mass when the frame is accelerated when using a Gravity or 
Rotating Frame feature. The setting will also determine whether the node will 
contribute when Computing Mass Properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Points>Point Mass

Plate>Points>Point Mass

Ribbon
Physics tab with Shell or Plate selected:
Points>Shell>Point Mass

Points>Plate>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node. 

PO I N T  M A S S  D A M P I N G

Enter a Mass damping parameter αdM. This is the mass proportional term of a Rayleigh 
damping.L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Point Mass>Point Mass Damping

Plate>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:
Attributes>Point Mass Damping
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Periodic Condition

Use a Periodic Condition to prescribe that the displacements and rotations on two 
different sets of edges with the same geometrical shape are related, as in a periodic 
structure. In the Plate interface the connection is between boundaries rather than 
edges as is the case in the Shell interface.

Several different types of periodicity properties of the solution can be prescribed using 
this boundary condition.

• The Continuity, Antiperiodicity, and User defined periodic conditions directly 
prescribe relations both between displacements and between rotations. They can be 
used for any type of study.

• The Floquet periodicity can be used for frequency domain problems with a spatial 
periodicity of the geometry and solution. The modeled structure is typically a unit 
cell of a repetitive structure.

• The Cyclic symmetry is a special case of a Floquet condition, intended for structures 
which consist of a number of sectors which are identical when rotated around a 
common axis, like in a fan.

The two sets of edges between which there is a periodicity condition are called the 
source and destination respectively. It is not required to have the same mesh on the 
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source and destination, but the local accuracy of the solution near the edges will be 
better if you use the same mesh.

E D G E  S E L E C T I O N

Select both the source and destination edges.

The software automatically identifies the edges as either source edges or destination 
edges. This works fine for cases like opposing parallel edges. In more general cases, use 
the Destination Selection subnode to specify the edges which constitute the destination. 
By default this node contains the selection that COMSOL Multiphysics has identified.

In cases where the periodic edge is split into several edges within the geometry, it 
might be necessary to apply separate periodic conditions to each pair of geometry 
edges for the matching to work properly.

For periodic conditions on shells the periodicity condition acts on edges, 
as opposed to solids and plates where it acts on boundaries. This means 
that the orientation cannot be determined automatically. You must 
provide coordinate systems using the Orientation of Source and Orientation 

of Destination sections respectively. The default coordinate system is the 
Global coordinate system, which works well if the edges are parallel. In 
other cases, you need to add a Destination Selection subnode, in order to 
supply the coordinate system for the destination. 

In cases of rotational symmetry, you can assign the same cylindrical 
coordinate system to both source and destination, as long as the edges do 
not intersect at the longitudinal axis. 

When there is a common point on the axis of revolution, you should 
explicitly constrain it to remain on the axis and to have no rotations using 
Prescribed Displacement/Rotation.

In the Plate interface, Edge Selection is replaced by Boundary Selection.
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P E R I O D I C I T Y  S E T T I N G S

With Type of periodicity you select the form of periodicity that your solution should 
have.

• For Continuity the displacements and rotations on the destination are set equal to 
their counterparts on the source;  and . If the 
source and destination objects are rotated with respect to each other, a 
transformation is performed using the selected coordinate systems, so that 
corresponding components of the degrees of freedom are connected.

• For Antiperiodicity the displacements and rotations on the destination are set equal 
to their counterparts on the source but with the sign reversed;  
and . If the source and destination objects are rotated with respect 
to each other, a transformation is performed using the selected coordinate systems, 
so that corresponding components of the degrees of freedom are connected.

• For Floquet periodicity enter a k-vector for Floquet periodicity kF. This is the wave 
number vector for the excitation.

• For Cyclic symmetry the settings differ slightly between the Plate and Shell interfaces.

In either case, also enter an Azimuthal mode number for the mode to be studied. It 
can vary from 0 to N/2, where N is the total number of sectors on a full revolution.

• For User defined select the check box for any of the displacement or rotation 
components as needed. Then for each selection, choose the Type of periodicity—
Continuity or Antiperiodicity. Each selected displacement component will be 

u xd( ) u xs( )= a xd( ) a xs( )=

u xd( ) u– xs( )=

a xd( ) a– xs( )=

In the Plate interface, chose how to define the sector angle that the 
geometry represents using Sector angle. If Automatic is selected, the 
program attempts to find out how many full repetitions of the geometry 
there will be on a full revolution. If User defined is selected, enter a value 
for the sector angle θS.

If any point on the edges having the periodic condition is located on the 
axis of cyclic symmetry, enter the Axis direction vector, tc. This orientation 
of the axis of cyclic symmetry is then needed for eliminating conflicting 
constraints.

In the Shell interface, you always must enter a value for the sector angle 
θS.
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connected by  or  respectively. Each selected 
rotation component will be connected by  or  
If the source and destination objects are rotated with respect to each other, a 
transformation is performed using the selected coordinate systems so that 
corresponding components of the degrees of freedom are connected.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

O R I E N T A T I O N  O F  S O U R C E

In Transform to intermediate map, select a coordinate system representing the 
orientation of the degrees of freedom on the source selection. The corresponding 
setting for the destination is given in the Destination Selection subnode.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Periodic Condition

Plate>Periodic Condition

Shell>Connections>Periodic Condition>Destination Selection

Plate>Periodic Condition>Destination Selection

ui xd( ) ui xs( )= ui xd( ) ui xs( )–=

ai xd( ) ai xs( )= ai xd( ) ai xs( )–=

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Cyclic Symmetry and Floquet Periodic Conditions in the Structural 
Mechanics Theory chapter.

• Orientation of Source and Destination in the COMSOL Multiphysics 
Reference Manual.

Vibrations of an Impeller: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/impeller
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Ribbon
Physics tab with Shell selected: 
Edges>Connections>Periodic Condition

Physics tab with Plate selected: 
Boundaries>Periodic Condition

Physics tab with Periodic Condition node selected in the model tree:
Attributes>Destination Selection

Solid Connection

In 3D, a shell can be coupled to a solid by adding a Solid Connection node in the Shell 
interface and a Shell Connection node in the Solid Mechanics interface. The 
connection can either be from an edge of the shell to a boundary on the solid, or 
between two boundaries. The first case is intended for modeling a transition from a 
shell to a solid where shell assumptions are valid on both sides of the connection. The 
second case is for adding a shell on top of a solid. Select this feature from the 
Connections submenu. 

S O L I D  C O N N E C T I O N  ( E D G E S  O N L Y )

Select a Connection type—Softened or Simplified. When using Softened (the default), 
three extra degrees of freedom are added to each selected point. This allows for a more 
accurate description of the transition, but the model can in some cases become 
underconstrained if the mesh on the solid is very coarse. The Simplified version of the 
connection just adds constraints to the boundary of the solid, and in general causes 
local disturbances of the stress field.

The Solid Connection node is obsolete, and has been superseded by the 
Solid-Shell Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Solid Connection node will be removed in 
future versions.
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When using the Solid Connection node for a boundary, the connection is intended for 
placing a shell as a cladding on the boundary of a solid. No other settings except the 
boundary selection are required.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Solid Connection

Ribbon
Physics tab with Shell selected:
Boundaries>Connections>Solid Connection

Edges>Connections>Solid Connection

Beam Connection

A shell can be connected to a beam by adding a Beam Connection node in the Shell 
interface and a Shell Connection node in the Beam interface.

The connection can be between:

• Two edges, one in each interface

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids

The Beam Connection node is obsolete, and has been superseded by the 
Shell-Beam Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Beam Connection node will be removed in 
future versions.
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• A point in the Beam interface and a boundary in the Shell interface

• A point in the Beam interface and an edge in the Shell interface

B E A M  C O N N E C T I O N  ( E D G E S )

Select a Connected entity—Beam point or Beam edge. 

When Beam point is selected, select the name of the corresponding Shell Connection 
node defined at the point level in the Beam interface to specify the connected parts.

For Beam point select an option from the Connected region list—Selected edges (the 
default), Distance (automatic), Distance (manual), or Connection criterion.

• Using Selected edges makes all selected edges rigidly connected to the point on the 
beam.

• For Distance (automatic), all parts on the shell edge, which are within the default 
distance from the beam point, are connected. This distance is determined by the 
cross section properties of the beam. It is contained in the variable beam.re in The 
Beam Interface.

• For Distance (Manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell edge wherever the expression has a nonzero value. 
The default value is 1, which is equivalent to using the Selected edges option.

For Beam edge select the name of the corresponding Shell Connection node defined at 
the edge level in the Beam interface to specify the connected parts. Select an Edge 

type—Shared (the default) or Parallel.

• For Shared select an Offset definition—Along shell normal (the default) or Offset 

vector. For Along shell normal enter an Offset ζ. For Offset vector enter values for d0 
in the table. The offset is the vector from the reference surface of the shell to the 

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Beams
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actual position of the beam. The Offset vector is interpreted in the coordinate system 
selected in the Coordinate System Selection section.

• For Parallel enter a value for the Parallelism tolerance Δθ. The default is 1 degree. 
The the two edges are connected only where they are parallel within the specified 
tolerance.

B E A M  C O N N E C T I O N  ( B O U N D A R I E S )

Select the name of the corresponding Shell Connection node defined at the point level 
in the Beam interface to specify the connected parts.

Select an option from the Connected region list—Selected boundaries (the default), 
Distance (automatic), Distance (manual), or Connection criterion.

• Using Selected boundaries makes all selected boundaries rigidly connected to the 
point on the beam.

• For Distance (automatic), all parts on the shell boundary, which are within the a 
default distance from the beam point, are connected. This distance is determined by 
the cross section properties of the beam. It is contained in the variable beam.re in 
the Beam interface.

• For Distance (manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell boundary wherever the expression has a nonzero 
values. The default value is 1, which is equivalent to using the Selected edges option.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Beam Connection

Ribbon
Physics tab with Shell selected:
Boundaries>Connections>Beam Connection

Edges>Connections>Beam Connection

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations.The selected shell edges will move as a 
single rigid object, irrespective of whether they are geometrically adjacent or not.
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If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account. The feature is similar to the rigid connectors in the Solid Mechanics and 
Beam interfaces. Rigid connectors from the Shell, Beam and Solid Mechanics 
interfaces can be attached to each other.

You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. Prescribed displacements 
or rotations are specified along the axes of this coordinate system. It is also used for 
defining the axis directions of the moment of inertia tensor of the Mass and Moment of 

Inertia subnode.

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the place where it is 
fixed.

• Results are interpreted with respect to the center of rotation.

Select a Center of rotation—Automatic, Centroid of selected entities, or User defined.

• For Automatic the center of rotation is at the geometrical center of the selected 
edges. The constraints are applied at the center of rotation.

• For Centroid of selected entities select Entity level—Edge or Point. A subnode for 
selection of the entities is added to the Model Builder. The center of rotation is 
located at the centroid of the selected entities, which do not need to be related to 
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the edges to which the rigid connector is attached. As a special case, you can select 
a single point, and thus locate the center of rotation at a certain point.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement for each spatial direction x, y, and z select one or 
all of the Prescribed in X, Prescribed in Y, and Prescribed in Z direction check boxes. Then 
enter a value or expression for the prescribed displacements u0, v0, or w0.

P R E S C R I B E D  R O T A T I O N  A T  C E N T E R  O F  R O T A T I O N

Select an option from the By list—Free (the default), Constrained rotation, or Prescribed 

rotation at center of rotation. 

• For Constrained rotation select one or more of the Constrain rotation about X, 

Constrain rotation about Y, and Constrain rotation about Z axis check boxes in order 

Once Centroid of selected entities is chosen, a default Center of Rotation: 
Edge or Center of Rotation: Point subnode is added, depending on the 
setting of Entity level.

XC XC,input Xoffset+=
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to enforce zero rotation about the corresponding axis in the selected coordinate 
system.

• For Prescribed rotation at center of rotation enter an Axis of rotation Ω and an Angle 

of rotation . The axis of rotation is given in the selected coordinate system.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Rigid Connector

Ribbon
Physics tab with Shell selected: 
Edges>Connections>Rigid Connector

Thermal Expansion (Rigid Connector)

Add the Thermal Expansion subnode to prescribe a deformation of the rigid connector 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the rigid connector being rigid, while there are thermal deformations in the flexible 
shell to which it is attached.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

φ

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Rigid Connector Theory

• Harmonic Perturbation 

• Load Cases
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T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the rigid connector.

Select Inherit from boundary to take the thermal expansion data from the boundary to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the rigid connector has the same thermal expansion as the 
domain itself.

When Inherit from boundary is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the rigid connector. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries of the rigid 
connector selection.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 
non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements in the rigid connector..

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Rigid connector>Thermal Expansion

εth α T Tref–( )=

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Ribbon
Physics tab with Rigid connector node selected in the model tree:
Attributes>Thermal Expansion

Attachment

The Attachment node is used to define a set of edges on a flexible shell which can be 
used to connect it with other components through a joint in the Multibody Dynamics 
interface. All the selected edges behave as if they were connected by a common rigid 
body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell interface, or to points in a Beam interface. This 
makes it possible to use a joint in the Multibody Dynamics interface for connecting 
parts modeled in different physics interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Attachment

Ribbon
Physics tab with Shell selected:
Edges>Connections>Attachment

Thermal Expansion (Attachment)

Add the Thermal Expansion subnode to prescribe a deformation of the attachment 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the attachment being rigid, while there are thermal deformations in the flexible shell 
to which it is attached.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

The Attachment node is available with the addition of the Multibody 
Dynamics Module. The Attachments is included in the Multibody 
Dynamics Module User’s Guide. 

εth α T Tref–( )=
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T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the attachment.

Select Inherit from boundary to take the thermal expansion data from the boundary to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the attachment has the same thermal expansion as the 
boundary itself.

When Inherit from boundary is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the attachment. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the boundaries of the attachment 
selection.
For User defined select Isotropic, Diagonal or Symmetric to enter one or more 
components for a general coefficient of thermal expansion tensor α. When a 
non-isotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements in the attachment.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Attachment>Thermal Expansion

Multibody Dynamics>Attachment>Thermal Expansion

Ribbon
Physics tab with Attachment node selected in the model tree:
Attributes>Thermal Expansion

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

For modeling the frequency response the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Add the phase angle Fph for harmonic loads. Enter the phase for each component of 
the load in the corresponding fields.

M O M E N T  L O A D  P H A S E

Add the phase for the moment load Mph for harmonic loads. Enter the phase for each 
component of the moment load in the corresponding fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Body Load>Phase

Shell>Face Load>Phase

Shell>Edge Load>Phase

Shell>Point Load>Phase

Shell>Rigid Connector>Applied Force>Phase

Shell>Rigid Connector>Applied Moment>Phase

Ribbon
Physics tab with Body Load, Face Load, Edge Load, Point Load, Applied Force, or Applied 

Moment selected:
Attributes>Phase

φ

Ffreq F f( ) 2πft φ+( )cos⋅=
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Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of non-zero 
prescribed displacements. This node is used if the study step is frequency response of 
a perturbation type.

The settings are the same as in the parent Prescribed Displacement/Rotation, 
Prescribed Velocity, Prescribed Acceleration, or Rigid Connector node. Only degrees 
of freedom selected as prescribed in the parent node can be assigned a value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Prescribed Displacement/Rotation>Harmonic Perturbation

Shell>Prescribed Velocity>Harmonic Perturbation

Shell>Prescribed Acceleration>Harmonic Perturbation

Shell>Rigid Connector>Harmonic Perturbation

Plate>Prescribed Displacement/Rotation>Harmonic Perturbation

Plate>Prescribed Velocity>Harmonic Perturbation

Plate>Prescribed Acceleration>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement/Rotation, Prescribed Velocity, Prescribed 

Acceleration, or Rigid Connector node selected in the model tree:
Attributes>Harmonic Perturbation

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.
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M e m b r a n e
This chapter describes the Membrane (mbrn) interface, which is found under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for the Membrane Interface

• The Membrane Interface
 671
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Th eo r y  f o r  t h e  Memb r an e  I n t e r f a c e

The theory for the Membrane interface is described in this section:

• About Membranes

• Theory Background for the Membrane Interface

About Membranes

Membranes can be considered as plane stress elements in 3D with a possibility to 
deform both in the in-plane and out-of-plane directions. The difference between a 
shell and a membrane is that the membrane does not have any bending stiffness. If the 
ratio between the thickness and the dimensions in the other directions becomes very 
small, a membrane formulation is numerically better posed than a shell formulation.

Theory for the Membrane Interface supports the same study types as the Solid 
Mechanics interface except it does not include the Linear Buckling study type.

To describe a membrane, provide its thickness and the material properties. All 
properties can be variable over the element. All elemental quantities are integrated only 
at the midsurface. This is a good approximation since by definition a membrane is thin.

The physics interface is intended to model either prestressed membranes or a thin 
cladding on top of a solid.

S T I F F N E S S  I N  T H E  N O R M A L  D I R E C T I O N

When membrane elements are used separately, not supported by other structural 
elements, a prestress is necessary in order to avoid a singularity. The unstressed 
membrane has no stiffness in the normal direction. It is the geometrically nonlinear 
effects (stress stiffening) which supply the out-of-plane stiffness. A prestress can be 
given either through initial stress and strain or through a tensile boundary load. 
Prestress is not necessary in cases where inertia effects are included in a dynamic 
analysis. A small prestress can, however, still be useful to stabilize the analysis in the 
initial state. In order to obtain the prestress effect, you must select Include geometric 

nonlinearity in the settings for the study step.

M E M B R A N E S  F O R  3 D  M O D E L S

The Membrane interface in 3D can be active on internal and external boundaries of a 
domain, as well as on boundaries not adjacent to any domain.
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The dependent variables are the displacements u, v, and w in the global x, y, and z 
directions, and the displacement derivative unn in the direction normal to the 
membrane.

M E M B R A N E S  F O R  2 D  A X I S Y M M E T R I C  M O D E L S

The Membrane interface for 2D axisymmetric models can be active on internal and 
external boundaries of a solid, as well as on edges that not adjacent to a solid.

The dependent variables are the displacements u and w in the global r and z directions, 
and the displacement derivative unn in the direction normal to the membrane in r-z 
plane.

Theory Background for the Membrane Interface

A 3D membrane is similar to a shell but it has only translational degrees of freedom 
and the results are constant in the thickness direction.

The thickness of the membrane is d, which can vary over the element. The 
displacements are interpolated by Lagrange shape functions.

A 2D axisymmetric membrane is similar to the 3D membrane and it has a nonzero 
circumferential strain in the out-of-plane direction.

L O C A L  C O O R D I N A T E  S Y S T E M S

Many quantities for a membrane can best be interpreted in a local coordinate system 
aligned to the membrane surface. Material data, initial stresses-strains, and constitutive 
laws are always represented in the local coordinate system.

This local membrane surface coordinate system is defined by the boundary coordinate 
system (t1, t2, n).

The quantities like stresses and strains are also available as results in the global 
coordinate system after a transformation from a local (boundary) system.

S T R A I N - D I S P L A C E M E N T  R E L A T I O N

The kinematic relations of the membrane element are first expressed along the global 
coordinate axes. The strains are then transformed to the element local direction. Since 
the membrane is defined only on a boundary, derivatives in all spatial directions are not 
directly available. This makes the derivation of the strain tensor somewhat different 
from what is used in solid mechanics.
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The deformation gradient F is in general defined as the gradient of the current 
coordinates with respect to the original coordinates:

In the Membrane interface, a tangential deformation gradient is computed as

Here  is a displacement gradient computed using the tangential derivative 
operator, and N is the normal vector to the undeformed membrane. FT now contains 
information about the stretching in the plane of the membrane.

The Right Cauchy-Green tensor C is generally defined as

Since the tangential deformation gradient does not contain any information about the 
transversal stretch λn, it must be augmented when creating C.

Similar augmentation is also needed in the full deformation gradient tensor F.

From C, the Green-Lagrange strains are computed using the standard expression

The local tangential strains in the membrane are calculated by transformation of this 
strain tensor into the local tangent plane coordinate system.

The Jacobian J is the ratio between the current volume and the initial volume. In full 
3D it is defined as

In the membrane, only the C tensor is available, so instead the following expression is 
used:

F x∂
X∂

------- I u∂
X∂

-------+= =

FT I N Nt uT∇+⋅–=

uT∇

C FTF=

C FT
t FT λn

2 N Nt⋅+ FT
t FT 1 unn+( )2N Nt⋅+= =

F I ∇Tu unnN Nt⋅+ +=

E 1
2
--- C I–( )=

J det F( )=

J det C( )=
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The area scale factor is also computed as

In the case of geometrically linear analysis, a linearized version of the strain tensor is 
used.

C O N S T I T U T I V E  R E L A T I O N  A N D  WE A K  E X P R E S S I O N S

The constitutive relations for the membrane on the reference surface are similar to 
those used in the Solid Mechanics interface.

The thermal strains and initial stresses-strains (only for the in-plane directions of the 
membrane) are added in the constitutive relation in a similar manner as it is done in 
Solid Mechanics.

The weak expressions in the Membrane interface are similar to that of linear elastic 
continuum mechanics.

E X T E R N A L  L O A D S

Contributions to the virtual work from the external load are of the form

where the forces (F) can be distributed over a boundary or an edge or be concentrated 
in a point. In the special case of a follower load, defined by its pressure p, the force 
intensity is  where n is the normal in the deformed configuration.

For a follower load, the change in midsurface area is taken into account, and 
integration of the load is done in the spatial frame.

S T R E S S  C A L C U L A T I O N S

The stresses are computed by applying the constitutive law to the computed strains.

The membrane does not support transverse and bending forces so the only section 
forces it support is the membrane force defined as:

JA
J

1 unn+
-------------------=

See also Analysis of Deformation in the documentation of the Solid 
Mechanics interface.

utest F⋅

F pn–=

N d s⋅=
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where  is the local stress tensor and contains only in-plane stress components.s
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Th e  Memb r an e  I n t e r f a c e

The Membrane (mbrn) interface ( ), found under the Structural Mechanics 

branch ( ) when adding a physics interface, is mainly used to model prestressed 
membranes, but can also be used to model a thin cladding on a solid. Membranes can 
be considered as plane stress elements on boundaries in 3D with a possibility to deform 
both in the in-plane and out-of-plane directions. There is also a version of the 
membrane interface for 2D axisymmetric problems. The membrane interface is then 
applicable to lines since that is what represents boundaries.

The difference between a shell and a membrane is that the membrane does not have 
any bending stiffness. In most applications, the membrane is used by itself and not as 
a cladding. A tensile prestress is then necessary in order to avoid singularity because a 
membrane with no stress or compressive stress has no transverse stiffness. To include 
the prestress effect, you must enable geometric nonlinearity for the study step.

The Linear Elastic Material is the default material, which adds a linear elastic equation 
for the displacements and has a Settings window to define the elastic material 
properties. This material model can also be combined with viscoelasticity.

With the Nonlinear Structural Materials Module, you can also model Nonlinear Elastic 
and Hyperelastic materials, and add options such as Plasticity, Creep, and 
Viscoplasticity.

When this physics interface is added, these default nodes are also added to the Model 

Builder: Linear Elastic Material, Free (a condition where edges are free, with no loads or 
constraints), and Initial Values. In the case if axial symmetry, an Axial Symmetry node is 
also added. From the Physics toolbar, you can then add other nodes that implement, 
for example, loads and constraints. You can also right-click Membrane to select physics 
features from the context menu. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 

For a detailed overview of the functionality available in each product, visit 
http://www.comsol.com/products/specifications/
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<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is mbrn.

T H I C K N E S S

Define the Thickness d by entering a value or expression in the field. The default is 
0.0001 m. Use the Change Thickness node to define a different thickness in parts of 
the membrane. The thickness can be variable if an expression is used.

S T R U C T U R A L  TR A N S I E N T  B E H AV I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasi-static. Use Quasi-static to treat the elastic behavior as quasi-static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system.

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the default coordinates for the Reference point for moment computation xref. The 
resulting moments (applied or as reactions) are then computed relative to this 
reference point. During the results and analysis stage, the coordinates can be changed 
in the Parameters section in the result nodes.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Displacement field u which has three 
components (u, v, and w). The name can be changed but the names of fields and 
dependent variables must be unique within a model.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization.

In the Membrane interface you can choose not only the order of the discretization, but 
also the type of shape functions: Lagrange or serendipity. For highly distorted 
elements, Lagrange shape functions provide better accuracy than serendipity shape 
functions of the same order. The serendipity shape functions will however give 
significant reductions of the model size for a given mesh containing quadrilateral 
elements.
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The default is to use Quadratic serendipity shape functions for the Displacement field. 

Boundary, Edge, Point, and Pair Nodes for the Membrane Interface

The Membrane Interface has these boundary, edge, point, and pair nodes available 
from the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or right-click to access the context menu (all users)..

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Membrane interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

• The submenus at the Boundary level are Material Models, Face and Volume Loads, Mass, 

Spring, and Damper, and Face Constraints.

• The submenus at the Edge (3D) or Points (2D axisymmetric) level are Mass, Spring, 

and Damper, More Constraints, and Pairs.

• For 3D components, there is also a Points submenu.

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

• Boundary, Edge, Point, and Pair Nodes for the Membrane Interface

• Theory for the Membrane Interface

• Selecting Discretization

Vibrating Membrane: Application Library path 
Structural_Mechanics_Module/Verification_Examples/vibrating_membrane

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

• Initial Stress and Strain

• External Stress

• Linear Elastic Material
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These nodes are described for the Solid Mechanics interface:

• Added Mass

• Antisymmetry

• Body Load1

• Creep

• Damping

• Edge Load3

• External Stress

• Face Load3

• Fixed Constraint

• Free

• Gravity1

• Hygroscopic Swelling

• Hyperelastic Material

• Initial Values

• Nonlinear Elastic Material

• Phase

• Plasticity

• Point Load

• Point Load (on Axis)

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement2

• Prescribed Velocity

• Ring Load

• Rotating Frame1

• Spring Foundation

• Symmetry

• Thermal Expansion (for constraints)

• Thermal Expansion (for materials)

• Viscoelasticity

• Viscoplasticity

1 This is selected from the Face and Volume Loads submenu for this interface.
2 At the boundary level, this is selected from the Face Constraints submenu for this 
interface.
3 Described for the Shell interface.

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis 
in the COMSOL Multiphysics Reference Manual

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic membrane and 
an interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

Note: Some options are only available with certain COMSOL products (see http://
www.comsol.com/products/specifications/)

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The built in Boundary System 1 is selected by default. The Coordinate system list 
contains any additional boundary coordinate systems that the model includes. The 
coordinate system is used for interpreting directions of orthotropic and anisotropic 
material data and when stresses or strains are presented in a local system. Many of the 
possible subnodes inherit the coordinate system settings.

L I N E A R  E L A S T I C  M A T E R I A L

To use a mixed formulation by adding the pressure as an extra dependent variable to 
solve for, select the Nearly incompressible material check box. For a material with a very 
low compressibility, using only displacements as degrees of freedom may lead to a 
numerically ill-posed problem.

Define the Solid model and the linear elastic material properties.

Solid Model
To use a mixed formulation by adding the pressure as an extra dependent variable to 
solve for, select the Nearly incompressible material check box.
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Select a linear elastic Solid model—Isotropic (the default), Orthotropic, or Anisotropic. 
Select:

• Isotropic for a linear elastic material that has the same properties in all directions.

• Orthotropic for a linear elastic material that has different material properties in 
orthogonal directions, so that its stiffness depends on the properties Ei, νij, and Gij.

• Anisotropic for a linear elastic material that has different material properties in 
different directions, and the stiffness comes from the symmetric elasticity matrix, D.

Density
The default Density ρ uses values From material. For User defined enter another value or 
expression.

Specification of Elastic Properties for Isotropic Materials
For an Isotropic Solid model, from the Specify list select a pair of elastic properties for 
an isotropic material—Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and 

shear-wave speeds. For each pair of properties, select from the applicable list to use the 
value From material or enter a User defined value or expression.

The individual property parameters are:

• Young’s modulus (elastic modulus) E.

• Poisson’s ratio ν.

• Material Models

• Linear Elastic Material

• Orthotropic and Anisotropic Materials

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

Each of these pairs define the elastic properties and it is possible to convert 
from one set of properties to another (see Table 3-1 in the theory 
chapter).
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• Shear modulus G.

• Bulk modulus K.

• Lamé parameter λ and Lamé parameter μ.

• Pressure-wave speed (longitudinal wave speed) cp.

• Shear-wave speed (transverse wave speed) cs. This is the wave speed for a solid 
continuum. In plane stress, for example, the actual speed with which a longitudinal 
wave travels is lower than the value given.

Specification of Elastic Properties for Orthotropic Materials
When Orthotropic is selected from the Solid model list, the material properties vary in 
orthogonal directions only. The Material data ordering can be specified in either 
Standard or Voigt notation. When User defined is selected in 3D, enter three values in 
the fields for Young’s modulus E, Poisson’s ratio ν, and the Shear modulus G. This 
defines the relationship between engineering shear strain and shear stress. It is 
applicable only to an orthotropic material and follows the equation

 

Specification of Elastic Properties for Anisotropic Materials
When Anisotropic is selected from the Solid model list, the material properties vary in 
all directions, and the stiffness comes from the symmetric Elasticity matrix, D The 
Material data ordering can be specified in either Standard or Voigt notation. When User 

defined is selected, a 6-by-6 symmetric matrix is displayed.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all boundaries. There are, however, some rare cases when the use of a 
small strain formulation for a certain boundary is needed.

εij
τij

Gij
--------=

νij is defined differently depending on the application field. It is easy to 
transform among definitions, but check which one the material uses.
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In such cases, select the Force linear strains check box. When selected, a small strain 
formulation is always used, independently of the setting in the study step.

E N E R G Y  D I S S I P A T I O N

The section is available when you also have the Nonlinear Structural Materials Module. 
Then, to display this section, click the Show button ( ) and select Advanced Physics 

Options. 

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity or Viscoelasticity. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Material Models>Linear Elastic Material

Ribbon
Physics tab with Membrane selected:
Boundaries>Material Models>Linear Elastic Material

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation..

• Modeling Geometric Nonlinearity

• Studies and Solvers in the COMSOL Multiphysics Reference Manual

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

For details about initial stresses and strains, see Initial Stresses and Strains. 
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The given initial stresses and strains are interpreted in this system.

I N I T I A L  S T R E S S  A N D  S T R A I N

Specify the initial stress as the Initial local in-plane force N0 and the initial strain as the 
Initial local in-plane strain ε0 (dimensionless). If you know the stress, rather than the 
force per unit length, type in the stress multiplied by the membrane thickness 
mbrn.d.In a geometrically nonlinear analysis, the stresses should be interpreted as 
Second Piola-Kirchhoff stresses, and the strains should be interpreted as 
Green-Lagrange strains. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Initial Stress and Strain

Membrane>Nonlinear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:
Attributes>Initial Stress and Strain

For details about how local coordinate systems are used in the Membrane 
interface, see Local Coordinate Systems. 

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

• For details about the different strain measures, see Deformation 
Measures.

• For details about the different stress measures, see Defining Stress.

Prestressed Micromirror: Application Library path MEMS_Module/

Actuators/micromirror
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External Stress

You can add the External Stress subnode to several material models, in order to specify 
an additional stress contribution which is not part of the constitutive relation. The 
external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

E X T E R N A L  S T R E S S

Select a Stress input—Stress tensor (Material), Stress tensor (Spatial) or In-plane force.

• When Stress tensor (Material) is selected, you enter the external stress in the form of 
a Second Piola-Kirchhoff stress tensor. The External stress tensor drop-down list will 
contain all stress tensors announced by any physics interface, and also the entry User 

defined. When User defined is selected, you can enter the data for the External stress 

tensor Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the 
tensor. The tensor components are interpreted in the selected coordinate system. If 
a stress tensor announced by a physics interface is selected, the coordinate system 
setting is ignored — the orientation is handled internally. Choose a Contribution 

type—Add to stress tensor or Load contribution only to determine the effect of the 
contribution. Stress tensor components which are not in the plane of the membrane 
will be ignored.

• When Stress tensor (Spatial) is selected, you enter the external stress in the form of 
Cauchy stress tensor. The components are interpreted in the selected coordinate 
system. Depending on the properties of the tensor, you can enter the data for the 
External stress tensor σext as Isotropic, Diagonal, or Symmetric. Choose a Contribution 

type—Add to stress tensor or Load contribution only to determine the effect of the 
contribution. Stress tensor components which are not in the plane of the membrane 
will be ignored.

• When In-plane force is selected, you enter the external stress in the form of section 
forces. Specify the initial stress as values or expressions for the In-plane force Next, 
which has components in the plane of the membrane, along the directions given by 

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.
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the selected local coordinate system. Choose a Contribution type—Add to stress 

tensor or Load contribution only to determine the effect of the contribution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>External Stress

Membrane>Nonlinear Elastic Material>External Stress

Membrane>Hyperelastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, or Hyperelastic 

Material node selected in the model tree:
Attributes>External Stress

Since all stress tensor representations coincide in a geometrically linear 
analysis, Stress tensor (Spatial) is needed only in the case of a geometrically 
nonlinear analysis. The stress tensor is entered using a Cauchy stress 
tensor representation, and is internally transformed to a Second-Piola 
stress tensor. 

• For theory, see External Stress.

• For details about the different stress measures, see Defining Stress.
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 7
B e a m
This chapter describes the Beam interface, which you find under the Structural 

Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for the Beam Interface

• The Beam Interface
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Th eo r y  f o r  t h e  Beam I n t e r f a c e

The Beam Interface theory is described in this section:

About Beams 

A beam is a slender structure that can be fully described by its cross section properties 
such as area, moments of inertia, and torsional constant. Beams are the choice for 
modeling reinforcements in 3D solids and shell structures, as well as in 2D solids under 
the plane stress assumption. Naturally, they can also model lattice works, both planar 
and three-dimensional.

Beams can sustain forces and moments in any direction, both distributed and on 
individual nodes. The beam’s ends and interconnections can be free, simply supported, 
or clamped. In fact, the simplified boundary conditions are usually responsible for 
most of the difference that can be found between a beam solution and a full 3D solid 
simulation of the same structure. Point constraints on beams are well-behaved, in 
contrast to the solid case, and it is possible to use discrete point masses and mass 
moments of inertia.

The Beam interface is based on the principle of virtual work. The resulting equation 
can equivalently be viewed as a weak formulation of an underlying PDE. The Beam 

• About Beams

• In-Plane Beams

• 3D Beam

• Geometric Variables

• Shape Functions

• Geometric Nonlinearity

• Strain-Displacement/Rotation 
Relation

• Stress-Strain Relation

• Thermal Strain

• Hygroscopic Swelling

• Initial Load and Strain

• Implementation

• Stress Evaluation

• Common Cross Sections

Beam Cross Section
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interface uses special shape function classes to define stresses and strains in the beams 
using either Euler-Bernoulli or Timoshenko theory.

In-Plane Beams

Use the Beam interface in 2D to analyze planar lattice works of uniaxial beams.

In-plane beams are defined on edges in 2D. They can be used separately or as stiffeners 
to 2D solid elements.

VA R I A B L E S  A N D  S P A C E  D I M E N S I O N S

The degrees of freedom (dependent variables) are the global displacements u and v in 
the global x and y directions and the rotation θ about the global z-axis.
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3D Beam

Use the Beam interface in 3D to model three-dimensional frameworks of uniaxial 
beams.

3D beams are defined on edges in 3D. They can be used separately or as stiffeners to 
2D solid or shell elements.

VA R I A B L E S  A N D  S P A C E  D I M E N S I O N S

The degrees of freedom (dependent variables) are the global displacements u, v, w in 
the global x, y, z directions and the global rotations θx, θy, and θz about the global x-, 
y-, and z-axes.
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Figure 7-1: The degrees of freedom in the Beam interface,

Geometric Variables

The beam formulations are based on that the cross section data are known. You can 
either enter them explicitly, or, for a number of standard cross sections, get them 
computed internally. In Table 7-1 the important geometric variables used in the Beam 
interface are summarized.

TABLE 7-1:  GEOMETRIC VARIABLE IN BEAM INTERFACE

PROPERTY VARIABLE NAME DESCRIPTION

A beam.area Cross section area

Izz beam.Izz Moment of inertia around local z-axis

ez beam.ez Distance to shear center in local z-direction

μy beam.muy Max shear stress factor in local y-direction

κy beam.kappay Shear correction factor along local y-axis

rgy beam.rgy Radius of gyration, local y-direction
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Shape Functions

The beam element has different shape functions for representing the displacements in 
different directions.

• The axial extension is represented by a linear shape function.

• The twist around the beam axis (3D only) is represented by a linear shape function.

• The bending displacement and corresponding rotation is represented by cubic shape 
functions, usually called Hermitian shape functions. These will supply exact 
solutions to the underlying beam equations as long as distributed loads do not vary 
with position.

The shape functions for bending depend on whether Timoshenko theory is employed 
or not.

In the beam local system, the displacements, u, and rotations, θ, are interpolated as

Iyy beam.Iyy Moment of inertia around local y-axis

ey beam.ey Distance to shear center in local y-direction

μz beam.muz Max shear stress factor in local z-direction

κz beam.kappaz Shear correction factor along local z-axis

rgz beam.rgz Radius of gyration, local z-direction

J beam.J_beam Torsional constant

Wt beam.Wt Torsional section modulus

re beam.re Equivalent radius

beam.yBeam1 
beam.zBeam1

Stress evaluation point 1, local coordinates

beam.yBeam2 
beam.zBeam2

Stress evaluation point 2, local coordinates

beam.yBeam3 
beam.zBeam3

Stress evaluation point 3, local coordinates

beam.yBeam4 
beam.zBeam4

Stress evaluation point 4, local coordinates

TABLE 7-1:  GEOMETRIC VARIABLE IN BEAM INTERFACE

PROPERTY VARIABLE NAME DESCRIPTION
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where the subscript refers to the two nodes of the element, and N is a matrix of shape 
functions.

The shape functions for the Euler-Bernoulli case are expressed in the local coordinate 
ξ, ranging from 0 to 1, as

where L is the length of the beam element.

For the Timoshenko case, the shape functions are modified, so that they depend on 
the degree of shear flexibility. Define

which represent the ratios between bending and shear stiffness in the two principal 
directions. The shape functions are then modified so that

u
θ 

 
 

N[ ]

u1

θ1

u2

θ2
 
 
 
 
 
 
 
 
 

=

N[ ]

N1 0 0 0 0 0 N2 0 0 0 0 0

0 N3 0 0 0 N5 0 N4 0 0 0 N6

0 0 N3 0 N5– 0 0 0 N4 0 N6– 0

0 0 0 M1 0 0 0 0 0 M2 0 0
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=
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where

The superscript i, indicates that the shape functions for bending are no longer the same 
in the two principal directions. The shape functions with i = 2 are used for bending in 
the local y direction, and the shape functions with i = 3 are used for bending in the 
local z direction.

Geometric Nonlinearity

You can use the beam interface for modeling problems with large displacements and 
rotations, but small strains. A so called co-rotational formulation is used. The 
displacement of each individual beam element is decomposed into a rigid body 
translation and rotation, and a local response of the rotated element which is linear.

The assumption that the individual element behaves linearly implies that you must use 
a fine mesh if the curvature of the deformed beam is large. The difference in rotation 
between the end points of the individual element must not be larger than it would be 
possible to analyze it using linear theory.

Different coordinate systems are needed for describing the beam configurations. The 
initial configuration of the beam can be described by a triad of orthogonal unit vectors 

. The first vector is parallel to the beam, and the second and third vectors point in 
the local y and z directions respectively. The origin of the local system is taken to be 
the midpoint of the element. This system translates and rotates with the rigid body 
motion of the beam, and the new directions of the axes are called .

N3
i N3 ΦiN3

ˆ+( )
1 Φi+

---------------------------------  = N4
i N4 ΦiN4

ˆ+( )
1 Φi+

---------------------------------=

N5
i N5 ΦiN5
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ˆ+( )
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M5
i M5 ΦiM5
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1 Φi+
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ˆ 1 ξ–= N4
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N5
ˆ L

2
---- ξ ξ2

–( )= N6
ˆ L

2
----– ξ ξ2

–( )=

M5
ˆ 1 ξ–= M6

ˆ ξ=

ri
0

ri
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The rotation of the beam is represented by rotation vectors, . The rotation at the 
midpoint is approximated as the arithmetic mean of the rotations at the nodes, 

The rigid rotation is then represented by a rotation matrix Rr, corresponding to this 
midpoint rotation. It is given by

where  is the skew symmetric representation of the midpoint rotation vector.

The axis directions of the co-rotated coordinate system can now be computed as

The position of a point on the rigidly rotated axis of the element can be obtained as

where the local coordinate ξ ranges from 0 to 1, and Xi denotes original node 
coordinates. xM is the midpoint position, computed as the average of the two nodes,

In addition to the rigid body motion described so far, there are the local deformational 
displacements with respect to the local rotated beam axes. The deformational 
displacement can be computed as the difference between the current position and the 
rigid body position

θ

θM
θ1 θ2+

2
------------------=

Rr I
θMsin
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1 θMcos–
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2

-----------------------------ΘM
2

+ +=
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θMy– θMx 0
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r1 r2 r3 Rr r1
0 r2

0 r3
0=

xR xM Rr X2 X1–( ) ξ 1
2
---– 

 +=

xM
1
2
--- X1 u1 X2 u2+ + +( )=

u X u xR u uR–=–+=
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Here, and in the following, an over-bar denotes a deformational quantity. The 
deformational rotation at the nodes is approximated by

These local deformations are interpolated by the same shape functions as described in 
the previous section:

The total displacement and rotation vectors can be expressed in term of the rigid 
motion of the local axes, followed by the deformational motion relative to these axes.

A deformational rotation matrix  can be defined as

where  is the skew-symmetric representation of the deformational rotation vector.

The total rotation vector is computed from a total rotation matrix, R. The total 
rotation matrix is first composed from the rigid body rotation and the incremental 
rotation.

The total rotation vector can now be extracted from the total rotation matrix. The 
magnitude of the rotation vector is first computed as

The full rotation vector is then computed as

θ1
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2
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2
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Θ
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θ trace R( ) 1–
2

--------------------------------- 
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To avoid singularity problems when the angle is close to zero, the gamma function is 
actually used in the expressions, since

Strain-Displacement/Rotation Relation

The axial strain depends on the rotation derivative (curvature) and axial displacement 
derivative defined by the shape function and the transversal coordinate in the beam. 
For the 3D case it becomes

The coordinates from the beam center line in the local transversal directions are 
denoted zl and yl respectively. In the 2D case, the first term is omitted, and the local z 
direction is always directed out of the plane.

The total strain ε consists of thermal (εth), hygroscopic (εhs), initial (εi), and elastic 
strains(εel)

Stress-Strain Relation

The stress-strain relation for the axial deformation in the beam is described by

where E is Young’s modulus, and σi is the initial stress.

The stress strain relation for the torsional and shear deformation is

θ θ
2 θsin
----------------

R32 R23–

R13 R31–

R21 R12–

=

θ
θsin

------------ γ 1 θ
π
---+ 

  γ 1 θ
π
---– 

 =

ε zl
∂θly
∂s

---------- yl
∂θlz
∂s

----------–
∂uaxi

∂s
-------------+=

ε εel εth εhs εi+ + +=

σ Eεel σi+=

τ Gγ=
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where τ is the shear stress, γ is the shear strain and G is the shear modulus. Often the 
material data is given in terms of Young’s modulus and Poisson’s ratio ν, in which case 
G is defined as

Thermal Strain

The temperature is assumed to vary linearly across the beam’s cross section. For the 
3D beam it becomes

Tm is the temperature at the beam center line while Tgz and Tgy are the temperature 
gradients in the two local transversal directions. The thermal strain is thus

For the 2D beam, the term depending on zl disappears.

Hygroscopic Swelling

The moisture concentration is assumed to vary linearly across the beam’s cross section. 
For the 3D beam it becomes

cm is the concentration at the beam center line while cgz and cgy are the concentration 
gradients in the two local transversal directions. The strain from hygroscopic swelling 
is then

where βh is the coefficient of hygroscopic swelling, and cmo,ref is the strain-free 
reference moisture concentration.

For the 2D beam, the term depending on zl disappears.

G E
2 1 ν+( )
---------------------=

T Tm Tgzzl Tgyyl+ +=

εth α Tm Tgzzl Tgyyl Tref–+ +( )=

cmo cm cgzzl cgyyl+ +=

εth βh cm cgzzl cgyyl cmo,ref–+ +( )=
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Initial Load and Strain

The initial stress means the stress before any loads, displacements, and initial strains 
have been applied.

The initial stress distribution is given as initial forces and moments in the local section 
directions.

In 2D the x and y components of moments disappear.

In a Timoshenko beam, the initial shear forces appear as independent quantities, and 
can also be specified.

The initial strain is the strain before any loads, displacements, and initial stresses have 
been applied. The initial axial strain distribution is given as initial curvature and initial 
axial strain

In 2D the zl dependent term disappears. As initial strain for the torsional degree of 
freedom, the derivative of the twist angle,

is used.
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In a Timoshenko beam it is also possible to set the initial values for the shear strains.

Implementation

The implementation is based on the principle of virtual work, which states that the sum 
of virtual work from internal strains and external loads equals zero:

The beam elements are formulated in terms of the stress resultants (normal force, 
bending moments and twisting moment).

The normal force is defined as

Because the local coordinates are defined with their origin at the centroid of the cross 
section, any surface integral of an odd power of a local coordinate evaluates to zero.

The beam bending moments are defined as
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Mly is present only in 3D, and so is the torsional moment Mlx described below. The 
torsional stiffness of the beam is defined using the torsional constant J given by

In a similar way as for the bending part a torsional moment is then defined as

Using the beam moment and normal force the expression for the virtual work becomes 
very compact:
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For 2D, the first and fourth terms are omitted. For the case of Timoshenko beam, 
there is also a shear stress contribution added, 

were the second term is present only in 3D.

A special feature of some unsymmetrical cross sections is that they twist under a 
transversal load that is applied to beam centerline. As an example, this would be the 
case for a U-profile under self-weight, loaded in the stiff direction. It is only a load 
applied at the shear center which causes a pure deflection without twist. This effect can 
be incorporated by supplying the coordinates of the shear center in the local coordinate 
system (ey, ez). A given transversal load (flx, fly, flz), which is defined as acting along 
the centerline, is then augmented by a twisting moment given by 

Stress Evaluation

Since the basic result quantities for beams are the integrated stresses in terms of section 
forces and moment, special considerations are needed for the evaluation of actual 
stresses.

The normal stress from axial force is constant over the section, and computed as

The normal stress from bending is computed in four user-selected points (ylk, zlk) in 
the cross section as

In 2D, only two points, specified by their local y-coordinates are used.

The total normal stress in these points is then

The peak normal stress in the section is defined as 

Wδ Tly γδ xy Tlz γδ xz+( ) xd
L
–=

mlx flyez flzey–=

σn
N
A
----=

σbk
Mlyzlk

Iyy
-----------------

Mlzylk
Izz

-----------------–=

σk σ= bk σn+
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When using the built in common cross sections, a special method is used for the 
Circular and Pipe sections. Since there are no extreme positions around a circle, a 
maximum bending stress is computed as

where do is the outer diameter. This stress then replaces the stress from the stress 
evaluation points in maximum stress expressions. This ensures that the correct peak 
stress is evaluated irrespective of where it appears along the circumference.

The shear stress from twist in general has a complex distribution over the cross section. 
The maximum shear stress due to torsion is defined as

where Wt is the torsional section modulus. This result is available only in 3D.

The section shear forces are computed in two different ways depending on the beam 
formulation. For Euler-Bernoulli theory, the section forces proportional to the third 
derivative of displacement, or equivalently, the second derivative of the rotation.

where Tlz is available only in 3D. In the case of Timoshenko theory shear force is 
computed directly from the shear strain.

The average shear stresses are computed from the shear forces as

 (7-1)

σmax max σk( )=

σb max,
do Mly

2 Mlz
2

+

2Izz
------------------------------------=

τt max,
Mlx
Wt

-------------=

Tlz EIyy
∂2θly

∂s2
-------------=

Tly E– Izz
∂2θlz

∂s2
-------------=

τsz ave,
Tlz
A

--------=

τsy ave,
Tly
A

--------=
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Since the shear stresses are not constant over the cross section, the maximum shear 
stresses are also available, using section dependent correction factors:

 (7-2)

As the directions and positions of maximum shear stresses from shear and twist are not 
known in a general case, upper bounds to the shear stress components are defined as

The maximum von Mises effective stress for the cross section is the defined as 

Since the maximum values for the different stress components in general occur at 
different positions over the cross section, the effective stress thus computed is a 
conservative approximation.

Common Cross Sections

The cross section data for the common cross sections can be computed internally in 
COMSOL Multiphysics. In this section, the expressions used are summarized.

τsz max, μzτsz ave,=

τsy max, μyτsy ave,=

τxz max, τsz max, τt max,+=

τxy max, τsy max, τt max,+=

σmises σmax
2 3τxy max,

2 3τxz max,
2

+ +=

Beam Cross Section
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R E C T A N G U L A R  S E C T I O N

Figure 7-2: Geometry of a rectangular cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.

TABLE 7-2:  RECTANGULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

μy 1.5

κy 5/6

Iyy

ey 0

μz 1.5

κz 5/6

J q=

min(hy/hz,hz/hy)

hyhz

hy
3hz
12

------------

hz
3hy
12
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hy
2hz

2q
3

----------------- 1 192q

π5 2n 1–( )5
------------------------------ 2n 1–( )π

2q
------------------------- 
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n 1=

2

–
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B O X  S E C T I O N

Figure 7-3: Geometry of a box shaped cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.
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min(hy/hz,hz/hy)

p1
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TABLE 7-2:  RECTANGULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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4
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TABLE 7-3:  BOX SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

μy

κy

Iyy

ey 0

μz

κz

J Thin-walled 
approximation
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3 hz 2tz–( )+

6
------------------------------------------------

ty hz 2tz–( ) hy ty–( )2

2
-------------------------------------------------------+

hy
2hz hy 2ty–( )2 hz 2tz–( )–( )A

16tzIzz
--------------------------------------------------------------------------------

2hytz
A

---------------

tyhz
3 tz

3 hy 2ty–( )+

6
-------------------------------------------------

tz hy 2ty–( ) hz tz–( )2

2
-------------------------------------------------------+

hz
2hy hz 2tz–( )2 hy 2ty–( )–( )A

16tyIyy
--------------------------------------------------------------------------------

2hzty
A

--------------

2 hy ty–( )2 hz tz–( )2

hy ty–

tz
-----------------

hz tz–

ty
----------------+

-----------------------------------------------------
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Figure 7-4: Geometry of a circular cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.

p4

re

TABLE 7-4:  CIRCULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

μy

κy 0.9

Iyy

ey 0

TABLE 7-3:  BOX SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

h– y
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---------
hz
2
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hy hz+

4
------------------

πdo
2

4
----------

πdo
4
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----------

4
3
---

Izz
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P I P E  S E C T I O N

Figure 7-5: Geometry of a pipe cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.

μz μy

κz κy
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p4
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TABLE 7-4:  CIRCULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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T H E O R Y  F O R  T H E  B E A M  I N T E R F A C E  |  711



712 |  C H A P T E
TABLE 7-5:  PIPE SECTION CONSTANTS

PROPERTY FORMULA REMARKS
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Figure 7-6: Geometry of a an H-profile cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.
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TABLE 7-6:  H-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

μy
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TABLE 7-5:  PIPE SECTION CONSTANTS

PROPERTY FORMULA REMARKS

0
do
2
------, 

 

do
2
------

2hzty tz hy 2ty–( )+

2hzty
3 tz hy 2ty–( )3

+

12
-------------------------------------------------------

tyhz hy ty–( )2

2
------------------------------------+

4hzty hy ty–( ) t+ z hy 2ty–( )2[ ]A
8tzIzz

--------------------------------------------------------------------------------------

hytz
A

-----------
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Iyy

ey 0

μz

κz

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3
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TABLE 7-6:  H-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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Figure 7-7: Geometry of a U-profile cross section. Also displays in COMSOL Multiphysics 
when this option is selected.

TABLE 7-7:  U-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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μz

κz

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3

p4

re

TABLE 7-7:  U-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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Figure 7-8: Geometry of a T-profile cross section. Also displays in COMSOL Multiphysics 
when this option is selected.

TABLE 7-8:  T-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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μz

κz

J Thin-walled 
approximation

Wt Thin-walled 
approximation
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TABLE 7-8:  T-PROFILE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS
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T h e  Beam I n t e r f a c e

The Beam interface ( ), found under the Structural Mechanics branch ( ) when 
adding a physics interface, is used for modeling slender structural elements, having a 
significant bending stiffness. The formulation allows geometric nonlinearity, with large 
rotations and small strains, and beams can be modeled on 2D boundaries and 3D 
edges. 

Two-noded straight elements with an Hermitian formulation are used. Two different 
assumptions about the physics can be used:

• Euler (or Euler-Bernoulli) theory. This formulation is intended for slender beams, 
and do not take shear deformations into account.

• Timoshenko theory. In this formulation that extends the beam theory to ‘thick’ 
beams, shear deformations are taken into account. In a dynamic analysis, inertial 
effects from rotation are also included.

Among the computed results are displacements, rotations, stresses, strains, and section 
forces. In addition to giving the beam properties explicitly in terms of area, moment 
of inertia, and so on, several predefined common cross-section types are available. 
Cross section data to be used in Cross Section Data settings can be computed using 
Theory for the Beam Cross Section Interface.

The Linear Elastic Material node is the only available material model.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Linear Elastic Material, Cross Section Data, Free (a condition where points are 
free, with no loads or constraints), and Initial Values. Then, from the Physics toolbar, 
add other nodes that implement, for example, loads and constraints. You can also 
right-click Beam to select physics features from the context menu. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is beam.
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Select Euler-Bernoulli or Timoshenko to use the appropriate beam theory. 

B A C K W A R D  C O M P A T I B I L I T Y

Click to clear the Use pre 4.4 formulation check box to convert a model into the new 
formulation. For most models, the only difference is that it will then be possible to 
select Timoshenko theory in the Beam Formulation section.

There are, however, some situations where you need to make additional changes to 
your model when migrating to the new formulation:

• If you have made manual adjustments to the solver sequence, such as scaling the 
dependent variables or adjusting groups in a segregated solver. These settings might 
have to be redone.

• If you are using multiple physics interfaces and use the same degree of freedom 
names for the displacements in the Beam interface and other structural mechanics 
interfaces. In this case, you need to rename the degrees of freedom in the Beam 
interface and create a different type of connection between the beams and the other 
physics interface, for example using a Solid Connection or Shell Connection.

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the default coordinates for the Reference point for moment computation xref. The 
resulting moments (applied or as reactions) are then computed relative to this 
reference point. During the results and analysis stage, the coordinates can be changed 
in the Parameters section in the result nodes.

For COMSOL Multiphysics models created in versions 4.3b and earlier, 
the only option available is Euler-Bernoulli. See the Backward 
Compatibility section to make changes to such a model.

The formulation of the beam element was significantly changed as of 
COMSOL Multiphysics version 4.4. For this reason, by default, models 
created in previous versions default to using the Euler-Bernoulli theory. 

This section only displays if a model was created in an earlier version. You 
also need to click the Show button ( ) and select Advanced Physics 

Options to edit the section and change the Beam Formulation to 
Timoshenko (if required).
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D E P E N D E N T  V A R I A B L E S

The Beam interface has these dependent variables (fields):

• The displacement field u, which has two components (u, v) in 2D and three 
components (u, v, and w) in 3D.

• The rotation angle θ, which has one component in 2D (th) and three components 
in 3D (thx, thy, and thz).

The names can be changed but the names of fields and dependent variables must be 
unique within a model.

D I S C R E T I Z A T I O N

The discretization cannot be changed. The element has different shape functions for 
the axial and transversal degrees of freedom. The axial displacement and twist are 
represented by linear shape functions, while the bending is represented by a cubic 
shape function (“Hermitian element”).

The dependent variable names remain same in both a geometrically linear 
and a geometrically nonlinear analysis. Under geometric nonlinearity, the 
dependent variables are however not defined though shape functions. The 
equivalent shape function variables are (beam.uLinx, beam.uLiny, 
beam.uLinz) and (beam.thLinx, beam.thLiny, beam.thLinz). In this 
case, you will see the latter names under Dependent variables in the Solver 
tree.

If needed, these shape variables can be used to write any extra 
contributions in the Beam interface.

If a physics interface that separates the material and spatial frame (Solid 
Mechanics is one such example) is added to the model, the coordinate 
indices change from (x, y, z) to (X, Y, Z) in the name of these variables. 

• Boundary, Edge, Point, and Pair Nodes for the Beam Interface

• Theory for the Beam Interface

• Theory for the Beam Cross Section Interface
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Boundary, Edge, Point, and Pair Nodes for the Beam Interface

The Beam Interface has these boundary, edge, point, and pair nodes available from the 
Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), 
or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Beam interface are added from submenus in the Physics toolbar 
groups or context menu (when you right-click the node). The submenu name is the 
same in both cases.

The submenus at the Edge level (3D) or Boundary level (2D) are

• Material Models

• Line and Volume Loads,

• Mass, Spring, and Damper

• Connections

• Line Constraints.

The submenus at the Point level are

• Mass, Spring, and Damper

• Connections

• More Constraints

• Pairs.

• Channel Beam: Application Library path 
Structural_Mechanics_Module/Verification_Examples/channel_beam

• Instability of a Space Arc Frame: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

space_frame_instability

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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These nodes (and subnodes) are described in this section (listed in alphabetical order):

These nodes are described for the Solid Mechanics interface:

• Antisymmetry

• Attachment

• Cross Section Data

• Edge Load

• External Stress

• Hygroscopic Swelling

• Initial Stress and Strain

• Initial Values

• Linear Elastic Material

• No Rotation

• Pinned

• Point Load

• Point Mass

• Point Mass Damping

• Prescribed Acceleration 

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Rigid Connector

• Section Orientation 

• Shell Connection

• Solid Connection

• Symmetry

• Thermal Expansion (for materials)

• Added Mass

• Damping

• Fixed Constraint

• Free

• Gravity1

• Predeformation

• Rigid Domain

• Rotating Frame1

• Spring Foundation

1 This is selected from the Line and Volume Loads submenu for this interface.

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence. The exception is that the “Pinned” 
and “No Rotation” boundary conditions do not override each other since 
the degrees of freedom that they constrain are mutually exclusive.
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Initial Values

The Initial Values node adds an initial values for the displacement field, the velocity 
field, the rotations, and the angular velocity. It serves as initial conditions for a transient 
simulation or as an initial guess for a nonlinear analysis. In addition to the default Initial 

Values node always present in the interface, you can add more Initial Values nodes if 
needed.

I N I T I A L  V A L U E S

Enter values or expressions for the following based on space dimension:

• Displacement field u

• Velocity field 

• Rotation field θ

• Angular velocity 

Context Menus
Beam>Initial Values

Beam>Edges>Initial Values

Ribbon
Physics tab with Solid Mechanics selected:
Edges>Beam>Initial Values

Cross Section Data

In the Cross Section Data node you specify the geometric properties of the beam’s cross 
section. In addition, some stress evaluation properties can be defined. 

For 3D models, a default Section Orientation subnode is added, in which you specify 
the orientation of the principal axes of the section. You can add any number of Section 

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

td
du

td
dθ
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Orientation subnodes if the same section appears with different spatial orientations in 
the structure.

C R O S S  S E C T I O N  D E F I N I T I O N

The default is User defined. Select Common sections to choose from predefined sections. 

For User defined go to Basic Section Properties and Stress Evaluation Properties to 
continue defining the cross section.

For Common sections select a Section type—Rectangle, Box, Circular, Pipe, H-profile, 
U-profile, or T-profile. Then go to the relevant section below to continue defining the 
section. Each Section type also has a figure showing the section and its defining 
dimensions.

This is required input data.

• Common Cross Sections

• Beam Cross Section

For equations and a figure see:

• Rectangular Section

• Box Section

• Circular Section

• Pipe Section

• H-Profile section

• U-Profile section

• T-Profile section

Examples of how to work with cross sections: Application Library path 
Structural_Mechanics_Module/Verification_Examples/channel_beam and 
Structural_Mechanics_Module/Civil_Engineering/pratt_truss_bridge 
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Rectangle
Enter values or expressions for the following. 

• Width in local y-direction hy

• Width in local z-direction hz

Box
Enter values or expressions for the following. 

• Width in local y-direction hy

• Width in local z-direction hz

• Wall thickness in local y-direction ty
• Wall thickness in local z-direction tz

Circular
Enter a value or expression for the Diameter do.

Pipe
Enter values or expressions for the following. 

• Outer diameter do

• Inner diameter di

H-profile, U-profile, or T-profile
Enter values or expressions for the following. 

• Section height hy

• Flange width hz

• Flange thickness ty

• Web thickness tz

B A S I C  S E C T I O N  P R O P E R T I E S

This section is only available if User defined is selected as the Cross Section 

Definition.
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The following table lists the basic section properties (some apply in 3D only). Enter 
values for these properties in the associated fields. The default values correspond to a 
circular cross section with a diameter of 0.1 m:

S T R E S S  E V A L U A T I O N  P R O P E R T I E S

Select the Bending stress evaluation points—From section heights (the default or From 

specified points. 

Stress evaluation using only section heights is meaningful only when the cross section 
is symmetric.

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Area of cross section A m2

2D and 3D Moment of inertia about local z-axis Izz m4

2D and 3D, 
Timoshenko 
beam

Shear correction factor along local y-axis κy 1

3D only Distance to shear center in local z-direction ez m

3D only Moment of inertia about local y-axis Iyy m4

3D only Distance to shear center in local y-direction ey m

3D only Torsional constant J m4

3D only, 
Timoshenko 
beam

Shear correction factor along local z-axis κz 1

For 3D models, the orientation of the cross section is given in Section 
Orientation. If the beam’s cross section is a square or circle (solid or tube), 
the area moments of inertia are the same independent of direction, so the 
beam is totally symmetric and the orientation of the principal axes of the 
cross section is not a problem unless you are interested in looking at 
results defined using the local coordinate system. Such results are bending 
moments, shear forces, local displacements and rotations. 

This section is only available if User defined is selected as the Cross Section 

Definition.
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The max shear stress factor determines the ratio between the peak and the average 
shear stress over the cross section as described by Equation 7-1 and Equation 7-2.

From Section Heights
For From section heights enter values in each field for the following parameters as 
needed for the space dimension:

From Specified Points
For From specified points enter values in the Evaluation points in local system table as 
needed for the space dimension. Then enter the following parameters in the applicable 
fields. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Cross Section Data

Ribbon
Physics tab with Beam selected:
Edges>Beam>Cross Section Data

Section Orientation

Use the Section Orientation subnode to define the orientation of a beam cross section 
using a reference point or an orientation vector. There is always one Section Orientation 
subnode for each cross section, and as many Section Orientation subnodes as needed 

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Section height in local y direction hy m

2D and 3D Max shear stress factor in local y direction μy 1

3D only Section height in local z direction hz m

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction μz 1

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Max shear stress factor in local y direction μy 1

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction μz 1
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can be added if the same section appears with different spatial orientations in the 
structure. 

O R I E N T A T I O N  M E T H O D

Select the Reference point (the default) or Orientation vector. For Reference point For 
enter a Reference point defining local y direction P.

The coordinate system is defined as follows:

The local x direction is in the edge direction. The positive edge direction can be 
checked by vector plotting the local edge tangent direction. The coordinates of the 
reference point define the local xy-plane together with the beam axis. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

Here, p is the reference point, and m is the midpoint of the beam element. The 
definition of the local coordinate system is illustrated in Figure 7-9.

Figure 7-9: Local beam coordinate system defined by a reference point

This node is available for 3D components.

vzl exl p m–( )×=

ezl
vzl
vzl
----------=

eyl ezl exl×=
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For the creation of a local coordinate system to be possible, the point cannot coincide 
with the edge or the edge extension. If this is attempted, an error message is generated.

Often a number of edges in a plane have the same orientation. It is then easy to select 
all edges and specify a point anywhere in the same plane, not coinciding with an edge 
or an edge extension.

For Orientation vector enter a Orientation vector defining local y direction V and 
optionally the Rotation of vector around beam axis φ. The beam orientation is defined 
similarly to what is described above, with the difference that in this case the direction 
vector is explicitly defined whereas when an orientation point is used, the direction 
vector is obtained as the vector from the beam axis to the specified point. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

The Rotation of vector around beam axis has the effect of rotating the given vector 
around the beam axis (using the right-hand rule) before it is used to define the local 
xy-plane. This simplifies the input for some cross sections, such as L-shaped profiles, 
where the principal axes have a direction which is skewed relative to a more natural 
modeling position. This can be written as

Here the directions denoted with a prime are unrotated beam axis orientations 
obtained by the procedure described above.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Cross Section Data>Section Orientation

The settings for the global coordinates of the point are 
[1000,1000,1000]. This is useful only for symmetric cross sections.

vzl exl V×=

ezl
vzl
vzl
----------=

eyl ezl exl×=

eyl e'yl φcos e'zl φsin–=

ezl e'zl φcos e'yl φsin+=
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Ribbon
Physics tab with Cross Section Data node selected in the model tree:
Attributes>Section Orientation

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic beam and an 
interface for defining the elastic material properties. 

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Damping

L I N E A R  E L A S T I C  M A T E R I A L

Define the linear elastic material properties.

Specification of Elastic Properties for Isotropic Materials
From the Specify list, select a pair of elastic properties for an isotropic material. Select:

• Young’s modulus and Poisson’s ratio to specify Young’s modulus (elastic modulus) E 
and Poisson’s ratio ν. Poisson’s ratio is used for computing the torsional stiffness, 
and is thus important only for 3D beams.

• Young’s modulus and shear modulus to specify Young’s modulus (elastic modulus) E 
and the shear modulus G. The shear modulus is used for computing the torsional 
stiffness, and is thus important only for 3D beams.

• Bulk modulus and shear modulus to specify the bulk modulus K and the shear 
modulus G.
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• Lamé parameters to specify the Lamé parameters λ and μ.

• Pressure-wave and shear-wave speeds to specify the pressure-wave speed 
(longitudinal wave speed) cp and the shear-wave speed (transverse wave speed) cs.

For each pair of properties, select from the applicable list to use the value From material 
or enter a User defined value or expression.

Each of these pairs define the elastic properties, and it is possible to convert from one 
set of properties to another.

Density
Define the Density ρ of the material. Select From material to take the value from the 
material or User defined to enter a value for the density.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Material Models>Linear Elastic Material

Ribbon
Physics tab with Beam selected:
Edges>Material Models>Linear Elastic Material

This is the wave speed for a solid continuum. In a truss or beam element, 
the actual speed with which a longitudinal wave travels is lower than the 
value given. When using this type of input the density must also be given.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

Thermally Loaded Beam: Application Library path 
Structural_Mechanics_Module/Verification_Examples/thermally_loaded_beam
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Thermal Expansion (for materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature. The thermal strain depends on the coefficient of thermal expansion 
(CTE) α, the temperature T, and the strain-free reference temperature Tref as

It is possible to model bending due to a temperature gradient in the transverse 
directions of the beam. The temperature is then assumed to vary linearly through the 
thickness.

M O D E L  I N P U T S

From the Temperature T list, select an existing temperature variable from a heat transfer 
interface. For User defined enter a value or expression for the temperature (the default 
is 293.15 K). This is the centerline temperature of the beam, controlling the axial part 
of the thermal expansion.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain.

From the Coefficient of thermal expansion α list, select From material to use the 
coefficient of thermal expansion from the material, or User defined to enter a value or 
expression for α. 

Enter a value or expression of the Strain reference temperature Tref, which is the 
reference temperature where the thermal strain is zero.

T H E R M A L  B E N D I N G

Enter the Temperature gradient in local y-direction Tgy (in 2D and 3D) and in the 
Temperature gradient in local z-direction Tgz (in 3D), which affects the thermal 
bending. If beam cross section dimensions have been defined at Bending stress 

evaluation points—From section heights, these could be used in an expression 
containing the temperature difference.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>Thermal Expansion

εth α T Tref–( )=
T H E  B E A M  I N T E R F A C E  |  733



734 |  C H A P T E
Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as 

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. It is possible to model bending 
due to a concentration gradient in the transverse directions of the beam. The 
concentration is then assumed to vary linearly through the thickness.

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. This is the centerline concentration of the beam, 
controlling the axial part of the hygroscopic swelling.

The unit for the input depends on the setting of Concentration type in the Hygroscopic 

Swelling Properties section. Only concentration variables having the chosen physical 
dimension are available in the Concentration list.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration (the default) or Mass 

concentration, depending on the units used for the concentration.

Enter a Strain reference concentration cref. This is the concentration at which there are 
no strains due to hygroscopic swelling.

If Molar concentration is selected as Concentration type, also enter the Molar mass of the 
fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling βh uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric to enter one or more 
components for a general coefficient of hygroscopic swelling tensor βh.The default 
value for the User defined case is 1.5e-4 m3/kg.

εhs βh cmo cmo ,ref–( )=
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H Y G R O S C O P I C  B E N D I N G

Enter the Concentration gradient in local y-direction cgy (in 2D and 3D) and in the 
Concentration gradient in local z-direction cgz (in 3D), which affects the hygroscopic 
bending. If beam cross section dimensions have been defined at Bending stress 

evaluation points—From section heights, these could be used in an expression 
containing the concentration difference.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain to the Linear Elastic Material node, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation.

I N I T I A L  S T R E S S

Specify the initial stress as the:

• Initial axial force Ni.

• Initial bending moment Miz and for 3D models, Miy.

• For 3D models: Initial torsional moment Mix.

• For Timoshenko beam: Initial shear force Tiy and for 3D models, Tiz.

I N I T I A L  S T R A I N

Specify the initial strain as the:

• Initial axial strain eni.

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.
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• Initial curvature θsiz and for 3D models, and θsiy.

• For 3D models: Initial twist θsix.

• For Timoshenko beam: Initial shear strain γsiy and for 3D models, γsiz.

Context Menus
Beam>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to several material models, in order to specify 
an additional stress contribution which is not part of the constitutive relation. The 
external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

E X T E R N A L  S T R E S S

Specify the external stress as section forces:

• External axial force Next.

• External bending moment Mz,ext and for 3D models, My,ext.

• For 3D models: External torsional moment Mx,ext.

• For Timoshenko beam: External shear force Ty,ext and for 3D models, Tz,ext.

For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.
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For each quantity, you can select User defined, in which case you enter values or 
expressions explicitly. The drop-down lists will also contain any section forces 
announced from a physics interface.

Context Menus
Beam>Linear Elastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>External Stress

Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation node adds an edge (3D), boundary (2D), or 
point (2D and 3D) condition where the displacements and rotations are prescribed in 
one or more directions.

• If a prescribed displacement or rotation is not activated in any direction, this is the 
same as a Free constraint.

• If zero displacements and rotations are prescribed, this is the same as a Fixed 

Constraint.

• If only zero displacements are prescribed, this is the same as a Pinned constraint.

• If only zero rotations are prescribed, this is the same as a No rotation constraint.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed 
displacement/rotation. See the section Coordinate System Selection for Edge Load.

P R E S C R I B E D  D I S P L A C E M E N T

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
models, Prescribed in z direction check boxes. Then enter a value or expression for u0, 
v0, and for 3D models, w0. 

Selecting section forces announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed force depends on itself.
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P R E S C R I B E D  R O T A T I O N

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.  

For 2D models, to define a prescribed rotation select the Prescribed in out 

of plane direction check box and enter a value or expression for θ0z.

For 3D models, to define a prescribed rotation for each space direction (x, 
y, and z), select one or all of the Prescribed around x direction, Prescribed 

around y direction, and Prescribed around z direction check boxes and enter 
a value or expression for in each θ0x, θ0y, or θ0z field.

In a geometrically nonlinear analysis in 3D, you should prescribe all three 
components of the rotation vector. Prescribing only one or two 
components may not give unique results, since finite rotations are not 
commutative.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Prescribed Displacement

Beam>Prescribed Displacement (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Prescribed Displacement

Points>Beam>Prescribed Displacement

Prescribed Velocity

The Prescribed Velocity node adds an edge (3D), boundary (2D), or point (2D and 
3D) that prescribes the translational or rotational velocity in one or more directions. 
The prescribed velocity condition is applicable for Time Dependent and Frequency 
Domain studies. With this condition it is possible to prescribe a velocity in one 
direction, leaving the beam free in the other directions.

The Prescribed Velocity node is a constraint, and overrides any other constraint on the 
same selection. 

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed 
translational/rotational velocity. See the section Coordinate System Selection for Edge 
Load. Depending on the selected coordinate system, the velocity components change 
accordingly.

P R E S C R I B E D  VE L O C I T Y

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
models, Prescribed in z direction check boxes. Then enter a value or expression for vx, 
vy, and for 3D models, vz. 

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used.
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P R E S C R I B E D  A N G U L A R  VE L O C I T Y  

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Prescribed Velocity

Beam>More Constraints>Prescribed Velocity (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Prescribed Velocity

Points>More Constraints>Prescribed Velocity

Prescribed Acceleration

The Prescribed Acceleration node adds a boundary or domain condition where the 
acceleration is prescribed in one or more directions. The prescribed acceleration 
condition is applicable for Time Dependent and Frequency Domain studies. With this 
boundary condition it is possible to prescribe a acceleration in one direction, leaving 
the beam free in the other directions.

For 2D models, to define a prescribed angular velocity select the 
Prescribed in out of plane direction check box and enter a value or 
expression for ∂θ0z/∂t.

For 3D models, to define a prescribed angular velocity for each space 
direction (x, y, and z), select one or all of the Prescribed around x direction, 
Prescribed around y direction, and Prescribed around z direction check 
boxes and enter a value or expression for in each ∂θ0x/∂t, ∂θ0y/∂t, or 
∂θ0z/∂t field.

You can add a Harmonic Perturbation subnode for specifying a harmonic 
variation of the values of the prescribed velocity in a frequency domain 
analysis of perturbation type.
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The Prescribed Acceleration node is a constraint, and overrides any other constraint on 
the same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed 
translational/rotational acceleration. See the section Coordinate System Selection for 
Edge Load. Depending on the selected coordinate system, the acceleration 
components change accordingly.

P R E S C R I B E D  A C C E L E R A T I O N

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
models, Prescribed in z direction check boxes. Then enter a value or expression for ax, 
ay, and for 3D models, az. 

P R E S C R I B E D  A N G U L A R  A C C E L E R A T I O N

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations. 

Coordinate systems with directions that change with time should not be 
used.

For 2D models, to define a prescribed angular acceleration select the 
Prescribed in out of plane direction check box and enter a value or 
expression for ∂2θ0z/∂t2.

For 3D models, to define a prescribed angular acceleration for each space 
direction (x, y, and z), select one or all of the Prescribed around x direction, 
Prescribed around y direction, and Prescribed around z direction check 
boxes and enter a value or expression for in each 2θ0x/∂t2, 2θ0y/∂t2, or 
2θ0z/∂t2 field.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Prescribed Acceleration

Beam>More Constraints>Prescribed Acceleration (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Prescribed Acceleration

Points>More Constraints>Prescribed Acceleration

Pinned

The Pinned node adds an edge (3D), boundary (2D), or point (2D and 3D) condition 
that makes all nodes on the selected objects to have zero displacements; that is, all 
translations are fixed while still allowing rotations.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

You can add a Harmonic Perturbation subnode for specifying a harmonic 
variation of the values of the prescribed acceleration in a frequency 
domain analysis of perturbation type.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Pinned(Line)
Beam>Pinned (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Pinned

Points>Beam>Pinned

Thermal Expansion (for constraints)

Add the Thermal Expansion subnode to a constraint (Fixed or Prescribed Displacement) 
to prescribe a deformation of the constraint caused by changes in temperature of the 
surroundings. This makes it possible to reduce stresses caused by the boundary 
conditions.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from edge to take the thermal expansion data from the edge being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the edge itself.

When Inherit from edge is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any spatial variation must be an explicit function of the 
material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the points where the constraint is 

εth α T Tref–( )=
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active.
For User defined enter the coefficient of thermal expansion α.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement and 
rotation is zero. The choice of reference point only affects the rigid body motion. If 
there are several different constraints with a Thermal Expansion subnode, the same 
reference point should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Fixed>Thermal Expansion

Beam>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Fixed or Prescribed Displacement node selected in the model tree:
Attributes>Thermal Expansion

No Rotation

The No Rotation node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that prevents all rotation at the selected objects while still allowing 
translational motion. 

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>No Rotation (Line)
Beam>More Constraints>No Rotation (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>No Rotation

Points>More Constraints>No Rotation

Symmetry

The Symmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines asymmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the orientation of the symmetry 
plane. See the section Coordinate System Selection for Edge Load.

S Y M M E T R Y

Select an Axis to use as symmetry plane normal to specify the direction of the normal to 
the symmetry plane in the selected coordinate system. 

• For 2D models, select 1 or 2 for the first or second axis, respectively. 

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Symmetry

Beam>More Constraints>Symmetry (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Symmetry

Points>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines an antisymmetry edge, boundary, or point. 

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the antisymmetry. See the section 
Coordinate System Selection for Edge Load.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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A N T I S Y M M E T R Y

Select an Axis to use as anti-symmetry plane normal to specify the direction of the 
normal to the symmetry plane in the selected coordinate system. 

• For 2D models, select 1 or 2 for the first or second axis, respectively. 

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively. 

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Antisymmetry (Line)
Beam>More Constraints>Antisymmetry (Point)

Ribbon
Physics tab with Beam selected:
Edges>Line Constraints>Antisymmetry

Points>More Constraints>Antisymmetry

Edge Load

Add an Edge Load as a force or moment distributed along an edge.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the load. From the Coordinate 

system list select from the following based on space dimension:

For 2D models (boundaries):

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Any additional user-defined coordinate system

For 3D models (edges):

• Global coordinate system (the default; the standard global coordinate 
system).

• Local edge system. This is the coordinate system defined by the beam 
cross section orientation as defined in the Section Orientation subnode 
under Cross Section Data. The local edge coordinate systems directions 
are available as variables for plotting using an Arrow Line plot, for 
example: Under Beam>Beam Local System in the plot settings lists of 
predefined expressions, select Base vector (beamsys) x, 
Base vector (beamsys) y, or Base vector (beamsys) z.

• Any additional user-defined coordinate system.
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F O R C E

Select a Load type—Frce per unit length (the default), Force per unit volume, or Total 

force. Enter values or expressions for the components.

M O M E N T

Enter values or expressions for the components of the moment edge load ML (3D) or 
Mlz (2D).

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line and Volume Loads>Edge Load

Beam Rotor>Edge Load

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit length FL N/m edges

boundaries

3D (x, y, z)

2D (x, y)

Force per unit volume FV N/m3 edges

boundaries

3D (x, y, z)

2D (x, y)

Total force Ftot N edges

boundaries

3D (x, y, z)

2D (x, y)

• When Force per unit volume is selected, the given load is multiplied by 
the cross section area. This option is useful for modeling body loads 
like gravity or centrifugal loads.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining the Beam interface with another physics 
interface, it is also possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Ribbon
Physics tab with Beam selected:
Edges>Line and Volume Loads>Edge Load

Physics tab with Beam Rotor selected:
Edges>Edge Load

Point Load

Add a Point Load to points for concentrated forces or moments at points. The loads are 
defined in the given coordinate system.

PO I N T  L O A D

Enter values or expressions for the components (x, y, z for 3D models and x, y for 2D 
models) of the point load FP.

PO I N T  M O M E N T

Enter values or expressions for the components (x, y, z for 3D models and z for 2D 
models) of the point moment MP (3D) or Mlz (2D).

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Point Load

Beam Rotor> Point Load

Ribbon
Physics tab with Beam or Beam Rotor selected:
Points>Beam>Point Load

• The FP list normally only contains User defined. When combining the 
Beam interface with another physics interface, it is also possible to 
choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Point Mass

Use the Point Mass node to model a discrete mass or mass moment of inertia which is 
concentrated at a point.

The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

With the Coordinate system list, select the coordinate system in which the mass 
moment of inertia tensor is defined.

PO I N T  M A S S

Enter a Point mass m.

Enter a value or values for the Mass moment of inertia. For 2D models, enter one value 
for Jz. For 3D models, enter a single value for an isotropic moment of inertia tensor, 
or select Diagonal or Symmetric to enter a full moment of inertia tensor. 

F R A M E  A C C E L E R A T I O N  F O R C E S

Click to select the Exclude contribution check box to switch off the loads that can be 
caused by the point mass when the frame is accelerated when using a Gravity or 
Rotating Frame feature. The setting will also determine whether the node will 
contribute when Computing Mass Properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Mass, Spring, and Damper>Point Mass

Ribbon
Physics tab with Beam selected:
Points>Mass, Spring, and Damper>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node. 

PO I N T  M A S S  D A M P I N G

Enter a Mass damping parameter αdM. This is the mass proportional term of a Rayleigh 
damping.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:
Attributes>Point Mass Damping

Solid Connection

Use a Solid Connection node for connecting beams to solids in 2D models. To complete 
the connection, a corresponding Beam Connection node must also be added in the Solid 
Mechanics interface. The Solid Connection node can be added to either points or 
boundaries.

When using it for a point, the connection is intended for a transition from a beam to 
a solid, so that beam theory is assumed to be valid on both sides of the connection.

When using it for a boundary, the beam acts as a cladding or stiffener on the solid. 

S O L I D  C O N N E C T I O N  ( P O I N T S  O N L Y )

Select a Connection type—Softened or Simplified. When using Softened (the default), 
three extra degrees of freedom are added to each selected point. This allows for a more 
accurate description of the transition, but the model can in some cases become 
underconstrained if the mesh on the solid is very coarse. The Simplified version of the 
connection just adds constraints to the boundary of the solid, and will in general cause 
local disturbances of the stress field.

The Solid Connection node is obsolete, and has been superseded by the 
Solid-Beam Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Solid Connection node will be removed in 
future versions.
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When using the Solid Connection node for a boundary, the connection is intended for 
placing a beam as a stiffener or cladding along the boundary of a solid. No other 
settings than the boundary selection are required.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Connections>Solid Connection

Ribbon
Physics tab with Shell selected:
Boundaries>Connections>Solid Connection

Points>Connections>Solid Connection

Shell Connection

A beam can be connected to a shell by adding a Shell Connection node in the Beam 
interface and a Beam Connection node in the Shell interface. The connection can be 
between:

• two edges, one in each physics interface,

• a point in the Beam interface and a boundary in the Shell interface, or 

• a point in the Beam interface and an edge in the Shell interface.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids

The Shell Connection node is obsolete, and has been superseded by the 
Shell-Beam Connection multiphysics coupling. It cannot be added in 
version 5.3 and later, but may be present in models created by earlier 
versions of the software.

You are advised to update your model to use the new multiphysics 
coupling instead, since the Shell Connection node will be removed in future 
versions.
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There are no settings for the Shell Connection node except the selections of points or 
edges.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Connections>Shell Connection

Ribbon
Physics tab with Shell selected:
Edges>Connections>Shell Connection

Points>Connections>Shell Connection

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. The selected points will move as a single 
rigid object.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account. The feature is similar to the rigid connectors in the Solid Mechanics and 
Shell interfaces. Rigid connectors from Beam, Shell, and Solid Mechanics interfaces 
can be attached to each other.

You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Beams
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. Prescribed displacements 
or rotations are specified along the axes of this coordinate system. It is also used for 
defining the axis directions of the moment of inertia tensor of the Mass and Moment of 

Inertia subnode.

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the place where it is 
fixed.

• Results are interpreted with respect to the center of rotation.

Select a Center of rotation — Automatic, Centroid of selected entities, or User defined.

• For Automatic the center of rotation is at the geometrical center of the selected 
points. The constraints are applied at the center of rotation.

• For Centroid of selected entities a subnode for selection of the points is added to the 
Model Builder. The center of rotation is located at the centroid of the selected 
points, which do not need to be related to the points to which the rigid connector 
is attached. As a special case, you can select a single point, and thus locate the center 
of rotation at a certain point.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement at the center of rotation for each space direction, 
select one or several of the available check boxes then enter values or expressions for 

Once Centroid of selected entities is chosen, a default Center of Rotation: 
Point subnode is added.

XC XC,input Xoffset+=
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the prescribed displacements. The direction coordinate names can vary depending on 
the selected coordinate system.

• Prescribed in x direction u0x

• Prescribed in y direction u0y 

• For 3D components: Prescribed in z direction u0z

P R E S C R I B E D  R O T A T I O N  A T  C E N T E R  O F  R O T A T I O N

Specify the rotation at the center of rotation. Select from the By list: Free (the default), 
Constrained rotation, or Prescribed rotation at center of rotation.

Constrained Rotation (3D Components)
For Constrained rotation select one or more of the available check boxes to enforce zero 
rotation about the corresponding axis in the selected coordinate system: 

• Constrain rotation about x-axis 

• Constrain rotation about y-axis 

• Constrain rotation about z-axis 

Prescribed Rotation at Center of Rotation
• For Prescribed rotation at center of rotation enter an Angle of rotation φ0. For 3D 

components also enter an Axis of rotation Ω for the x, y, and z coordinates.

 For 2D components, the Constrained rotation and Prescribed rotation at 

center of rotation is always about the z-axis, so no component selection is 
necessary.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Connections>Rigid Connector

Ribbon
Physics tab with Beam selected: 
Points>Connections>Rigid Connector

Attachment

The Attachment node is used to define a point or a set of points on a flexible beam 
which can be used to connect it with other components through a joint in the 
Multibody Dynamics interface. All the selected points behave as if they were connected 
by a common rigid body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell interface, or to points in a Beam interface. This 
makes it possible to use a joint in the Multibody Dynamics interface for connecting 
parts modeled in different physics interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Connections>Attachment

Ribbon
Physics tab with Beam selected:
Points>Connections>Attachment

• Rigid Connector Theory

• Harmonic Perturbation 

• Load Cases

The Attachment node is available with the addition of the Multibody 
Dynamics Module. The Attachments is included in the Multibody 
Dynamics Module User’s Guide. 
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Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

For modeling the frequency response the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Add the phase load Fph for harmonic loads. Enter the phase for each component of 
the load in the corresponding fields.

M O M E N T  L O A D  P H A S E

Add the phase for the moment load Mph for harmonic loads. Enter the phase for each 
component of the moment load in the corresponding fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Edge Load>Phase

Beam>Point Load>Phase

Ribbon
Physics tab with Edge Load or Point Load selected:
Attributes>Phase

Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of non-zero 
prescribed displacements or rotations. This node is used if the study step is frequency 
response of a perturbation type.

φ

Ffreq F f( ) 2πft φ+( )cos⋅=
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The settings are the same as in the parent Prescribed Displacement/Rotation, 
Prescribed Velocity, or Prescribed Displacement/Rotation node. Only degrees of 
freedom selected as prescribed in the parent node can be assigned a value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Prescribed Displacement/Rotation>Harmonic Perturbation

Beam>Prescribed Velocity>Harmonic Perturbation

Beam>Prescribed Acceleration>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement/Rotation, Prescribed Velocity, or Prescribed 

Acceleration node selected in the model tree:
Attributes>Harmonic Perturbation

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.
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 8
B e a m  C r o s s  S e c t i o n
This chapter describes the Beam Cross Sections interface, which you find under 
the Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface

• The Beam Cross Section Interface
 761
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U s i n g  t h e  Beam C r o s s  S e c t i o n  
I n t e r f a c e

In this section:

• About Beams and Cross Section Data

• Using the Beam Cross Section Interface

About Beams and Cross Section Data

A beam is a slender structure that can be fully described by cross section properties like 
area, moments of inertia. In COMSOL Multiphysics there are two physics interfaces 
for analyzing beam structures, one in 2D and one in 3D.

A P P R O A C H E S  F O R  O B T A I N I N G  T H E  C R O S S  S E C T I O N  D A T A

The values for the cross section properties can be found in different ways. By:

• looking up tabulated values,

• inserting dimensions into handbook formulas, 

• using the built-in common sections in The Beam Interface, and

• using Theory for the Beam Cross Section Interface.

For non-standard cross sections with non-trivial shapes, using the Beam Cross Section 
interface is the only realistic alternative. This physics interface also provides you with 
more accurate data than the other methods, since it does not rely on common 
engineering approximations.

The cross section data obtained from the different approaches does, in general, differ 
somewhat. Two common sources for this difference is that the influence of fillets in the 

For the common built-in cross sections available with the Beam interface 
(Rectangular, Box, Circular, Pipe, H-section, U-section, and T-section), 
using the Common sections option in the Cross Section Data settings 
provides you with the most efficient input alternative. See Common 
Cross Sections for details.
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geometry can be excluded, and that approximations such as assuming thin walled 
sections have been used.

S T R E S S  C O M P U T A T I O N

Since the Beam interface is only aware of the cross section properties and not of the 
true shape of the cross section, the stresses computed there can only be approximate. 
The approximation used by COMSOL is conservative in the sense that all stresses are 
assumed to interact in the worst possible way.

In the Beam Cross Section interface the true stress distribution can be computed given 
a set of section forces. This can be important in cases where the stresses obtained in the 
Beam interface exceed allowed values.

Using the Beam Cross Section Interface

The Beam Cross Section interface can either be used separately or as a separate model 
node and geometry in the same model file where the actual beam problem is solved. 

There are some cases when using one or more Beam Cross Section interfaces and a 
Beam interface together in the same model file can be advantageous. For example, 
when changes in the cross sections can be anticipated. There are however a number of 
things to pay attention to in this case:

• Usually the determination of the cross section data is more computationally 
expensive than the actual analyses of the beam structure. Then it is best to use either 
separate studies or study steps for the two tasks.

• When two separate studies or study steps are used, then the Values of variables not 

solved for must be set in the second study step where only the beam problem is 
solved. Under Dependent Variables you can also click to clear the Store in output 
check box for the beam cross section degrees of freedom in order to save space. 

• When referencing the beam cross section properties in the input fields of the Beam 
interface, you must use a fully qualified variable name, like mod2.bcs3.A for the 
area.

• If a Beam interface is added after a Beam Cross Section interface, the only study type 
shown when adding a physics interface is Stationary. In this case, under Custom 

In most cases, it is easiest to compute the beam cross section properties in 
a separate model.
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Studies, select Preset Studies for Some Physics Interfaces to find the other study types 
available for the beam analysis.

Since the Beam Cross Section interface is active in 2D, the cross sections are analyzed 
in the xy-plane. However, the Beam interface uses a notation where the local x-axis is 
along the beam, and the cross section is described in a local yz-plane.

In order to avoid confusion, the cross section properties are described in local x1-x2 
coordinates (see Figure 8-1). When data is transferred to a Beam interface, you must 
keep track of the coordinates that correspond to the local y and z directions, 
respectively.

C O M P U T I N G  T H E  C R O S S  S E C T I O N  D A T A

In a 2D model, the geometry of the cross section is drawn. If the section is simply 
connected (that is, has no internal holes), then usually nothing else needs to be done 
before running the analysis.

The default mesh density is tuned for thin-walled sections. For solid sections an 
unnecessarily large model is obtained when using the default mesh.

If the section is not simply connected, add one Hole node for each internal hole. In 
that node, select all boundaries around the hole.

The computed cross section data is stored in the variables listed in Table 8-1:

Values of Dependent Variables and Physics and Variables Selection in the 
COMSOL Multiphysics Reference Manual

Channel Beam: Application Library path Structural_Mechanics_Module/

Verification_Models/channel_beam

TABLE 8-1:  VARIABLES CONTAINING CROSS SECTION DATA

VARIABLE DESCRIPTION INPUT TO BEAM INTERFACE LINK TO THEORY 
SECTION

bcs.A Area Area (A) Area

bcs.CGx Center of gravity, x 
coordinate

Implicit, since it affects the 
positioning of the beam 
centerline. Center of 

Gravity
bcs.CGx Center of gravity, y 

coordinate
As above
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bcs.x1 First coordinate in 
principal axes system

Implicit, since it can be 
used for determining stress 
evaluation locations Local 

Coordinates
bcs.x2 Second coordinate in 

principal axes system
As above

bcs.I1 Largest principal moment 
of inertia

Moment of inertia around 
local y/z-axis (Izz/Iyy)

Moments of 
Inertia

bcs.I2 Smallest principal 
moment of inertia 

As above

bcs.Ixx Moment of inertia around 
x-axis 

-

bcs.Iyy Moment of inertia around 
y-axis 

-

bcs.Ixy Deviatoric moment of 
inertia in xy system

-

bcs.rg Radius of gyration -

bcs.alpha Angle from x-axis to first 
principal axis 

Rotation of vector around 
beam axis (φ)

Directions of 
Principal Axes

bcs.mu1 Max shear stress factor, 
x1 direction

Max shear stress factor in 
local y/z direction (μy/μz)

Bending Shear 
Stresses

bcs.mu2 Max shear stress factor, 
x2 direction

As above

bcs.kappa1 Shear correction factor, 
x1 direction

-

bcs.kappa2 Shear correction factor, 
x2 direction

-

bcs.ei1 Shear center location, 
first local coordinate

Distance to shear center in 
local y/z direction.

bcs.ei2 Shear center location, 
second local coordinate

As above

bcs.J Torsional constant Torsional constant (J)
Torsionbcs.Wt Torsional section 

modulus
Torsional section modulus 
(Wt)

TABLE 8-1:  VARIABLES CONTAINING CROSS SECTION DATA

VARIABLE DESCRIPTION INPUT TO BEAM INTERFACE LINK TO THEORY 
SECTION
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C O M P U T I N G  D E T A I L E D  S T R E S S E S

If you have set of section forces (axial force, shear forces, bending moments, and 
twisting moments), it is possible to display the stresses it causes. To do this, enter the 
values in the Section Forces section. You can also add your own acceptance criteria by 
adding one or more Safety nodes.

The stresses are available in the variables listed in Table 8-2.

bcs.Cw Warping constant -

Warping
bcs.Kw Warping section modulus -

bcs.sw Non-uniform torsion 
parameter

-

TABLE 8-1:  VARIABLES CONTAINING CROSS SECTION DATA

VARIABLE DESCRIPTION INPUT TO BEAM INTERFACE LINK TO THEORY 
SECTION

After changing data in this section, you do not need to compute the study 
for this physics interface again once is has been solved. It is sufficient to 
do an Update Solution to get the stress plots updated.

Studies and Solvers in the COMSOL Multiphysics Reference Manual

TABLE 8-2:  VARIABLES CONTAINING STRESS DISTRIBUTIONS

VARIABLE DESCRIPTION AND  LINK TO THEORY 
SECTION

bcs.sN Stress from axial force Axial Stress

bcs.sM1 Bending stress from moment around x1 axis
Bending Axial Stresses

bcs.sM2 Bending stress from moment around x2 axis
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bcs.tT1x Shear stress from force in x1 direction, x 
component

Bending Shear 
Stresses

bcs.tT1y Shear stress from force in x1 direction, y 
component 

bcs.resT1 Shear stress from force in x1 direction, 
resultant

bcs.tT2x Shear stress from force in x2 direction, x 
component 

bcs.tT2y Shear stress from force in x2 direction, y 
component

bcs.resT2 Shear stress from force in x2 direction, 
resultant

bcs.tMtx Shear stress from twisting moment, x 
component

Torsional Shear 
Stresses

bcs.tMty Shear stress from twisting moment, y 
component

bcs.resMt Shear stress from twisting moment, 
resultant

bcs.mises von Mises effective stress Effective Stress

TABLE 8-2:  VARIABLES CONTAINING STRESS DISTRIBUTIONS

VARIABLE DESCRIPTION AND  LINK TO THEORY 
SECTION
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Th eo r y  f o r  t h e  Beam C r o s s  S e c t i o n  
I n t e r f a c e

In this section the theory for the Beam Cross Section interface is described:

• Cross Section Properties

• Computation of Stresses

Cross Section Properties

The following cross section properties computed by the Beam Cross Section interface 
are described in this section:

A R E A

The area is computed as:

C E N T E R  O F  G R A V I T Y

The center of gravity is computed as:

M O M E N T S  O F  I N E R T I A

The moments of inertia in the XY coordinate system are:

• Area

• Center of Gravity

• Moments of Inertia

• Directions of Principal Axes

• Local Coordinates

• Bending Shear Stresses

• Torsion

• Warping

A Ad
A
=

xCG
1
A
---- x Ad

A
=

yCG
1
A
---- y Ad

A
=
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Since the input data required by the Beam interface is the principal moments of inertia, 
these must also be computed. Using the radius of the Mohr’s circle:

the principal moments of inertia can be expressed as:

As an auxiliary variable, the radius of gyration is computed, using the expression

D I R E C T I O N S  O F  P R I N C I P A L  A X E S

The angle needed to rotate the x-axis to the axis of the largest principal moment of 
inertia (x1) is denoted α. From the definition of Mohr’s circle, the angle is:

When implemented using the atan2 function, the angle can be correctly evaluated for 
all rotations, and returns in the interval -π < α < π.

Ixx y yCG–( )2 Ad
A
=

Iyy x xCG–( )2 Ad
A
=

Ixy x xCG–( ) y yCG–( ) Ad
A
=

R
Ixx Iyy–

R
---------------------- 
 

2
Ixy

2
+=

I1
Ixx Iyy+

2
---------------------- R+=

I2
Ixx Iyy+

2
---------------------- R–=

rg
I1 I2+

A
----------------=

α 1
2
---

2Ixy–

Ixx Iyy–
---------------------- 
 atan=
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Figure 8-1: Local coordinate system and rotation angle.

L O C A L  C O O R D I N A T E S

The local coordinate system, having its origin in the center of gravity, and orientation 
given by the principal moments of inertia is given by:

B E N D I N G  S H E A R  S T R E S S E S

The shear stresses caused by bending cannot be given a simple closed form solution, 
but must be solved using two independent partial differential equations, one for the 
force in each direction. The complete derivation is given at the end of this section. First 
some quantities computed from the shear stresses are defined.

The following notation is used: . This is a shear stress in the x2 direction (acting 
on the plane with z as normal) caused by a unit shear force acting in the x1 direction.

x1 x xCG–( ) αcos= y yCG–( ) αsin+

x2 y yCG–( ) αcos= x xCG–( )– αsin

τ2z
1( )
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Max Shear Stress Factor
The max shear stress factor is the ratio between the maximum shear stress in the cross 
section and the average shear stress. For a shear force in the x1 direction, the definition 
is:

where 

is the resulting shear stress from a unit load in the x1 direction. Similarly:

Shear Correction Factor
The shear correction factor is also computed. The shear correction factor is a 
multiplier which makes the strain energy from the average shear stress and shear strain 
in the cross section equal to the true shear energy in the cross section. The shear 
correction factor can be introduced through the concept shear area. The shear area is 
the reduced area which should replace the true area when computing the shear 
deformation of a beam. In terms of the shear correction factor it can be written as:

where  is the shear correction factor for a shear force in the x1 direction. Thus, for 
a shear flexible beam, the constitutive relation for the average shear is 

To compute the shear correction factor, the true strain energy based on the actual 
stress and strain distribution is set equal to the strain energy from the average shear 
stress, when acting over the shear area. The full energy expression is

The strain energy based on the averaged shear stress and shear strain is

μ1
max τ 1( )( )

1
A
----

--------------------------- max τ 1( )( ) A⋅= =

τ 1( ) τ1z
1( )( )

2
τ2z

1( )( )
2

+=

μ2 max τ 2( )( ) A⋅=

As
1( ) κ1A=

κ1

γ τ
κG
-------- T

κGA
------------ T

GAs
-----------= = =

1
2
--- τ1z

1( )γ1z
1( ) τ2z

1( )γ2z
1( )

+( ) Ad
A
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giving

Since T1 is a unit shear force, the shear correction factor can be computed as

Similarly:

Shear Center Distance
The shear center (or, equivalently, the center of rotation) is the point around which 
the shear stresses from bending has no torque. In COMSOL it is represented as the 
distance from the center of gravity of the cross section in the principal axes coordinate 
system. The torque can be computed as:

Since there are two separate solutions for the shear stresses, it is possible to split the 
determination of the two shear center coordinates into:

Here the fact that the shear force resultant has a unit value has been used.

1
2
---τ1z

1( )γ1z
1( )A 1

2
---

T1
A
------γ1z

1( )A 1
2κ1G
--------------

T1
A
------ 
 

2
A= =

1
2G
-------- τ1z

1( )( )
2

τ2z
1( )( )

2
+( ) Ad

A


T1
2

2Gκ1A
-------------------=

κ1 A τ 1( )( )
2

Ad
A
 

 
  1–

=

κ2 A τ 2( )( )
2

Ad
A
 

 
  1–

=

0 τ1z e2 x2–( )– τ2z e1 x1–( )+( ) Ad
A
= =

τ1zx2 τ2z– x1+( ) Ad
A
 e1 τ2z Ad

A
 e2 τ1z Ad

A
–+

e1 τ1z
2( )x2 τ2z

2( )
– x1+( ) Ad

A
–=

e2 τ1z
1( )x2 τ2z

1( )
– x1+( ) Ad

A
=
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Derivation of the Equations for Computing the Shear Stresses
Basic beam theory assumptions gives the following stress components:

 (8-1)

The shear forces are related to the bending moments through

The static equilibrium equations are:

Insertion of the known stresses into the equilibrium equations gives:

The two first equations simply state that the shear stresses are independent of z, 
whereas the third equation is the one on which to focus the interest. Assume that the 
shear stresses can be derived from a scalar stress potential , through:

σ1 0=

σ2 0=

σz
M1x2

I1
--------------

M2x1
I2

--------------–=

τ12 0=

T1
M2∂
z∂

-----------–=

T2
M1∂
z∂

-----------=

σ1 1, τ12 2, τ1z,z 0=+ +

τ12 1, σ2 2, τ2z,z 0=+ +

τ1z,1 τ2z,2 σz,z 0=+ +

τ1z,z 0=

τ2z,z 0=

τ1z,1 τ2z,2
T2x2

I1
-------------

T1x1
I2

-------------+ 0=+ +

ψ

τ1z ψ,1
νT1x2

2

2 1 ν+( )I2
---------------------------+=

τ2z ψ,2
νT2x1

2

2 1 ν+( )I1
---------------------------+=
T H E O R Y  F O R  T H E  B E A M  C R O S S  S E C T I O N  I N T E R F A C E  |  773



774 |  C H A P T E
Insertion of this assumption into the third equilibrium equation gives the Poisson type 
equation:

 (8-2)

In addition to equilibrium, also compatibility must be fulfilled. The Beltrami-Michell 
form of compatibility equations includes the assumption of an isotropic linear elastic 
material, and then states that:

Given the stress state from Equation 8-1, the only two non-trivial equations are:

Inserting the assumed stress components gives:

Integration of the first equation with respect to x1 and the second equation with 
respect to x2 gives: 

Combining these two equations results in:

Δψ
T2x2

I1
-------------

T1x1
I2

-------------+ 
 –=

Δσij
1

1 ν+
------------ trace σ( )( )∂

xi∂ xj∂
--------------------------------+ 0=

Δτ1z
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1 ν+
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Δψ
T2x2
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T1x1
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-------------+ 
 –=
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This is the same equation as Equation 8-2. It is thus possible to fulfill equilibrium, 
compatibility, and the constitutive relation with a single equation of Poisson type.

On all free boundaries, the stress must be zero, giving the condition:

Using the assumed shear stresses, this can be converted into the Neumann condition:

It must also be determined that the resultant of the shear stresses actually match the 
applied shear forces, that is:

The proofs for the two components are analogous, so it is shown only for the x1 
direction:

To compute the integral of the x1 derivative of , a term containing the differential 
equation itself is added. This is a zero contribution, but it makes further simplifications 
possible.

τ1zn1 τ2zn2+ 0=

∇ψ n⋅
νT1x2

2

2 1 ν+( )I2
---------------------------n1

νT2x1
2

2 1 ν+( )I1
---------------------------n2+

 
 
 

–=

τ1z Ad
A
 T1=

τ2z Ad
A
 T2=

τ1z Ad
A
 ψ,1

νT1x2
2

2 1 ν+( )I2
---------------------------+

 
 
 

Ad
A
 ψ,1 Ad

A


νT1I1
2 1 ν+( )I2
---------------------------+= =

ψ
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In the transformations above these facts are used:

• The area integral of x1, x1 or x1x2 are zero since the coordinate system is positioned 
at the center of gravity and is oriented along the principal axes.

• The area integral of  is I1.

• The divergence theorem is used for transformation between area and surface 
integrals.

• The Neumann condition on the boundary is inserted into the integral along the 
boundary.

This proves that the assumed stress field also produces the correct resultants.

When internal holes are present, it is necessary ensure compatibility in the sense that 
the displacement is single valued when going around the hole:

The displacements can be derived from the strains, which are given by the stress state:

ψ,1 Ad
A
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Integration of the direct strains gives:

Since the only part of the displacement that is relevant for the bending shear stresses is 
independent of the z coordinate, the functions g1 and g2 can be considered as 
independent of z.

In the last transformation Green’s theorem is used. The uniqueness of the u2 
displacement can be shown in the same way.

ε1
u1∂
x1∂

--------- νεz–= =

ε2
u2∂
x2∂

--------- νεz–= =

εz
uz∂
z∂

---------
M1x2
EI1

--------------
M2x1
EI2

--------------–= =

γ12
u1∂
x2∂

---------
u2∂
x1∂

---------+ 0= =

γ1z
u1∂
z∂

---------
uz∂
x1∂

---------+
1
G
---- ψ,1

νT1x2
2

2 1 ν+( )I2
---------------------------+

 
 
 

= =

γ2z
u2∂
z∂

---------
uz∂
x2∂

---------+
1
G
---- ψ,2

νT2x1
2

2 1 ν+( )I1
---------------------------+

 
 
 

= =

u1

νM1x1x2
EI1

------------------------–
νM2x1

2

2EI2
------------------ g1 x2 z,( )+ +=

u2
νM1x2

2

2EI1
------------------–

νM2x1x2
EI2

------------------------ g2 x1 z,( )+ +=

du1
Γ
°

u1∂
x1∂

---------dx1
u1∂
x2∂

---------dx2+ 
 

Γ
°= =

νM1x2
EI1

------------------
νM2x1

EI2
------------------– 

 – 
 dx1

νM1x1
EI1

------------------–
g1∂
x2∂

---------+ 
 dx2+ 

 

Γ
° =

νM1x1x2
EI1

------------------------
 
 
 

Ad
A


νM1x1x2
EI1

------------------------
 
 
 

Ad
A
 0=–
T H E O R Y  F O R  T H E  B E A M  C R O S S  S E C T I O N  I N T E R F A C E  |  777



778 |  C H A P T E
The uniqueness of the out-of-plane component of the displacement is shown in 
Equation 8-3:

 (8-3)

In the last step of Equation 8-3 all integrals are zero since the coordinate system is 
located at the center of gravity of the section. This proves that all displacement 
components are unique.

When solving the problem, the shear stresses caused by a unit force in each of the two 
principal directions must be separated, so two separate problems are solved. For the 
force in the x1 direction it is formulated as:
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The corresponding problem for the x2 direction is:

TO R S I O N

The torsional properties cannot in general be computed using a closed form 
expression. Determining the torsional rigidity requires the solution of a PDE over the 
cross section. There are two ways to do this: Using a warping function or using the 
Prandtl stress function. The Prandtl stress function approach is used in COMSOL 
since it gives easier boundary conditions.

The general torsion theory includes the shear modulus and angle of twist, but these 
properties are not needed to determine the torsional rigidity, so both parameters are 
treated as having the value 1. In that case the equation to be solved can be simplified 
to:

where φ is the stress function. For a singly connected region the boundary condition 
is  along the whole boundary. Having solved this problem the torsional rigidity 
can be computed as:

The shear stresses are defined as:
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The torsional modulus can be determined as:

In the case that there are internal holes in the section the situation is slightly more 
complex. The  condition is now applicable only to the external boundary, 
whereas each boundary of an internal hole i needs a Dirichlet boundary condition:

where  is a constant to be determined. The constant value of the stress function 
fulfills the stress free boundary conditions. There is also a compatible condition that 
must be fulfilled: the displacements must be single valued when going around each 
hole along its boundary . This is trivially fulfilled for the in-plane displacements, but 
the out-of-plane displacement, w, generates the necessary equations to determine :

Here it has been used so that the strains are equal to the stresses since the shear 
modulus is set to 1. The kinematic assumption that the in-plane displacements can be 
written as:

is employed. This assumption implies that the origin of the coordinate system is at the 
center of rotation. This is true only for doubly symmetric sections, but adding a 
constant offset to the x and y coordinates does not contribute to the integral.

Since the gradient of φ depends linearly on the yet unknown variables , the values 
of which can be solved by adding one equation:

for each hole.
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The expression for the torsional rigidity must in this case be augmented to:

where  is the area of hole i.

WA R P I N G

The warping properties of the cross section are not used by the Beam interface in 
COMSOL Multiphysics, since an assumption of pure St Venant torsion is used. The 
data can still be useful to do manual estimates.

The warping function  describes the out-of-plane deformation related to 
torsion. It fulfills the Laplace equation .

The boundary conditions giving stress-free boundaries:

The offset by the shear center coordinates (ex, ey) is introduced since the torsion 
theory assumes that the coordinate system has it origin in the center of rotation (which 
is the same as the shear center).

The level of the warping function must also be fixed by adding a Dirichlet condition 
in a point. The actual value is however difficult to set. Instead it is easier to solve for a 
shifted warping function:

The shifted warping function can be set to zero in an arbitrary point. The true warping 
function is then computed as:

This criterion expresses that the average of the warping function must be zero since the 
axial stresses induced by torsion should not have a resultant.

The warping constant, which is used in analysis of non-uniform torsion, is defined as:
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=
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The axial stress caused by non-uniform torsion is:

where B is the bimoment. The maximum axial stress is:

The warping modulus is then defined as:

Given the warping constant, it is possible to compute a non-dimensional number that 
can be used to characterize the influence of non-uniform torsion in a beam with a 
certain length L. This number is:

Since the length is independent of the cross section, the sensitivity number is defined 
as:

It has the physical dimension length squared.

Computation of Stresses

The stresses are computed using the following expressions:

A X I A L  S T R E S S

The axial stress is computed as:

• Axial Stress

• Bending Axial Stresses

• Bending Shear Stresses

• Torsional Shear Stresses

• Effective Stress
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where N is the axial force.

B E N D I N G  A X I A L  S T R E S S E S

The bending stresses are computed as:

Where M1 is the moment around the first principal axis and M2 is the moment around 
the second principal axis.

B E N D I N G  S H E A R  S T R E S S E S

The components of the shear stresses caused by a shear force T1 along the x1 axis are:

The components of the shear stresses caused by a shear force T2 along the x2 axis are:

In both cases, the resultants are also computed as:

 and 

TO R S I O N A L  S H E A R  S T R E S S E S

The components of the shear stress caused by Saint-Venant torsion are:
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where Mt is the twisting moment. The resultant is computed as:

E F F E C T I V E  S T R E S S

The von Mises effective stress is computed from the stress components defined above 
using the expression:

τMtx
Mtφ,y

J
---------------=

τMty
Mtφ,x

J
--------------–=

τMt τMtx
2 τMty

2
+=

σvM σN σM1 σM2+ +( )2 3 τT1x τT2x τMtx+ +( )2 3 τT1y τT2y τMty+ +( )2
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Th e  Beam C r o s s  S e c t i o n  I n t e r f a c e

The Beam Cross Section interface ( ), found under the Structural Mechanics 

branch ( ) when adding a physics interface, is used for computing cross-section 
properties for beams and also for a detailed evaluation of stresses in a beam when the 
section forces to which it is subjected are known. It is mainly used in conjunction with 
The Beam Interface.

As input you give a 2D sketch of the cross section, and computed results are area, 
moments of inertia, center of gravity, principal axis directions, torsional rigidity, shear 
center location, shear correction factors, warping constant, and stress distributions for 
different load types.

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is bcs.

D O M A I N  S E L E C T I O N

The default setting is to include All domains in the model to define the cross section. 
To select specific domains, select Manual from the Selection list.

M A T E R I A L  P R O P E R T I E S

Enter a value for Poisson’s ratio v (dimensionless). The default is 0.3. This value only 
influences the detailed distribution of shear stresses caused by a transversal load.

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
T H E  B E A M  C R O S S  S E C T I O N  I N T E R F A C E  |  785
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S E C T I O N  F O R C E S

If you want to perform a detailed computation of the stress state in a beam cross 
section, enter the section forces. 

Enter values or expressions for the following:

• Axial force N (SI unit: N).

• Bending moment around 1-axis M1.

• Shear force along 2-axis T2.

• Bending moment around 2-axis M2.

• Shear force along 1-axis T1.

• Twisting moment Mt.

D I S C R E T I Z A T I O N

To display this section, select click the Show button ( ) and select Discretization. 
Select an Element order—Linear, Quadratic (the default), Cubic, Quartic, or Quintic.

Hole

Use the Hole feature to define internal holes for the beam cross section. One Hole 
feature must be added for each internal hole. 

B O U N D A R Y  S E L E C T I O N

You should select all boundaries around a certain hole from the Selection list (Manual). 
The All boundaries option is not relevant.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Cross Section>Hole

After changing data in this section, you do not need to compute the study 
for this physics interface again once is has been solved. It is sufficient to 
do an Update Solution to get the stress plots updated.

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface
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Ribbon
Physics tab with Beam Cross Section interface selected:
Boundaries>Beam Cross Section>Hole

Safety

Use the Safety node to set up variables which can be used to check the risk of failure 
according to various criteria. Four different variables describing the failure risk will be 
defined, as described in Table 8-3. You can add any number of Safety nodes.

F A I L U R E  M O D E L

Select a Failure Criterion — von Mises Isotropic, Tresca Isotropic, or Rankine Isotropic. 

• When Failure Criterion is von Mises Isotropic, enter Tensile strength σts.

• When Failure Criterion is Tresca Isotropic, enter Tensile strength σts.

• When Failure Criterion is Rankine Isotropic, enter Tensile strength σts and Compressive 

strength σcs.

• When Failure Criterion is User defined, you enter two expressions describing the 
Failure criterion g(S), used in the failure index, and the Safety factor sf(S) 
respectively. As an example, if you would like to replicate the von Mises Isotropic 
criterion with tensile strength 350 MPa, you could enter g(S) as solid.mises/
350[MPa]-1 and sf(S) as 350[MPa]/(solid.mises+eps).

TABLE 8-3:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the 
ratio between the computed value 
and the given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is 
based on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0
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For all input fields, the default is to take the value From material. Change to User 

defined to enter other values or expressions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Cross Section>Safety

Ribbon
Physics tab with Beam Cross Section selected:
Domains>Safety

For a detailed description of the various criteria, see Safety Factor 
Evaluation in the Structural Mechanics Theory chapter.
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 9
T r u s s
This chapter describes the Truss interface, which is found under the Structural 

Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Modeling with Truss Elements

• Theory for the Truss Interface

• The Truss Interface
 789
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Mode l i n g  w i t h  T r u s s  E l emen t s

Truss elements are elements that can only sustain axial forces. They have displacements 
as degrees of freedom. Truss elements are sometimes referred to as bars or spars. They 
live on boundaries in 2D and edges in 3D. Typical uses of truss elements are:

• Trusses

• Cables and wires

• Reinforcement bars

• Two-point springs and dashpots. A special material model called Spring-Damper is 
available for this purpose.

• Thin ‘strain gauges’ attached to for example solid elements

The Truss interface supports the same study types as the Solid Mechanics interface. 

Dependent Variables
The degrees of freedom (dependent variables) are the global displacements u, v, and 
w (3D only) in the global x, y, and z directions, respectively.

M O D E L I N G  W I R E S  A N D  C A B L E S

You can use the Truss interface for modeling wires and cables, possibly sagging under 
gravity or other external loads. Below are some suggestions for how to model such 
structures efficiently:

• It is generally recommended that you use first order shape functions when modeling 
wire-like structures. This is the default in the Truss interface.

• If the cable is to be allowed to sag, you must not use the Straight Edge Constraint 
for those edges. When using first order shape functions, this constraint is disabled 
as default, so this is an issue only if you use higher order shape functions.

• Most cable problems are geometrically nonlinear. A wire which is not in tension is 
not numerically stable. Physically, it wrinkles in an unpredictable manner. In order 
to start the analysis, you either have to add an initial stress or some weak springs.

• If there are no line or volume loads, the wire is straight, as long as it is in tension. 
In this case, only one element is needed for the whole wire, since you can handle the 
zero-stiffness in compression in the material data. Enter the modulus of elasticity so 
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that it depends on the axial stress, and has very small value in compression. Such an 
expression could for example be E0*(1-0.9999*(truss.en<0)).

• In some problems, there are large deformations, but low tensile stresses. This would 
for example be the case if you model a wire hanging free under self weight (‘the 
catenary problem’). Such problems are numerically ill-conditioned, but can still be 
solved as long as you use linear shape functions for the truss elements, and use tight 
tolerances for the nonlinear solver.
M O D E L I N G  W I T H  TR U S S  E L E M E N T S  |  791
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Th eo r y  f o r  t h e  T r u s s  I n t e r f a c e

Theory Background for the Truss Interface

Trusses are modeled using Lagrange shape function. The Lagrange shape function 
makes it possible to specify both normal strains and Green-Lagrange strains to handle 
small strains as well as large deformations.

S T R A I N - D I S P L A C E M E N T  R E L A T I O N

The axial strain εn is calculated by expressing the global strains in tangential derivatives 
and projecting the global strains on the edge.

where t is the edge tangent vector and εgT is defined as

The strains can be expressed as either engineering strains for small displacements or 
Green-Lagrange strains for large displacements. The Green-Lagrange strain tensor 
used for large displacements is defined as

The engineering strain tensor used for small displacements is defined as

 (9-1)

The axial strain written out becomes

εn ttεgTt=

εgT

εxT εxyT εxzT

εxyT εyT εyzT

εxzT εyzT εzT

=

εijT
1
2
---

xj∂
∂ui

T
xi∂

∂uj

T
xi∂

∂uk

T
xj∂

∂uk

T

⋅+ +
 
 
 

=

εijT
1
2
---

xj∂
∂ui

T
xi∂

∂uj

T

+
 
 
 

=

R  9 :  TR U S S



S T R E S S - S T R A I N  R E L A T I O N

The constitutive relation for a truss is uniaxial. The axial stress, σn, is computed as

where

• E is the modulus of elasticity

• εn is the total axial strain

• εn,el is the elastic axial strain

• εinel is the sum of all inelastic strain contributions:

- Initial strain, ε0

- Thermal strain, εth

- Hygroscopic strain, εhs

- Plastic strain, εpl

• σex is the sum of all extra strain contributions:

- Initial stress σ0

- External stress σext

In a geometrically nonlinear analysis, this equation should be interpreted as a relation 
between Second Piola-Kirchhoff stresses and Green-Lagrange strains.

εn tx εxTtx εxyTty εxzTtz+ +( ) +=

ty εxyTtx εyTty εyzTtz+ +( ) +

tz εxzTtx εyzTty εzTtz+ +( )

In the Truss interface, the coordinates are usually denoted with lower case 
letters (x, y, z). If a Solid Mechanics or Membrane interface is present in 
the same model, then it becomes necessary to make a difference between 
the material frame and the spatial frame (Material and Spatial 
Coordinates). In this case the coordinates in the Truss interface change 
to (X, Y, Z).

σn σex Eεn el,+ σex E εn εinel–( )+= =

εinel ε0 εth εhs εpl+ + +=

σex σ0 σext+=
T H E O R Y  F O R  T H E  TR U S S  I N T E R F A C E  |  793
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For output, the First Piola-Kirchhoff stress Pn is computed from the Second 
Piola-Kirchhoff stress using

where s’ is the ratio between current and initial length. The axial force in the element 
is then computed as

where A0 is the undeformed cross-section area. The engineering (Cauchy) stress is 
defined by

where A is the deformed area of the element. For a geometrically linear analysis, the 
change in area is ignored, so that A = A0.

For a geometrically nonlinear analysis, the area change is computed based on an 
assumption about a linear elastic material with Poisson’s ratio ν. The area change is

This is the only occasion where the Truss interface makes use of the value of ν.

In a geometrically linear analysis all the stress representations have the same value.

I M P L E M E N T A T I O N

Using the principle of virtual work results in the following weak formulation

where the summation stands for summation over all points in the geometry. Replacing 
the integration over the cross section with the cross-sectional area (A) and the volume 
forces with line forces, the equation becomes

Pn Sn s'⋅=

N Pn A0⋅=

σn Pn
A0
A
-------=

A0
A
------- 1 2νεn–( ) 1–

=

δW d εnσn– utFV+( ) Vd
V
 utFPi

i
+=

δW εntestσnA– utest
t FL+( ) Ld

L
 utest

t FPi

i
+=
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In the case of geometric nonlinearity, the stress and strain should be interpreted as 
Second Piola-Kirchhoff stress and Green-Lagrange strains

T H E O R Y  F O R  S T R A I G H T  E D G E  C O N S T R A I N T

The optional constraint to enforce the nodes to lie on the straight line between the end 
points of the edge are formulated as follows:

Starting with the large displacement case, let xd1 and xd2 be the deformed position of 
the two end points of the edge

 (9-2)

where ui is the displacement, and xi is the coordinate (undeformed position) at end 
point i. The equation for the straight line through the end points is

 (9-3)

where t is a parameter along the line, and a is the direction vector for the line. a is 
calculated from the deformed position of the end points as 

The constraints for the edge is derived by substituting the parameter t from one of the 
scalar equations in Equation 9-3 into the remaining ones. In 2D the constraint 
equations become

In 3D the two constraints equations become

To avoid problems when the edge is directed in one of the coordinate axes directions, 
a third constraint is added. This constraint is a linear combination of the two earlier 
constraints:

This constraint is nonlinear, since a depends on the displacement.

A linear constraint is needed in the case of a geometrically linear problem to become 
independent of the solver. The linear relation for the displacement is

xdi ui xi+=

x u+ xd1 ta+=

a xd2 xd1–=

x u xd1–+( )ay y v yd1–+( )ax– 0=

x u xd1–+( )az z w zd1–+( )ax– 0=

y v yd1–+( )az z w zd1–+( )ay– 0=

y v yd1–+( )ax x u xd1–+( )ay– 0=
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 (9-4)

where uax is the axial displacement along the edge, and xn is a linear parameter along 
the edge

Eliminating uax from Equation 9-4 results in the following linear constraint in 2D

and the following three linear constraints in 3D:

 (9-5)

T H E O R Y  F O R  S P R I N G - D A M P E R

Introduction
You can use a Spring-Damper to connect two points by an elastic spring, a viscous 
damper, or both. Such springs can be used in any structural mechanics physics 
interface, by adding a Truss interface. You can then set the degree of freedom names 
in the two interface to the same name, in order to share the same displacement fields.

u
u1 xn2 xn–( ) u2 xn xn1–( )+

xn2 xn1–( )
------------------------------------------------------------------------ uax x2 x1–( )+=

xn
x x2 x1–( ) y y2 y1–( ) z z2 z1–( )+ +

x2 x1–( )2 y2 y1–( )2 z2 z1–( )2
+ +

--------------------------------------------------------------------------------------------=

u1 xn2 xn–( ) u2 xn xn1–( )+

xn2 xn1–( )
------------------------------------------------------------------------ u– y2 y1–( ) –

v1 xn2 xn–( ) v2 xn xn1–( )+

xn2 xn1–( )
---------------------------------------------------------------------- v– x2 x1–( ) 0=

u1 xn2 xn–( ) u2 xn xn1–( )+

xn2 xn1–( )
------------------------------------------------------------------------ u– z2 z1–( ) –

w1 xn2 xn–( ) w2 p xn1–( )+

xn2 xn1–( )
----------------------------------------------------------------------- w– x2 x1–( ) 0=

v1 xn2 xn–( ) v2 xn xn1–( )+

xn2 xn1–( )
---------------------------------------------------------------------- v– z2 z1–( ) –

w1 xn2 xn–( ) w2 xn xn1–( )+

xn2 xn1–( )
-------------------------------------------------------------------------- w– y2 y1–( ) 0=

v1 xn2 xn–( ) v2 xn xn1–( )+

xn2 xn1–( )
---------------------------------------------------------------------- v– x2 x1–( ) –

u1 xn2 xn–( ) u2 xn xn1–( )+

xn2 xn1–( )
------------------------------------------------------------------------ u– y2 y1–( ) 0=
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The two points can move relative to each other in an arbitrary way as long as they do 
not coincide. The spring and damping forces act along the line between the current 
positions of the two connection points.

Figure 9-1: Conceptual sketch of a Spring-Damper.

Connection Points and Spring Length
The current position of the two end points, x1 and x2 can be written as

where X1 and X1 are the original positions of the two points, and u1 and u2 are their 
respective displacements. The initial spring length, l0, is

The current spring length, l, is 

In the case of a geometrically linear analysis, the current spring length is linearized to

In addition to the initial geometrical distance between the two points you can specify 
an initial spring extension Δl0, so that the free length of the spring is

You can also specify the free length of the spring explicitly.

x1 X1 u1+=

x2 X2 u2+=

l0 X2 X1– X2 X1–( ) X2 X1–( )⋅= =

l x2 x1–=

l
x2 x1–( ) X2 X1–( )⋅

l0
-----------------------------------------------------=

lf l0 Δl0–=
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The spring extension Δl is computed as the difference between the current spring 
length and the free length,

Deactivation
You can specify that the Spring-Damper should be deactivated under certain 
conditions. It can for example be active only in tension, or break at a certain 
elongation. In terms of implementation, this means that many expressions are 
multiplied by an activation indicator, iac. The activation indicator has the value 1 
when the component is active, and 0 when deactivated.

Spring and Damping Forces
The spring force is proportional to the spring constant k:

If k depends on the extension, so that the spring is nonlinear, it should be interpreted 
as a secant stiffness, that is

You can also specify the spring force as function of extension explicitly, as

To create the expression for the function, use the built-in variable for the spring 
extension. It has the form <physicsTag>.<SpringNodeTag>.dl, for example 
truss.spd1.dl.

In a dynamic analysis, the viscous damping force is computed as

where c is the viscous damping coefficient. In frequency domain, it is also possible to 
specify a loss factor η, and the total damping force will then be 

The magnitude of the total force is

Δl l lf–=

Fs kΔl=

Fs k Δl( ) Δl⋅=

Fs Fs Δl( )=

Fd c
td

d Δl( )=

Fd iωcΔl iηFs+=

F Fs Fd+=
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The total forces in the global coordinate system, acting on the connection points are

In a geometrically linear case, the orientation of the force is kept fixed, so that

The contribution to the virtual work is

Spring and Damping Energies
In stationary and time dependent analysis, the elastic energy in the spring is computed 
as 

In a time dependent analysis, the energy dissipated in the damper, Wd, is computed 
using an extra degree of freedom. The following equation is added:

In a frequency domain analysis, the elastic energy in the spring and the energy 
dissipated in the damper are computed as

These energy quantities represent the cycle average, and only the perturbation terms 
are included.

F2 F– 1 F–
x2 x1–( )

l
-----------------------= =

F2 F– 1 F–
X2 X1–( )

l
-------------------------= =

F2 uδ 2 uδ 1–( )⋅

Ws iac Fs Δl( )d

0

Δl

=

Wdd
td

------------ iacFd
Δl( )d
td

--------------=

Ws
1
4
---iacRe lindev Fs( ) conj lindev Δl( )( )⋅( )=

Wd
1
4
---iacRe lindev Fd( ) conj lindev Δl( )( )⋅( )=
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Th e  T r u s s  I n t e r f a c e

The Truss interface ( ), found under the Structural Mechanics branch ( ) when 
adding a physics interface, is used for modeling slender elements that can only sustain 
axial forces. It can be used for analyzing truss works where the edges are straight, or 
to model sagging cables like the deformation of a wire exposed to gravity. It is available 
in 3D and 2D. Geometric nonlinearity can be taken into account.

The Truss interface can also be used for modeling springs and dashpots.

The default material model is Linear Elastic Material. With the Nonlinear Structural 
Materials Module, you can also model Plasticity.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Linear Elastic Material, Cross Section Data, Free (a condition where points are 
free, with no loads or constraints), Straight Edge Constraint (to ensure that the points 
lie on a straight line between the end points of the edge or boundary), and Initial 

Values. Then, from the Physics toolbar, you can add other nodes that implement, for 
example, loads and constraints. You can also right-click Truss to select physics features 
from the context menu. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is truss.

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the default coordinates for the Reference point for moment computation xref. The 
resulting moments (applied or as reactions) are then computed relative to this 

For a detailed overview of the functionality available in each product, visit 
http://www.comsol.com/products/specifications/
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reference point. During the results and analysis stage, the coordinates can be changed 
in the Parameters section in the result nodes.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Displacement field u which has two 
components (u, v) in 2D and three components (u, v, and w) in 3D. The name can be 
changed but the names of fields and dependent variables must be unique within a 
model.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization. The 
default is to use linear shape functions. If the truss elements share an edge with another 
structural mechanics interface, you may want to use quadratic shape functions instead, 
in order to get displacement compatibility.

Boundary, Edge, Point, and Pair Nodes for the Truss Interface

The Truss Interface has these boundary, edge, point, and pair nodes are available from 
the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or right-click to access the context menu (all users).

• Boundary, Edge, Point, and Pair Nodes for the Truss Interface

• Edge Load

• Theory for the Truss Interface

• Vibrating String: Application Library path 
Structural_Mechanics_Module/Verification_Examples/vibrating_string

• In-Plane and Space Truss: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

inplane_and_space_truss

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
T H E  TR U S S  I N T E R F A C E  |  801
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F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Truss interface are added from submenus in the Physics toolbar 
groups or context menu (when you right-click the node). The submenu name is the 
same in both cases.The submenus at the Edge level (3D) or Boundary level (2D) are

• Material Models

• Line and Volume Loads

• Mass, Spring, and Damper

• Line Constraints

The submenus at the Point level are

• Mass, Spring, and Damper

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

• Antisymmetry

• Cross Section Data

• Edge Load

• External Stress

• Hygroscopic Swelling

• Initial Stress and Strain

• Linear Elastic Material

• Phase

• Pinned

• Point Mass

• Point Mass Damping

• Spring-Damper

• Straight Edge Constraint

• Symmetry

• Thermal Expansion (for constraints)

• Thermal Expansion (for materials)
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These nodes are described for the Solid Mechanics or Beam interface:

Cross Section Data

Use the Cross Section Data node to enter the cross section area for the truss elements 
on the selected edges.

B A S I C  S E C T I O N  P R O P E R T I E S

Enter an Area A.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Cross Section Data

• Added Mass

• Damping

• Free

• Gravity1

• Initial Values

• Plasticity

• Point Load

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Velocity

• Rotating Frame1

• Spring Foundation

1 This is selected from the Line and Volume Loads submenu for this interface.

If there are subsequent constraints on the same geometrical entity, the last 
one takes precedence.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

This is required input data.
T H E  TR U S S  I N T E R F A C E  |  803
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Ribbon
Physics tab with Truss selected:
Edges>Truss>Cross Section Data

Straight Edge Constraint

The Straight Edge Constraint controls the addition of an additional constraint, forcing 
the edge to be straight. The default is to add this constraint to all edges unless linear 
shape functions have been chosen in the Discretization section of the interface. Using 
this additional constraint removes the need to use a mesh with only one element per 
edge. Internal nodes will make the model singular because the truss element only has 
stiffness in the axial direction in a geometrically linear problem. The same problem is 
present also when using higher-order shape functions, even if there is only one element 
along an edge since there are internal nodes.

In the case of geometric nonlinearity, there is a stiffness in the transverse directions as 
long as the axial force is tensile. 

The additional constraints increase the solution time, especially for large 3D and 
transient problems. The default mesh, when using Physics-controlled mesh in the Mesh 
node, is to use one element per edge only, so that the extra constraints are not needed 
unless the shape functions are of higher order.

A C T I V A T I O N  C O N D I T I O N

Select the Disable for linear discretization order check box to suppress the addition of 
the straight edge constraints when linear shape functions are used. This is the default 
state.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Straight Edge Constraint

Ribbon
Physics tab with Truss selected:
Edges>Line Constraints>Straight Edge Constraint

See also Theory for Straight Edge Constraint and Modeling Wires and 
Cables.
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Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic truss element, 
and an interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Damping

• Plasticity

L I N E A R  E L A S T I C  M A T E R I A L

Define the linear elastic material properties. These settings are the same as described 
under Linear Elastic Material for the beam interface.

G E O M E T R I C  N O N L I N E A R I T Y

In this section there is always one check box. Either Force linear strains or Include 

geometric nonlinearity is shown.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation for all boundaries or edges. There are however some cases when you 
would still want to use a small strain formulation in a part of the structure. In those 
cases, select the Force linear strains check box. When selected, a small strain 
formulation is always used, independently of the setting in the study step. The default 
value is that the check box is cleared, except when opening a model created in a version 
prior to 4.3. In this case the state is chosen so that the properties of the model are 
conserved.

The Include geometric nonlinearity check box is displayed only if the model was created 
in a version prior to 4.3, and geometric nonlinearity was originally used for the selected 
boundaries or edges. It is then selected and forces the Include geometric nonlinearity 
check box in the study step to be selected. If the check box is cleared, the check box is 
permanently removed and the study step assumes control over the selection of 
geometric nonlinearity.
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E N E R G Y  D I S S I P A T I O N

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Plasticity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Material Models>Linear Elastic Material

Ribbon
Physics tab with Truss selected:
Edges>Material Models>Linear Elastic Material

Thermal Expansion (for materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

M O D E L  I N P U T S

From the Temperature T list, select an existing temperature variable from another 
physics interface, if any such temperature variables exist, or select User defined to enter 
a value or expression for the temperature.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to select how the thermal strain is specified. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where α is the secant coefficient of thermal expansion. α can be temperature 
dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where αt is the tangential coefficient of thermal expansion.

εth α T Tref–( )=

εth αt τ( ) τd
Tref

T

 
 
 

exp 1–=
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When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. Use User defined to enter 
an expression for the coefficient of thermal expansion or thermal strain.

Enter a value or expression for the Strain reference temperature Tref which is the 
reference temperature that defines the change in temperature together with the actual 
temperature.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as 

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. The temperature is assumed to 
be constant over the cross section of the truss element.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Hygroscopic Swelling

εhs βh cmo cmo,ref–( )=

The settings for the Truss interface are the same as described for the Beam 
interface (excluding the hygroscopic bending options). See Hygroscopic 
Swelling in the documentation for the Beam interface.
T H E  TR U S S  I N T E R F A C E  |  807



808 |  C H A P T E
Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation 

I N I T I A L  S T R E S S  A N D  S T R A I N

Enter an Initial axial strain eni and Initial axial stress σni.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to the Linear Elastic Material, in order to 
specify an additional stress contribution which is not part of the constitutive relation. 

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.
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The external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

E X T E R N A L  S T R E S S

Select a Stress input—Stress tensor or Axial stress.

• When Stress tensor is selected, you enter the external stress in the form of Second 
Piola-Kirchhoff stress tensors. In the External stress tensor drop-down list, stress 
tensors announced by any physics interface will be shown, and also the entry User 

defined. When User defined is selected, you can enter the data for the External stress 

tensor Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the 
tensor. The tensor components are interpreted in the global coordinate system, and 
are projected onto the tangential direction of the truss element. If a stress tensor 
announced by a physics interface is selected, the coordinate system setting is ignored 
— the orientation is handled internally. Choose a Contribution type—Add to stress 

tensor or Load contribution only to determine the effect of the contribution.

• When Axial stress is selected, you enter a value or an expression for the Axial stress 
Sn,ext. Choose a Contribution type—Add to stress tensor or Load contribution only to 
determine the effect of the contribution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>External Stress

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.

Selecting a stress tensor announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed stress depends on itself.

For theory, see External Stress.
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Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:
Attributes>External Stress

Spring-Damper

Use a Spring-Damper to model — between two points—an elastic spring, a viscous 
damper, or both. By adding a Truss interface with this material model, you can add 
springs and dashpots to any other structural mechanics physics interface.

S P R I N G - D A M P E R

Select a Spring type—Spring constant or Force as function of extension.

• For Spring constant enter a value for the spring constant k.

• For Force as function of extension enter an expression for the spring force Fs. The 
expression must be a function of the extension of the spring. The built-in variable 
for the spring extension has the form <physicsName>.<SpringNodeTag>.dl, for 
example truss.spd1.dl. The default expression is (1[N/m])*truss.spd1.dl, 
which corresponds to a linear spring with the stiffness 1 N/m.

To add viscous damping in a dynamic analysis, enter a value or expression for the 
Damping coefficient c.

To add loss factor damping, enter a value for the Loss factor damping η.

F R E E  L E N G T H

The free length is the distance between the connection points when there is no force 
in the spring. Select an option from the list—Specify initial extension or Specify free 

length.

• For Specify initial extension enter a value for . The free length is computed as 
, where l0 is the initial distance between the connection points.

• For Specify free length enter a value for lf.

A C T I V A T I O N  C O N D I T I O N

Select a Spring action—Bidirectional, Tension only, or Compression only.

Select the Deactivation condition check box to enter a Deactivation indicator expression 
idac. The expression is treated as a boolean expression, so that when it is evaluated to 
a nonzero value, the spring or damper is deactivated. 

Δl0
lf l0 Δl0–=
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Select the Permanently deactivate check box if the spring is supposed to be removed 
permanently from the simulation once the deactivation condition is fulfilled for the 
first time.

As an example, if the spring should break at a certain extension, you can write an 
expression like truss.spd1.dl>0.12[m], and select the Permanently deactivate check 
box. If the check box is not selected, the spring would become active again when its 
connection points come close enough to each other.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Material Models>Spring-Damper

Ribbon
Physics tab with Truss selected:
Edges>Material Models>Spring-Damper

Pinned

The Pinned node adds an edge (3D), boundary (2D), or point (2D and 3D) condition 
that makes the edge, boundary, or point fixed; that is, the displacements are zero in all 
directions.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Pinned (Line)
Truss>Pinned (Point)

Ribbon
Physics tab with Truss selected:
Edges>Line Constraints>Pinned

Points>Truss>Pinned

Thermal Expansion (for constraints)

Add the Thermal Expansion subnode to a constraint (Pinned or Prescribed Displacement) 
to prescribe a deformation of the constraint caused by changes in temperature of the 
surroundings. This makes it possible to reduce stresses caused by the boundary 
conditions.

The thermal strain depends on the coefficient of thermal expansion α, the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from edge to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the edge itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any spatial variation must be an explicit function of the 
material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion α. As a default, values From material are used. 
This requires that a material has been assigned to the points where the constraint is 

εth α T Tref–( )=
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active.
For User defined enter the coefficient of thermal expansion α.

• A value or expression for the Strain reference temperature Tref which is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Pinned>Thermal Expansion

TrussPrescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Pinned or Prescribed Displacement node selected in the model tree:
Attributes>Thermal Expansion 

Symmetry

The Symmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines a symmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the symmetry plane. Select 1, 2, or 3 for the first, second, or third axis in the selected 
coordinate system.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Symmetry (Line)
Truss>More Constraints>Symmetry (Point)

Ribbon
Physics tab with Truss selected:
Edges>Line Constraints>Symmetry

Points>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines an antisymmetry edge, boundary, or point. 

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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A N T I S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the antisymmetry plane. 

• For 2D models, select 1 or 2 for the first or second axis, respectively. 

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively. 

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Antisymmetry (Line)
Truss>More Constraints>Antisymmetry (Point)

Ribbon
Physics tab with Truss selected:
Edges>Line Constraints>Antisymmetry

Points>More Constraints>Antisymmetry

Edge Load

Add an Edge Load as a force distributed along an edge (3D models) or boundary (2D 
models). 

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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F O R C E

Select a Load type—Force per unit length, Force per unit volume, or Total force. Enter 
values or expressions for the components.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line and Volume Loads>Edge Load

Ribbon
Physics tab with Truss selected:
Edges>Line and Volume Loads>Edge Load

Point Mass

Use the Point Mass node to add a discrete mass that is concentrated at a point.

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit length FL N/m edges

boundaries

3D (x, y, z)

2D (x, y)

Force per unit volume FV N/m3 edges

boundaries

3D (x, y, z)

2D (x, y)

Total force Ftot N edges

boundaries

3D (x, y, z)

2D (x, y)

• When Force per unit volume is selected, the given load is multiplied by 
the cross section area. This option is useful for modeling body loads 
like gravity or centrifugal loads.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining the Truss interface with another physics 
interface, it is also possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

PO I N T  M A S S

Enter a Point mass m.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Mass, Spring, and Damper>Point Mass

Ribbon
Physics tab with Truss selected:
Edges>Mass, Spring, and Damper>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node. 

PO I N T  M A S S  D A M P I N G

Enter a Mass damping parameter αdM. This is the mass proportional term of a Rayleigh 
damping.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:
Point Mass Damping

Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

For modeling the frequency response the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.φ
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Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Add the phase load Fph for harmonic loads. Enter the phase for each component of 
the load in the corresponding fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Edge Load>Phase

Truss>Point Load>Phase

Ribbon
Physics tab with Edge Load or Point Load node selected in the model tree:
Attributes>Phase

Ffreq F f( ) 2πft φ+( )cos⋅=
R  9 :  TR U S S



 10
M u l t i p h y s i c s  I n t e r f a c e s  a n d  C o u p l i n g s
The Structural Mechanics Module contains predefined multiphysics interfaces to 
facilitate easy set up of models with the most commonly occurring couplings. Four 
of the physics interfaces are found under the Structural Mechanics branch ( ) 
when adding a physics interface — Thermal Stress, Joule Heating and Thermal 
Expansion, Piezoelectric Devices, and Magnetostriction. The Fluid-Structure 
Interaction interfaces are found under the Fluid Flow branch ( ).

• The Thermal Stress Interface

• The Fluid-Structure Interaction Interface

• The Fluid-Structure Interaction, Fixed Geometry Interface

• Theory for the Fluid-Structure Interaction Interface

• The Joule Heating and Thermal Expansion Interface

• The Piezoelectric Devices Interface

• The Magnetostriction Interface

• Hygroscopic Swelling Coupling

• Couplings Between Structural Mechanics Interfaces
 819



820 |  C H A P T E
Th e  Th e rma l  S t r e s s  I n t e r f a c e

The Thermal Stress ( ) interface combines a Solid Mechanics interface with a Heat 
Transfer in Solids interface. The coupling occurs on the domain level, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Solid 
Mechanics interface, causing thermal expansion.

When a predefined Thermal Stress interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or Add Physics windows, Solid Mechanics and Heat 

Transfer in Solids interfaces are added to the Model Builder. 

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling features Thermal Expansion and Temperature Coupling. 

On the Constituent Physics Interfaces
The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or 
axisymmetric bodies. In 2D, plane stress or plane strain assumptions can be used. The 
Solid Mechanics interface is based on solving Navier’s equations, and results such as 
displacements, stresses, and strains are computed.

The Heat Transfer in Solids interface provides features for modeling heat transfer by 
conduction, convection, and radiation. A Heat Transfer in Solids model is active by 
default on all domains. All functionality for including other domain types, such as a 
fluid domain, is also available. The temperature equation defined in solid domains 
corresponds to the differential form of the Fourier’s law that may contain additional 
contributions like heat sources.

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Thermal Stress was added to the Model Builder. Now, a 
predefined multiphysics coupling approach is used, improving the 
flexibility and design options for your modeling. For specific details, see 
The Multiphysics Node and Multiphysics Modeling Approaches in the 
COMSOL Multiphysics Reference Manual.

For information about the constitutive equations including thermal 
expansion in the section dealing with the theory background, see 
Structural Mechanics Theory.
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S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example Thermal 

Stress, specific settings are included with the physics interfaces and the coupling 
features. 

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 

For example, if single Solid Mechanics and Heat Transfer in Solids interfaces are added, 
an empty Multiphysics node appears in the model tree. You can choose from the 
available coupling features but the settings in the constituent interfaces are nor 
modified. 

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

TABLE 10-1:  MODIFIED SETTINGS FOR A THERMAL STRESS INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Solid Mechanics For the Solid Mechanics interface, under Structural 
Transient Behavior the Structural transient behavior is 
set to Quasi-static.

Heat Transfer in Solids For the Heat Transfer in Solids interface, under 
Discretization, the shape function order for the 
temperature is set to Linear.

Thermal Expansion The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Solid Mechanics and Heat Transfer in 
Solids interfaces are preselected in the Thermal 
Expansion section.

Temperature Coupling The corresponding Solid Mechanics and Heat Transfer in 
Solids interfaces are preselected in the Temperature 
Coupling section (described in the COMSOL 
Multiphysics Reference Manual).

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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Coupling Features
• The Thermal Expansion (Multiphysics Coupling) coupling feature node is 

described in this section.

• The Temperature Coupling feature node is described for The Joule Heating 
Interface in the COMSOL Multiphysics Reference Manual.

Thermal Expansion (Multiphysics Coupling)

The Thermal Expansion coupling is similar to the Thermal Expansion (for materials) 
node ( ) that can be added under, for example, the Linear Elastic Material or 
Hyperelastic Material for the Solid Mechanics interface. The purpose is the same, and if 
both nodes are used for the same selection, the settings in the coupling node takes 
precedence.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is te1.

D O M A I N  S E L E C T I O N

When nodes are added from the context menu, you can select Manual (the default) 
from the Selection list to choose specific domains to define the coefficient of thermal 
expansion and the different temperatures that cause thermal stress, or select All domains 
as needed.

Fuel Cell Bipolar Plate: Application Library path 
Structural_Mechanics_Module/Thermal-Structure_Interaction/bipolar_plate

Thermal Expansion in a MEMS Device: Application Library path 
MEMS_Module/Sensors/thermal_expansion
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When Thermal Expansion is added as an effect of adding a Thermal Stress interface, the 
selection is the same as for the participating physics interfaces.

Only domains that are active in the physics interfaces selected in the Coupled 
Interfaces section can be selected.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to select how the thermal strain is specified. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where α is the secant coefficient of thermal expansion. α can be temperature 
dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where αt is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a non-isotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

Enter a value or expression for the Strain reference temperature Tref which is the 
reference temperature that defines the change in temperature together with the actual 
temperature.

Select Thermoelastic damping to include the reverse coupling where the changes in 
stress act as a heat source in the heat transfer analysis. Thermoelastic damping is only 
active when Structural Transient Behavior is set to Include inertial terms.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Heat 

transfer and Solid mechanics lists include all applicable physics interfaces.

εth α T Tref–( )=

εth αt τ( ) τd
Tref

T

 
 
 

exp 1–=
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The default values depend on how the coupling node is created. 

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default. 

• If it is added automatically when a multiphysics interface is selected in the Model 

Wizard or Add Physics window, then the two participating physics interfaces are 
selected.

You can also select None from either list to uncouple the Thermal Expansion node from 
a physics interface. If the physics interface is removed from the Model Builder, for 
example Heat Transfer in Solids is deleted, then the Heat transfer list defaults to None as 
there is nothing to couple to.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the Heat transfer or Solid mechanics lists. This is 
applicable to all multiphysics coupling nodes that would normally default 
to the once present interface. See Multiphysics Modeling Approaches in 
the COMSOL Multiphysics Reference Manual.

• Thermoelastic Damping

• Entropy and Thermoelasticity
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Th e  F l u i d - S t r u c t u r e  I n t e r a c t i o n  
I n t e r f a c e

Using the Fluid-Structure Interaction (fsi) interface ( ), found under the Fluid Flow 
branch ( ) when adding a physics interface, you can model phenomena where a fluid 
and a deformable solid affect each other. The physics interface models both the fluid 
domain and the solid domain (structure) and includes a predefined condition for the 
interaction at the fluid-solid boundaries. An ALE formulation is used for incorporating 
the geometrical changes of the fluid domain.

The fluid can be either compressible or incompressible. The flow regime can be 
laminar or turbulent (if you have a license for the CFD Module). The solid domain has 
the same options as in a Solid Mechanics interface, including contact conditions and 
also nonlinear materials if the Nonlinear Structural Materials Module or Geomechanics 
Module is available.

Using a stationary or a time-dependent study, the Fluid-Structure Interaction interface 
models two-way coupling between solids and fluids. There are, however, also special 
study steps available in order to model one-way coupled fluid-structure interaction.

The Fluid-Structure Interaction interface is available for 3D, planar 2D, and 2D 
axisymmetric geometries.

In planar 2D, the physics interface uses the assumption that the structures deform in 
the plane strain regime. This means that the interpretation of the results are values “per 
meter thickness,” and there is no specific thickness to specify.

When the Fluid-Structure Interaction interface is added, the following default nodes 
are added to the Model Builder—Fluid Properties, Linear Elastic Material, and Free 
Deformation (for the mesh movement and default boundary conditions) in the 
domains; Wall (for the fluid), Prescribed Mesh Displacement (for the mesh movement), 
and Free (for the solid mechanics, which initially is not applicable to any boundary 
because the default settings assume a fluid domain) as default boundary conditions; 
and Initial Values. 

In addition, for the fluid-solid boundary, a Fluid-Solid Interface Boundary node adds 
the fluid-structure interaction. This node is only applicable to interior fluid-solid 
boundaries.
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From the Physics toolbar, add other nodes that implement, for example, loads, 
constraints, and other nonlinear materials for the solid domain. You can also right-click 
Fluid-Structure Interaction to select physics features from the context menu. 

The Settings window contains the following sections plus additional sections that are 
similar to those for physics interface nodes Settings windows for fluid flow, solid 
mechanics, and moving mesh interfaces.

The Fluid-Structure Interaction interface default is to treat all domains as fluid. The 
Linear Elastic Material node, which is the default node for the solid domain, initially 
has an empty selection. When a solid mechanics material is added to the solid domains, 
the physics interface automatically identifies the fluid-solid interaction boundaries and 
assigns the Fluid-Solid Interface Boundary condition to those boundaries. Two materials 
are typically defined in an FSI model: one for the fluid and one for the solid. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is fsi.

F R E E  D E F O R M A T I O N  S E T T I N G S

Select a Mesh smoothing type — Winslow (the default), Hyperelastic, Laplace, or Yeoh. 
For the Yeoh mesh smoothing type, also specify a Stiffening factor (default: 100). See 
Smoothing Methods in the COMSOL Multiphysics Reference Manual for more 
information.

For an overview of available variables for monitoring and plotting the 
moving mesh, see Predefined Variables in Deformed Geometry and 
Moving Mesh in the COMSOL Multiphysics Reference Manual. Note, 
however, that the variables in the Fluid-Structure Interaction interface use 
the Name fsi instead of ale.
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P H Y S I C A L  M O D E L

By default the physics interface uses the Compressible flow (Ma<0.3) formulation of the 
Navier-Stokes equations. Select Incompressible flow to use the incompressible (constant 
density) formulation.

Enter a Reference pressure level pref (SI unit: Pa). The default value is 1[atm].

R E F E R E N C E  PO I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the coordinates for the Reference point for moment computation, xref 
(SI unit: m). All moments are then computed relative to this reference point.

S T R U C T U R A L  TR A N S I E N T  B E H A V I O R

Select a Structural transient behavior—Include inertial terms (the default) or 
Quasi-static.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variables) include the following. The turbulence 
variables are only active if the fluid flow part uses a turbulence model. The name can 
be changed but the names of fields and dependent variables must be unique within a 
model.

• Pressure p (SI unit: Pa)

• Turbulent dissipation rate ep (SI unit: m2/s3)

• Turbulent kinetic energy k (SI unit: m2/s3)

• Reciprocal wall distance G (SI unit: 1/m)

• Displacement field usolid (SI unit: m)

• Velocity field ufluid (SI unit: m/s)

A D V A N C E D  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
Normally these settings do not need to be changed.

The Use pseudo time stepping for stationary equation form check box is active per 
default. It adds pseudo time derivatives to the momentum equations when the 
Stationary equation form is used. When selected, also choose a CFL number expression—
Automatic (the default) or Manual. Automatic sets the local CFL number (from the 
Courant–Friedrichs–Lewy condition) to the built-in variable CFLCMP which in turns 
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trigger a PID regulator for the CFL number. For Manual enter a Local CFL number 
CFLloc.

Domain, Boundary, Edge, Point, and Pair Nodes for the 
Fluid-Structure Interaction Interface

The Fluid-Structure Interaction Interface has these domain, boundary, edge, point, 
and pair nodes, listed in alphabetical order, available from the Physics ribbon toolbar 
(Windows users), Physics context menu (Mac or Linux users), or right-click to access 
the context menu (all users).

These nodes are unique to the physics interface and described in this section:

• Initial Values 

• Wall

• Fluid-Solid Interface Boundary

• If you also have a CFD Module or Heat Transfer Module, the Interior Wall 
boundary condition is also available and is documented in the CFD Module User’s 
Guide or Heat Transfer Module User’s Guide, respectively. This boundary 

• Pseudo Time Stepping for Laminar Flow Models and Pseudo Time 
Stepping in the COMSOL Multiphysics Reference Manual

• Domain, Boundary, Edge, Point, and Pair Nodes for the 
Fluid-Structure Interaction Interface

• Theory for the Fluid-Structure Interaction Interface

• Basic Modeling Steps for Fluid-Structure Interaction

Peristaltic Pump: Application Library path Structural_Mechanics_Module/

Fluid-Structure_Interaction/peristaltic_pump

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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condition is useful for avoiding meshing of thin wall structures by using no-slip 
conditions on interior curves and surfaces.

• With the addition of a module that enhances various fluid flow interfaces, the Line 
Mass Source and Point Mass Source features are also available and described in the 
COMSOL Multiphysics Reference Manual.
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These nodes are described for the Solid Mechanics interface:These nodes are described 

for the Laminar Flow or Moving Mesh interfaces in the COMSOL Multiphysics 
Reference Manual (listed in alphabetical order):

• Added Mass

• Antisymmetry

• Body Load

• Boundary Load

• Contact

• Edge Load

• Fixed Constraint

• Free

• Linear Elastic Material

• Viscoelasticity

• Periodic Condition

• Point Load

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Velocity

• Rigid Connector

• Roller

• Spring Foundation

• Symmetry

• Thin Elastic Layer

• No Viscous Stress

• Fixed Mesh

• Flow Continuity

• Fluid Properties

• Free Deformation

• Inlet

• Open Boundary

• Outlet

• Periodic Flow Condition

• Prescribed Deformation

• Prescribed Mesh Displacement

• Pressure Point Constraint

• Symmetry

• Volume Force

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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Initial Values

The Initial Values node adds initial values for pressure, turbulent dissipation rate, 
turbulent kinetic energy, reciprocal wall distance, displacement field, and velocity field.

These variables can serve as an initial condition for a transient simulation or as an initial 
guess for a nonlinear analysis. If more than one set of initial values is required, add 
additional Initial Values nodes from the Physics toolbar.

I N I T I A L  V A L U E S

Enter the initial values as values or expressions. The variables for turbulence are only 
valid for fluid flow using a turbulence model.

• Pressure p (SI unit: Pa)

• Turbulent dissipation rate εp (ep) (SI unit: m2/s3)

• Turbulent kinetic energy k (SI unit: m2/s3)

• Reciprocal wall distance G (SI unit: 1/m)

• Displacement field usolid (SI unit: m)

• Velocity field ufluid (SI unit: m/s)

Wall

The Wall node includes a set of boundary conditions describing fluid-flow conditions 
at stationary, moving, and leaking walls. For turbulent flow, the description may 
involve wall functions and/or asymptotic expressions for certain turbulence variables.

B O U N D A R Y  C O N D I T I O N

Select a Boundary condition for the wall. 

If you also have a CFD Module, Heat Transfer Module or Microfluidics Module 
additional options become available as documented in the CFD Module User’s Guide, 
Heat Transfer Module User’s Guide or Microfluidics Module User’s Guide 
respectively.

• No Slip1

• Slip

• Sliding Wall

• Moving Wall

• Moving Wall

• Leaking Wall
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No Slip
No slip is the default boundary condition for a stationary solid wall for laminar flow 
(and SST, Low Re k-ε, Algebraic yPlus, L-VEL, and Spalart-Allmaras turbulence 
models). The condition prescribes u = 0; that is, the fluid at the wall is not moving.

Slip
The Slip option prescribes a no-penetration condition, u·n=0. It is implicitly assumed 
that there are no viscous effects at the slip wall and hence, no boundary layer develops. 
From a modeling point of view, this can be a reasonable approximation if the main 
effect of the wall is to prevent fluid from leaving the domain.

Sliding Wall
The Sliding wall boundary condition is appropriate if the wall behaves like a conveyor 
belt; that is, the surface is sliding in its tangential direction. A velocity is prescribed at 
the wall and the boundary itself does not have to actually move relative to the reference 
frame.

• For 3D components, values or expressions for the Velocity of sliding wall uw should 
be specified. If the velocity vector entered is not in the plane of the wall, COMSOL 
Multiphysics projects it onto the tangential direction. Its magnitude is adjusted to 
be the same as the magnitude of the vector entered.

• For 2D components, the tangential direction is unambiguously defined by the 
direction of the boundary. For this reason, the sliding wall boundary condition has 
different definitions in different space dimensions. A single entry for the Velocity of 

the tangentially moving wall Uw should be specified in 2D. 

• For 2D axisymmetric components when Swirl flow is selected in the physics interface 
properties, the Velocity of moving wall,  component vw may also be specified.

Moving Wall
For an arbitrary wall movement, the condition u = uw may be prescribed. In this case, 
the components of the Velocity of moving wall uw should be specified.

Specifying this boundary condition does not automatically cause the associated wall to 
move. An additional Moving Mesh interface needs to be added to physically track the 
wall movement in the spatial reference frame.

Leaking Wall
This boundary condition may be used to simulate a wall where fluid is leaking into or 
leaving the domain with the velocity u = ul through a perforated wall. The 
components of the Fluid velocity ul on the leaking wall should be specified.Constraint 
Settings

ϕ
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This section is displayed by clicking the Show button ( ) and selecting Advanced 

Physics Options. 

Fluid-Solid Interface Boundary

The Fluid-Solid Interface Boundary condition defines the fluid load on the structure and 
how structural displacements affect the fluid’s velocity.

Basic Modeling Steps for Fluid-Structure Interaction

The following steps describe the basics of how to set up a model of fluid-structure 
interaction:

1 In the Model Wizard or Add Physics window, select the Fluid-Structure Interaction 
interface. Click Next.

2 Select a study option—Stationary, Stationary, One-Way Coupled, Time Dependent, or 
Time Dependent, One-Way Coupled from the Preset Studies branch on the Select Study 

Type list; then click Finish.

3 Create the geometry, which should contain a fluid domain and a solid domain.

4 Add the materials, typically a fluid and a solid. Then assign the material added last 
to the domains that represents the solid (or the fluid, if the solid material was added 
first).

• Wall in the COMSOL Multiphysics Reference Manual

• Moving Mesh Interface in the COMSOL Multiphysics Reference 
Manual

If you also have the CFD Module, you can add a Stationary, One-Way 

Coupled with Initialization or Transient, One-Way Coupled with Initialization 

study for turbulence models requiring the wall distance. See Stationary, 
One-Way Coupled with Initialization and Transient, One-Way Coupled 
with Initialization in the COMSOL Multiphysics Reference Manual for 
more information.
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5 By default, the Fluid-Structure Interaction interface adds a Fluid Properties node for 
the fluid domain as well as a Free Deformation node for the mesh displacements in 
the moving mesh to all domains in the geometry. 

For the solid domain, the default is the Linear Elastic Material node with the setting 
to include geometric nonlinearity and an initially empty selection. 

To use another material model for the solid, from the Physics toolbar, Domains>Solid 

Mechanics submenu, select a material node for the solid. Add the domains that 
represent the solid to its selection. That selection automatically overrides the Fluid 

Properties and Free Deformation nodes in the solid.

6 Verify that the default boundary conditions are correctly assigned for the three types 
of boundaries in the model: the Wall node for all fluid boundaries (and a Prescribed 

Mesh Displacement node for zero mesh displacements on the same boundaries), the 
Free node for all solid boundaries, and the Fluid-Solid Interface Boundary node on the 
interior boundaries between the fluid and the solid. The Fluid-Solid Interface 

Boundary node implements the coupling from the force exerted on the solid 
boundary by the fluid as well as the as the structural velocities acting on the fluid as 
a moving wall.

7 Add additional boundary conditions as needed. Typically the fluid domain needs an 
Inlet node and an Outlet node for the inflow and outflow boundaries, respectively. 

To add these nodes from the Physics toolbar, Boundaries>Laminar Flow submenu, 
select Inlet and Outlet (if the fluid is laminar). The solid domain needs some 
constraint such as a Fixed Constraint at some boundary.

8 Create the mesh and check that it resolves the domains sufficiently. A finer mesh 
might be needed other than what the default mesh settings provide.

9 To solve the problem, from the Study toolbar click Compute. The solver settings 
might require some adjustments depending on the characteristics of the model.

Typically, fluid-structure interaction means that there are large 
deformations. In this case, the Include geometric nonlinearity check box 
should be selected in the Study Settings section of the Settings window for 
the study.
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10 Also add additional physics features to the model such as Thermal Expansion or 
Conjugate Heat Transfer, if applicable.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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Th e  F l u i d - S t r u c t u r e  I n t e r a c t i o n ,  
F i x e d  Geome t r y  I n t e r f a c e

The Fluid-Structure Interaction, Fixed Geometry ( ) interface can be used to model 
phenomena where a fluid and a deformable solid structure affect each other. Both the 
fluid loading on the structure and the structural velocity transmission to the fluid can 
be taken into account. The interface models situations where the displacements of the 
solid are assumed to be small enough for the geometry of the fluid domain to be 
considered as fixed during the interaction.

When a predefined Fluid-Structure Interaction, Fixed Geometry interface is added from 
the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows, Laminar Flow 
and Solid Mechanics interfaces are added to the Model Builder. 

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction, Fixed Geometry. 

On the Constituent Physics Interfaces
The Laminar Flow interface solves the Navier-Stokes equations, for conservation of 
momentum, and the continuity equation, for conservation of mass, to compute the 
fluid velocity and pressure. The interface supports incompressible flows and 
compressible flows at low Mach numbers (typically less than 0.3). When the CFD 
Module is available, turbulent flow is supported through the inclusion of a number of 
turbulence models.

The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or 
axisymmetric bodies. In 2D, plane stress or plane strain assumptions can be used. The 
Solid Mechanics interface is based on solving Navier’s equations, and results such as 
displacements, stresses, and strains are computed.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features. 

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 
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For example, if single Laminar Flow and Solid Mechanics interfaces are added, COMSOL 
adds an empty Multiphysics node. You can choose from the available coupling features, 
but the modified settings are not included. 

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction, Fixed Geometry coupling feature node is described 
in this section.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (Mac or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Solid Mechanics Interface are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
T H E  F L U I D - S T R U C T U R E  I N T E R A C T I O N ,  F I X E D  G E O M E T R Y  I N T E R F A C E  |  837



838 |  C H A P T E
Fluid-Structure Interaction, Fixed Geometry

Use Fluid-Structure Interaction, Fixed Geometry ( ) coupling when the deformations 
of the structure are so small that they do not significantly affect the fluid domain. Two 
effects can be modeled:

• The load from the fluid on the structure

• The structural velocity can act as a boundary condition on the fluid.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is fsifg1.

C O U P L I N G  TY P E

Select Fully coupled (the default), Fluid loading on structure, or Velocity transmission to 

fluid.

F L U I D - S T R U C T U R E  I N T E R A C T I O N ,  F I X E D  G E O M E T R Y

This section defines the physics interfaces involved in the Fluid-Structure Interaction, 
Fixed Geometry coupling. The Fluid flow and Solid mechanics lists include all applicable 
physics interfaces.

The default values depend on how the node is created. 

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default. 

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Fluid-Structure Interaction, 

Fixed Geometry node from a physics interface. If the physics interface is removed from 
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the Model Builder, for example Solid Mechanics is deleted, then the Solid mechanics list 
defaults to None as there is nothing to couple to.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Approaches in the COMSOL 
Multiphysics Reference Manual.
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Th eo r y  f o r  t h e  F l u i d - S t r u c t u r e  
I n t e r a c t i o n  I n t e r f a c e

The Fluid-Structure Interaction Interface combines fluid flow with solid mechanics to 
capture the interaction between the fluid and the solid structure. A Solid Mechanics 
interface and a Single-Phase Flow interface model the solid and the fluid, respectively. 
The Fluid-Structure Interaction (FSI) couplings appear on the boundaries between 
the fluid and the solid. The physics interface uses an arbitrary Lagrangian-Eulerian 
(ALE) method to combine the fluid flow formulated using an Eulerian description and 
a spatial frame with solid mechanics formulated using a Lagrangian description and a 
material (reference) frame.

The fluid flow is described by the Navier-Stokes equations, which provide a solution 
for the velocity field ufluid. The total force exerted on the solid boundary by the fluid 
is the negative of the reaction force on the fluid,

 (10-1)

where p denotes pressure, μ the dynamic viscosity for the fluid, n the outward normal 
to the boundary, and I the identity matrix. Because the Navier-Stokes equations are 
solved in the spatial (deformed) frame while the Solid Mechanics interface is defined 
in the material (undeformed) frame, a transformation of the force is necessary. This is 
done according to

where dv and dV are the mesh element scale factors for the spatial frame and the 
material (reference) frame, respectively.

The coupling in the other direction consists of the structural velocities

(the rate of change for the displacement of the solid), which act as a moving wall for 
the fluid domain. The predefined Fluid-Solid Interface boundary condition includes 
these couplings for bidirectionally coupled FSI simulations.

f n pI– μ ∇ufluid ∇ufluid( )T+( ) 2
3
---μ ∇ ufluid⋅( )I– 

 +
 
 
 

⋅=

F f dv
dV
--------⋅=

t∂
∂usolid
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The solid mechanics formulation supports geometric nonlinearity (large 
deformations). The spatial frame also deforms with a mesh deformation that is equal 
to the displacements usolid of the solid within the solid domains. The mesh is free to 
move inside the fluid domains, and it adjusts to the motion of the solid walls. This 
geometric change of the fluid domain is automatically accounted for in COMSOL 
Multiphysics by the ALE method.

O N E - WA Y  F L U I D - S T R U C T U R E  I N T E R A C T I O N

For small values of the solid displacement and its rate of change, the Fluid-Structure 
Interaction interface includes one-way coupled model formulations. The one-way 
coupled models sequentially solve for the fluid flow, compute the load from 
Equation 10-1, and then apply it in the solution for the solid displacement. Since these 
methods are unidirectional, the mesh deformation is excluded from the solution. 
When applicable, the one-way coupled versions offer computationally cheaper 
alternatives to a fully coupled counterpart.

Stationary and Time Dependent one-way coupled studies are available for selection 
from the Preset Studies branch when adding a study. These studies include a Fluid study 
step and a Solid study step. When an additional physics interface is added to the model, 
it is by default added to both study steps. 

In this case the one-way coupled study steps display under Preset Studies for Some 

Physics Interfaces branch since the Fluid study step does not solve for the solid 
displacement and vice versa. When using a turbulence model requiring the distance to 
the closest wall, the Preset Studies includes a Wall Distance Initialization study step.

When solving a transient one-way coupled FSI model, besides saving the solution from 
the Fluid study step with adequate frequency, it is advisable to save the solution from 
the Solid study step at the same times as the fluid solution. This way, all the information 
from the Fluid study step is used in the Solid study step.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
T H E O R Y  F O R  T H E  F L U I D - S T R U C T U R E  I N T E R A C T I O N  I N T E R F A C E  |  841



842 |  C H A P T E
Th e  J o u l e  Hea t i n g  and Th e rma l  
E xpan s i o n  I n t e r f a c e

The Joule Heating and Thermal Expansion ( ) interface combines thermal, electric, 
and structural multiphysics effects. The predefined interaction adds the 
electromagnetic losses from the electric field as a heat source. In addition, the 
temperature from the Heat Transfer in Solids interface acts as a thermal load for the 
Solid Mechanics interface, causing thermal expansion. 

You can use this multiphysics coupling for coupled thermal, electrical, and structural 
analysis of, for example, the movement of some actuator, where an electric current 
causes a temperature increase, which in turn leads to a displacement through thermal 
expansion.

When a predefined Joule Heating and Thermal Expansion interface is added from the 
Structural Mechanics branch ( ) of the Model Wizard or Add Physics windows, Solid 

Mechanics, Electric Currents, and Heat Transfer in Solids interfaces are added to the 
Model Builder. 

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling features Thermal, Expansion Electromagnetic Heat Source, 
Boundary Electromagnetic Heat Source, and two Temperature Coupling nodes. 

On the Constituent Physics Interfaces
The Electric Currents interface computes electric field, current and potential 
distributions in conducting media under conditions where inductive effects are 
negligible; that is, when the skin depth is much larger than the studied device. 
Depending on the licensed products, time and frequency domain formulations that 
account for capacitive effects are also provided. The Electric Currents interface solves 
a current conservation equation based on Ohm's law using the scalar electric potential 
as the dependent variable.

The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or 
axisymmetric bodies. In 2D, plane stress or plane strain assumptions can be used. The 
Solid Mechanics interface is based on solving Navier's equations, and results such as 
displacements, stresses, and strains are computed.

The Heat Transfer in Solids interface provides features for modeling heat transfer by 
conduction, convection, and radiation. A Heat Transfer in Solids model is active by 
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default on all domains. All functionality for including other domain types, such as a 
fluid domain, is also available. The temperature equation defined in solid domains 
corresponds to the differential form of the Fourier's law that may contain additional 
contributions like heat sources.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example Joule 

Heating and Thermal Expansion, specific settings are included with the physics interfaces 
and the coupling features. 

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 

For example, if single Solid Mechanics, Electric Currents, and Heat Transfer in Solids 
interfaces are added, COMSOL adds an empty Multiphysics node. You can then choose 
from the available coupling features, Thermal Expansion, Electromagnetic Heat Source, 
Boundary Electromagnetic Heat Source, and Temperature Coupling, but the modified 
settings are not included. 

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Joule Heating and Thermal Expansion was added to the 
Model Builder. Now, a predefined multiphysics coupling approach is 
used, improving the flexibility and design options for your modeling. For 
specific details, see The Multiphysics Node and Multiphysics Modeling 
Approaches in the COMSOL Multiphysics Reference Manual.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

TABLE 10-2:  MODIFIED SETTINGS FOR A JOULE HEATING AND THERMAL EXPANSION INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Solid Mechanics For the Solid Mechanics interface, under Structural 
Transient Behavior, the Structural transient behavior is set 
to Quasi-static.

Electric Currents No changes.

Heat Transfer in Solids For the Heat Transfer in Solids interface, under 
Discretization, the shape function order for the 
temperature is set to Linear.
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P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
• The Thermal Expansion (Multiphysics Coupling) coupling feature node is 

described for The Thermal Stress Interface.

• The Electromagnetic Heat Source, Boundary Electromagnetic Heat Source, and 
Temperature Coupling coupling feature nodes are described for The Joule Heating 
Interface in the COMSOL Multiphysics Reference Manual.

Thermal Expansion The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Solid Mechanics and Heat Transfer in 
Solids interfaces are preselected in the Thermal Expansion 
section.

Electromagnetic Heat 
Source

The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Electric Currents and Heat Transfer in 
Solids interfaces are preselected in the Electromagnetic 
Heat Source section.

Boundary Electromagnetic 
Heat Source

The Boundary Selection contains all the boundaries of the 
participating physics interfaces.

The corresponding Electric Currents and Heat Transfer in 
Solids interfaces are preselected in the Boundary 
Electromagnetic Heat Source section.

Temperature Coupling Two Temperature Coupling nodes (described in the 
COMSOL Multiphysics Reference Manual) are generated, 
one for the transfer of temperatures to the Solid 
Mechanics interface and one for the transfer of 
temperatures to the Electric Currents interface.

TABLE 10-2:  MODIFIED SETTINGS FOR A JOULE HEATING AND THERMAL EXPANSION INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help.
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Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (Mac or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Solid Mechanics Interfaceare listed in the 
section Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics.

• The available physics features for The Heat Transfer in Solids Interface are listed in 
the section Feature Nodes for the Heat Transfer in Solids Interface.

• The available physics features for The Electric Currents Interface are listed in the 
section Domain, Boundary, Edge, Point, and Pair Nodes for the Electric Currents 
Interface in the COMSOL Multiphysics Reference Manual. 

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

If you have an add-on module, such as the Heat Transfer Module or AC/
DC Module, there are additional specialized physics nodes available and 
described in the individual module documentation. 
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Th e  P i e z o e l e c t r i c  De v i c e s  I n t e r f a c e

The Piezoelectric Devices ( ) interface combines Solid Mechanics and Electrostatics 
together with the constitutive relationships required to model piezoelectrics. Both the 
direct and inverse piezoelectric effects can be modeled, and the piezoelectric coupling 
can be formulated using either the strain-charge or stress-charge forms.

When a predefined Piezoelectric Devices interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or from Add Physics windows, Solid Mechanics and 
Electrostatics interfaces are added to the Model Builder. 

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Piezoelectric Effect. 

The participating Solid Mechanics interface includes the default Piezoelectric Material 
feature with its selection set to all domains. The Electrostatics interface has a default 
Charge Conservation, Piezoelectric feature with similar settings.

Such features can be also added manually to their corresponding interfaces similar to 
any other material model therein. 

The multiphysics node Piezoelectric Effect can be active only on the selection, where 
both features Piezoelectric Material and Charge Conservation, Piezoelectric are active.

You input both the mechanical and electrical material data under the Piezoelectric 
Material node. The data can be presented in either stress-charge or strain-charge form. 

When it is used without an active Piezoelectric Effect coupling feature, the 
Piezoelectric Material node works similarly to a Linear Elastic Material feature with the 
material data input limited to anisotropic form using Voigt notations. All the electric 
material data has no effect.

You use the Charge Conservation, Piezoelectric feature under Electrostatics to select 
those domains, where the material is supposed to experience piezoelectric coupling. 
When used without a counterpart under the Solid Mechanics interface (and/or 
without the coupling feature) Charge Conservation, Piezoelectric node acts as an 
ordinary Charge Conservation feature with its material data input limited to the 
electric permittivity only. 

All solid mechanics and electrostatics functionality for modeling is also accessible to 
include surrounding elastic solids or air domains. For example, add any solid 
mechanics material for other solid domain, a dielectric model for air (via Charge 
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Conservation feature), or a combination. Note that in order to model a non-solid 
dielectric domain, you need to remove such domain from the domain selection for the 
entire Solid Mechanics interface. This is because all material models under that 
interface represent solid materials (with the Linear Elastic Material node being always 
present and active in all those domains, where it is not explicitly overridden by any 
other material model).

In 2D and 2D axial symmetry, adding a Piezoelectric Devices interface also adds 
predefined base-vector coordinate systems for the material’s (in the plane 2D case) 
XY-, YZ-, ZX-, YX-, XZ-, and XY-planes. These additional coordinate systems are 
useful for simplifying the material orientation for the piezoelectric material.

On the Constituent Physics Interfaces
The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or 
axisymmetric bodies. In 2D, plane stress or plane strain assumptions can be used. The 
Solid Mechanics interface is based on solving Navier’s equations, and results such as 
displacements, stresses, and strains are computed.

The Electrostatics interface is used to compute the electric field, the electric 
displacement field and potential distributions in dielectrics under conditions where the 
electric charge distribution is explicitly prescribed. The formulation is stationary but 
for use together with other physics interfaces, also eigenfrequency, frequency-domain, 
small-signal analysis and time-domain modeling are supported in all space dimensions.

The physics interface solves Gauss’ law for the electric field using the scalar electric 
potential as the dependent variable.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example 
Piezoelectric Devices, specific settings are included with the physics interfaces and the 
coupling features. 

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Piezoelectric Devices was added to the Model Builder. Now, 
a predefined multiphysics coupling approach is used, improving the 
flexibility and design options for your modeling. For specific details, see 
The Multiphysics Node and Multiphysics Modeling Approaches in the 
COMSOL Multiphysics Reference Manual.
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However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 

For example, if both Solid Mechanics and Electrostatics interfaces are added, COMSOL 
adds an empty Multiphysics node. You can choose the available coupling feature 
Piezoelectric Effect but the modified settings are not included. 

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Feature
The Piezoelectric Effect coupling feature node is described in this section.

Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Coupling Loss, Dielectric Loss, Mechanical 

Damping, and Conduction Loss (Time-Harmonic) subnodes are available for Piezoelectric 
Material under the Solid Mechanics interface. The Charge Conservation, Piezoelectric 
feature is described for the Electrostatics interface.    

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

• Piezoelectric Material

• Modeling Piezoelectric Problems

Piezoelectric Shear-Actuated Beam: Application Library path 
Structural_Mechanics_Module/Piezoelectric_Effects/shear_bender

Surface Acoustic Wave Gas Sensor: Application Library path 
MEMS_Module/Sensors/saw_gas_sensor
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Piezoelectric Effect

The Piezoelectric Effect multiphysics coupling node ( ) passes the appropriate 
relative permittivity from the Piezoelectric Material node in the Solid Mechanics interface 
(where it is specified together with the other material properties of the piezoelectric) 
to the Charge Conservation, Piezoelectric node in the Electrostatics interface. The 
Charge Conservation, Piezoelectric node implements the domain level electrostatics 
equations, and requires no user settings when it is coupled with the multiphysics node.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is pze1.

D O M A I N  S E L E C T I O N

The domain selection is locked so that all applicable domains are selected. Only 
domains that have both Charge Conservation, Piezoelectric selected in the Electrostatics 
interface and Piezoelectric Material selected in the Solid Mechanics interface are selected.

P I E Z O E L E C T R I C  E F F E C T

This section defines the physics involved in the Piezoelectric Effect multiphysics 
coupling. The Solid mechanics and Electrostatics lists include all applicable physics 
interfaces.

The default values depend on how the Piezoelectric Effect node is created. 

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default. 

• If it is added automatically when a Piezoelectric Devices interface is selected in the 
Model Wizard or Add Physics window, then the participating Solid Mechanics and 
Electrostatics interfaces are selected.

You can also select None from either list to uncouple the Piezoelectric Effect node from 
a physics interface. If the physics interface is removed from the Model Builder, for 
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example Solid Mechanics is deleted, then the list defaults to None as there is nothing to 
couple to.

Coupling Piezoelectric Devices with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars, 
microphones, sensors, and so forth. This is why coupling piezoelectric devices with 
acoustic domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics physics 
interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics, 

Transient (depending on which study type you want to use) plus an Acoustic-Structure 

Boundary coupling under the Multiphysics node. You can also directly create the nodes 
that are needed for coupling by adding an Acoustic-Piezoelectric Interaction interface 
from the Model Wizard or Add Physics windows. If solid and acoustic domains are 
correctly defined, then the right coupling boundaries are automatically selected. Then 
specify domains of application for each physics.

• Select solid domains and Piezoelectric Material domains in Solid Mechanics.

• Select electrostatic domains and Charge Conservation, Piezoelectric domains in 
Electrostatics.

• Select acoustic domains in a Pressure Acoustics node.

• Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and 
Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid 

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Approaches in the COMSOL Multiphysics 
Reference Manual.

The multiphysics couplings between Solid Mechanics and the acoustics 
interfaces require the Acoustics Module.
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Mechanics, or Electrostatics interfaces are present, select the right ones that need to 
be coupled in the multiphysics interfaces.

• Continue the modeling process by entering the settings for each physics interface 
and feature and define materials.
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Th e  Magn e t o s t r i c t i o n  I n t e r f a c e

The Magnetostriction ( ) interface combines Solid Mechanics and Magnetic Fields 
together with the constitutive relationships required to model magnetostrictive 
materials and devices. Both the direct and inverse magnetostriction effects can be 
modeled.

When a predefined Magnetostriction interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or from Add Physics windows, Solid Mechanics and 
Magnetic Fields interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Magnetostriction.

The participating Solid Mechanics interface includes the default Magnetostrictive 

Material feature with its selection set to all domains. The Magnetic Fields interface gets 
a default Ampère’s Law, Magnetostrictive feature with similar settings.

Such features can be also added manually to their corresponding interfaces similar to 
any other material models therein.

The multiphysics node Magnetostriction can be active only on the selection, where 
both features Magnetostrictive Material and Ampère’s Law, Magnetostrictive are 
active.

You input both the mechanical and magnetic material data under the Magnetostrictive 
Material, and the electrical properties under Ampère’s Law, Magnetostrictive.

When it is used without an active Magnetostriction coupling feature, the 
Magnetostrictive Material node works similarly to a Linear Elastic Material feature with 
some limitations on the format for the elastic material data input. All the magnetic 
material data and coupling data will have no effect.

You use the Ampere’s Law, Magnetostrictive feature under Magnetic Fields to select 
those domains, where the material is supposed to experience magnetostrictive 
coupling. When used without a counterpart under the Solid Mechanics interface 
(and/or without the coupling feature) Ampère’s Law, Magnetostrictive node acts as 
an ordinary Ampère’s Law feature with its material data input limited to the electric 
properties only. The magnetic permittivity of free space will be assumed.

All solid mechanics and magnetics functionality for modeling is also accessible to 
include surrounding elastic solids or air domains. For example, add any solid 
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mechanics material for other solid domain, a non-solid model for air (via Ampere’s Law 
feature), or a combination. Note that in order to model a non-solid magnetic material, 
you need to remove such domain from the domain selection for the entire Solid 
Mechanics interface. This is because all material models under that interface represent 
solid materials (with the Linear Elastic Material node being always present and active 
in all those domains, where it is not explicitly overridden by any other material model).

In 2D and 2D axial symmetry, adding a Magnetostriction interface also adds 
predefined base-vector coordinate systems for the material’s (in the plane 2D case) 
XY-, YZ-, ZX-, YX-, XZ-, and XY-planes. These additional coordinate systems are 
useful for simplifying the material orientation for non isotropic magnetostrictive 
materials.

On the Constituent Physics Interfaces
The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or 
axisymmetric bodies. The Solid Mechanics interface is based on solving Navier’s 
equations, and results such as displacements, stresses, and strains are computed.

The Magnetic Fields interface solves the Ampère’s law for the magnetic flux density 
field by using the vector magnetic potential as the dependent variable.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example 
Magnetostriction, specific settings are included with the physics interfaces and the 
coupling features. 

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 

For example, if both Solid Mechanics and Magnetic Fields interfaces are added, 
COMSOL adds an empty Multiphysics node. You can choose the available coupling 
feature Magnetostriction but the modified settings are not included. 

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.
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P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Feature
The Magnetostriction coupling feature node is described in this section.

Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Mechanical Damping and Thermal Expansion 

subnodes are available for Magnetostrictive Material under the Solid Mechanics 
interface. The Ampère’s Law, Magnetostrictive feature is described for the Magnetic 
Fields interface.    

Magnetostriction

The Magnetostriction multiphysics coupling node ( ) passes the appropriate 
magnetization contribution from the Magnetostrictive Material node in the Solid 

Mechanics interface (where it is defined together with the material properties of the 
magnetostrictive material) to the Ampère’s Law, Magnetostrictive node in the Magnetic 

Fields interface. It also passes the mechanics stress contribution due to the applied 
magnetic field back to the Magnetostrictive Material node.

C O U P L I N G  T Y P E

From the list, choose one of these coupling types:

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

• Magnetostrictive Material

• Ampère’s Law, Magnetostrictive

• Modeling Magnetostrictive Materials

Nonlinear Magnetostrictive Transducer: Application Library path 
Structural_Mechanics_Module/Magnetostrictive_Devices/

nonlinear_magnetostriction
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• Joule effect, also known as direct magnetostrictive effect, to include only the 
deformation of the material caused by its magnetization in response to the applied 
magnetic field.

• Villari effect, also known as inverse magnetostrictive effect, to include only the 
change in the material magnetization as a results of applied mechanical stress or 
strain.

• Fully coupled (the default) to include both the direct and inverse magnetostrictive 
effects.

In 2D and 2D axial symmetry geometries only, select the Lorentz force contribution 
check box to include the electric field changes and the body load caused by the material 
motion in a magnetic field. This has no effect under stationary studies. 

• Velocity (Lorentz Term)
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Hyg r o s c op i c  Swe l l i n g  Coup l i n g

Hygroscopic Swelling

The Hygroscopic Swelling multiphysics coupling node ( ) is for moisture 
concentration coupling between the Solid Mechanics interface and either the 
Transport of Diluted Species or Transport of Diluted Species in Porous Media 
interfaces.

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as 

where βh is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is hs1.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

Enter a Strain reference concentration cmo,ref . This is the concentration at which there 
are no strains due to hygroscopic swelling. 

Enter the Molar mass of the fluid, Mm. The default value is 0.018 kg/mol, which is the 
molar mass of water.

The default Coefficient of hygroscopic swelling βh uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric from the list to enter 
one or more components for a general coefficient of hygroscopic swelling tensor 
βh.The default value for the User defined case is 1.5e-4 m3/kg. When a non-isotropic 
coefficient of hygroscopic swelling is used, the axis orientations are given by the 

εhs βh cmo cmo ,ref–( )=
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coordinate system selection in the structural mechanics material node to which it 
contributes.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

H Y G R O S C O P I C  S W E L L I N G

This section defines the physics involved in the Hygroscopic Swelling multiphysics 
coupling. The Moisture concentration and Structure lists include all applicable physics 
interfaces.

You can select None from either list to uncouple the coupling node from a physics 
interface. If the physics interface is removed from the Model Builder, for example Solid 

Mechanics is deleted, then the list defaults to None as there is nothing to couple to.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Approaches in the COMSOL Multiphysics 
Reference Manual.
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Coup l i n g s  B e twe en S t r u c t u r a l  
Me chan i c s  I n t e r f a c e s

Some of the structural mechanics interfaces are formulated using different types of 
degrees of freedom. This needs to be taken into account in models where such 
interfaces interact. You can easily set up common transitions using the predefined 
multiphysics couplings. These are:

• Solid-Shell Connection

• Solid-Beam Connection

• Shell-Beam Connection

Solid-Shell Connection

Add the Solid-Shell Connection node to create transitions between domains modeled 
using the Solid Mechanics or Multibody Dynamics interfaces and boundaries modeled 
using the Shell interface.

The Solid-Shell Connection node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/)

C O N N E C T I O N  S E T T I N G S

Select the Connection type — Solid boundaries to shell edges, 
Solid and shell shared boundaries, or Solid and shell parallel boundaries.

For the two first options, there is an automatic search for possible adjacent geometrical 
objects. If you want to modify the selections, select the Manual control of selections 
check box. If to deselect it, the selections will be replaced by the automatic ones.

Solid boundaries to shell edges
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected solid boundaries in the Boundary Selection, Solid 

section and the corresponding shell edges in the Edge Selection, Shell section.

Select Connected area defined by — Shell thickness, Selected solid boundaries, or Distance 

from shell midsurface. This parameter determines how much of the selected solid 
boundaries that are connected to the shell. The default is that a distance from the shell 
edge having the size of the half the shell thickness in both perpendicular directions is 
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connected. Using Selected solid boundaries connects the selected boundaries in their 
entirety to the shell. If you select Distance from shell midsurface, enter a Distance d. This 
value is used instead of the half the shell thickness for defining the connection distance.

Select a Method — Rigid or Flexible. The Rigid version of the coupling only adds 
constraints to the boundary of the solid, which in general causes local disturbances of 
the stress field, since the thickness cannot change. When using the Flexible coupling, 
three extra degrees of freedom are added along the shell edge. This allows for a more 
accurate description of the transition, but the model can in some cases become 
underconstrained if the mesh on the solid is very coarse.

You can modify the Connection tolerance Δ when either of the options Shell thickness or 
Distance from shell midsurface are used. The search distance is slightly extended by the 
distance Δ. The default value is 0.5% of the shell thickness, which allows for small 
inaccuracies on for example a curved geometry.

Solid and shell shared boundaries
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected boundaries in the Boundary Selection section.

Solid and shell parallel boundaries

Select the connected solid boundaries in the Boundary Selection, Solid section and the 
corresponding shell edges in the Boundary Selection, Shell section.

Select Distance evaluation — Shell properties, Geometrical distance, or User defined. This 
parameter determines how the coupling treats the determination of the connection 
distance, used when expressing th coupling between translation and rotation. When 
Shell properties is selected, the distance is based on the shell thickness and offset, so 
that a distance equal to half the shell thickness is used. If you select Geometrical 

distance, the connection distance is computed from the geometrical distance between 
the selected boundaries. For User defined, enter a Distance d, which defines the 
connection distance.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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Solid-Beam Connection

C O N N E C T I O N  S E T T I N G S

Select the Connection type — Solid boundaries to beam points, or Solid and beam parallel 

boundaries.

Solid boundaries to beam points
In this case, there is an automatic search for possible adjacent geometrical objects. If 
you want to modify the selections, select the Manual control of selections check box. If 
to deselect it, the selections will be replaced by the automatic ones.

For a manual selection, select the connected solid boundaries in the Boundary Selection, 

Solid section and the corresponding beam points in the Point Selection, Beam section.

Select Connected area defined by — Section height, Selected boundaries, or Distance from 

beam axis. This parameter determines how much of the selected solid boundaries that 
are actually connected to the beam. The default is that a distance from the beam point 
having the size of the half the beam section height in each direction is connected. 
Using Selected boundaries connects the entire selected boundaries to the beam. If you 
select Distance from beam axis, enter a Distance d. This is used instead of the section 
height for defining the connection distance.

Select a Method — Rigid or Flexible. The Rigid version of the coupling only adds 
constraints to the boundary of the solid, which in general causes local disturbances of 
the stress field, since the thickness cannot change. When using the Flexible coupling, 
three extra degrees of freedom are added to each beam point. This allows for a more 
accurate description of the transition, but the model can in some cases become 
underconstrained if the mesh on the solid is very coarse.

If needed, modify the Connection tolerance Δ.The search distance is slightly extended 
by the distance Δ. The default value is 0.5% of the beam height.

Solid and beam parallel boundaries

Select the connected solid boundaries in the Boundary Selection, Solid section and the 
corresponding shell edges in the Boundary Selection, Beam section.

An example of couplings between shells and solids is shown in 
Connecting Shells and Solids: Application Library path 
Structural_Mechanics_Module/Tutorials/shell_solid_connection
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Select Distance evaluation — Section height, Geometrical distance, or User defined. This 
parameter determines how the coupling treats the determination of the connection 
distance, used when expressing th coupling between translation and rotation. The 
default is that a distance equal to half the section height is used. If you select 
Geometrical distance, the connection distance is computed from the geometrical 
distance between the solid boundary and the beam boundary. For User defined enter a 
Distance d. This defines the connection distance.

Shell-Beam Connection

Add the Shell-Beam Connection node to create transitions between boundaries or edges 
modeled using the Shell interface, and edges or points modeled using the Beam 
interface.

The Shell-Beam Connection node is only available with some COMSOL products (see 
http://www.comsol.com/products/specifications/)

C O N N E C T I O N  S E T T I N G S

Select the Connection type — Shell edges to beam points, Shell and beam shared edges, 
Shell and beam parallel edges, or Shell boundaries to beam points.

For all options except Shell and beam parallel edges, there is an automatic search for 
possible adjacent geometrical objects. If you want to modify the selections, select the 
Manual control of selections check box. If to deselect it, the selections will be replaced 
by the automatic ones.

Shell edges to beam points
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected shell edges in the Edge Selection, Shell section and the 
corresponding beam points in the Point Selection, Beam section.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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Select a Connected region — Selected edges, Distance (automatic), Distance (manual), or 
Connection criterion.

• Using Selected edges makes all selected edges rigidly connected to the point on the 
beam.

• For Distance (automatic), all parts on the shell edge, which are within the default 
distance from the beam point, are connected. This distance is determined by the 
cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (Manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell edge wherever the expression has a nonzero value. 
The default value is 1, which is equivalent to using the Selected edges option.

Shell and beam shared edges
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected edges in the Edge Selection section.

Select an Offset definition — Along shell normal or Offset vector. For Along shell normal 

enter an Offset ζ. For Offset vector enter values for d0 in the table. The offset is the 
vector from the reference surface of the shell to the actual position of the beam. The 
Offset vector is interpreted in the coordinate system selected in the Coordinate System 

Selection section.

Shell and beam parallel edges
Enter a value for the Parallelism tolerance Δθ. The default is 1 degree. The two edges 
are connected only where they are parallel within the specified tolerance.

Shell boundaries to beam points
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected shell boundaries in the Boundary Selection, Shell 

section and the corresponding beam points in the Point Selection, Beam section.

Select an option from the Connected region list — Selected boundaries, 
Distance (automatic), Distance (manual), or Connection criterion.

• Using Selected boundaries makes all selected boundaries rigidly connected to the 
point on the beam.

• For Distance (automatic), all parts on the shell boundary, which are within the a 
default distance from the beam point, are connected. This distance is determined by 
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the cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell boundary wherever the expression has a nonzero 
values. The default value is 1, which is equivalent to using the Selected boundaries 
option.

• For more information about coupling different element types, see 
Coupling Techniques. 

• For details about the formulation of this coupling, see Connection 
Between Shells and Beams

Examples of all types of couplings between shells and beams are shown in 
Connecting Shells and Beams: Application Library path 
Structural_Mechanics_Module/Tutorials/shell_beam_connection
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 11
G l o s s a r y
This Glossary of Terms contains finite element modeling terms in a structural 
mechanics context. For mathematical terms, and geometry and CAD terms specific 
to the COMSOL Multiphysics® software and documentation, see the glossary in 
the COMSOL Multiphysics Reference Manual. For references to more 
information about a term, see the index.
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G l o s s a r y  o f  T e rm s
anisotropy Variation of material properties with direction. Both global and local 
user-defined coordinate systems can be used to define anisotropic material properties.

arbitrary Lagrangian-Eulerian (ALE) method A technique to formulate equations in a 
mixed kinematic description. An ALE referential coordinate system is typically a mix 
between the material (Lagrangian) and spatial (Eulerian) coordinate systems.

augmented Lagrangian method A method for solving contact problems. 
Augmentation components are introduced for the contact pressure and the 
components of the friction traction vector. Additional iteration levels are added where 
the displacement, contact pressure and traction variables are solved separately. The 
algorithm repeats this procedure until it fulfills a convergence criterion.

axial symmetry Symmetry in both load and geometry, solves for the radial (r) and 
axial (z) displacement.

bar A line element that only has translational degrees of freedom, capable of 
sustaining axial forces, with no bending moments, torsional moments, or shear forces. 
Can be used on lines in 2D and 3D. Also called spar or truss element. In COMSOL 
Multiphyiscs the term truss element is used.

beam A line element having both translational and rotational degrees of freedom. 
Capable of sustaining axial forces, bending moments, torsional moments, and shear 
forces. Can be used on lines in 2D and 3D.

body forces Forces distributed through the volume of a body.

buckling The sudden collapse or reduction in stiffness of a structure under a critical 
combination of applied loads.

cable A tension-only truss member used to model large deformation including sag.

Cauchy stress The most fundamental stress measure defined as force/deformed area 
in fixed directions not following the body.

compliance matrix The inverse of the elasticity matrix. See elasticity matrix.
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constitutive equations The equations formulating the stress-strain relationship of a 
material.

constraint Constrains the displacement or rotations to zero or a specified value.

contact model The mathematical method to model bodies that come into contact 
with each other.

contact pair A pair that consists of some source boundaries and destination 
boundaries and is used for contact modeling.

coordinate system Global Cartesian, local geometrical, application specific, and 
user-defined coordinate systems. Loads, constraints, material properties, and variables 
are defined in a specific coordinate system.

damping Dissipation of energy in a vibrating structure. A common assumption is 
viscous damping where the damping is proportional to the velocity. See also Rayleigh 
damping.

deformation gradient Tensor containing the complete information about the local 
straining and rotation of the material. It is a positive definite second rank tensor.

destination boundary One side of a contact pair; the destination boundary is 
prohibited to penetrate the source boundary.

double dogleg solver The default nonlinear solver for mechanical contact. This solver 
is also useful for highly nonlinear simulations such as large plastic deformation or 
hyperelastic materials.

eigenfrequency study Solving for the damped or undamped natural frequencies and 
vibration modes of a structure.

elasticity matrix The matrix D relating strain to stresses:

equilibrium equation The equation expressing the equilibrium formulated in the stress 
components.

Eulerian Model described and solved in a coordinate system that is fixed (spatial 
frame). See also Lagrangian and arbitrary Lagrangian-Eulerian method.

σ Dε=
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first Piola-Kirchhoff stress A stress measure used when geometric nonlinearities arise. 
All forces in COMSOL Multiphysics in case of geometric nonlinearity are of this type.

flexibility matrix The inverse of the elasticity matrix. See elasticity matrix.

free vibration The undamped vibration of a structure after it is displaced from the 
equilibrium position and released. See also eigenfrequency analysis.

frequency response A harmonic analysis solving for the steady-state response from a 
harmonic excitation. Typically a frequency sweep is performed, solving for many 
excitation frequencies at one time.

geometric nonlinearity In solid mechanics, the deformation state characterized by 
finite (or large displacements) but small to moderate strains. Not all material models 
are suitable for large strain analysis, even though the displacement and rotation can be 
large.

Green-Lagrange strain Nonlinear strain measure used in large-deformation analysis. 
In a small strain, large rotation analysis, the Green-Lagrange strain corresponds to 
the engineering strain, with the strain values interpreted in the original directions. The 
Green-Lagrange strain is a natural choice when formulating a problem in the 
undeformed state. The conjugate stress is the second Piola-Kirchhoff stress.

initial strain The strain in a stress-free structure before it is loaded.

initial stress The stress in a non-deformed structure before it is loaded.

isotropic material A material where the material properties are independent of 
direction.

Lagrangian Model described and solved in a coordinate system that moves with the 
material. See also Eulerian and arbitrary Lagrangian-Eulerian method.

large deformation The deformations are so large so the nonlinear effect of the change 
in geometry or stress stiffening need to be accounted for. See also geometric 
nonlinearity.

linear buckling analysis Solves for the linear buckling load using the eigenvalue solver.

linear viscoelasticity See visoelastic material.
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load multiplier A load used in linearized buckling analysis for estimating the critical 
load at which a structure becomes unstable.

mass damping parameter Rayleigh damping parameter, the coefficient in front of the 
mass matrix.

mass participation factors A measure of the sensitivity of a certain eigenmode to a 
uniform acceleration.

 mixed formulation A formulation used for nearly incompressible materials, where the 
mean stress have been added as a dependent variable to avoid numerical problems.

nonlinear geometry See large deformations.

orthotropic material An orthotropic material has at least two orthogonal planes of 
symmetry, where material properties are independent of direction within each plane. 
Such materials require nine elastic constants in the constitutive equations.

parametric study A study that finds the solution dependence due to the variation of a 
specific parameter.

pinned A constraint condition where the displacement degrees of freedom are fixed 
but the rotational degrees of freedom are free, typically used for frames modeled using 
beam and truss elements.

plane strain An assumption on the strain field where all out-of-plane strain 
components are assumed to be zero.

plane stress An assumption on the stress field, all out-of-plane stress components are 
assumed to be zero.

plate Thin plane structure loaded in the normal direction.

principle of virtual work States that the variation in internal strain energy is equal to 
the work done by external forces.

principal stresses/strains Normal stresses/strains with no shear components that act 
on the principal planes. The magnitude of the principal stresses/strains are 
independent of the coordinate system used.
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rate of strain tensor The rate at which the strain tensor changes with respect to time 
in time-dependent studies.

quasi-static transient study The loads vary slow enough for the inertia terms to be 
negligible. A transient thermal study coupled with a structural analysis can often be 
treated as quasi-static.

Rayleigh damping A viscous damping model where the damping is proportional to the 
mass and stiffness through the mass and stiffness damping parameters.

rotational degrees of freedom Degrees of freedom associated with a rotation around 
an axis. Beams, rigid connectors, rigid domains, and shells have rotational degrees of 
freedom.

second Piola-Kirchhoff stress Conjugate stress to Green-Lagrange strain used in 
large deformation analysis. The orientations of the stress components follow the 
material directions.

shell elements A thin element where both bending and membrane effects are 
included.

source boundary One side of a contact pair; the destination boundary is prohibited 
to penetrate the source boundary.

spar see bar.

spin tensor The skew-symmetric part of the velocity gradient tensor.

stationary study A study where the loads and constraints are constant in time. Also 
called static.

strain Relative change in length, a fundamental concept in structural mechanics.

stress Internal forces in the material, normal stresses are defined as forces/area normal 
to a plane, and shear stresses are defined as forces/area in the plane. A fundamental 
concept in structural mechanics.

stress stiffening The geometrically nonlinear effect which supplies the out-of-plane 
stiffness for membranes, for example.
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stiffness damping parameter Rayleigh damping parameter, the coefficient in front of 
the stiffness matrix.

strain energy The energy stored by a structure as it deforms under load. Also called 
elastic energy.

time dependent study A time-dependent or transient study shows how the solution 
varies over time, taking into account mass, mass moment of inertia, and damping.

Tresca stress An effective stress measure that is equal to the maximum shear stress.

truss See bar.

viscoelastic material Viscoelastic materials have a time-dependent response, even if 
the loading is constant. Many polymers and biological tissues exhibit such a behavior. 
Linear viscoelasticity is a commonly used approximation where the stress depends 
linearly on the strain and its time derivatives.
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I n d e x  

A absolute values 316

absolute-tolerance parameters 193

abstract rigid domain 355

acceleration loads 76

acoustic-structure interaction, frequency 

domain interface 163

added mass (node) 543

added mass, theory 383

adding

connections 66

additive strain decomposition (check 

box) 435, 440

adhesion (node) 574

alpha coefficient 470

Anand viscoplasticity 332

angle of internal friction 289, 297, 470

angular acceleration and velocity 351

anisotropic materials

defining 241

elastic properties 434, 683

antisymmetry (node)

beam interface 746

shell and plate interfaces 645

solid mechanics 522

truss interface 814

Application Libraries window 28

application library examples

beam cross sections 764

beams 722

Cam-Clay material 451

creep models 461

cross section data 725

damping 490

eigenfrequency analysis 38

fixed constraint 517

fluid-structure interaction 828

geometric nonlinearity 137

harmonic perturbation 48

initial stress and strain 478, 480, 685

large plastic strains 458

linear buckling study 55

linear elastic material 732

load cases 73–74

membrane interface 679

MEMS materials database 95

modal mass 38, 152, 173

model superposition 44, 46

Mooney-Rivlin, two parameters 445

Ogden 445

piezoelectric devices 848, 854

piezoelectric materials database 95

plasticity models 458

prestressed bolts 55, 183

rigid connector 553

sharing edges 68, 860, 863

shells 617

soil plasticity 471

solid mechanics 426

spring foundation 161

thermal expansion 475

thermal stress 822

trusses 801

viscoelastic material 454

viscoplasticity models 463

applied force (node) 502, 555

theory 357

applied moment (node) 504, 556

theory 357

applying

loads 71

moments 75

Arbitrary Lagrangian-Eulerian (ALE) 
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method 133

area, beam cross sections 768

Arruda-Boyce material 275

associated flow rule 308

attachment (node)

shells 666, 757

solid mechanics 561

theory 356

augmented Lagrangian method 21, 143, 

392

axial stress 782

axial symmetry

constraints and 81

initial stress and strain 228

axisymmetric models

solid mechanics 58

azimuthal wave number 389

B back stress 304, 333

beam

coupling to a solid 67

beam connection (node) 752

shells 659

solid mechanics 563

beam cross section interface 785

theory 768

beam interface 719

theory 690

beams

cross section data 724

initial loads and strains 701

initial stresses and strains 735

linear elastic material 731

loads applied 751

prescribed acceleration 740

prescribed displacement/rotation 737

prescribed velocity 739

section orientation 728

strain-displacement/rotation 699

stress evaluation 704

thermal expansion 733

thermal strain 700

Beltrami-Michell 774

bending shear stress 783

bending shear stresses 770

bending stress 783

biaxial compression 313

biaxial data 315

biaxial tension 472

bimoment 782

Blatz-Ko material 277

body load (node)

shell and plate interfaces 647

solid mechanics 525

bolt pre-tension (node) 576

bolt pre-tension, theory 178

bolt selection (node) 578

bolted joints 178

boundary conditions

contact pairs 147

shell and plate interfaces 596

boundary load (node) 529

boundary nodes

beam interface 722

fluid-structure interaction 828

membrane interface 679

shell and plate interfaces 618

solid mechanics 426

truss interface 801

box sections, beams 725

Bresler-Pister criterion 312

buckling 20

built-in couplings 66

bulk modulus

elastic moduli 237, 433, 537

Burgers vector 330

C calcite 316



calculating stress and strain 598

Cam-Clay material (node) 450

Cam-clay model 318

canonical systems 201

carbonate rocks 316

Cauchy stress 222

Cauchy stress tensor 130

Cayley-Hamilton theorem 211, 225

center of gravity, beam cross sections 

768

center of mass

boundary (node) 506

edge (node) 506

point (node) 506

rigid domains 351

center of rotation 772

boundary (node) 553

edge (node) 553

point (node) 553

rigid domains 353

centrifugal acceleration loads 76

ceramics 313

CFD Module 828, 831

CFL number, pseudo time stepping, and 

827

change thickness (node)

shell and plate interfaces 621

solid mechanics 430

charge conservation, piezoelectric 

(node) 445

circle, Mohr 289

circular sections, beams 725

Coble creep 331

coefficient of thermal expansion

beams 733

shells and plates 626

cohesion 289, 470

cohesion sliding resistance 395

cohesionless soils 296

cohesive-frictional materials 313

common sections, beam interface 725

common settings 25

complementarity 308

complex mechanical energy flux 410

complex modulus 125

compressive meridians 226, 290, 313–314

concrete 312, 314

concrete (node) 471

conduction loss (time-harmonic) (node) 

493

connection

beam edge to shell edge 610

beam perpendicular to solid 608

beam point to shell boundary 611

beam point to shell edge 612

connections

beams, shells 609

beams, shells, solids 602

shell perpendicular to solid 603

consistency parameter 308

constitutive relation, membranes 675

constraints 78

contact (node) 566

contact formulation 152

contact help variables 395

contact modeling, friction 397

converse piezoelectric effect 96

coordinate system, beam cross sections 

770

coordinate systems

constraints and 79

loads and 71

local edge system 636

solid mechanics theory 201

coordinate systems, membranes 673

Coulomb friction 572
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coupling

beam to a shell 67

beam to a solid 67

shell to a solid 67

coupling loss (node) 492

coupling operator 68

creep (node) 459

creep dissipation rate density 334

creep strain rate 323

critical load factor 54

cross section (node) 724

cross section data (node) 803

crystal cleavage 316

crystal cut standards 99

crystalline solids and creep 324

curvature 701

cyclic symmetry, theory 387

cylindrical coordinate systems 58

D damped eigenfrequency study 125

damping

equation of motion, and 120

loss factors 124

losses and 119

point mass 653, 751, 817

solid mechanics 488

viscoelastic materials, and 261

damping (node)

solid mechanics 487

damping models 124

decohesion 398

defining

anisotropic materials 241

constraints 78

isotropic materials 237

multiphysics models 162

orthotropic materials 239

thermoelastic materials 243

deformation gradient 204

deformation resistance 332

saturation coefficient 333

sensitivity 333

destinations and sources 144

deviatoric creep 327, 330

deviatoric stress 284

dielectric loss (node) 493

dielectric loss factor 108

diffusional creep 330

dilatational contributions 266

direct piezoelectric effect 96, 337

dislocation creep 331

dispersion curves 40

displacement field, defining 128

displacement gradients 204

displacement variables

element types and 65

dissipated energy 409

dissipated energy density 311, 334

dissipated energy density rate 257

dissipation, piezoelectric materials 340

distortional contributions 266

disturbance factor 318

documentation 27

dolomite 316

domain nodes

fluid-structure interaction 828

solid mechanics 426

double dogleg nonlinear solver 154

Drucker-Prager criterion 291

ductile materials 286

Dulong-Petit law 243

dynamic cyclic symmetry 388

dynamic frictional coefficients 397

E edge load (node)

beam interface 747

shell and plate interfaces 649

solid mechanics 531



truss interface 815

edge nodes

beam interface 722

fluid-structure interaction 828

membrane interface 679

solid mechanics 426

truss interface 801

effective creep strain rate 327

effective plastic strain rate 283

effective stress 784

effective stress tensor 317

eigenfrequency study 36

solid mechanics 370

eigenvalue solvers 37

eight-chain model 276

elastic deformation tensor 213

elastic energy 407

elastic Green-Lagrange strain tensor 214

elastic material properties 433–434, 682–

683

elastic moduli 237

elastic right Cauchy-Green tensor 214

elastic strain energy 280

elastic volumetric strain variable 321

elasticity matrix 237

elastoplastic materials 282, 313

elcontact variable 393

element types 65

elliptic cap 293

elplastic 308, 310

emailing COMSOL 29

energy dissipation 409

energy function 263

energy quantities 407

equation of motion, damping and 120

equivalent viscous damping 125

evanescent modes 39

excitation frequency 125

explicit damping 125

external loads, shell and plate interfaces 

597

external strain (node) 480, 482

external stress (node) 478, 629, 686, 736, 

808

external stress-strain relation (node) 494

F face load (node) 648

failure surfaces 282

first Piola-Kirchhoff stress 222

fixed constraint (node) 499, 516

fixed constraint, theory 356

Floquet periodicity, theory 387

flow rule 307

fluid pore pressure 295

fluid-solid interface boundary (node) 833

fluid-structure interaction 836, 838

setting up a model 833

fluid-structure interaction interface 825

theory 840

fold lines 594

fold-line limit angle 615

follower loads 675

force linear strains (check box) 435, 440, 

447, 449, 495, 684

free (node) 509

free-free modes 38

frequency domain study

solid mechanics 369

frequency response study

loss factor damping 125

viscous damping 125

friction (node) 572

friction forces 573

friction in contact modeling 397

friction models 572

friction traction penalty factor 395

friction, angle 289, 297, 470
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frictionless materials 290, 292

G Gao material 278

gap distance variable 394

Garofalo law 329

Gauss points 308, 310

general extrusion operator 68

generalized Hoek-Brown criterion 317

generalized Maxwell model 255

Gent material 276

geological strength index (GSI) 317

geometric nonlinearity 133

membranes and 672

micromechanics, and 127

piezoelectric devices 137

glass transition temperature 260

global

coordinate systems 201

GMRES iterative solvers 191

gradient displacements 204

gravity (node) 526

Green’s theorem 777

Green-Lagrange strain 128

Green-Lagrange tensor 207

H Haigh–Westergaard coordinates 226

hardening constant 332

hardening models

theory 300

hardening sensitivity 332

harmonic loads 369

harmonic perturbation 46

harmonic perturbation (node)

truss interface 581, 669, 758

hear center 772

hear correction factor 771

heat dissipation 125

Heat Transfer Module 828, 831

Hencky plastic strain 310

Hermitian matrices 191

hexagonal prism 285

Hill orthotropic plasticity 298

Hill’s effective stress 300

Hoek-Brown criterion 316

hole (node) 786

H-profile sections, beams 725

hydrostatic axis 226

hydrostatic pressure 223, 289

hydrostatic stress 296

hygroscopic swelling 77

hygroscopic swelling (node) 475

hygroscopic swelling (node), multiphys-

ics 856

hyperbolic sinus 329

hyperelastic material 408

hyperelastic material (node) 442

hyperelastic materials 269

nearly incompressible 268

theory 263

hysteretic loss 105

I I.R.E. standard, for material orientation 

97

ideal plasticity 301

IEEE standard, for material orientation 

97

imperfection sensitivity 54

implementation

beams 702

trusses 794

include geometric nonlinearity (check 

box) 436

inelastic deformation tensor 214

inertial effects, contact modeling 152

inertial forces 352

initial bulk modulus 272

initial loads and strains, beams 701

initial stress and strain 341

theory 227



initial stress and strain (node) 477

beam interface 735

membrane interface 684

shell and plate interfaces 628

solid mechanics 477

truss interface 808

initial values (node)

beam interface 724

fluid-structure interaction 831

rigid domains 498

rigid domains, theory 353

shell and plate interfaces 620

solid mechanics 430

initial yield stress 301–302

interior wall (node) 828

internet resources 27

invariants 264

inverse piezoelectric effect 337

isochoric

contributions 266

process 205

strain energy density 268

isochoric strain energy 280
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deformation 266

Green-Lagrange strain tensor 266

right Cauchy-Green tensor 266

isotropic hardening 301
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defining 237

elastic properties 433, 682

isotropic plasticity 282
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iterative solvers 191
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terface 163, 842

K k coefficient 471

Kelvin–Voigt viscoelastic model 259

kinematic constraints 84

kinematic hardening 303

kinematics, rigid domain 349

kinetic energy 409

knowledge base, COMSOL 29

Kuhn-Tucker conditions 308

L Lade-Duncan criterion 296
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792

Lagrangian formulations 203

Lamé parameters 238, 433

large deformation modeling 203

large deformations 20

piezoelectric materials 137

large plastic strain 307

large strain plasticity 265

leaking wall, wall boundary condition 832

left Cauchy-Green tensor 208

Lie derivative 309

limestone 316

limiting chain extensibility 277

linear buckling study 20, 137

linear elastic material (node) 431, 624, 

681

beam interface 731

shell and plate interfaces 623

truss interface 805

linear elastic materials 92

linear viscoelasticity 253

linearized buckling analysis 53

linper operator 46

load cases 73

load multiplier 54

loads

acceleration 76

applied to beams 751

pressure 76
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singular 74

total 77

local CFL number 827

local coordinate systems 202

local edge system 636

location

boundary (node) 504

edge (node) 504

point (node) 504

locking 269

Lode angle 225

Hoek-Brown criterion 317

Mohr-Coulomb criterion 290

Tresca criterion 285

Willam-Warnke criterion 313

logarithmic decrement 120

logarithmic plastic strain 310

long-term shear modulus 255

loss factor damping

solid mechanics and 124

solid mechanics theory 124

springs, and 161

loss modulus 125, 261

losses and damping 119

low-reflecting boundary (node) 548

low-reflecting boundary, theory 386

M macroscopic shear modulus 275

magnetostriction 341

magnetostriction (node) 854

magnetostriction multiphysics interface 

852

magnetostrictive material 447

magnetostrictive material (node) 447

marble 316

mass and moment of inertia (node) 505, 

557

theory 355

mass density 205

mass matrix scaling 50

mass moment of inertia 751

material coordinates 200

material frame 128

material models 90

materials

nearly incompressible 93

piezoelectric 337

viscoelastic 253

materials, hyperelastic 263

Matsuoka-Nakai criterion 295

max scaling 51

max shear stress factor 771

mechanical damping (node) 491

mechanical energy flux 410

membrane interface 677

theory 672

meridians, tensile and compressive 226, 

290, 313–314

metal plasticity 283

metals 286, 291

metals and creep 324

Microfluidics Module 831

Mindlin plate theory 604

Mindlin-Reissner type shell 588

MITC shell formulation 588, 594

mixed formulation 450

mixed formulations 94

mobilized planes 295

mode analysis study 39–40

modeling fluid-structure interaction 833

modeling, large deformations 203

modified Cam-clay model 318

modified Mohr-Coulomb criterion 298

modified tensors 267

Mohr’s circle 769

Mohr-Coulomb criterion 289

moment computations 86



moments 352

beams 727

shells and plates 598

solid mechanics and 75

moments of inertia 690, 762

moments of inertia, beam cross sections 

768

Mooney-Rivlin material

five parameters 271

nine parameters 272

two parameters 270

moving mesh interface, piezoelectric de-

vices and 140

MPH-files 28

mu coefficient 470

Mukherjee-Bird-Dorn equation 331

multiaxial stress states 312

multibody dynamics interface 561

multiphysics

hygroscopic swelling 856

magnetostriction 852, 854

piezoelectric devices 846

piezoelectric effect 849

multiphysics coupling

fluid-structure interaction 836, 838

Joule heating and thermal expansion 

842

thermal expansion (node) 822

thermal stress 820

multiphysics modeling 162

MUMPS direct solvers 191

Murnaghan material 278

N Navarro-Herring creep 330

Navier-Stokes equations 840

nearly incompressible hyperelastic mate-

rials 268

nearly incompressible material 450

nearly incompressible materials 93, 228

Neo-Hookean material 269

Neumann boundary conditions

applied force 502

applied moment 504

no rotation (node)

beam interface 744

shell and plate interfaces 641

no slip, wall boundary condition 832

nodes, common settings 25

nominal stress 230

non-associated flow rule 308

nonlinear elastic material 408

nonlinear elastic material (node) 437

Norton equation 327

Norton-Bailey model 328

O octahedral normal stress 313

octahedral plane 226

Ogden material 273

one-way coupled model formulations 

841

orientation, piezoelectric material 97

orthotropic materials

defining 239

elastic properties 434, 683

loss factor damping, and 489

Ottosen criterion 314

over-consolidation pressure 319

P pair nodes

beam interface 722

fluid-structure interaction 828

membrane interface 679

solid mechanics 426

truss interface 801

parametric analysis 20

penalized friction traction 395

penalty factor relaxation 148

penalty factors

contact node, and 569
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contact pairs and 147

theory 395

penalty method 392

perfectly elastoplastic materials 301

perfectly plastic hardening 301

periodic boundary conditions 545, 654

periodic condition (node)

shell 654

solid mechanics 545

periodic conditions, theory 387

phase (node) 579

beam interface 758

shell and plate interfaces 668

solid mechanics 579

truss interface 817

physics interfaces

connecting to DOF 65

physics interfaces, common settings 25

piezoelectric coupling 846

piezoelectric crystal cut 97

piezoelectric devices multiphysics inter-

face 846

piezoelectric effect (node) 849

piezoelectric losses 105

piezoelectric material (node) 445

piezomagnetic coupling 449

piezomagnetic coupling matrices 342

pinned (node)

beam interface 742

shell and plate interfaces 640

truss interface 811

pipe sections, beams 725

plane stress and strain 57, 423

planes, symmetry and constraints 82

plastic deformation gradient 215

plastic element 308, 310

plastic flow rule 310

plastic Green-Lagrange strain 215

plastic multiplier 308

plastic potential 308

plasticity (node) 454

plasticity models 455

plate interface 613

theory 588

plates

external loads 597

initial stresses and strains 628

linear elastic material 623

MITC shell formulation 594

prescribed acceleration 638

prescribed displacement/rotation 631

prescribed velocity 636

stress and strain calculations 598

symmetry and antisymmetry 596

thermal expansion 625

point load (node) 532

beam interface 750

shell and plate interfaces 651

point load on axis (node) 534

point loads example 74

point mass (node)

beam interface 751

shell and plate interfaces 652

truss interface 816

point mass damping (node)

beam interface 751

shell interface 653

truss interface 817

point nodes

beam interface 722

fluid-structure interaction 828

membrane interface 679

solid mechanics 426

truss interface 801

Poisson type equation 774

Poisson’s ratio 94, 237, 433, 536



polynomial hyperelastic material 271

power law 327

Prager’s hardening rule 304

Prandtl stress function 779

predeformation (node) 542

prescribed acceleration (node) 515

beam interface 740

shell and plate interfaces 638

prescribed displacement (node)

solid mechanics 510

prescribed displacement, theory 356

prescribed displacement/rotation (node) 

500

beam interface 737

shell and plate interfaces 631

theory 356

prescribed velocity (node) 513

beam interface 739

shell and plate interfaces 636

solid mechanics 513

pressure loads 76

pressure-wave speeds 238, 434

prestressed analysis, eigenfrequency 

study 137

prestressed analysis, frequency domain 

study 137

primary creep 323

principal stresses 224, 226

principal stretches 264

principle of virtual work 367

Prony series 255

propagating modes 39

pseudo time stepping

advanced settings 827

Q quaternion constraint 350

quaternion representation, of rigid con-

nector 391

R radius of gyration 769

rate independent plasticity 308

rate of strain tensor 212, 309

Rayleigh damping 122

rectangle sections, beams 725

reference coordinates 200

reference point for moment computa-

tion 86

refpnt variable 424

relaxation, of penalty factor 148

renaming

displacement DOF 66

resonant frequency 122

results evaluation, for shells 601

right Cauchy-Green deformation tensor 

207, 263

right polar decomposition 206

right stretch tensor 206

rigid body 349

rigid body suppression (node) 523

rigid connection type, shells 604

rigid connector 391

rigid connector (node) 549, 661, 754

rigid connector theory 356

rigid connectors

kinematic constraints and 84

moments and 75

rigid domain (node) 495

theory 349

rigid domains

angular acceleration 352

angular velocity 351

dynamics 352

ring load (node) 533

rock mass 318

rock types 316

rocks 316

rocks (node) 472

roller (node) 520
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rotated coordinate system 100

rotating frame (node) 528

rotation matrix 350

rotation, rigid body 349

rotational degrees of freedom 691

rotational joints, beams 85

S safety (node) 359, 483, 787

Saint-Venant torsion 783

saturated cohesive soils 286

scaling of eigenvectors 37

second Piola-Kirchhoff stress 130, 202, 

222

secondary creep 323

section orientation (node) 728

selecting

solvers 190

shape factors 315

shear area 771

shear modulus expression 237, 433, 537

shear stresses 224, 289, 312

shear-wave speeds 238, 434

shell

coupling to a beam 67

coupling to a solid 67

shell connection (node)

beams 753

solid mechanics 565

shell interface 613

theory 588

shells

external loads 597

initial stresses and strains 628

linear elastic material 623

MITC shell formulation 594

prescribed acceleration 638

prescribed displacement/rotation 631

prescribed velocity 636

stress and strain calculations 598

symmetry and antisymmetry 596

thermal expansion 625

shift function 452

sign conventions 223

simply supported (node) 642

singular loads 74

size factors 315

skew-symmetric part 212

sliding wall, wall boundary condition 832

slip, wall boundary condition 832

slit boundary 178

SLS model 258

small plastic strain 307

soil deformation theory 320

soil plasticity (node) 469

solid

coupling to a beam 67

coupling to a shell 67

solid connection (node) 658

solid mechanics

damping 488

edge loads 531

initial stresses and strains 477

prescribed acceleration 515

prescribed velocity 513

solid mechanics interface 422

theory 198

solid-shell connection (node) 858, 861

solver methods

augmented Lagrangian 392

penalty method 392

solver parameters 190

solver settings 190

SOR line solvers 192

sources and destinations 144

spatial coordinates 200

spatial stress tensor 130

spatially mobilized planes (STP) 295



spin tensor 212

spring constant 160

spring foundation 507

spring foundation (node) 507, 535, 558

spring foundation, solid mechanics 160

spring foundation, theory 379

spring-damper (node) 810

St Venant torsion 781

St Venant-Kirchhoff material 270

St. Venant’s principle 74

standard linear solid model 258

standard settings 25

static frictional coefficients 397

stationary solvers 190

steady-state creep 323

steady-state stiffness 255

storage modulus 125, 261

Storakers material 274

stored energy 407

straight edge constraint (node) 804

straight edges 795

strain energy density 280, 408

strain-displacement, trusses 792

strain-displacement/rotation 699

strains, membranes 673

stress

Cachy 222

first Piola-Kirchhoff 222

second Piola-Kirchhoff 222

stress and strain, piezoelectric devices 

118, 337, 342

stress components, beam cross sections 

773

stress evaluation, beams 704

stress linearization (node) 582

stress stiffening 672

stresses, membranes 673

stress-strain relation

beams 699

trusses 793

study steps, geometric nonlinearity and 

133

study types

eigenfrequency 370

frequency domain, solid mechanics 369

parametric 20

surface traction and reaction forces 88

symmetric matrices 190

symmetry (node)

beam interface 745

shell and plate interfaces 643

solid mechanics 521

truss interface 813

symmetry constraints 81

T tangent modulus 302

tangential strains 674

technical support, COMSOL 29

temperature loads 76

tensile meridian 226

tensile meridians 290, 292, 297, 313–314

tension cut-off 297

tertiary creep 323

theory

beam cross sections 768

beam interface 690

fluid-structure interaction 840

membrane interface 672

shell and plate interfaces 588

solid mechanics interface 198

thermal expansion

loads and 76

thermal expansion (multiphysics cou-

pling) 822

thermal expansion (node) 473

beam interface 733

shell and plate interfaces 625
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solid mechanics 473, 518, 634, 743, 812

thermal expansion, hyperelastic materi-

als and 264

thermal expansion, Joule heating and 842

thermal strain

beams 700

thermal stress interface 820

modeling 162

thermal-electric-structural interaction 

163

thermoelastic materials, defining 243

thermorheologically simple viscoelastic 

materials 259

thin elastic layer (node) 540

thin elastic layer, solid mechanics 160

thin elastic layer, theory 380

thin-film damping (node) 548

three-parameter model 258

torional shear stress 783

torsion, beam cross sections 779

torsional constants and moments 703

total Lagrangian formulation 20

total loads 77

t-profile sections, beams 725

tractions 130

transient creep 323

translation, rigid body 349

Tresca effective stress variable 285

Tresca stress 284

Tresca yield criterion 284

triaxial conditions 313

triaxial data 315

TRS material 260

true stress tensor 130

truss interface 800

trusses

harmonic perturbation 581, 669, 758

initial stresses and strains 808

linear elastic material 805

straight edge 795

strain-displacement 792

two-point tensor 205

U undrained shear strength 285

uniaxial compression 315–316

uniaxial compressive strength 312

uniaxial tension 284, 472

units, loads and 71

u-profile sections, beams 725

user defined material 279

using

coordinate systems 201

predefined variables 86

spatial and material coordinates 200

weak constraints 87

uspring variable 160

V Varga material 274

variables

cross section data, beams 764

deformation gradient tensor 206

density 205

effective creep strain 327

effective plastic strain 283, 304

elastic Green-Lagrange tensor 215

elastic right Cauchy-Green tensor 215

elastic volumetric strain 321

elastic, inelastic, and total volume ratio 

215

elcontact 393

Green-Lagrange tensor 208

invariants 279

isochoric elastic Green-Lagrange 

strain tensor 268

isochoric-elastic Cauchy-Green defor-

mation tensor 267

isochoric-elastic right Cauchy-Green 

deformation tensor 267



material and spatial coordinates 201

predefined 86

principal elastic stretches 279

refpnt 424

right Cauchy-Green deformation ten-

sor 208

right stretch tensor 206

rotation tensor 206

stresses, beams 766

thermal stretch and thermal volume 

ratio 265

Tresca effective stress 285

volumetric plastic strain 283, 319

vdamper variable 161

Vicat softening temperature 261

Villari effect 341

viscoelastic materials

definition 93

frequency domain analysis and damp-

ing 261

temperature effects 259

theory 253

viscoelasticity (node) 451

viscoplasticity (node) 462, 467

viscous damping 125, 161

Voigt form 98

Voigt notation 239, 490

volume-preserving contributions 266

volumetric contributions 266

volumetric creep strain rate 326

volumetric plastic strain rate 283

volumetric plastic strain variable 319

volumetric strain energy 280

volumetric strain energy density 268

von Mises criterion 283–284

von Mises effective stress 784

von Mises stress 283

W wall (node)

fluid structure interaction 831

warping function 779

warping, beam cross sections 781

wave speeds 434, 683, 732

waveguide 39

weak constraints, using 87

websites, COMSOL 29

Weertman creep 331

Willam-Warnke criterion 313

WLF shift functions 260, 452

Y yield function 283

yield functions 289

yield stress levels 456, 463

yield surface 308

yield surfaces 281, 291

Young’s modulus expression 237, 433, 

536

Z Zener model 258
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