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 1
I n t r o d u c t i o n
This guide describes the Semiconductor Module, an optional add-on package for 
the COMSOL Multiphysics® modeling environment, which provides a physics 
interface for modeling semiconductor devices as well as additional related 
functionality.

This chapter introduces you to the capabilities of this module. A summary of the 
physics interfaces and where you can find documentation and model examples is 
also included. The last section is a brief overview with links to each chapter in this 
guide.

In this chapter:

• About the Semiconductor Module

• Overview of the User’s Guide
 9
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Abou t  t h e  S em i c ondu c t o r  Modu l e

These topics are included in this section:

• Modeling Semiconductor Devices

• What Can the Semiconductor Module Do?

• The Semiconductor Module Physics Interface Guide

• Common Physics Interface and Feature Settings and Nodes

• The Semiconductor Module Study Capabilities by Physics Interface

• The Semiconductor Materials Database

• Where Do I Access the Documentation and Application Libraries?

Modeling Semiconductor Devices

The invention of the bipolar transistor at Bell labs in the late 1940s and the 
subsequent development of field-effect devices and integrated circuits led to many of 
the important technological advancements of the second half of the 20th century. The 
widespread adoption of integrated circuits and the continuing efforts to improve the 
technology has motivated significant efforts to develop detailed models of devices. The 
semiconductor equations are highly nonlinear, so it is very difficult to develop detailed 
analytic solutions to them, and consequently numerical modeling has been important 
in the development of the technology. Multiphysics effects can often have important 
influences on semiconductor device performance. Device processing often occurs at 
high temperatures and consequently stresses can be introduced into the materials. 
Furthermore, high power devices can generate a significant amount of heat. The 
Semiconductor Module enables device level modeling on the COMSOL Multiphysics 
platform and helps easily create customized simulations involving multiple physical 
effects.

The Physics Interfaces and Building a COMSOL Multiphysics Model in 
the COMSOL Multiphysics Reference Manual
 1 :  I N T R O D U C T I O N



What Can the Semiconductor Module Do?

The Semiconductor Module is a collection of interfaces and predefined models for 
COMSOL Multiphysics, which can be used to model semiconductor devices.

It includes a dedicated physics interface to model semiconductor devices with the 
drift-diffusion equations, enhanced capabilities for modeling electrostatics, and an 
Electrical Circuits interface (with a SPICE import facility) that can be coupled to the 
device level models.

It also includes a dedicated physics interface to solve the single-particle Schrödinger 
Equation, for general quantum mechanical problems as well as quantum-confined 
semiconductor systems such as quantum wells, wires, and dots.

The Semiconductor Module Applications Libraries contains a suite of models that 
demonstrate how to use the physics interfaces for modeling a range of practical devices. 
These models provide step-by-step instructions demonstrating how to use the physics 
interface to model practical devices. The module is well documented and includes a 
detailed outline of the underlying theory on which it is based. Furthermore the 
software is uniquely transparent because the model equations are always visible; you 
have complete freedom in the definition of phenomena that are not predefined in the 
module.

The Semiconductor Module Physics Interface Guide

The Semiconductor Module extends the functionality of the physics interfaces of the 
base package for COMSOL Multiphysics. The details of the physics interfaces and 
study types for the Semiconductor Module are listed in the table below.

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• The Physics Interfaces 

• For a list of all the core physics interfaces included with a COMSOL 
Multiphysics license, see Physics Interface Guide.
A B O U T  T H E  S E M I C O N D U C T O R  M O D U L E  |  11
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Common Physics Interface and Feature Settings and Nodes

There are several common settings and sections available for the physics interfaces and 
feature nodes. Some of these sections also have similar settings or are implemented in 
the same way no matter the physics interface or feature being used. There are also some 
physics feature nodes that display in COMSOL Multiphysics.

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY 
TYPE

 AC/DC

Electrical Circuit cir Not space 
dependent

stationary; frequency 
domain; time dependent; 
small signal analysis, 
frequency domain

Electrostatics1 es all dimensions stationary; time dependent; 
stationary source sweep; 
eigenfrequency; frequency 
domain; small signal 
analysis, frequency domain

 Semiconductor

Semiconductor semi all dimensions small-signal analysis, 
frequency domain; 
stationary; time dependent

Semiconductor 
Optoelectronics, Beam 
Envelopes2

— 3D, 2D, and 
2D 
axisymmetric

frequency-stationary; 
frequency-transient; 
small-signal analysis, 
frequency domain

Semiconductor 
Optoelectronics, 
Frequency Domain2

— 3D, 2D, and 
2D 
axisymmetric

frequency-stationary; 
frequency-transient; 
small-signal analysis, 
frequency domain

Schrödinger Equation schr all dimensions eigenvalue; stationary; time 
dependent

1 This physics interface is included with the core COMSOL package but has added 
functionality for this module.
2 Requires both the Wave Optics Module and the Semiconductor Module.
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In each module’s documentation, only unique or extra information is included; 
standard information and procedures are centralized in the COMSOL Multiphysics 
Reference Manual.

The Semiconductor Module Study Capabilities by Physics Interface

Table 1-1 lists the physics interfaces specific to semiconductor modeling and this 
module. It includes the physical quantities solved for and the standard abbreviation 
each one uses. The physical quantities in these interfaces are:

• The electric scalar potential, V

• The electron concentration, N

• The hole concentration, P

• The wave function, psi 

In the COMSOL Multiphysics Reference Manual see Table 2-3 for 
links to common sections and Table 2-4 to common feature nodes. 
You can also search for information: press F1 to open the Help 
window or Ctrl+F1 to open the Documentation window. 

Studies and Solvers in the COMSOL Multiphysics Reference Manual

TABLE 1-1:  SEMICONDUCTOR MODULE INTERFACE DEPENDENT VARIABLES AND PRESET STUDY OPTIONS

PHYSICS INTERFACE NAME DEPENDENT 
VARIABLES

PRESET STUDY OPTIONS
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AC/DC

Electrostatics es V √ √ √ √ √
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The Semiconductor Materials Database

The Semiconductor Module includes an additional Semiconductors material database 
with material properties appropriate for several materials.

Electrical Circuit cir none √ √ √
SEMICONDUCTOR

Semiconductor semi V, N, P √ √ √ √

Semiconductor 
Optoelectronics, 
Beam Envelopes1

— V, N, P

E1, E2

√ √ √

Semiconductor 
Optoelectronics, 
Frequency 
Domain1

— V, N, P

E

√ √ √

Schrödinger 
Equation

schr psi √ √ √

1 Requires both the Wave Optics Module and the Semiconductor Module. 
These are also multiphysics interfaces.

TABLE 1-1:  SEMICONDUCTOR MODULE INTERFACE DEPENDENT VARIABLES AND PRESET STUDY OPTIONS

PHYSICS INTERFACE NAME DEPENDENT 
VARIABLES

PRESET STUDY OPTIONS

S
T

A
T

IO
N

A
R

Y

T
IM

E
 D

E
P

E
N

D
E

N
T

E
IG

E
N

F
R

E
Q

U
E

N
C

Y

F
R

E
Q

U
E

N
C

Y
 D

O
M

A
IN

S
M

A
L

L
 S

IG
N

A
L

 A
N

A
L

Y
S

IS
, 

F
R

E
Q

U
E

N
C

Y
-D

O
M

A
IN

F
R

E
Q

U
E

N
C

Y
 S

T
A

T
IO

N
A

R
Y

F
R

E
Q

U
E

N
C

Y
 T

R
A

N
S

IE
N

T

E
IG

E
N

V
A

L
U

E

For detailed information about materials and the Semiconductor 
Materials Database, see Materials in the COMSOL Multiphysics 
Reference Manual.
 1 :  I N T R O D U C T I O N



Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the application libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions about how to use COMSOL Multiphysics and how to access the 
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to many of the features on the GUI. To 
learn more about a node in the Model Builder, or a window on the Desktop, click to 
highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules (as long as you have a license), application examples, and 
documentation sets.

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder click a node or 
window and then press F1. 

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help ( ) 
button.
A B O U T  T H E  S E M I C O N D U C T O R  M O D U L E  |  15
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Opening the Documentation Window

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each application includes documentation with the theoretical background and 
step-by-step instructions to create a model application. The applications are available 
in COMSOL as MPH-files that you can open for further investigation. You can use the 
step-by-step instructions and the actual applications as a template for your own 
modeling and applications. In most models, SI units are used to describe the relevant 
properties, parameters, and dimensions in most examples, but other unit systems are 
available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the application and its 
properties, including options to open it or a PDF document. 

To open the Help window:

• In the Model Builder or Physics Builder click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu select Help>Documentation ( ).

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.
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Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number are sent to you by 
email.

C O M S O L  O N L I N E  R E S O U R C E S

• From the Home toolbar, Windows menu, click ( ) Applications 

Libraries.

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File> or Windows> menus.

To include the latest versions of model examples, from the Help menu 
select ( ) Update COMSOL Application Library.

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
A B O U T  T H E  S E M I C O N D U C T O R  M O D U L E  |  17
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Ove r v i ew o f  t h e  U s e r ’ s  Gu i d e

The Semiconductor Module User’s Guide gets you started with modeling using 
COMSOL Multiphysics. The information in this guide is specific to this module. 
Instructions how to use COMSOL in general are included with the COMSOL 
Multiphysics Reference Manual. 

TA B L E  O F  C O N T E N T S  A N D  I N D E X

To help you navigate through this guide, see the Contents and Index.

M O D E L I N G  S E M I C O N D U C TO R S

The Modeling Guidelines chapter discusses topics including the Physics for 
Semiconductor Modeling, Connecting to Electrical Circuits, Finite Element and 
Finite Volume Discretization, Defining the Carrier Mobility, and Quantum-Confined 
Systems.

T H E  S E M I C O N D U C T O R  I N T E R F A C E

The Semiconductor Branch Interface chapter includes physics feature information and 
describes the theory relating to The Semiconductor Interface. Topics include The 
Sommerfeld Model and the Density of States, Electrons in a Perturbed Periodic 
Potential, Equilibrium Carrier Concentrations, and Band Gap Narrowing.

T H E  A C / D C  B R A N C H  I N T E R F A C E S

The AC/DC Branch chapter includes physics feature information for The 
Electrostatics Interface and The Electrical Circuit Interface as well as theory is 
discussed. 

T H E  S C H R Ö D I N G E R  E Q U A T I O N  I N T E R F A C E

The Schrödinger Equation Interface chapter describes the physics features and usage 
of The Schrödinger Equation Interface.

As detailed in the section Where Do I Access the Documentation and 
Application Libraries? this information can also be searched from the 
COMSOL Multiphysics software Help menu. 
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M o d e l i n g  G u i d e l i n e s
In this chapter:

• Physics for Semiconductor Modeling

• Finite Element and Finite Volume Discretization

• Defining the Carrier Mobility

• Doping

• Connecting to Electrical Circuits

• Non-Isothermal Models

• Spice Import

• Small-Signal Analysis

• Meshing

• Solving

• Quantum-Confined Systems
 19



20 |  C H A P T E R
Phy s i c s  f o r  S em i c ondu c t o r  Mode l i n g

The physics of semiconductor devices is highly dependent on the size of the device. 
Over the last 50 years semiconductor devices have been progressively miniaturized 
enabling improvements in speed and reductions in power consumption. Nonetheless 
semiconductor devices are so ubiquitous that devices of larger sizes are still widely used 
for many applications. The Semiconductor Module is directed at these larger scale 
devices (with length scales of 100s of nm or more), which can still be modeled by a 
conventional drift-diffusion approach using partial differential equations. It is useful to 
note some of the important assumptions implicit to this approach:

• The relaxation-time approximation is used to describe the scattering process. This 
is a much simplified form of the scattering probability, which is elastic and isotropic.

• Magnetic fields are not included in the model.

• The carrier temperature is assumed to be equal to the lattice temperature and, 
consequently, the diffusion of hot carriers is not properly described.

• The energy bands are assumed to be parabolic. In reality the band structure is 
significantly altered in a complex manner in the vicinity of free surfaces or grain 
boundaries.

• Velocity overshoot, and other complex time-dependent conductivity phenomena, 
are not included in the model.

In addition to these intrinsic assumptions, The Semiconductor Interface allows you to 
make additional assumptions to simplify the solution process:

• For nondegenerate semiconductors it is possible to assume a Maxwell-Boltzmann 
distribution for the carrier energies at a given temperature, which reduces the 
nonlinearity of the semiconductor equations. If degenerate semiconductors are 
present within the model, or at lower temperatures, it is necessary to use 
Fermi-Dirac statistics.

• In majority carrier devices, it is often only necessary to solve for one of the carrier 
concentrations (the majority carrier). The minority carrier concentration is usually 
unimportant for the device operation and can be estimated by assuming the mass 
action law.

By default Maxwell-Boltzmann statistics are assumed by the Semiconductor interface 
and the interface explicitly solves for both the electron and hole concentrations.
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The Semiconductor interface solves Poisson’s equation in conjunction with continuity 
equations for the charge carriers. An important length scale to consider when 
modeling electrostatic fields in the presence of mobile carriers is the Debye length:

where kB is Boltzmann’s constant, T is the lattice temperature, ε0 is the permittivity of 
free space, εr is the relative permittivity of the semiconductor, Nion is the concentration 
of ionized donors or acceptors, and q is the electron charge. The Debye length is the 
length scale over which the electric field decays in the presence of mobile carriers; it is 
important to resolve this length scale with the mesh in semiconductor models.

Ld
kBTε0εr

q2Nion

----------------------=

Theory for the Semiconductor Interface
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F i n i t e  E l emen t  and F i n i t e  V o l ume 
D i s c r e t i z a t i o n

The Semiconductor Interface includes linear and logarithmic finite element 
formulations and a finite volume formulation. The formulation used is selected in the 
Discretization section since the shape functions that can be used are directly related to 
the formulation employed. The finite volume formulation uses constant shape 
functions, whilst the two finite element formulations can use either linear or quadratic 
shape functions. In the different formulations the carrier concentration dependent 
variables (by default Ne and Ph) represent different quantities. In the linear finite 
element and finite volume formulations Ne = N and Ph = P, where N is the electron 
concentration and P is the hole concentration. For the logarithmic finite element 
formulation Ne = ln(N) and Ph = ln(P).

To change the formulation click the Show button ( ) in the Model Builder window 
and select Discretization. Then under Discretization select a Formulation (as in 
Figure 2-1). Each formulation has advantages and disadvantages. 

Figure 2-1: The Discretization section. Choose between a finite volume or a linear or 
quadratic finite element formulation.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections (such as Discretization) and Table 2-4 to common 
feature nodes. You can also search for information: press F1 to open the 
Help window or Ctrl+F1 to open the Documentation window.
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The finite volume discretization inherently conserves current. Consequently, it usually 
provides the most accurate result for the current density of the charge carriers. This is 
why it is the default setting. In order to enhance numerical stability, a 
Scharfetter-Gummel upwinding scheme is used for the charge carrier equations. 
Poisson’s equation is discretized using a centered difference scheme. When doing 
multiphysics simulations it is important to realize that the shape functions are constant. 
Consequently, fluxes cannot be evaluated using spatial derivatives of the dependent 
variables (for example, expressions such as d(V,x) evaluate to zero as V is represented 
by a constant shape function within each element). Flux quantities such as fields and 
currents can be evaluated and used in equations (both within the Semiconductor 
interface and in other physics interfaces) if the predefined variables from Table 2-1 are 
used in expressions:

Any variables that involve expressions directly derived from the variables in Table 2-1 
can also be used in expressions, for example, the electric displacement field, semi.D, 
or the total current, semi.J.

The finite element formulation typically solves faster than the finite volume 
formulation. One reason is that, for an identical mesh, the finite element method with 
linear shape functions typically results in fewer degrees of freedom. In 3D, for 
tetrahedral mesh elements, the number of degrees of freedom for the finite element 
method with linear shape functions is approximately five times less than for a finite 

TABLE 2-1:  SEMICONDUCTOR PREDEFINED VARIABLES

NAME VARIABLE

Electric field semi.E semi.Ex, semi.Ey, semi.Ez)

Electron current density semi.Jn (semi.Jnx, semi.Jny, semi.Jnz)

Hole current density semi.Jp (semi.Jpx, semi.Jpy, semi.Jpz)

Electron drift current 
density

semi.Jn_drift (semi.Jn_driftx, 
semi.Jn_drifty, semi.Jn_driftz)

Hole drift current density semi.Jp_drift (semi.Jp_driftx, 
semi.Jp_drifty, semi.Jp_driftz)

Electron diffusion current 
density

semi.Jn_diff (semi.Jn_diffx, semi.Jn_diffy, 
semi.Jn_diffz)

Hole diffusion current 
density

semi.Jp_diff (semi.Jp_diffx, semi.Jp_diffy, 
semi.Jp_diffz)

Electron thermal diffusion 
current density

semi.Jn_th (semi.Jn_thx, semi.Jn_thy, 
semi.Jn_thz)

Hole thermal diffusion 
current density

semi.Jp_th (semi.Jp_thx, semi.Jp_thy, 
semi.Jp_thz)
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volume discretization. In 2D, for triangular mesh elements, the number of degrees of 
freedom for the finite element method with linear shape functions is approximately half 
that for a finite volume discretization. Coupling to other physics interfaces is 
straightforward and variables can be differentiated using the d operator. The finite 
element method is an energy conserving method and thus current conservation is not 
implicit in the technique. Current conservation for the linear formulation is poor and 
this formulation is provided primarily for reasons of backward compatibility. Current 
conservation in the log formulation is much better but still not as good as the finite 
volume method. In order to help with numerical stability a Galerkin least-squares 
stabilization method is included. This method usually enhances the ability to achieve 
a converged solution, particularly when using the linear formulation. However, it can 
be preferable to disable the stabilization, since the additional numerical diffusion the 
technique introduces can produce slightly unphysical results. As a result of the reduced 
gradients in the dependent variables obtained when using the log formulation, 
stabilization is often not required when using this technique. 

It is also possible to solve a problem with the stabilization active and then 
use this solution as the initial condition in a separate study, where the 
stabilization is inactive. To turn the stabilization on or off, click the Show 
button ( ) and select Stabilization. Then click to select the Streamline 

diffusion check box or click to clear.

In the COMSOL Multiphysics Reference Manual:

• Numerical Stabilization

• Introduction to Solvers and Studies
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De f i n i n g  t h e  C a r r i e r  Mob i l i t y

Realistic models for the carrier mobility are important to model semiconductor devices 
with a drift diffusion approach. The mobility is limited by scattering of the carriers 
within the material. Phenomena that can effect the mobility include:

• Phonons (L): thermally generated acoustic waves traveling through the crystal 
(scattering by phonons is frequently referred to as lattice scattering, which is 
somewhat confusing as the lattice itself never scatters the carriers unless perturbed 
from perfect periodicity).

• Ionized impurities (I): these begin to have an effect at doping levels above 
approximately 1015 cm−3 at room temperature.

• Carrier-carrier scattering (C)

• Neutral impurity scattering (N): this is important only at low temperatures, typically 
below 77 K.

• High field velocity saturation (E).

• Surface scattering (S): this includes effects such as interface charges, scattering by 
surface phonons, and so on. It is important in field effect devices, such as field effect 
transistors.

The Semiconductor Module includes several predefined mobility models as well as 
user-defined models. These models are added as subnodes to the Semiconductor 
Material Model node.

Both user-defined and predefined mobility models can be combined in arbitrary ways. 
Each mobility model defines an output electron and hole mobility. If appropriate 
(some filtering occurs in the predefined mobility models to prevent inappropriate 
combinations), the output mobility can be used as an input to other mobility models. 
User-defined mobility models accept any of the predefined mobility models as inputs 
and can be used as inputs for all the predefined mobility models that require an input. 
The model used within the simulation is selected for electrons and holes by changing 
the Electron mobility and the Hole mobility settings in the Mobility Model section of the 
Semiconductor Material Model node, which by default uses a constant mobility 

The letters in the above list (for example, L for phonons) are used to 
identify which effects a given predefined mobility model incorporates and 
appears in the name of the feature. 
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obtained from the material properties.

It is important to understand that each type of mobility model node only 
defines mobility variables for electrons and holes that can be used by other 
models, or by the Semiconductor Material Model node. The mobility 
models for electrons and holes actually used in the simulation are 
determined by the selections or settings in the Semiconductor Material 
Model, which do not change when additional mobility models are added. 
In order to add a mobility model to a simulation it is necessary to both 
add the sequence of mobility model nodes to the Model Builder and then 
to select the required final mobility for both electrons and holes in the 
Semiconductor Material Model.

In order to implement field dependent mobility models it is usually 
necessary to add additional dependent variables for the field components 
used in the model (typically the electric field components parallel to or 
perpendicular to the current components). This is the approach taken in 
the Caughey-Thomas Mobility Model (E) and Lombardi Surface 
Mobility Model (S). Consequently, creating such mobility models is only 
recommended for advanced users.

• Mobility Models

• User-Defined Mobility Model

• Power Law Mobility Model (L)

• Arora Mobility Model (LI)

• Fletcher Mobility Model (C)
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Dop i n g

Specifying the doping distribution is critical to model semiconductor devices. 
COMSOL multiphysics includes a range of tools which enable any doping profile to 
be realized. This functionality is provided by the Analytic Doping Model and 
Geometric Doping Model. 

In this section:

• Using the Analytic Doping Model 

• Using the Geometric Doping Model 

• Visualizing the Dopant Distribution 

• Example of Multiple Superimposed Doping Profiles.

Using the Analytic Doping Model

The Analytic Doping Model makes it possible to express doping profiles as a function 
of the local coordinate system, which can be rotated with respect to the global 
coordinate system if required. This is suitable to achieve profiles that are convenient to 
define in relation to the coordinate axes. The dopant distribution can be defined using 
either the user defined or box methods.

A N A L Y T I C  D O P I N G  M O D E L :  U S E R  D E F I N E D

A user-defined doping distribution can be used to specify a constant dopant density in 
a domain. Alternately a spatially varying doping profile can be specified; the doping 
profile is defined using the functions available internally within COMSOL. Any 
analytic expression, written in terms of the local coordinate system, is permitted. 
Figure 2-2 shows an example of a user-defined profile consisting of a Gaussian decay 
away from the lower boundary.

Doping distributions can also be imported from external files. This is useful when the 
required distribution cannot be defined analytically; for example, if the doping profile 
is output from an external diffusion simulation.

To import a doping profile using an interpolation function:
1 From the Definitions toolbar, click Interpolation ( ).

2 On the Settings window for Interpolation select File as the Data source.

3 Specify the Filename and the Number of arguments.
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4 Once an interpolation function is defined, it can be used in an Analytical Doping 

Model feature. This is achieved by selecting a User defined dopant distribution and 
calling the interpolation function with the appropriate arguments.

Figure 2-2: Example of a user-defined dopant distribution created using the Analytic 
Doping Model feature. The Analytic Doping Model feature is the appropriate doping 
feature as this distribution is trivial to express as a function of the coordinate axes.

A N A L Y T I C  D O P I N G  M O D E L :  B O X

The box method allows a block-shaped region of constant doping to be defined, along 
with a decay profile away from the region. This is useful for approximating some 
physical doping techniques, such as diffusion processes, which distribute dopants away 
from regions of high concentration resulting in characteristic decay profiles. The 
location of the region is defined by specifying either the corner or center coordinate 
using the global coordinate system. If a local rotated coordinate system is used within 
the feature, the orientation of the block rotates around this specified coordinate. A 

Interpolation in the COMSOL Multiphysics Reference Manual
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profile is selected from the Dopant profile away from uniform region list. The decay 
length scale of the profile is controlled by either specifying a control length directly or 
by specifying a junction depth. The junction depth specifies the distance, from the 
boundary of the uniformly doped region, where the dopant concentration is equal to 
the value specified in the Background doping concentration input. This distance can be 
specified independently for each axis in the component geometry by selecting Specify 

different length scales for each direction. Figure 2-3 is an example of a doping profile 
created using this method. A rectangular region of uniform doping is specified in the 
top left of the geometry, and a Gaussian profile is selected away from this region with 
different junction depths in the x and y directions.

Figure 2-3: Example of a box doping distribution created using the Analytic Doping 
Model feature. This distribution is defined as a rectangle of constant doping located in the 
top left of the domain with a Gaussian decay profile away from the boundaries of this 
region. The region of uniform doping in the top left is outlined with a blue box.

Using the Geometric Doping Model

The Geometric Doping Model enables doping profiles to be expressed as a function of 
the distance from selected boundaries. This is suitable for cases where the profile 
wanted is more conveniently expressed in terms of the geometry than the coordinate 
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axes. The boundaries from which the distance is calculated using the Boundary 
Selection for Doping Profile node. The form of the profile is selected from the Dopant 

profile away from the boundary list. This list contains preset functions that enable 
several common profiles to be easily defined. A User defined option is also available that 
enables any expression to be manually entered.

G E O M E T R I C  D O P I N G  M O D E L :  U S E R  D E F I N E D

A user-defined profile can be used to specify any dopant distribution that is expressed 
as a function of the distance from boundaries in the geometry. This distance is available 
as semi.gdm#.D within COMSOL, where # indicates the number of the Geometric 
Doping Model feature. Figure 2-4 is an example doping profile that is created with the 
expression 1e16[1/cm^3]*exp(-(semi.gdm1.D/0.5[um])^2). 

Figure 2-4: Example of a user-defined dopant distribution created using the Geometric 
Doping Model feature. The dopant concentration decays as a Gaussian away from the 
lower boundary. The Geometric Doping Model feature is the appropriate doping feature 
as it is more convenient to define this distribution in terms of the distance from the curved 
boundary than as a function of the coordinate system.

G E O M E T R I C  D O P I N G  M O D E L :  P R E S E T  P R O F I L E S

The Geometric Doping Model makes Gaussian, linear, and error function profiles 
available as options in the Dopant profile away from the boundary list. When a preset 
option is selected, the dopant concentration at the boundary can be input along with 
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a parameter to set the decay length scale of the profile. The decay length scale of the 
profile is controlled by specifying a control length directly or by specifying a junction 
depth. The junction depth specifies the distance from the selected boundaries at which 
the dopant concentration is equal to the value specified in the Background doping 

concentration user input.

Figure 2-5 is an example profile that is created using a combination of an Analytic 
Doping Model and a Geometric Doping Model. The dopant concentration is constant 
within the top left domain, which is bounded by a curve. Away from this constant 
region the concentration decays with a Gaussian profile. The constant region is 
specified using a user-defined profile in an Analytic Doping Model. The Gaussian 
profile is achieved using a preset profile in a Geometric Doping Model with the curve 
as the selected boundary. This example shows how the Geometric Doping Model 
allows curves in the geometry to be easily incorporated into the dopant distribution, 
without the need to express the curves analytically in terms of the coordinate system.

Figure 2-5: Example of a profile that uses the Geometric Doping Model feature to 
accommodate a curved boundary. An Analytic Doping Model feature is used to create a 
region of constant doping in the top left that is bounded by the curve. This curve is used as 
the selected boundary in the Geometric Doping Model feature to generate a Gaussian 
decay profile away from the constant region.
D O P I N G  |  31



32 |  C H A P T E R
Visualizing the Dopant Distribution

To visualize the distribution, on the Study toolbar, click Get Initial Value ( ). Then 
add a plot group and display the corresponding dopant density. The signed doping 
concentration, semi.Ndoping (donor doping positive, acceptor doping negative), 
gives the net doping and can be useful for visualizing the effect of different doping 
steps. If multiple doping features are superimposed, it is possible to visualize the total 
dopant concentration or to display the contribution due to individual doping features. 

The semi.Ndoping variable shows the total net doping due to the sum of all doping 
features. To see the distribution from a single doping feature the corresponding node 
tag must be included in the plot variable. 

The node tags are shown in curly brackets next to the nodes in the Model Builder. 
Analytic Doping Model features are tagged as adm# and Geometric Doping Model features 
are tagged as gdm#, where # corresponds to the number of the feature. The dopant 
concentration from each doping feature is available as semi.<tag>.Na for acceptor 
doping or semi.<tag>.Nd for donor doping. For example, semi.adm1.Nd for a 
donor distribution from the first Analytic Doping Model added to the component.

Example of Multiple Superimposed Doping Profiles

This example uses multiple Gaussian profiles to demonstrate how to create an intricate 
doping distribution using a combination of several doping features. Figure 2-6 shows 
the geometry along with a line graph of the dopant concentrations. The geometry 
shows the location of the contacts and the line cut along which the line graph is 
plotted.

To create the doping profile three Analytic Doping Model nodes and one Geometric 
Doping Model node are used. The line graph shows the total resultant dopant 
concentration as well as the individual contribution from each node.

Study and Computing the Initial Values in the COMSOL Multiphysics 
Reference Manual

To select the node labels to display, on the Model Builder toolbar click 
Model Builder Node Label .
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Figure 2-6: Top: Geometry in which the example dopant concentration is created. Bottom: 
Line graphs of the total doping distribution and the individual contributions from each 
of the steps in the instructions. The numbered circles highlight the overlap points of the 
different distributions due to the junction depth specified in the corresponding step.

Care should be taken when specifying multiple doping profiles in the same 
domains as the resultant dopant concentration is the sum of all coincident 
doping models.
D O P I N G  |  33



34 |  C H A P T E R
To create the doping profile:

1 Constant background: a constant n-type doping of 1017 cm-3 is added using an 
Analytic Doping Model that specifies a User defined profile with constant Donor 

Concentration.

2 Top surface: a Box dopant distribution that decays away from the top surface with a 
Gaussian profile is added using a second Analytical Doping Model. The uniformly 
doped region is set to cover the entire width of the model at the top surface but to 
have zero depth, thus the profile decays away from the surface. 

- Acceptor doping is applied with a maximum concentration of 1019 cm-3. 

- The donor concentration defined in the previous step, semi.adm1.Nd, is selected 
for the Background doping concentration.

- The Junction depth is set to 2 μm below the top surface. Since the background 
doping is of a different type, semi.adm2.Na has equal magnitude to 
semi.adm1.Nd at this depth, as indicated by point 2 shown in Figure 2-6. Thus 
the overall contribution to semi.Ndoping due to the first two distributions is 
zero at a depth of 2 μm. This is an example of doping distribution into a constant 
background distribution of the opposite type.

3 Emitter contact: a Geometric Doping Model is used to define a Gaussian profile which 
decays away from the emitter contact. 

- The boundary that represents the emitter contact is selected in Boundary Selection 

for Doping Profile node and a Gaussian Dopant profile away from the boundary is 
selected.

- The Junction depth is set to 1.5 μm. 

- The Background doping concentration must account for the effect of both of the 
two preceding steps. To achieve this, choose a User defined background 
concentration and set it to semi.adm2.Na-semi.adm1.Nd. This causes the 
resulting distribution, semi.gdm1.Nd, to be equal magnitude to semi.adm2.Na 
at the desired junction depth of 1.5 μm, as can be seen at point 3 labeled in 

The following example is similar to the model Bipolar Transistor, which 
is available in the Semiconductor Applications Libraries 
(Semiconductor_Module/Devices/bipolar_transistor).
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Figure 2-6.

- This is an example that demonstrates the need to carefully consider the 
cumulative effects of coincident dopant distributions when placing junction 
depths.

4 Collector contact: another Box distribution is defined with a third Analytic Doping 

Model. This is used to create a Gaussian profile that decays away from the collector 
contact. The uniformly doped region is set to cover the entire width of the model 
at the bottom surface but to have zero depth.

- Donor doping is applied with a maximum concentration of 1022 cm-3. 

- The Junction depth is set to 0.2 μm, which produces a junction at a depth of 
4.8 μm from the top surface. 

- In this case the constant donor concentration defined in step 1 (1017 cm-3), 
semi.adm1.Nd, is selected for the Background doping concentration. Since donors 
are being doped into donors the concentration due to this final distribution 
(semi.adm3.Nd) is 2×1017 cm-3 at the junction depth, which is double the 
background level as indicated a point 4 shown in Figure 2-6. This is because at 
the junction depth semi.adm3.Nd has equal magnitude to the constant 
background and, because it is the same doping type, the sum of the contribution 
from both distributions results in double the concentration. This is an example of 
doping one type into a constant background of the same type.
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Conn e c t i n g  t o  E l e c t r i c a l  C i r c u i t s

In this section:

• About Connecting Electrical Circuits to Physics Interfaces

• Connecting Electrical Circuits Using Predefined Couplings

• Connecting Electrical Circuits by User-Defined Couplings

• Solving

• Postprocessing 

About Connecting Electrical Circuits to Physics Interfaces

This section describes the various ways electrical circuits can be connected to other 
physics interfaces in COMSOL Multiphysics. If you are not familiar with circuit 
modeling, it is recommended that you review the Theory for the Electrical Circuit 
Interface.

In general electrical circuits connect to other physics interfaces via one or more of three 
special circuit features:

• External I vs. U

• External U vs. I

• External I-Terminal

These features either accept a voltage measurement from the connecting non-circuit 
physics interface and return a current from the Electrical Circuit interface or the other 
way around. 

The “External” features are considered “ideal” current or voltage sources 
by the Electrical Circuit interface. Hence, you cannot connect them 
directly in parallel (voltage sources) or in series (current sources) with 
other ideal sources. This results in the error message The DAE is 
structurally inconsistent. A workaround is to provide a suitable parallel 
or series resistor, which can be tuned to minimize its influence on the 
results.
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Connecting Electrical Circuits Using Predefined Couplings

In addition to these circuit features, interfaces in the AC/DC Module, RF Module, 
MEMS Module, Plasma Module, and Semiconductor Module (the modules that 
include the Electrical Circuit interface) also contain features that provide couplings to 
the Electrical Circuit interface by accepting a voltage or a current from one of the 
specific circuit features (External I vs. U, External U vs. I, and External I-Terminal).

This coupling is typically activated when:

• A choice is made in the Settings window for the non-circuit physics interface feature, 
which then announces (that is, includes) the coupling to the Electrical Circuit 
interface. Its voltage is then included to make it visible to the connecting circuit 
feature.

• A voltage that has been announced (that is, included) is selected in a feature node’s 
Settings window.

These circuit connections are supported in Terminals.

Connecting Electrical Circuits by User-Defined Couplings

A more general way to connect a physics interface to the Electrical Circuit interface is 
to:

• Apply the voltage or current from the connecting “External” circuit feature as an 
excitation in the non-circuit physics interface.

• Define your own voltage or current measurement in the non-circuit physics 
interface using variables, coupling operators and so forth.

• In the Settings window for the Electrical Circuit interface feature, selecting the 
User-defined option and entering the name of the variable or expression using 
coupling operators defined in the previous step.

D E T E R M I N I N G  A  C U R R E N T  O R  VO L T A G E  V A R I A B L E  N A M E

To determine a current or voltage variable name, look at the Dependent Variables node 
under the Study node. To do this:

1 In the Model Builder, right-click the Study node and select Show Default Solver.
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2 Expand the Solver>Dependent Variables node and click the state node, in this 
example, Current through device R1 (comp1.currents). The variable name is shown on 
the Settings window for State 

Solving

Typically, voltage variables are named cir.Xn_v and current variables 
cir.Xn_i, where n is the “External” device number—1, 2, and so on.

Some modeling errors lead to the error message The DAE is structurally 
inconsistent, being displayed when solving. This typically occurs from 
having an open current loop, from connecting voltage sources in parallel, 
or connecting current sources in series.

In this respect, the predefined coupling features are also treated as (ideal) 
voltage or current sources. The remedy is to close current loops and to 
connect resistors in series with voltage sources or in parallel with current 
sources.
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Postprocessing

The Electrical Circuits interface, unlike most of the other physics interfaces, solves for 
a relatively large number of Global dependent variables (such as voltages and currents), 
instead of solving for a few space-varying fields (such as temperature or displacement). 
For this reason, the Electrical Circuit interface does not provide default plots when 
computing a Study.

The physics interface defines a number of variables that can be used in postprocessing. 
All variables defined by the Electrical Circuit interface are of a global scope, and can 
be evaluated in a Global Evaluation node (under Derived Values). In addition, the time 
evolution or dependency on a parameter can be plotted in a Global plot (under a 1D 

Plot Group node).

The physics interface defines a Node voltage variable for each electrical node in the 
circuit, with name cir.v_name, where cir is the physics interface Label and <name> 
is the node Name. For each two pin component, the physics interface also defines 
variables containing the voltage across it and the current flowing through it.

In the COMSOL Multiphysics Reference Manual:

• Derived Values and Tables and Global Evaluation

• Plot Groups and Plots and Global
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Non - I s o t h e rma l  Mode l s

The Semiconductor interface is designed to model non-isothermal devices. In order to 
model heat transfer in the device, an additional Heat Transfer in Solids interface should 
be added to the model. This physics interface can be used to model the heat transfer 
within the domain. Appropriate thermal boundary conditions must be added in 
addition to a heat source term that is coupled to the Semiconductor interface. 

Currently COMSOL implements a simplified heat source term incorporating only 
Joule heating and the heat source due to recombination (see Ref. 26 for a detailed 
discussion of the appropriate heat source term to be used in semiconductor modeling). 
The heat source term Q is given by:

where U is the total recombination rate computed from summing all the 
recombination mechanisms. U is computed from the mean of the total electron and 
hole recombination rates U=(Un+Up)/2, which are almost always equal except in 
advanced models. 

Additional terms can be added to the heat source manually in the finite element 
method (the existing terms are available as the variable semi.Q_tot). 

To add the heat source term, from the Physics toolbar, Domain menu, 
select Heat Source. Then click the Heat Source 1 node and select Total heat 

source (semi) from the list of coupling variables in the General source Q list 
(note that if several heat sources or Semiconductor interfaces are added 
then the name of the heat source feature and the semiconductor heat 
source coupling variable is incremented accordingly). To couple the 
temperature computed by a heat transfer interface back into the 
Semiconductor interface, go to the Model Inputs section of the 
Semiconductor Material Model 1 node. Under Temperature, T, select 
Temperature (ht).

Q E J Eg 3kBT+( )U+⋅=

It is not straightforward to add these terms for the finite volume method, 
as they involve the derivatives of the dependent variables, which must be 
computed using appropriate expressions.
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Some of the boundary conditions for the Semiconductor interface require an 
equilibrium reference temperature to be defined in order to correctly define the 
potentials with respect to the equilibrium Fermi energy. 

To change this reference temperature click the Show button ( ) and 
select Advanced Physics Options. Then adjust the Temperature reference for 

energy levels (T0) setting in the Temperature Reference section of the 
Semiconductor interface Settings window. The reference temperature 
should be within the range of validity of any temperature-dependent 
material properties used in the model.

When solving non-isothermal semiconductor models, a segregated solver 
should be used, with the temperature degree of freedom included in a 
separate segregated group from the carrier densities and the potential. 

To add a segregated solver, click the study and from the Study toolbar, 
click Show Default Solver ( ) (this is not necessary if the Solver 

Configurations node is already visible in the Model Builder). Expand the 
Solver Configurations node until you can see either the Stationary Solver 1 
or the Time-Dependent Solver 1 node (depending on whether the study is 
stationary or time-dependent). Right-click the node and select Segregated. 
Expand the resulting Segregated 1 node and select the Segregated Step 
node. Then in the General settings section, delete the Temperature 

(mod1.T) variable from the list. Right-click the Segregated 1 node and add 
a Segregated Step. In the Settings window for Segregated Step 1, add 
Temperature (mod1.T) to the list.

The node numbers given above can be altered if multiple studies or study 
steps are present in the model.

In the COMSOL Multiphysics Reference Manual:

• Introduction to Solvers and Studies

• Segregated and Segregated Step
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S p i c e  Impo r t

SPICE Import

The circuit definition in COMSOL Multiphysics adheres to the SPICE format 
developed at the University of California, Berkeley (Ref. 1). SPICE netlists can be 
imported and the corresponding circuit nodes are generated in the COMSOL 
Multiphysics model. Most circuit simulators can export to this format or some version 
of it.

The Electrical Circuit interface supports the following device models:

Statements corresponding to multiple devices are resolved by parsing the associated 
.model statement. The physics interface also supports the .subckt statement, which 
is represented in COMSOL by a Subcircuit Definition node, and the .include 
statement. SPICE commands are interpreted case-insensitively. The statement defining 
each device is also interpreted as the Device name.

According to SPICE specification, the first line in the netlist file is assumed to be the 
title of the netlist and it is ignored by the parser.

TABLE 2-2:  SUPPORTED SPICE DEVICE MODELS

STATEMENT DEVICE MODEL

R Resistor

C Capacitor

L Inductor

V Voltage Source

I Current Source

E Voltage-Controlled Voltage Source

F Current-Controlled Current Source

G Voltage-Controlled Current Source

H Current-Controlled Voltage Source

D Diode

Q NPN BJT and PNP BJT

M n-Channel MOSFET and p-Channel 
MOSFET

X Subcircuit Instance
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SPICE Export

The SPICE Export functionality creates a SPICE netlist file containing a description of 
the circuit represented by the physics interface. This functionality can be accessed from 
the physics interface context menu (right-click the physics interface node and select 
Export SPICE Netlist). After specifying a file name, the circuit is exported and messages 
from the export process display in the Messages window. During the export process, a 
series of operations are performed:

• In order to avoid conflicts, each component must be identified by a unique Device 

name. If one or more components have the same device name, the export operation 
fails and an error message is displayed. All characters in a Device name that are not 
letters, digits or underscores are replaced by underscores.

• According to the SPICE specification, each circuit must have a node with name 0, 
which is assumed to be the only ground node. When exporting a circuit, any node 
with name 0 that is not connected to a Ground component is exported with a 
different node name. All nodes that are connected to a Ground components are 
exported as a merged node with name 0. The Messages window shows a log message 
if these operations are performed, showing the name of the renamed or merged 
nodes.

• All characters in node names that are not letters, digits or underscores are replaced 
by underscores.

• Some components (most notably, the External components used to couple to other 
physics interfaces) cannot be exported to a SPICE netlist. These components are 
ignored during the export process, and a message is shown in the Messages window. 
Note that this can change the exported circuit, since some components are then 
missing.

• Subcircuit definitions are added as .subckt statements in the netlist. 
Semiconductor devices (such as MOSFETs, BJTs, and diodes) are exported as a 
SPICE device with a corresponding .model statement.

The title of the exported netlist file is the model's file name, and the time, date and the 
version of COMSOL Multiphysics is added as a comment in the netlist file.

Reference for SPICE Import and Export

1. http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
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Sma l l - S i g n a l  Ana l y s i s

COMSOL Multiphysics includes sophisticated and very general tools for small-signal 
analysis, which are available in the Semiconductor Module. Small signals are applied to 
features such as source, drain, or gate contacts by using the Harmonic Perturbation 

subfeature. This feature should be used in conjunction with the Small-Signal Analysis, 

Frequency Domain study. The Small-Signal Analysis, Frequency Domain study includes 
Stationary and Frequency Domain, Perturbation study steps. The Stationary study is used 
to compute the linearization point for the equation system, which is the solution for 
the DC operating point in the absence of any AC signals. The Frequency Domain, 
Perturbation study step then computes the response of the system to small AC 
deviations from the linearization point, correctly accounting for nonlinearities in the 
equation system.

To specify an AC voltage (with a DC offset) applied, for example, to the Thin Insulator 
Gate feature, the DC voltage should be specified as usual by typing it into the Voltage 
user input in the Terminal section of the settings for the feature. Next add a Harmonic 

Perturbation to the Thin Insulator Gate. 

The amplitude of the AC signal is typed into this feature. By default, the solution from 
a Small-Signal Analysis, Frequency Domain contains both the Static (or DC) solution 
and the Harmonic Perturbation (or AC solution). When evaluating expressions in 
postprocessing you can choose which part of the solution is displayed in the Evaluate 

expression for list (a range of other options are also available, which are described in the 
link below). When evaluating the Harmonic Perturbation it is important that the 
Compute differential check box is selected (it is by default) so that COMSOL 
Multiphysics differentiates the solution at the linearizion point when evaluating the 
expression. The solutions to Harmonic Perturbation studies are in general complex 
valued, with the argument representing the phase of the signal. By default, the real part 
of the solution is plotted in postprocessing. To drive the system with several signals at 
different phases, enter complex-valued numbers into the Harmonic Perturbation 
subfeature.

The Harmonic Perturbation subnode is available from the context menu 
(right-click the parent node) or from the Physics toolbar in the Contextual 
group.
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Care must be taken when computing quantities such as the 
transconductance and output conductance for a MOSFET. For example, 
if the drain is a Metal Contact with terminal name 1, then evaluating the 
global terminal current semi.I0_1 for the Harmonic Perturbation (with 
the Compute differential check box selected) gives the (complex) 
perturbation in the drain current, δIdrain. The output conductance is 
obtained by taking the absolute value of the perturbation and dividing by 
the amplitude of the voltage perturbation applied (for example 0.01[V]). 
Thus the output conductance (dIdrain/dVdrain) is obtained by evaluating 
the quantity: abs(semi.I0_1)/0.01[V]. It is not possible to evaluate 
the output conductance by evaluating the perturbation part of the 
expression: abs(semi.I0_1)/abs(semi.V0_1) because COMSOL 
Multiphysics linearizes the expression entered, computing the quantity: 
δIdrain/Vdrain-(Idrain/Vdrain

2)δVdrain.

In the COMSOL Multiphysics Reference Manual: 

• For details on the small-signal analysis study type see 
Frequency-Domain Perturbation Study Step in the Studies and Solvers 
section.

• For details on postprocessing small signals see Results Analysis and 
Plots 
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Me sh i n g

The mesh is an important component of any numerical model of a semiconductor 
device. When assessing a numerical solution it is always important to ensure that the 
results do not change significantly when the mesh is refined; this is sometimes referred 
to as grid independence. Different meshing strategies produce optimum results with 
the finite element and finite volume formulations of the semiconductor equations. The 
Semiconductor Module includes default mesh suggestions that automatically refine 
the mesh based on the physics features selected. These mesh suggestions are usually 
appropriate for both the finite element and the finite volume methods. In some cases 
manually tuning the default mesh improves performance and helps with the solution 
process.

The finite volume formulation works best in 2D when triangular elements are used. In 
3D a swept mesh is currently required (tetrahedral elements are not currently 
supported for finite volumes in 3D). In this case it is best to mesh with a triangular 
mesh in the plane of the wafer surface and to sweep the mesh into the wafer. This is 
particularly important for gate contacts. Figure 2-7 shows some of the techniques that 
can be used when meshing gates for the finite volume discretization in 3D.

The finite element method (with either the log or linear formulation) works well with 
all the types of mesh elements available in COMSOL. It is also possible to use adaptive 
meshing to refine the mesh selectively in regions where the error in the solution is 
greatest. Adaptive mesh refinement can be added to a Stationary or Time Dependent 
study step by selecting the Adaptive mesh refinement check box in the Study Extensions 
section.

For finite elements it is particularly important to assess the dependence of the global 
current conservation on the mesh — this can give a good indication of the overall 
accuracy of the solution. If current conservation is still poor with a refined mesh 
tightening the solver tolerances can help (see Solving).

For details on the settings for adaptive meshing, see Adaptive Mesh 
Refinement in the COMSOL Multiphysics Reference Manual.
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Figure 2-7: Example of a swept mesh appropriate for a gate contact in 3D. The mesh is 
swept in the direction perpendicular to the gate. The source (left), drain (right), and gate 
(center) contacts are highlighted in red. The mesh is refined in between the contacts, where 
the Gaussian profile drops off. A geometric sequence with an element ratio of 15 is used to 
sweep the mesh in the z-direction.

For both finite elements and finite volumes, increasing the mesh density in the vicinity 
of junctions is important. Note that the Size feature in the mesh sequence can be 
applied to boundaries, edges, and points, and if the settings are adjusted appropriately 
this feature can be used to produce a local refinement of the mesh. 

For more details on setting up a mesh sequence see the Meshing chapter 
in the COMSOL Multiphysics Reference Manual.
M E S H I N G  |  47



48 |  C H A P T E R
S o l v i n g

The equations solved by the Semiconductor interface are highly nonlinear and are 
consequently difficult to solve in the absence of good initial conditions. The default 
initial conditions are good approximate guesses for the carrier concentration in the 
absence of applied voltages or currents. For stationary models when currents flow it is 
often necessary to ramp up the currents or voltages slowly to the desired operating 
point within the solver. To achieve this, ensure that the currents and voltages in the 
model are controlled by parameters and then use the Auxiliary sweep settings in the 
Study Extensions section of the Stationary study step. Then set up the voltage and 
current parameters so that these are swept up from zero. Note that you select the 
parameter on which the continuity solver should be used in the Run continuation for 
list. When performing multiple sweeps it is desirable to set the Reuse solution for 

previous step setting to Auto. Note also that the solution from one study can be used 
as the starting point for a second study by altering the settings in the Values of 

Dependent Variables section of the Stationary study step. To do this, select the Initial 

values of variables solved for check box, select Solution for the Method, and then select 
the appropriate solution from the Study list.

In addition to ramping up currents and voltages it is also possible to gradually 
introduce contributions to the equation system using the continuity solver. This is 
particularly useful when problems are highly nonlinear. When this approach is 
appropriate a Continuation Settings section is present in some of the semiconductor 
feature settings. By default No continuation is selected, which means that the equation 
contribution is enabled. For User defined an input for the Continuation parameter 

appears and this should be set to a parameter with values between 0 and 1 to determine 
the scaling of the equation contribution. Adding the name of a parameter to this 
setting and ramping it from 0 to 1 in the continuity solver will gradually introduce the 
contribution into the equation system. By choosing Use interface continuation 

parameter the continuation parameter is linked to the value of the interface-level 
continuation parameter specified in the Continuation Settings section of the 
Semiconductor interface’s Settings window. This enables several features to be ramped 
on simultaneously. Finally it is possible to ramp on the dopant concentration, starting 
from a small fraction of that specified (or even zero) and gradually increasing the 
doping. By default the Continuation Settings for the doping features link to an 
interface-level doping continuation parameter that can be set up in the Continuation 

Settings section of the Semiconductor interface’s Settings window. In turn this can be 
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linked to the interface level continuation parameter or specified separately. For the 
finite volume method the doping continuation parameter should be started at a small 
value (for example, 10−6) rather than zero, as the continuation solver does not handle 
the transition from no doping to finite doping when this numerical method is used. 
The doping continuation can also be disabled or defined within each individual 
feature.

For time-dependent models it is recommended that the simulation is started in the 
manner described previously using a known solution to an appropriate stationary 
problem. The time-dependent effects can then be turned on during the simulation. In 
many cases the time-dependent solver performs better than the continuity solver for 
nonlinear stationary problems. By changing the Equation setting in the Semiconductor 
interface Settings window from the default (Study controlled) to Stationary, you can 
force the physics interface to use the stationary equation form even though the time 
dependent solver is used. Then parameters can be defined as functions of time, so that 
the applied currents and voltage, as well as nonlinear equation contributions and the 
doping, can be gradually turned on.

Using the correct solver tolerance for a problem is also important. The nonlinear solver 
tolerances are set up differently in 1D, 2D, and 3D to achieve a balance between 
solution speed and accuracy. For minority carrier devices it might be necessary to 
tighten the solver tolerances to ensure that the solution is converged to within 
sufficient accuracy. For a Stationary study the solver tolerance is adjusted in the 
Stationary Solver node of the Solver Configurations branch (if this branch is not visible 
click the study and from the Study toolbar, click Show Default Solver ( )). The Relative 

tolerance setting determines the fractional accuracy that the carrier concentrations are 
solved to. The Time-Dependent Solver has both relative and absolute tolerance 
settings. The relative tolerance setting is available on the Time Dependent study step in 
the Study Settings section. The absolute tolerance is set in the Time-Dependent Solver 

node on the Solver Configurations branch.

When modeling non-isothermal semiconductor devices, the solver settings must be 
adjusted so that the temperature degree of freedom is in a separate segregated group 
from the carrier densities and the potential. To do this, click the study and from the 
Study toolbar, click Show Default Solver ( ) (this step is not necessary if the Solver 

Configurations node is already visible in the model tree). Then expand the Solver 
Configurations node until you can see either the Stationary Solver 1 or the 
Time-Dependent Solver 1 node (depending on whether the study is stationary or 
time-dependent). Right-click this node and select Segregated. Expand the resulting 
Segregated 1 node and select the Segregated Step node. Then in the General settings for 
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this node, delete the Temperature (mod1.T) variable from the list. Next right-click the 
Segregated 1 node and select Segregated Step. In the settings for the resulting 
Segregated Step 1 node, add Temperature (mod1.T) to the list. Note that the node 
numbers given above can be altered if multiple studies or study steps are present in the 
model.

In the COMSOL Multiphysics Reference Manual:

• Introduction to Solvers and Studies

• Study and Study Step Types

• Computing a Solution

• Solution Operation Nodes and Solvers
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Quan t um-Con f i n e d  S y s t em s

The Schrödinger Equation Interface enables the simulation of quantum-confined 
systems such as quantum wells, wires, and dots. The single-particle Schrödinger 
Equation is solved for the electron or hole wave function under the assumption of the 
envelope function approximation.
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 3
S e m i c o n d u c t o r  B r a n c h  I n t e r f a c e
This chapter describes the physics interface found under the Semiconductor 
branch ( ).

In this chapter:

• The Semiconductor Interface

• Theory for the Semiconductor Interface

• The Semiconductor Optoelectronics, Beam Envelopes Interface

• The Semiconductor Optoelectronics, Frequency Domain Interface
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Th e  S em i c ondu c t o r  I n t e r f a c e

The Semiconductor interface ( ), found under the Semiconductor branch ( ) when 
adding a physics interface, solves Poisson’s equation for the electric potential and the 
drift-diffusion equations for electrons and holes in a semiconductor material. The 
default domain feature is the Semiconductor Material Model, which adds these equations 
to the domain, solving for the electric potential and dependent variables related to the 
electron and hole concentrations.

When this physics interface is added, these default nodes are also added to the Model 
Builder—Semiconductor Material Model, Insulation, Zero Charge, and Initial Values. 
Then, from the Physics toolbar, add other nodes that implement, for example, 
boundary conditions and Generation-Recombination models. You can also right-click 
Semiconductor to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is semi.

T H I C K N E S S  ( 1 D / 2 D  M O D E L S )

Enter the Out-of-plane thickness d (SI unit: m) (2D components) or Cross-section area 
A (SI unit: m2) (1D components).

M O D E L  P R O P E R T I E S

Use Model properties to set the carrier statistics and solution variables in the model.
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Carrier Statistics
Select an option from the Carrier statistics list—Maxwell-Boltzmann (the default) or 
Fermi-Dirac. 

• Maxwell-Boltzmann statistics apply when both the electron and hole quasi-Fermi 
levels are within the band gap and at least several kBT away from the band edges.

• Fermi-Dirac statistics are required to simulate degenerate semiconductors. 
Fermi-Dirac statistics should be used when one or more of the quasi-Fermi levels 
are close to a band edge or even within the band.

Solution
Select an option from the Solution list—Electrons and holes (the default) to solve for 
both, or Majority carriers only to solve the drift diffusion equations for only one of the 
carriers, computing the concentration of the other carrier by means of the mass action 
law: np=ni

2. For Majority carriers only also select the Majority carriers—Electrons (the 
default) or Holes.

C O N T I N U A T I O N  S E T T I N G S

Enter the Interface continuation parameter Cp (dimensionless). The default is 1. 

Select a Doping and trap density continuation—No continuation (the default), Use 

interface continuation parameter, or User defined. For User defined enter a value for the 
Doping and trap density continuation parameter Cp (dimensionless). The default is 1.

R E F E R E N C E  TE M P E R A T U R E

To display this section, click the Show button ( ) and select Advanced Physics Options. 
Enter a Reference temperature for energy levels T0 (SI unit: K). The default is 293.15 K.

The reference temperature is the temperature at which the equilibrium 
Fermi level is defined. The equilibrium Fermi level is the Fermi-level of 
the material when there are no applied voltages or currents and when the 
temperature is uniform throughout the model at the reference 
temperature. All potentials within the band diagram (for example the 
electron and hole Fermi-levels and the conduction and valence bands) are 
measured with respect to the equilibrium Fermi-level (which corresponds 
to 0 eV).
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D I S C R E T I Z A T I O N

To display the section click the Show button ( ) and select Discretization. Use this 
section to change the discretization of the semiconductor equations.

Select a Formulation—Finite volume (constant shape function) (the default), Finite 

element, log formulation (linear shape function), Finite element, log formulation 

(quadratic shape function), Finite element (linear shape function), or Finite element 

(quadratic shape function).

The Finite volume discretization is the default, and provides the best current 
conservation. The Finite element, log formulation uses fewer degrees of freedom (with 
a linear shape function) and can be more suitable for certain types of problem. The two 
Finite element discretization settings are provided mainly for backward compatibility 
and are not recommended for most purposes. Also specify the Value type when using 

splitting of complex variables—Real or Complex (the default).

S T A B I L I Z A T I O N

To display the section: Click the Show button ( ) and select Stabilization. Then under 
Discretization, select one of these options to further define this section: Finite element, 

log formulation (linear shape function), Finite element, log formulation (quadratic shape 

function), Finite element (linear), or Finite element (quadratic).

Streamline diffusion is on by default when the Discretization is set to Finite element. 
When Streamline diffusion is active additional contributions to the equation system are 
added which improve the numerical stability. This, however, can add unphysical 
artificial diffusion to the problem, which can perturb the carrier densities if they take 
very small values. While streamline diffusion is usually required for the Finite element 
(linear/quadratic) discretizations, the finite element, log formulation (linear/
quadratic shape function) discretizations usually work without it.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Electric potential V, Electron 

concentration Ne, and/or Hole concentration Ph depending on the selected Solution 
(Electron and holes or Majority carrier only) under Model Properties. The name can be 
changed but the names of fields and dependent variables must be unique within a 
model.
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Domain, Edge, Boundary, Pair, and Point Nodes for the 
Semiconductor Interface

The Semiconductor Interface has these domain, edge, boundary, pair, and point nodes 
available from the Physics ribbon toolbar (Windows users), Physics context menu (Mac 
or Linux users), or by right-clicking the main physics interface node to access the 
context menu (all users).

• Finite Element and Finite Volume Discretization

• Domain, Edge, Boundary, Pair, and Point Nodes for the 
Semiconductor Interface

• Theory for the Semiconductor Interface

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

• The Semiconductor Interface

• Theory for the Semiconductor Interface
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These nodes and subnodes are described in this section and listed in alphabetical order:

These nodes and subnodes are described for The Electrostatics Interface:

• Analytic Doping Model

• Analytic Trap Density

• Arora Mobility Model (LI)

• Auger Recombination

• Boundary Selection for Doping Profile

• Boundary Selection for Trap Density 
Profile

• Caughey-Thomas Mobility Model (E)

• Continuity/Heterojunction

• Continuous Energy Levels (Domains)

• Continuous Energy Levels 
(Boundaries)

• Direct Recombination

• Discrete Energy Level (Boundaries)

• Discrete Energy Level (Domains)

• Fletcher Mobility Model (C)

• Floating Gate

• Geometric Doping Model

• Geometric Trap Density

• Impact Ionization Generation

• Indirect Optical Transitions

• Initial Values

• Insulation

• Insulator Interface

• Lombardi Surface Mobility Model (S)

• Metal Contact

• Optical Transitions

• Power Law Mobility Model (L)

• Semiconductor Material Model

• Thin Insulator Gate

• Trap-Assisted Recombination

• User-Defined Generation

• User-Defined Mobility Model

• User-Defined Recombination

• Change Cross Section

• Change Thickness (Out-of-Plane)

• Charge Conservation

• Distributed Capacitance

• Electric Displacement Field

• Electric Potential

• External Surface Charge 
Accumulation

• Floating Potential

• Ground

• Line Charge

• Line Charge (on Axis)

• Line Charge (Out-of-Plane)

• Periodic Condition

• Point Charge

• Point Charge (on Axis)

• Space Charge Density

• Surface Charge Density

• Terminal

• Zero Charge
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Semiconductor Material Model

Use the Semiconductor Material Model to set the physical and transport properties of the 
semiconducting material. The following subnodes are available from the context menu 
(right-click the parent node) or from the Physics toolbar, Attributes menu.

• User-Defined Mobility Model

• Power Law Mobility Model (L)

• Arora Mobility Model (LI)

• Fletcher Mobility Model (C)

• Caughey-Thomas Mobility Model (E)

• Lombardi Surface Mobility Model (S)

M A T E R I A L  P R O P E R T I E S

For each of the following, the default is taken From material. For User defined enter a 
value or expression in the text field.

• Relative permittivity εr (dimensionless). For User defined, also select Isotropic, 
Diagonal, Symmetric, or Anisotropic.

• Band gap Eg,0 (SI unit: V). The band gap is the energy difference between the 
conduction and valence band at equilibrium (independent of doping). The default 
is 1.12 V.

• Electron affinity χ0 (SI unit: V). The electron affinity is the difference in energy 
between the vacuum level and the conduction band at equilibrium. The default is 
4.05 V.

• Effective density of states, valence band Nv (SI unit: 1/m3). The default is 
2.66 × 1019 1/cm3.

• Effective density of states, conduction band Nc (SI unit: 1/m3). The default is 
2.86 × 1019 1/cm3.

See the theory in The Semiclassical Model.
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M O B I L I T Y  M O D E L

These settings determine the mobility values actually used by the Semiconductor 
interface. The defaults take constant values From material. For User defined manually 
define the electron and hole mobilities.

• Electron mobility μn (SI unit: m2/(V⋅s)). 

• Hole mobility μp (SI unit: m2/(V⋅s)). 

If mobility model subfeatures are added to the material model it is possible to select 
the output of these mobility models to be used as the mobility by changing the feature 
input from the appropriate model. 

B A N D  G A P  N A R R O W I N G

Band gap narrowing effects occur at high doping levels. To apply band gap narrowing, 
select an option from the Band gap narrowing list—None (the default), Slotboom, 
Jain-Roulston model, or User defined. Enter values or expressions for the following:

Slotboom
This option applies Slotboom’s empirical model for the band gap narrowing. The 
model computes the band gap narrowing according to the equation:

where NI = Nd + Na and the other parameters are material properties. The fraction of 
the band gap narrowing taken up by the conduction band is defined directly as a 
material property by default.

For each of the following model properties the default takes values From material, or 
for User defined enter a different value or expression. There are additional options also 
available for each.

• Conduction band fraction α (dimensionless). The default is 0.5.

See the theory in Mobility Models.

The Band Gap Narrowing theory section also describes these options.
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• Band gap narrowing reference energy Eref (SI unit: V). The default is 0.00692 V. 

• Band gap narrowing reference concentration Nref (SI unit: 1/m3). The default is 
1.3 × 1017 1/cm3. 

Jain-Roulston Model
This option applies the physics-based model of Jain and Roulston for the band gap 
narrowing. Coefficients for the model are available for a wide range of III-V materials, 
as well as for silicon and germanium. The band gap narrowing is given by:

where An, Ap, Bn, Bp, Cn, and Cp are material properties (with the same units as the 
band gap) and Nref is a reference doping level (SI unit: 1/m3). The fraction of the 
band gap narrowing taken up by the conduction band is defined directly as a material 
property by default.

For each of the following properties the default takes values From material, or for User 

defined enter a different value or expression. There are additional options available for 
each.

• Conduction band fraction α (dimensionless). The default is 0.5.

• Jain-Roulston coefficient (n-type), A (An) (SI unit: V). The default is 10e-9 V. 

• Jain-Roulston coefficient (n-type), B (Bn) (SI unit: V). The default is 3e-7 V. 

• Jain-Roulston coefficient (n-type), C (Cn) (SI unit: V). The default is 10e-12 V. 

• Jain-Roulston coefficient (p-type), A (Ap) (SI unit: V). The default is 10e-9 V. 

• Jain-Roulston coefficient (p-type), B (Bp) (SI unit: V). The default is 3e-7 V. 

• Jain-Roulston coefficient (p-type), C (Cp) (SI unit: V). The default is 10e-12 V. 

• Band gap narrowing reference concentration Nref (SI unit: 1/m3). The default is 
1.3 × 1017 1/cm3.

User Defined
Enter a value or expression for Band gap narrowing voltage ΔEg (SI unit: V). The default 
is 0 V, which represents the amount of band narrowing. Usually a function of the 
dopant concentrations should be specified.
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Enter a value or expression for Conduction band fraction α (dimensionless). In general 
the change in the band gap energy can be taken up by a decrease in the conduction 
band energy and an increase in the valence band energy. The parameter α determines 
what fraction of the change is taken up by the conduction band. When band gap 
narrowing is active Ec→Ec−αΔEg and Ec→Ec+(1−α)ΔEg. The default value of α is 1.

D O P A N T  I O N I Z A T I O N

This section determines the ionization of the donors and acceptors. Specify the Dopant 

ionization—Complete ionization (the default) or Incomplete ionization. For Incomplete 

ionization, select an Ionization model—Standard (the default) or User defined.

For Standard enter values or expressions for the following:

• Relative donor energy (below conduction band) ΔEd (SI unit: V). The default is 
0.05 V.

• Relative acceptor energy (above valence band) ΔEd (SI unit: V). The default is 0.05 V.

• Donor degeneracy factor gd (dimensionless). The default is 2.

• Acceptor degeneracy factor gd (dimensionless). The default is 4.

For User defined enter values or expressions for the following:

• Donor ionization fraction Nd
+/Nd (dimensionless). The default is 1.

• Acceptor ionization fraction Na
–/Na (dimensionless). The default is 1.

Optical Transitions

The Optical Transitions feature adds stimulated and spontaneous emission generation/
recombination rates to the semiconductor and computes the corresponding changes 
in the complex refractive index or relative permittivity.

Incomplete ionization cannot be used together with the mobility models.

See the theory in Incomplete Ionization.
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O P T I C A L  TR A N S I T I O N S

Select a Frequency domain representation—Extra dimension (the default) or No extra 

dimension. This setting determines whether an extra dimension is added to represent 
the frequency domain. The use of an extra dimension typically makes the problem 
faster to solve, but it means that additional memory is required. An extra dimension 
also allows quantities such as the stimulated emission power to be visualized as a 
function of frequency.

Select a Transitions model—Direct band gap model (the default) or User defined.

Direct Band Gap Model
The Direct band gap model uses a two-band model to represent a direct band gap 
semiconductor, as described in Optical Transitions in the Theory for the 
Semiconductor Interface.

Select the Spontaneous emission check box to compute the recombination due to 
spontaneous emission. Select the Stimulated absorption and emission check box to add 
the stimulated emission generation or recombination terms. Both check boxes are 
selected by default.

User Defined
The User defined transitions model allows arbitrary specification of the recombination 
and generation rates due to spontaneous and stimulated emission, and can also be used 
to compute the Kramers-Kronig integral for the stimulated emission contribution to 
the change in the real part of the dielectric constant or the refractive index.

For this model enter the:

• Net generation rate from stimulated processes, Gstim (SI unit: 1/(m3s)).

• Net generation rate from stimulated processes, reference material, Gref
stim (SI unit: 

1/(m3s)). This rate is used when performing the Kramers–Kronig integral to 
compute the change in the real part of the dielectric constant or refractive index.

• Spontaneous emission recombination rate, Rspon (SI unit: 1/(m3s)).

TR A N S I T I O N  M A T R I X  E L E M E N T

This section is available when the Direct band gap model is selected as the Transitions 

model.

Select how to define the Matrix element—From spontaneous lifetime (the default), 
Momentum matrix element, Dipole matrix element, or Kane 4-band model.
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Based on the options chosen enter:

• The spontaneous lifetime, τspon (SI unit: s). The default is 2 ns.

• The momentum matrix element, |M12
av|2, (SI unit: kg2⋅m2/s2). The default is 

0 kg2⋅m2/s2.

• The dipole matrix element, |μ12
av|2, (SI unit: m2⋅s2⋅A2). The default is 0 m2⋅s2⋅A2. 

For the Kane 4-band model enter the Kane 4-band model parameters:

• Electron effective mass: Select From band structure properties (the default, defined in 
the corresponding section), From density of states (converted from Nc, which is 
defined on the Semiconductor Material Model domain feature), or User defined. For 
User defined enter the ratio of the effective mass to the electron mass me*/me 
(dimensionless). The default is 0.053.

• Band gap: Select From band structure properties (defined in the corresponding 
section), From semiconductor material model (defined in the Semiconductor Material 
Model node), or User defined. For User defined enter the band gap Eg (SI unit: V). 
The default is 0.341 V.

• Valence band spin orbital splitting Δ (SI unit: V). The default is 0.341 V.

B A N D  S T R U C T U R E  P R O P E R T I E S

This section is available when the Direct band gap model is selected for the Transitions 

model.

• Select an Electron effective mass me*—From density of states (the default, which is 
converted from Nc, defined on the Semiconductor Material Model domain feature), 
or User defined. For User defined enter the ratio of the electron effective mass to the 
electron mass me*/me (dimensionless). The default is 0.063.

• Select a Hole effective mass mh*—From density of states (the default, which is 
converted from Nv, defined on the Semiconductor Material Model domain feature), 

The matrix element can be dependent on the excitation angular frequency 
if desired. Any function of the angular frequency can be used, but the 
angular frequency should take the form: semi.ot1.omega (for interface 
tag semi and feature tag ot1).
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or User defined. For User defined enter the ratio of the hole effective mass to the 
electron mass mh*/me (dimensionless). The default is 0.51.

• Select a Band gap Eg—From semiconductor material model (defined in the material 
properties section of the Semiconductor Material Model domain feature) or User 

defined. For User defined enter the band gap Eg (SI unit: V). The default is 1.424 V.

O P T I C A L  E X C I T A T I O N  F R E Q U E N C Y

This section is available when the excitation frequency is needed to calculate the 
stimulated emission rate or the matrix element and when the feature is not coupled to 
an Electromagnetic Waves interface.

Select an Excitation frequency f0—From study (the default), User-defined frequency, or 
User-defined wavelength. 

• For User-defined frequency, enter the excitation frequency, f0 (SI unit: Hz). The 
default is 344 GHz.

• For User-defined wavelength, enter the wavelength, λ0 (SI unit: m). The default is 
870 nm.

O P T I C A L  I N T E N S I T Y

This section is available in the absence of a multiphysics coupling when the Direct band 

gap model is selected for the Transitions model and when the Stimulated absorption and 

emission check box is selected. It is used to define the intensity of the optical field that 
is driving the stimulated emission. Enter the Electric field norm, E0 (SI unit: V/m). The 
default is 500 V/m.

O P T I C A L  M A T E R I A L  P R O P E R T I E S

Select the Electric displacement field model—Refractive index (the default) or Relative 

permittivity.

Refractive Index
For Refractive index the default Refractive index n and Refractive index, imaginary part 

k take values From material. For User defined select Isotropic (for Diagonal the average 
of the diagonal elements are taken).

The time-harmonic sign convention used in COMSOL requires that a 
lossy material has a negative imaginary part of the refractive index.
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Relative Permittivity
The default Relative permittivity (real part) ε′ and Relative permittivity (imaginary part) 

ε″ take values From material. For User defined select Isotropic (for Diagonal the average 
of the diagonal elements are taken).

O P T I C A L  O U T P U T S

Select the Compute change in real part of susceptibility check box to compute the 
change in the real part of the susceptibility (or permittivity/refractive index) using a 
Kramers–Kronig integral.

I N T E G R A L  P R O P E R T I E S

The settings in this section determine the range and resolution of the numerical 
scheme used to compute integrals over the frequency domain.

The Frequency domain integral discretization factor (dimensionless) is an integer related 
to the discretization of the of the frequency domain. A higher number indicates a finer 
mesh in the extra dimension (if present) or smaller steps in the numerical integration 
(if no extra dimension is used). The default is 6.

The Frequency domain integral lower limit specifies the lower limit used in frequency 
domain integrals in units of ħω0 (if Stimulated absorption and emission is enabled, or 
user defined is chosen—ω0 is the excitation angular frequency) or in units of the band 
gap (if only spontaneous emission is chosen). The lower limit should be less than the 
band gap. The default is 0.5.

The Frequency domain integral upper limit specifies the upper limit used in frequency 
domain integrals in units of ħω0 (if Stimulated absorption and emission is enabled, or 
user defined is chosen—ω0 is the excitation angular frequency) or in units of the band 
gap (if only spontaneous emission is chosen). The upper limit should be chosen so that 
the processes of interest are negligible above it. The default is 3.

The Kramers-Kronig integral pole region width specifies the total width of the pole 
region around the excitation frequency in units of ħω0 (if Stimulated absorption and 

emission is enabled, or user defined is chosen—ω0 is the excitation angular frequency) 
or in units of the band gap (if only spontaneous emission is chosen). It should be 
chosen so that the change in the susceptibility or the change in the absorption 
coefficient is linear to a good accuracy across the region. The default is 0.01.

The time-harmonic sign convention used in COMSOL requires that a 
lossy material has a negative imaginary part of the relative permittivity.
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Indirect Optical Transitions

The Indirect Optical Transitions feature adds an empirical absorption model for silicon 
to enable easy simulation of optical absorption in photovoltaic devices. The model uses 
the data from Ref. 44 to obtain the frequency-dependent real and imaginary 
components of the refractive index of silicon. Alternately, you can choose to specify a 
user-defined absorption via either supplying an absorption coefficient or the imaginary 
part of the refractive index—this enables the feature to be used for other materials for 
which this data is known. The photogeneration due to absorbed photons is then added 
into the model via a term that contributes to the carrier generation rate. If a 
multiphysics coupling between the Semiconductor interface and an Electromagnetic 
Waves interface is active, the refractive index data from the Indirect Optical Transitions 
feature is automatically used by the Electromagnetic Waves interface for calculating 
wave propagation. Also, the frequency and magnitude of the electromagnetic wave, 
which are required in order to calculate the absorption rate, are obtained automatically 
from the Electromagnetic Waves interface. If multiphysics coupling is not used, these 
quantities can be specified directly within the Indirect Optical Transitions feature.

TR A N S I T I O N S  M O D E L

Select a Transitions model—Empirical silicon absorption (Green and Keevers) (the default) 
or User-defined absorption.

• Empirical silicon absorption (Green and Keevers): This option automatically obtains 
the frequency-dependent real and imaginary components of the refractive index and 
computes the absorption and associate carrier generation. This model is most 
appropriate for intrinsic silicon at temperatures around 300 K.

• User-defined absorption: This option enables the user to specify the absorption. The 
photogeneration rate is then computed and the extra carriers are added to the model 
automatically via an extra generation term. You can either supply the imaginary part 
of the refractive index or the absorption coefficient.

S P E C I F Y  A B S O R P T I O N

This section is available when User-defined absorption is selected as the transitions 
model.

Select an option from the Specify absorption list—Absorption coefficient (the default) or 
Refractive index. Then enter the following as required:

• Imaginary part of refractive index n (dimensionless).
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• Absorption coefficient α (SI unit: 1/m).

• Real part of the refractive index k (dimensionless).

O P T I C A L  E X C I T A T I O N  F R E Q U E N C Y

This section is available if a multiphysics coupling is not used. It enables the frequency 
of the electromagnetic wave to be specified. If the Empirical silicon absorption (Green 

and Keevers) transition model is selected, this frequency is used to look up the 
corresponding refractive index data. For both transition model options the frequency 
is used in calculating the photogeneration rate.

Select an Excitation frequency—From study (the default), User-defined frequency, or 
User-defined wavelength. 

• For User-defined frequency, enter the excitation frequency, f0 (SI unit: Hz). The 
default is 375 GHz.

• For User-defined wavelength, enter the wavelength, λ0 (SI unit: m). The default is 
800 nm.

O P T I C A L  I N T E N S I T Y

This section is available if a multiphysics coupling is not used. It enables the magnitude 
of the electromagnetic wave to be specified.

Enter the Electric field norm, E0 (SI unit: V/m). 

Insulation

The Insulation node is the default boundary condition. It specifies the zero normal flux 
condition at the selected boundaries, that is, setting the normal component of the 
electron current, hole current and electric displacement field to zero.

I N S U L A T I O N

Select the Surface traps check box to enable trapping.

TR A P P I N G

This section is available when the Surface traps check box is selected under Insulation. 

When Surface traps is selected, the Discrete Energy Level (Boundaries) 
subnode is available from the context menu (right-click the parent node) 
or from the Physics toolbar, Attributes menu.
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By default, Specify the discrete levels only is selected or choose Specify continuous and/

or discrete levels. 

• For Specify continuous and/or discrete levels, enter a Continuous energy discretization 

Nxd
elem (dimensionless). The default is 25.

For either choice: 

• Enter a Ground-state degeneracy factor gd (dimensionless). The default is 1.

• The Specify trap species check box is not selected by default. In this case the software 
does not distinguish between different types of trap and the charge due to the traps 
is determined by the neutral energy level. 

• To set the Neutral energy level, select—Midgap (the default), From valence band edge, 
From conduction band edge, or Relative. Then based on this selection enter the 
applicable information:

- Neutral level for traps E0 (SI unit: V). The default is 0 V.

- Neutral level for traps (between 0 and 1, 0.5 is midgap) E0 (dimensionless). The 
default is 0.5.

Continuity/Heterojunction

The Continuity/Heterojunction node is added by default to all interior boundaries in a 
model. When the material properties are continuous across the boundary the feature 
has no effect. If there is a discontinuity in the material properties across the boundary 
then the feature includes the equations required to model a heterojunction.

C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Fletcher Mobility Model (C).

When Specify continuous and/or discrete levels is selected in this section, 
the Continuous Energy Levels (Boundaries) subnode is available from the 
context menu (right-click the parent node) or from the Physics toolbar, 
Attributes menu.

The Continuation Settings do not scale the equation contributions for the 
Continuous Quasi-Fermi level option.
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H E T E R O J U N C T I O N

Select a Continuity model—Continuous quasi-Fermi levels (the default) or Thermionic 

emission. The Continuous quasi-Fermi levels model enforces continuity of both 
quasi-Fermi levels at the boundary. The Thermionic emission model adds thermionic 
emission of the carriers over the boundary to the model.

Initial Values

The Initial Values node provides initial values for the electric potential V, electron 
concentration, and the hole concentration that serve as an initial condition for a 
transient simulation or as an initial guess for the nonlinear solver in other studies.

I N I T I A L  V A L U E S

Select an option from the Specify initial values list—Automatic (the default), Equilibrium 

(carriers and potential), Equilibrium (carriers), Intrinsic (carriers and potential), Intrinsic 

(carriers), or User defined.

Then depending on the choice, enter a value or expression or keep the defaults as 
follows:

• For Equilibrium (carriers) or Intrinsic (carriers) the default Electric potential V 
(SI unit: V) is −4 V. The carrier concentrations are automatically set to the 
equilibrium or intrinsic values.

• For User defined the default Electric potential V (SI unit: V) is −4 V, the default 
Electron concentration N (SI unit: 1/m3) is semi.n_init, and the default Hole 

concentration P (SI unit: 1/m3) is semi.p_init.

• Solving in the Modeling Guidelines chapter.

• Boundary Conditions and Continuity/Heterojunction

The Automatic setting varies based on the Discretization settings for the 
physics interface. If Finite volume (constant shape function) is selected, 
then equilibrium conditions are used. If any of the Finite element 
discretizations are selected, then the intrinsic concentrations are used. 
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User-Defined Mobility Model

The User-Defined Mobility Model subnode is available from the context menu 
(right-click the Semiconductor Material Model parent node) or from the Physics 
toolbar, Attributes menu. This can be used to define a mobility model using 
expressions based on, for example, the temperature and the dopant concentrations.

D O M A I N  S E L E C T I O N

U S E R - D E F I N E D  M O B I L I T Y  M O D E L

Enter a value in the Electron input mobility μn,in (SI unit: m2/(V⋅s)) text field. This 
parameter is used to define an input mobility that can be edited in the Electron 
mobility text field. The default Electron input mobility is for silicon at equilibrium, that 
is, 1448 cm2/(V⋅s). Any electron input mobility from other mobility models added to 
the Semiconductor Material Model can be chosen from the list.

Enter a value in the Hole input mobility μp,in (SI unit: m2/(V⋅s)) text field. This 
parameter is used to define an input mobility that can be edited in the Hole mobility 
field. The default Hole input mobility is for silicon at equilibrium, that is, 473 cm2/
(V⋅s). Any hole input mobility from other mobility models added to the 
Semiconductor Material Model can be chosen from the list.

The Electron mobility μ0,n (SI unit: m2/(V⋅s)) field defines the output electron 
mobility. The default value is taken from Electron input mobility. Any valid 
mathematical expression can be used to modify the default value.

The Hole mobility μ0,p (SI unit: m2/(V⋅s)) field defines the output hole mobility. The 
default value is taken from Hole input mobility. Any valid mathematical expression can 
be used to modify the default value.

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.

Mobility Models and Theory for the User-defined Mobility Model
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Power Law Mobility Model (L)

The Power Law Mobility Model (L) subnode is available from the context menu 
(right-click the Semiconductor Material Model parent node) or from the Physics 
toolbar, Attributes menu. This model incorporates the effect of lattice or phonon 
scattering into the electron and hole mobilities for the material (the ‘L’ given in 
brackets indicates lattice scattering). The equations for the mobility model are shown 
in the Equation section.

D O M A I N  S E L E C T I O N

G E N E R A L  P A R A M E T E R S

The default Reference temperature Tref (SI unit: K) is taken From material. For User 

defined enter a value in the text field. The default is 300 K.

E L E C T R O N  P A R A M E T E R S

For each of the following properties the default takes values From material or for User 

defined enter a different value or expression in the text field. 

• Electron mobility reference μn,0 (SI unit: m2/(V⋅s)). The default value is for silicon 
(1448 cm2/(V-s)). This value represents the zero field mobility at equilibrium. 

• Electron exponent αn (dimensionless). The default for silicon is 2.33.

H O L E  P A R A M E T E R S

For each of the following properties the default takes values From material or for User 

defined enter a different value or expression in the text field. 

• Hole mobility reference μp,0 (SI unit: m2/(V⋅s)). The default value is for silicon 
(473 cm2/(V⋅s)). This value represents the zero field mobility at equilibrium. 

• Hole exponent αp (dimensionless). The default value is for silicon (2.23).

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.

Mobility Models and Theory for the Power Law Mobility Model (L)
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Fletcher Mobility Model (C)

The Fletcher Mobility Model (C) subnode is available from the context menu (right-click 
the Semiconductor Material Model parent node) or from the Physics toolbar, 
Attributes menu. Use this to add carrier-carrier scattering to an existing mobility model 
(or to a constant input mobility). The ‘C’ in brackets indicates the model includes 
carrier-carrier scattering only. It accepts input mobilities of type L or LI, as well as 
user-defined input mobilities. The set of equations defining the Fletcher mobility 
model is shown in the Equation section.

D O M A I N  S E L E C T I O N

C O N T I N U A T I O N  S E T T I N G S

The continuation settings enable the equation contributions for the feature to be 
gradually introduced into the model. 

The Continuation type defaults to No continuation, which means that the equation 
contribution is added in the usual way.

The continuity feature allows the equation contribution to be weighted by an external 
parameter: the value should be between 0 and 1. Then you can sweep this parameter 
with the continuity solver. 

Selecting User defined allows the parameter to be specified within the feature or select 
Use interface level continuation parameter to specify the parameter on the physics 
interface level. 

• For User defined enter a Continuation parameter Cp (dimensionless) between 0 and 
1 to determine the scaling of the equation contribution. Generally the parameter is 
ramped from 0 to 1 in a continuation study. 

• For Use interface continuation parameter, the continuation parameter is linked to the 
value of the continuation parameter specified in the Continuation Settings section 

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.
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for The Semiconductor Interface. This enables several features to be introduced 
simultaneously into the equation system with a single setting controlling it all.

I N P U T  M O B I L I T I E S

The Electron input mobility μn,in (SI unit: m2/(V⋅s)) parameter is used to define an 
input mobility to which carrier-carrier scattering is added. The default value is User 

defined and is a room temperature mobility for silicon, that is, 1448 cm2/(V⋅s).

The Hole input mobility μp,in (SI unit: m2/(V⋅s)) parameter is used to define an input 
mobility to which carrier-carrier scattering is added. The default value is User defined, 
and is for silicon at equilibrium, that is, 473 cm2/(V⋅s).

G E N E R A L  P A R A M E T E R S

For each of the following properties the default takes values From material or for User 

defined enter a different value or expression in the text field. 

• Reference temperature Tref (SI unit: K). The default is 300 K.

• Fletcher mobility coefficient1 F1 (SI unit: 1/(m.V⋅s)). The default is for silicon 
(1.04e21 1/(cm-V⋅s)).

• Fletcher mobility coefficient2 F2 (SI unit: 1/(m2)). The default is for silicon 
(7.45e12 1/cm-2).

Caughey-Thomas Mobility Model (E)

The Caughey-Thomas Mobility Model (E) subnode is available from the context menu 
(right-click the Semiconductor Material Model parent node) or from the Physics 

Solving

Other mobility models of type L (Power Law Mobility Model (L)) or LI 
(Arora Mobility Model (LI) as well as User-Defined Mobility Model 
input mobilities can be used as the Electron input mobility and Hole input 

mobility.

Mobility Models and Theory for the Fletcher Mobility Model (C)
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toolbar, Attributes menu. It adds a high field correction to an existing mobility model. 
The ‘E’ in brackets indicates the model includes high field effects only. It accepts input 
mobilities of type L, I, C, or S as well as user-defined input mobilities. The set of 
equations defining the Caughey-Thomas mobility model is shown in the Equation 
section. 

D O M A I N  S E L E C T I O N

C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Fletcher Mobility Model (C).

I N P U T  M O B I L I T I E S

The Electron input mobility μn,in (SI unit: m2/(V⋅s)) parameter is used to define the 
input mobility to which high field velocity saturation is added. The default is User 

defined for silicon at equilibrium, 1448 cm2/(V⋅s). 

The Hole input mobility μp,in (SI unit: m2/(V⋅s)) defines the input mobility to which 
high field velocity saturation is added. The default is User defined for silicon at 
equilibrium, 473 cm2/(V⋅s). 

G E N E R A L  P A R A M E T E R S

The default Reference temperature Tref (SI unit: K) is taken From material. For User 

defined enter a different value in the text field. The default is 300 K.

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.

The continuation solver should be used in most cases with the 
Caughey-Thomas mobility model.

Solving

Any other Electron input mobility and Hole input mobility from mobility 
models of the Semiconductor Material Model can be chosen.
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E L E C T R O N  P A R A M E T E R S

The default for each of the following is taken From material. For User defined enter a 
different value in the text field. 

• Electron alpha coefficient αn,0 (dimensionless). The default is 1.11.

• Electron saturation velocity vn,0 (SI unit: m/s). The default is 1 × 107 cm/s.

• Electron alpha exponent βn,1 (dimensionless). The default is 0.66.

• Electron velocity saturation exponent βn,2 (dimensionless). The default is −0.87.

H O L E  P A R A M E T E R S

• Hole alpha coefficient αp,0 (dimensionless). The default is 1.21.

• Hole saturation velocity vp,0 (SI unit: m/s). The default is 8.37 × 106 cm/s.

• Hole alpha exponent βp,1 (dimensionless). The default is 0.17.

• Hole velocity saturation exponent βp,2 (dimensionless). The default is −0.52.

Lombardi Surface Mobility Model (S)

The Lombardi Surface Mobility Model (S) subnode is available from the context menu 
(right-click the Semiconductor Material Model parent node) or from the Physics 
toolbar, Attributes menu. It changes an input mobility to account for surface effects, 
particularly surface roughness and scattering due to acoustic phonons. The ‘S’ in 
brackets indicates the model includes surface effects only. The mobility model accepts 
input mobilities of type L, LI, or C as well as user-defined input mobilities. 

The set of equations defining the Lombardi Surface mobility model is shown in the 
Equation section.

D O M A I N  S E L E C T I O N

Mobility Models and Theory for the Caughey-Thomas Mobility Model 
(E)

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.
 3 :  S E M I C O N D U C T O R  B R A N C H  I N T E R F A C E



C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Fletcher Mobility Model (C).

I N P U T  M O B I L I T I E S

The Electron input mobility μn,in (SI unit: m2/(V⋅s)) parameter is used to define an 
input mobility. The default is User defined for silicon at equilibrium, 1448 cm2/(V⋅s). 

The Hole input mobility μp,in (SI unit: m2/(V⋅s)) defines an input mobility. The default 
is User defined for silicon at equilibrium 473 cm2/(V⋅s). 

G E N E R A L  P A R A M E T E R S

The default for each of the following is taken From material. For User defined enter a 
different value or expression in the text field. 

• Reference temperature Tref (SI unit: K). The default is 1 K.

• Electric field reference Eref (SI unit: V/m). The default is 1 V/cm.

• Doping concentration reference Nref (SI unit: 1/m3). The default is 1 1/cm3.

The continuation solver should be used in most cases with the Lombardi 
Surface mobility model.

Solving

Lombardi Surface Mobility shows how to use the continuity solver and 
how to set up the solver in the most efficient manner when using this 
mobility model. Application Library path: Semiconductor_Module/Devices/

lombardi_surface_mobility

Other mobility models of type L (Power Law Mobility Model (L)), LI 
(Arora Mobility Model (LI), C Fletcher Mobility Model (C), or 
User-Defined Mobility Model input mobilities can be used as the Electron 

input mobility and Hole input mobility.
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E L E C T R O N  P A R A M E T E R S

The default for each of the following is taken From material. For User defined enter a 
different value or expression in the text field. 

• Electron delta coefficient δn(SI unit: V/s). The default is 5.82 × 1014 V/s.

• Electron mobility reference μn,1(SI unit: m2/(V⋅s)). The default is 4.75 × 107 cm2/
(V⋅s).

• Electron mobility reference μn,2(SI unit: m2/(V⋅s)). The default is 1.74 × 105 cm2/
(V⋅s).

• Electron alpha coefficient αn(SI unit: 1). The default is 0.125.

H O L E  P A R A M E T E R S

• Hole delta coefficient δp (SI unit: V/s). The default is 2.05 × 1014 V/s.

• Hole mobility reference μp,1(SI unit: m2/(V⋅s)). The default is 9.93 × 107 cm2/(V⋅s)

• Hole mobility reference μp,2(SI unit: m2/(V⋅s)). The default is 8.84 × 105 cm2/(V⋅s)

• Hole alpha coefficient αp(SI unit: 1). The default is 0.0317.

A D V A N C E D

To display this section, click the Show button ( ) and select Advanced Physics Options. 
Enter a Current density activation threshold Jtol (SI unit: A/m2). The default is 
1 ×106 A/m2.

Arora Mobility Model (LI)

The Arora Mobility Model (LI) subnode is available from the context menu (right-click 
the Semiconductor Material Model parent node) or from the Physics toolbar, 
Attributes menu. Use it to simulate the effect of phonon/lattice and impurity 
scattering on the electron and hole mobilities in the semiconducting material (the ‘L’ 
in brackets indicates the model includes lattice scattering and the ‘I’ indicates the 
model includes impurity scattering). The Arora mobility model is empirical and 
involves many parameters. The set of equations defining the model is shown in the 
Equation section.

Mobility Models and Theory for the Lombardi Surface Mobility Model 
(S)
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D O M A I N  S E L E C T I O N

G E N E R A L  P A R A M E T E R S

For each of the following properties the default takes values From material, or for 
User defined enter a different value or expression in the text field. 

• Reference temperature Tref (SI unit: K). The default is 300 K.

• Alpha coefficient α0 (dimensionless). The default is for silicon 0.88.

• Mobility reference minimum exponent β1 (dimensionless). The default is for 
silicon −0.57.

• Mobility reference exponent β2 (dimensionless). The default is for silicon −2.33.

• Impurity concentration reference exponent β3 (dimensionless). The default is for 
silicon 2.4.

• Alpha coefficient exponent β4 (dimensionless). The default is for silicon −0.146. 

E L E C T R O N  P A R A M E T E R S

For each of the following properties the default takes values From material, or for 
User defined enter a different value or expression in the text field. 

• Electron mobility reference μn,0
ref (SI unit: m2/(V⋅s)). The default value is for 

silicon (1252 cm2/(V⋅s)).

• Electron mobility minimum reference μn,
ref

min (SI unit: m2/(V⋅s)). The default value 
is for silicon (88 cm2/(V⋅s)).

• Electron reference impurity concentration Nn,
ref

0
 (SI unit: 1/m3). The default value 

is for silicon (1.26e17 1/cm3).

H O L E  P A R A M E T E R S

For each of the following properties the default takes values From material, or for 
User defined enter a different value or expression in the text field. 

• Hole mobility reference μp,0
ref (SI unit: m2/(V⋅s). The default value is for silicon 

(407 cm2/(V⋅s).

Usually the mobility model selection should not be changed from that of 
the parent Semiconductor Material Model.
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• Hole mobility minimum reference μp,
ref

min (SI unit: m2/(V⋅s)). The default value is 
for silicon (54.3 cm2/(V⋅s)).

• Hole reference impurity concentration Np,
ref

0
 (SI unit: 1/m3). The default value is 

for silicon (2.35e17 1/cm3).

Analytic Doping Model

Use the Analytic Doping Model to set the doping type and concentration within a 
Semiconductor Material Model domain. The concentration is defined as a function of 
the local coordinate system, making this doping method suitable for profiles that are 
convenient to express in terms of the coordinate axes.

C O N T I N U A T I O N  S E T T I N G S

In some cases it is desirable to increase the doping from zero or a low value to that 
required in the simulation during the solution process. This can improve the 
convergence of the simulation significantly. The continuity settings allow the dopant 
densities to be weighted by an external parameter, whose value should be between 0 
and 1.

• By default the Continuation type is set to Use interface continuation parameter. This 
means that the continuity settings are determined by the Doping and trap density 

continuation in the Continuation Settings section for The Semiconductor Interface. 

• To introduce the doping from a specific feature independently of the other features, 
select User defined and manually enter the Continuation parameter. This should be 
set to a dimensionless parameter that is swept from zero to 1 using the continuation 
solver. 

• To disable the continuation for a particular doping feature select No continuation for 
the Continuation type.

Mobility Models and Theory for the Arora Mobility Model (LI)

For the finite volume method it is recommended that a zero value of the 
parameter is avoided. Instead, start with a small value (for example, 1e-6) 
and increase the value of the parameter gradually to 1. The continuation 
solver usually does not manage the transition from zero to finite doping 
when the finite volume method is used.
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D I S T R I B U T I O N

Choose the type of dopant distribution to apply on the selected domains from the 
Distribution list: User defined (the default) to enable any expression to be used to define 
the dopant distribution, or Box to create a block-shaped region of uniform doping 
away from which the concentration decays to a background level according to a 
specified profile. The Profile of the distribution away from the uniform region is 
selected from a list of preset functions.

I M P U R I T Y

Choose an Impurity type to set the species of the dopants—Acceptor doping (p-type) 
(the default) or Donor doping (n-type). Once the impurity type is selected, enter a value 
or expression for the Acceptor concentration NA0 or Donor concentration ND0 
(SI unit: 1/m3). 

For a User defined Distribution input, you can use any expression in terms of the 
coordinate system. This expression then defines the dopant concentration through the 
selected domains (if a constant value is entered this simply assigns a uniform 
concentration to all selected domains). For a Box distribution, a constant value must 
be entered and this sets the concentration within the region of uniform doping. The 
default value for both distributions is a constant value of 1 × 1016 cm3.

U N I F O R M  R E G I O N

This section is available when Box is selected under Distribution. It is used to define the 
location and size of the region of uniform doping.

Set the position of the region using the Base list. Select Corner (the default) or Center. 

The Base position r0 (SI unit: m) vector sets the location of the region. When Corner is 
selected it describes the coordinate of the lower left front corner of the region, and 
when Center is selected it describes the coordinate of the center of the region. The 
default value is at the origin of the coordinate system. 

Solving

It is possible to set the height, width, or depth of the region to zero. In 
2D, for example, setting the height of the region to zero results in a line 
of constant doping away from which the profile function decays. 
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The extent of the region is defined with the Width, Depth, and Height inputs. Only the 
inputs relevant to the dimension of the component to which the feature belongs are 
displayed, for example, in a 2D component only the Width and Depth are available.

• Width W (SI unit: m). This is the extent of the region in the direction parallel to the 
local x-axes.

• Depth D (SI unit: m). This is the extent of the region in the direction parallel to the 
local y-axes.

• Height H (SI unit: m). This is the extent of the region in the direction parallel to the 
local z-axes.

The default value is 0 for each dimension.

P R O F I L E

This section is available when Box is selected under Distribution. Select a Profile away 

from uniform region—Gaussian (the default), Linear, or Error function (erf). 

Then select an option from the Specify profile length scale list—Junction depth (available 
for all profiles), Decay length (available for a Gaussian), Gradient (available for Linear), 
or Argument factor (available for Error function erf).

By default, the Specify different length scales for each direction check box is not selected. 
It is possible to specify a different profile length scale in each coordinate direction 
when this check box is selected. 

Junction Depth
For Junction depth enter a value for the Junction depth dj (SI unit: m, default value is 
1 μm) to specify the location at which the profile concentration drops to equal the 
Background doping concentration Nb (SI unit: 1/m3). The default background 
concentration is User defined with a doping concentration of 1 × 1015 1/cm3. 
Alternately, the doping distribution from another Analytic Doping Model or 
Geometric Doping Model can be used as the background concentration.

Each profile has a profile-specific parameter to directly control the length scale of the 
decay.

Decay Length—for Gaussian profile
For Decay length enter a value for the Decay length lj of the Gaussian decay. (SI unit: m, 
default value is 1 μm). 
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Gradient—for Linear profile
For Gradient enter a value for the Gradient Ngrad of the Linear profile (SI unit: 1/m4, 
default value is −1 × 1020 1/cm4).

Argument Factor—for Error function (erf) profile
For Argument factor enter a value for the Argument factor m (SI unit: 1/m, default 
value is 1 (1/μm)) to specify the factor by which the coordinate values are multiplied 
before being operated on by the erf function.

As when the Junction depth option is used, by default the Specify different length scales 

for each direction check box is not selected. Select it to specify a different profile length 
scale in each coordinate direction.

Geometric Doping Model

Use the Geometric Doping Model to define a dopant distribution in terms of the distance 
from selected boundaries. This is convenient when specifying distributions which are 
not easily expressed in terms of the coordinate system. For example, if a profile is 
defined in terms of the distance from a surface then it may not need to have its 
expression modified if the geometry is altered. This feature also allows any user defined 
decay profile away from the selected boundaries, which is suitable for cases where none 
of the preset decay functions available in the Analytic Doping Model are appropriate.

A default Boundary Selection for Doping Profile is added where the boundaries from 
which the distance is calculated can be specified.

C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Analytic Doping Model.

D I S T R I B U T I O N

Select an option from the Profile away from the boundary list—Gaussian (the default), 
Linear, Error function (erf), or User defined.

• Doped Semiconductors

• Doping and Using the Analytic Doping Model

• Specifying the Dopant Distribution and Theory for the Analytic 
Doping Model
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I M P U R I T Y

For Gaussian, Linear, or Error function (erf) profiles, select the Impurity type—Acceptor 

doping (the default) or Donor doping. Then specify the maximum doping concentration 
of the distribution; this is the concentration of the dopants at the selected boundaries.

• For Acceptor doping specify the Acceptor concentration at boundary NA0 (SI unit: 1/
m3) of the electron acceptor impurities. The default value is 1 × 1016 1/cm3.

• For Donor doping specify the Donor concentration at boundary ND0 (SI unit: 1/m3) 
of the electron donor impurities. The default value is 1 × 1016 1/cm3.

For User defined profiles select the Dopant type—Acceptor doping (the default) or Donor 

doping. Then enter an expression for Define profile as a function of the distance, D, from 

the boundaries N(D) (SI unit 1/m3). The distance from the selected boundaries is 
available as variable semi.gdm#.D, which can be used in an expression to define the 
doping profile. The default expression gives an example of a Gaussian profile defined 
using this variable.

P R O F I L E

For the Gaussian, Linear, and Error function (erf) profiles it is necessary to specify the 
length scale of the profile decay. The Profile section allows the length scale of the profile 
to be controlled. As with the Analytic Doping Model, the length scale can be 
controlled either by entering a junction depth or via a profile-specific length scale 
parameter. See Analytic Doping Model, under Profile for the settings for more details.

Boundary Selection for Doping Profile

A default Boundary Selection for Doping Profile is added to the Geometric Doping 
Model. This node enables the boundaries from which the distance is calculated to be 

• Doped Semiconductors

• Doping and Using the Geometric Doping Model

• Specifying the Dopant Distribution and Theory for the Geometric 
Doping Model
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selected. Any internal or external boundary that bounds, or is within, the domains to 
which the corresponding Geometric Doping Model is applied can be selected.

Analytic Trap Density

Use the Analytic Trap Density node to specify the density of traps within the domain. 
This feature enables a density to be defined by an expression written in terms of the 
local coordinate system. Alternately, it enables a region of uniform trap density which 
decays into a background density with one of three preset profile functions to be 
created. The trap density can be used in conjunction with a Trap-Assisted 
Recombination feature to specify recombination via trapping sites whose density varies 
in space. The available options are similar to the Analytic Doping Model feature.

C O N T I N U A T I O N  S E T T I N G S

In some cases it is desirable to increase the trapping from zero or a low value to that 
required in the simulation during the solution process. This can improve the 
convergence of the problem significantly. The continuity settings allow the trap 
densities to be weighted by an external parameter whose value should be between 0 
and 1. By default the Continuation type is set to Use interface continuation parameter. 
This means that the continuity settings are determined by the Doping and trap density 

continuation in the Continuation Settings section for The Semiconductor Interface. To 
introduce the trapping from a specific feature independently of the other features, 
select User defined and manually enter the Continuation parameter. This should be set 
to a dimensionless parameter that is swept from zero to 1 using the continuation solver. 

To disable the continuation for a particular trapping feature select No continuation for 
the Continuation type. The effect of the traps can also be ramped on using the 
continuation feature within the trap-assisted recombination feature. 

• Doped Semiconductors

• Doping 

• Specifying the Dopant Distribution

Solving
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D I S T R I B U T I O N

Select a Distribution—User defined (the default) or Box.

I M P U R I T Y

Select an Impurity type to give the conductivity type of the selected semiconductor 
material—Donor traps (the default), Acceptor traps, Neutral electron traps, or Neutral 

hole traps. 

For any selection, enter a Trap density Nt0 (SI unit: 1/m3). The default value is 
1 × 1016 1/cm3.

U N I F O R M  R E G I O N

This section is available when Box is selected under Distribution. See Analytic Doping 
Model for these settings.

P R O F I L E

This section is available when Box is selected under Distribution. Select a Profile away 

from uniform region—Gaussian (the default), Linear, or Error function (erf). 

By default, the Specify different length scales for each direction check box is not selected. 
It is possible to specify a different profile length scales in each coordinate direction 
when this check box is selected. 

Based on the selected profile above, enter one of the following:

• Decay length ld (SI unit: m, default value is 1 μm) (Gaussian profiles). 

• Gradient Ngrad(SI unit: 1/m4, default value is −1 x 1020 1/cm4) (Linear profiles). 

• Argument factor m (SI unit: 1/m, default value is 1 (1/μm)) to specify the factor by 
which the coordinate values are multiplied before being operated on by the erf() 
function (Error function (erf) profiles). 

Geometric Trap Density

Use the Geometric Trap Density node to specify the density of traps within the domain. 
This feature enables the trap density to be entered as a function of the distance from 
selected boundaries. In addition to enabling a fully user-defined trap density to be 

The Impurity type setting has no effect if a neutral level is used within the 
Trap-Assisted Recombination feature(s). 
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entered, three preset density profiles are also available. The trap density can be used in 
conjunction with a Trap-Assisted Recombination feature to specify recombination via 
trapping sites whose density varies in space. The available options are similar to the 
Geometric Doping Model feature.

C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Analytic Doping Model.

D I S T R I B U T I O N

Select an option from the Profile away from the boundary list—Gaussian (the default), 
Linear, Error function (erf), or User defined.

I M P U R I T Y

Select an Impurity type to give the conductivity type of the selected semiconductor 
material—Donor traps (the default), Acceptor traps, Neutral electron traps, or Neutral 

hole traps. 

For Gaussian, Linear, or Error function (erf) distribution profiles, enter a Trap density at 

boundary Nt0 (SI unit: 1/m3). The default value is 1 × 1016 1/cm3.

For a User defined profile, enter a value to Define profile as a function of the distance, D, 

from the boundaries N(D) (SI unit 1/m3).

P R O F I L E

This section is available for Gaussian, Linear, or Error function (erf) distribution profiles. 
Based on the profile selection enter one of the following:

• Decay length ld (SI unit: m, default value is 1 μm) (Gaussian profiles). 

• Gradient Ngrad(SI unit: 1/m4, default value is −1 x 1020 1/cm4) (Linear profiles). 

• Argument factor m (SI unit: 1/m, default value is 1 (1/μm)) to specify the factor by 
which the coordinate values are multiplied before being operated on by the erf() 
function (Error function (erf) profiles). 

The Impurity type setting has no effect if a neutral level is used within the 
Trap-Assisted Recombination feature(s). 
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Boundary Selection for Trap Density Profile

A default Boundary Selection for Trap Density Profile is added to the Geometric Trap 
Density. This node enables the boundaries from which the distance is calculated to be 
selected. Any internal or external boundary that bounds, or is within, the domains to 
which the corresponding Geometric Trap Density is applied can be selected.

Trap-Assisted Recombination

Use the Trap-Assisted Recombination model to set the electron and hole recombination 
rates in indirect band-gap semiconductors such as silicon under low electric fields. 
Select this option from the Generation-Recombination submenu. 

TR A P - A S S I S T E D  R E C O M B I N A T I O N

Select a Domain trapping model:

• Shockley-Read-Hall model (the default). This option corresponds to the original 
Shockley-Read-Hall model for steady state recombination via states located at the 
midgap.

• Explicit trap distribution. This option allows the specification of a number of discrete 
traps or a continuous density of trap states at energies within the band-gap. Degrees 
of freedom are added to the equation system to represent the occupancy of traps at 
a particular energy.

This feature is an expanded version of the original Shockley-Read-Hall 
Recombination feature, with new options to allow for more detailed 
modeling of traps.

Recombination and Generation and Theory for Trap-Assisted 
Recombination: Shockley-Read-Hall Recombination

When Explicit trap distribution is selected as the Domain trapping model, 
the Discrete Energy Level (Domains) subnode is available from the 
context menu (right-click the parent node) or from the Physics toolbar, 
Attributes menu.
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S H O C K L E Y - R E A D - H A L L  R E C O M B I N A T I O N

This section is available when Shockley-Read-Hall model is selected as the Domain 

trapping model:

The Shockley-Read-Hall recombination rate is defined as: 

with

where γn and γp are the electron and hole degeneracy factors, Nc,0 and Nv,0 are the 
effective densities of states for the conduction and valence band, Eg is the band gap 
and ΔEg the band gap narrowing energies (SI unit: V)—scaled by the electron charge, 
q. Vth=kBT/q, where kB is Boltzmann’s constant and T is the temperature. The 
parameters τn and τp are carrier lifetimes (SI unit: s) and Et is the trap energy level (SI 
unit: V)—scaled by the electron charge.

Enter values for the following:

• The Electron lifetime, SRH τn (SI unit: s) is taken From material. For User defined enter 
a value in the text field. The default is 10 μs.

• The Hole lifetime, SRHτp (SI unit: s) is taken From material. For User defined enter a 
value in the text field. The default is 10 μs.

• Enter a value for Energy difference between the defect level and the intrinsic level ΔEt 
(SI unit: V) in the text field. The default is 0 V.

TR A P P I N G

This section is available when Explicit trap distribution is selected as the Domain trapping 

model. 
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By default, Specify the discrete levels only is selected. Or select Specify continuous and/

or discrete levels. 

• For Specify continuous and/or discrete levels, enter a Continuous energy discretization 

Nxd
elem (dimensionless). The default is 25.

For either choice: 

• Enter a Ground-state degeneracy factor gd (dimensionless). The default is 1.

• The Specify trap species check box is not selected by default. In this case the software 
does not distinguish between different types of trap and the charge due to the traps 
is determined by the neutral energy level. 

• To set the Neutral energy level, select—Midgap (the default), From valence band edge, 
From conduction band edge, or Relative. Then enter the applicable information:

- Neutral level for traps (available when From valence band edge or From conduction 

band edge is selected) E0 (SI unit: V). The default is 0 V.

- Neutral level for traps (between 0 and 1, 0.5 is midgap) (available when Relative is 
selected) E0 (dimensionless). The default is 0.5.

Discrete Energy Level (Domains)

The Discrete Energy Level subnode is available from the context menu (right-click the 
parent node) or from the Physics toolbar, Attributes menu when Explicit trap 

distribution is selected as the Domain trapping model for the Trap-Assisted 
Recombination node. Use this feature to specify a single discrete energy level for the 
traps.

TR A P  T Y P E

This section is available when the Specify trap species check box is selected for the 
parent node. Different trap types have a different charge when they are occupied or 
unoccupied. Select a Trap type:

• Donor traps. Neutral when unoccupied and positively charged when occupied.

When Explicit trap distribution is selected as the Domain trapping model, 
and Specify continuous and/or discrete levels is selected above, the 
Continuous Energy Levels (Domains) subnode is available from the 
context menu (right-click the parent node) or from the Physics toolbar, 
Attributes menu.
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• Acceptor traps. Neutral when unoccupied and negatively charged when occupied.

• Neutral electron traps. Negatively charged when unoccupied and neutral when 
occupied.

• Neutral hole traps. Positively charged when unoccupied and neutral when occupied.

TR A P S

When there is no Trap type defined, enter a Trap number density Nt (SI unit: 1/m3). 
The default is 1 × 1012 1/cm3.

When the Trap type is defined, enter one of the following:

• Donor trap density Nt,d (SI unit: 1/m3). The default is 1 × 1012 1/cm3.

• Acceptor trap density Nt,a (SI unit: 1/m3). The default is 1 × 1012 1/cm3.

• Neutral electron trap density Nt,ne (SI unit: 1/m3). The default is 1 × 1012 1/cm3.

• Neutral hole trap density Nt,nh (SI unit: 1/m3). The default is 1 × 1012 1/cm3.

For any option, select an Impurity energy level—Midgap (the default), From valence band 

edge, From conduction band edge, or Relative. Then enter the applicable information:

• Impurity energy level (available when From valence band edge or From conduction 

band edge is selected) Et,0 (SI unit: V). The default is 0 V.

• Impurity energy level (between 0 and 1, 0 being the valence band) (available when 
Relative is selected) Et,0 (dimensionless). The default is 0.5.

C A R R I E R  C A P T U R E

Choose how to define the Probability of electron capture (Cn)—From cross section (the 
default) or User defined.

• For From cross section, enter an Averaged cross section for electron capture <σn> 
(SI unit: m2; the default is 1 × 1018 1/cm2) and Electron thermal velocity Vth

n 
(SI unit: m/s; the default is 1.562 × 107 m/s). 

• For User defined, enter Cn (SI unit: m3/s). The default is 2.042 × 10-11 cm3/s.

Define the Probability of hole capture (Cp)—From cross section (the default) or User 

defined.

• For From cross section, enter an Averaged cross section for hole capture <σp> 
(SI unit: m2; the default is 1 × 1018 1/cm2) and Hole thermal velocity Vth

p (SI unit: 
m/s; the default is 1.562 × 107 m/s).

• For User defined enter Cp (SI unit: m3/s). The default is 1.562 × 10-11 cm3/s.
T H E  S E M I C O N D U C T O R  I N T E R F A C E  |  91



92 |  C H A P T E R
Continuous Energy Levels (Domains)

The Continuous Energy Level subnode is available from the context menu (right-click 
the Trap-Assisted Recombination parent node) or from the Physics toolbar, Attributes 
menu when Explicit trap distribution is selected as the Domain trapping model, and 
Specify continuous and/or discrete levels is selected under Trapping. Use this node to 
define a density of trap states.

TR A P  TY P E

This section is available when the Specify trap species check box is selected for the 
parent node. See Discrete Energy Level (Domains).

TR A P  D I S T R I B U T I O N

Select a Trap density distribution—Gaussian (the default), Rectangle, Exponential, or User 

defined. Then enter the applicable information:

• Width (for Gaussian distribution) σ (SI unit: V). The default is 0.333 V.

• Width (for rectangle distribution) Ewidth(SI unit: V). The default is 0 V.

• Size of transition zone (for rectangle distribution) ΔEtran(SI unit: V). The default is 
0.05 V. This value determines the width of the smoothing employed on the step 
function for the rectangle distribution.

• Damping coefficient (for exponential distribution) d (SI unit: V). The default is 0.1 V.

• Density of trap states (for user defined) gt(E) (SI unit: s3⋅A/(m5⋅kg)). The default is 
0 s3⋅A/(m5⋅kg).

Enter a Trap number density Nt (SI unit: 1/m3). The default is 1 × 1012 1/cm3. This 
quantity represents the total trap density, or the integrated density of states:

where g (E) is the density of trap states, and Ec and Ev are the energy levels 
corresponding to the conduction and valence band edges in the absence of band gap 
narrowing.

Nt gt E( ) Ed
Ec

Ev

=
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Select a Distribution center point—Midgap (the default), From valence band edge, From 

conduction band edge, or Relative. Then enter the applicable information:

• Distribution center point Et,0 (SI unit: V). The default is 0 V.

• Distribution center point (between 0 and 1, 0 being the valence band) Et,0 
(dimensionless). The default is 0.5.

C A R R I E R  C A P T U R E

These settings are the same as for Discrete Energy Level (Domains).

Auger Recombination

Use the Auger Recombination model to set the electron and hole recombination rates 
at high non-equilibrium carrier densities in semiconducting materials. Select this 
option from the Generation-Recombination submenu. 

The Auger recombination rate is defined as: 

with

where γnand γp are the electron and hole degeneracy factors, Nc,0 and Nv,0 are the 
effective densities of states for the conduction and valence band, Eg is the band-gap 
(SI unit: V), and ΔEg the band gap narrowing (SI unit: V). The parameters Cn and Cp 
are material constants (SI unit: m6/s).

A U G E R  R E C O M B I N A T I O N

The electron lifetime Auger recombination factor, electrons Cn (SI unit: m6/s) is taken 
From material. For User defined enter a value in the text field, the default value is for 
silicon, 2.8e-31 cm6/s.

Recombination and Generation and Theory for Auger Recombination
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The electron lifetime Auger recombination factor, holes Cp (SI unit: m6/s) is taken From 

material. For User defined enter a value in the text field, the default value is for silicon, 
9.9e-32 cm6/s.

Direct Recombination

Use the Direct Recombination to set the recombination rate in direct band-gap 
semiconductor materials such as gallium arsenide. Select this option from the 
Generation-Recombination submenu.

The recombination rate for both electrons and holes is set using the following 
equation:

with

where γnand γp are the electron and hole degeneracy factors, Nc,0 and Nv,0 are the 
effective densities of states for the conduction and valence band, Eg is the band-gap 
and ΔEg the band-gap narrowing (SI unit: V).

D I R E C T  R E C O M B I N A T I O N

The default Direct recombination factor C (SI unit: m3/s) is taken From material. For 
User defined enter a value in the text field. The default value is 0 m3/s.

Impact Ionization Generation

Impact Ionization Generation occurs when, for example, an energetic electron 
undergoes a collision in which it loses sufficient energy to promote an electron in the 
valence band to the conduction band, resulting in an additional electron hole pair 

Recombination and Generation and Theory for the Direct 
Recombination Feature
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being produced. It is the mechanism responsible for avalanche breakdown. Select this 
option from the Generation-Recombination submenu. 

The carrier generation rate due to impact ionization is given by:

The values of αn and αp can be user-defined or can be related to the material properties 
in the following manner:

where  and  are the components of the electric field parallel to the electron 
and hole currents respectively and Tref, an, ap, bn, bp, dn, and dp are material 
properties.

I M P A C T  I O N I Z A T I O N  G E N E R A T I O N

The default Impact Ionization model is Okuto Crowell model. For User defined, enter a 
different value or expression in the input field for the values of αn and αp.

For the Okuto Crowell model, the default Temperature reference Tref is 300 K. 

For the Okuto Crowell model, the defaults for the following are all taken From material. 
For User defined, enter a different value or expression in the text field.

• a factor, electrons, impact ionization an (SI unit: 1/V). The default is 0.426 (1/V).

• a factor, holes, impact ionization ap (SI unit: 1/V). The default is 0.243 (1/V).

• b factor, electrons, impact ionization bn (SI unit: V/m). The default is 4.81 × 105 V/
cm.

• b factor, holes, impact ionization bp (SI unit: V/m). The default is 6.53 × 105 V/cm.

• c factor, electrons, impact ionization cn (SI unit: 1/K). The default is 
3.05 × 10-4 (1/K).

• c factor, holes, impact ionization cp (SI unit: 1/K). The default is 5.35 × 10-4 (1/K).

Recombination and Generation and Theory for Impact Ionization
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bn 1 dn T Tref–( )+( )

E|| n,
------------------------------------------------------ 
 

2
– 
 exp=

αp ap 1 cp T Tref–( )+( )E|| p,
bp 1 dp T Tref–( )+( )

E|| p,
----------------------------------------------------- 
 

2
– 
 exp=

E|| n, E|| p,
T H E  S E M I C O N D U C T O R  I N T E R F A C E  |  95



96 |  C H A P T E R
• d factor, electrons, impact ionization dn (SI unit: 1/K). The default is 
6.86 × 10-4 (1/K).

• d factor, holes, impact ionization dp (SI unit: 1/K). The default is 5.67 × 10-4 (1/
K).

User-Defined Recombination

Use the User-Defined Recombination feature to manually set a recombination rate for 
electrons and holes in the semiconducting material. Select this option from the 
Generation-Recombination submenu.

U S E R  D E F I N E D  R E C O M B I N A T I O N

Enter the following recombination rates:

• User-defined recombination rate, electrons Rn,0 (SI unit: 1/(m3s)).

• User-defined recombination rate, holes Rp,0 (SI unit: 1/(m3s)).

User-Defined Generation

Use the User-Defined Generation feature to manually set a generation rate for electrons 
and holes in the semiconducting material. Select this option from the 
Generation-Recombination submenu. 

U S E R  D E F I N E D  G E N E R A T I O N

Enter the following generation rates:

• User-defined generation rate, electrons Gn,0 (SI unit: 1/(m3s)). 

• User-defined generation rate, holes Gp,0 (SI unit: 1/(m3s)).

Recombination and Generation and User-Defined Recombination

Recombination and Generation and User-Defined Generation
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Metal Contact

The Metal Contact node is used for modeling metal-semiconductor contacts. 

The Harmonic Perturbation subnode (it is of the exclusive type) is available from the 
context menu (right-click the parent node) or on the Physics toolbar, click the 
Attributes menu and select Harmonic Perturbation. 

TE R M I N A L

Specify the terminal properties. To indicate which boundaries belong to the same 
terminal, enter the same name in the Terminal name field. The Terminal name should 
be numeric for sweeps to work properly.

Select a Terminal type—Voltage (the default), Current, or Circuit. Select:

• Voltage to enter an electric potential V0 (SI unit: V). The default is 0 V.

• Current to enter a current I0 (SI unit: A). The default is zero current corresponding 
to an open circuit.

• Circuit to specify a terminal connected to an external circuit. 

C O N T A C T  TY P E

Select a Type—Ideal ohmic (the default) or Ideal Schottky. 

• Use the Ideal ohmic option for a non-rectifying metal-semiconductor junction, that 
is a contact with negligible resistance relative to the total resistance of the modeled 
semiconductor device. 

• Use the Ideal Schottky option for a simple rectifying metal-semiconductor junction, 
that is, when the current-voltage characteristics at the interface depend on the 
potential barrier formed at the junction.

C O N T A C T  P R O P E R T I E S

This section is available if Ideal Schottky is selected as the contact Type. 

Choose between an Ideal (the default) and User defined definition of the Barrier height. 
For User defined enter a value for the Barrier height ΦB (SI unit: V). 

For either choice, the default Metal work function Φ (SI unit: V) is 4.5 V. The metal 
work function is the difference in energy between the vacuum level and the conduction 
band at equilibrium in the metal in contact with the semiconductor.

T H E R M I O N I C  C U R R E N T S

This section is available if Ideal Schottky is selected as the contact Type.
T H E  S E M I C O N D U C T O R  I N T E R F A C E  |  97



98 |  C H A P T E R
Select the Thermionic currents—Richardson’s coefficients (the default) or Surface 

recombination velocities.

For Richardson’s coefficients enter an:

• Effective Richardson constant for electrons An*(SI unit: A/(m2⋅K2)). The default 
constant is 110 A/(K⋅cm)2 for silicon. 

• Effective Richardson constant for holes Ap* (SI unit: A/(m2⋅K2)). The default 
constant is 90 A/(K⋅cm)2 for silicon.

For Surface recombination velocities enter a:

• Surface recombination velocity, electrons Vs,n (SI unit: m/s). The default is 
21605 m/s for silicon. 

• Surface recombination velocity, holes Vs,p (SI unit: m/s). The default is 19006 m/s 
for silicon.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Thin Insulator Gate

Use the Thin Insulator Gate node to model a thin insulating material between the 
semiconductor and a metal. The layer has the thickness dins and the relative 
permittivity εins. The indices ins and s refer respectively to the insulator and 
semiconductor side of the boundary. 

The Harmonic Perturbation subnode (it is of the exclusive type) is available from the 
context menu (right-click the parent node) or on the Physics toolbar, click the 
Attributes menu and select Harmonic Perturbation. 

• Boundary Conditions and Metal Contacts

• Small-Signal Analysis

• Harmonic Perturbation, Prestressed Analysis, and Small-Signal 
Analysis in the COMSOL Multiphysics Reference Manual

• Small-Signal Analysis

• Harmonic Perturbation — Exclusive and Contributing Nodes in the 
COMSOL Multiphysics Reference Manual
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C O N T I N U A T I O N  S E T T I N G S

These settings are the same as for Fletcher Mobility Model (C). 

TE R M I N A L

Specify the terminal properties. To indicate which boundaries belong to the same 
terminal, enter the same name in the Terminal name field. The Terminal name should 
be numeric for sweeps to work properly.

Select a Terminal type—Voltage (the default), Charge, or Circuit. Select:

• Voltage to enter an electric potential V0 (SI unit: V). The default is 0 V.

• Charge to specify a charge Q0 (SI unit: C). This is the charge on the contact side of 
the parallel plate capacitor. The default is 0 V.

• Circuit to specify a terminal connected to an external circuit.

G A T E  C O N T A C T

Specify the insulator dimensions and permittivity as well as the metal work function.

• Oxide relative permittivity εins (dimensionless). The default relative permittivity is 1. 

• Oxide thickness dins (SI unit: m). The default thickness is 0.1 μm. 

• Metal work function Φ (SI unit: V). The default barrier height is 4.1 V. The metal 
work function is the difference in energy between the vacuum level and the 
conduction band at equilibrium in the metal in contact with the semiconductor.

Select the Surface traps check box to enable trapping.

Solving

It is important to realize that the Charge setting does not specify an 
interface charge at the boundary between the semiconductor and the 
insulator—it actually specifies the charge on the top plate of the gate 
capacitor itself.

When Surface traps is selected, the Discrete Energy Level (Boundaries) 
subnode is available from the context menu (right-click the parent node) 
or from the Physics toolbar, Attributes menu.
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TR A P P I N G

This section is available when the Surface traps check box is selected under Gate 

Contact. The rest of the settings are the same as for Trap-Assisted Recombination.

Discrete Energy Level (Boundaries)

The Discrete Energy Level subnode is available from the context menu (right-click the 
parent node) or from the Physics toolbar, Attributes menu when the Surface traps check 
box is selected for the following features:

• Under Insulation for Insulation.

• Under Gate Contact for Thin Insulator Gate.

• Under Insulator Interface for Insulator Interface.

Continuous Energy Levels (Boundaries)

The Continuous Energy Level subnode is available from the context menu (right-click 
the parent node) or from the Physics toolbar, Attributes menu when the Surface traps 
check box is selected and Specify continuous and/or discrete levels is chosen in the 
Trapping section for the following features:

• Under Insulation for Insulation node. 

When Specify continuous and/or discrete levels is selected in this section, 
the Continuous Energy Levels (Boundaries) subnode is available from the 
context menu (right-click the parent node) or from the Physics toolbar, 
Attributes menu.

• Boundary Conditions and Thin Insulating Gates

• Harmonic Perturbation, Prestressed Analysis, and Small-Signal 
Analysis in the COMSOL Multiphysics Reference Manual

The settings for this node are the same as for Discrete Energy Level 
(Domains). The only difference is that the units for Trap number density 
are 1/m2 instead of 1/m3.
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• Under Gate Contact for Thin Insulator Gate.

• Under Insulator Interface for Insulator Interface.

Floating Gate

Use the Floating Gate feature to model a gate which is unconnected to any terminal, or 
which is connected to a circuit with a floating potential. In combination with the 
Insulator Interface feature, the Floating Gate can model both the charging and 
discharging of a floating gate by tunneling from the domain.

Add this feature from the boundary level Electrostatics submenu.

F L O A T I N G  G A T E

Select an External connection—None (the default) or Circuit (to connect the terminal to 
an electrical circuit).

Select a Tunnel current Itun (SI unit: A) from the list—None, User defined, or choose a 
tunnel current announced by one of the Insulator Tunneling features in the model. 
Current injected into the gate accumulates as charge.

Enter a Contact work function Φc (SI unit: V). Use the Initial charge Qinit (SI unit: C) 
setting to determine the initial charge on the gate in a transient simulation, or the 
charge on the gate in a stationary simulation. 

Insulator Interface

The Insulator Interface feature is automatically applied to the boundaries at the 
interface between Semiconductor Material Model domains and Charge Conservation 
domains. A number of options are available to modify the behavior of the boundary.

The settings for this node are the same as for Continuous Energy Levels 
(Domains). The only difference is that the units for Trap number density 
are 1/m2 instead of 1/m3.
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I N S U L A T O R  I N T E R F A C E

Select the Surface traps check box to enable surface traps.

TU N N E L I N G

Select a Tunneling type— None (the default), Fowler-Nordheim tunneling, or User defined. 

F O W L E R - N O R D H E I M  TU N N E L I N G

In combination with the Floating Gate feature, use this option to model both the 
charging and discharging of a floating gate by Fowler-Nordheim tunneling from the 
domain.

For Fowler-Nordheim tunneling, select an option from the Fowler-Nordheim tunneling 
list—Electrons (the default), Holes, or Electrons and holes. This determines the species 
for which the tunnel current is computed. Based on this selection, enter:

• Electron Fowler-Nordheim coefficients An
FN (SI unit: A/V2) and Bn

FN (SI unit: V/
m).

• Hole Fowler-Nordheim coefficients Ap
FN (SI unit: A/V2) and Bp

FN (SI unit: V/m).

U S E R  D E F I N E D  TU N N E L I N G

For User defined, enter an Electron tunnel current density Jn
UD (SI unit: A/m2). Enter 

a Hole tunnel current density Jp
UD (SI unit: A/m2) to define a user defined tunnel 

current expression.

TR A P P I N G

This section is available when the Surface traps check box is selected under Insulator 

Interface. The rest of the settings are the same as for Trap-Assisted Recombination.

When Surface traps is selected, the Discrete Energy Level (Boundaries) 
subnode is available from the context menu (right-click the parent node) 
or from the Physics toolbar, Attributes menu.

When Specify continuous and/or discrete levels is selected in this section, 
the Continuous Energy Levels (Boundaries) subnode is available from the 
context menu (right-click the parent node) or from the Physics toolbar, 
Attributes menu.
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Th eo r y  f o r  t h e  S em i c ondu c t o r  
I n t e r f a c e

Detailed introductions to the physics of semiconductors are available in Refs 1 to 5. 
Ref. 6 is an introduction to semiconductor device modeling using the drift-diffusion 
method used by COMSOL Multiphysics. A brief summary of the physics of 
semiconductors is included here, to a level sufficient to derive the drift-diffusion 
equations and to develop a basic understanding of semiconductor band structures.

To completely describe the dynamics of electrons within a solid, the many body 
Schrödinger equation must be solved in the periodic structure defined by the crystal 
structure of the solid. In practice this is not possible and approximations must be made. 
Solid state physicists have devised a number of methods to solve simplified forms of 
this equation and these methods have been validated through experiment (see for 
example, chapters 9 to 11 of Ref. 1, and chapters 4 and 5 of Ref. 2). A starting point 
for many of these methods is to consider only the motion of the electrons through an 
essentially stationary lattice of nuclei (known as the adiabatic approximation). Then 
the many electron wave function is simplified into a form in which it reduces to a set 
of one electron wave functions. The effect of the nuclei and of electron-electron 
interactions can be incorporated into these one electron models by modifications to 
the effective potential. Models within the so-called one electron approximation have 
been very successful at predicting the properties of semiconductors and semiconductor 
transport. Although the one electron model explained in this section seems very 
simplistic (particularly when considering the complexity of electron-electron and 
electron-ion interactions), in practice this model can be used to develop a very detailed 
understanding of transport in semiconductors.
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In this section:

The Sommerfeld Model and the Density of States

Sommerfeld was the first person to successfully apply quantum mechanics to the 
physics of transport in solids. The Sommerfeld model considers the physics of 
independent electrons in a large potential well. The starting point for this model is the 
time-independent Schrödinger equation for an independent electron:

 (3-1)

where  is Planck’s constant divided by 2π and m is the electron mass. The 
time-independent Schrödinger equation takes the form of an eigenvalue equation. The 
modulus squared of the (complex) eigenfunctions (ψ) or wave functions that solve the 
equation represent the probability that an electron in the corresponding state can be 
found at a given position p(r) (that is, p(r) = ⏐ψ⏐2). The corresponding eigenvalue E 
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for the state gives the energy associated with the state. For a detailed introduction to 
quantum mechanics see Ref. 7 and Ref. 8.

Since it is expected that the solid is periodic, the equation is solved on a cube of side 
L assuming the periodic boundary condition:

 (3-2)

The solutions of Equation 3-1 and Equation 3-2 are plane waves of the form:

 (3-3)

where Ω = L3 is the volume of the solid (which appears in the equation to correctly 
normalize the wave function) and:

where nx, ny, and nz are integers.

Since these states are all periodic, it is convenient to label them by means of the 
wavenumber k. Think of a k-space populated by these states in a regular cubic grid. As 
a consequence of the Pauli exclusion principle each state can hold two electrons (one 
spin up and one spin down).

The density of states (g(k) = dns/ dξk), that is, the number of states (ns) per unit 
volume of k-space (ξk) for unit volume of the material, is given by:

Substituting Equation 3-3 into Equation 3-1 gives the energy of the particle in a given 
state:

 (3-4)
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At zero temperature electrons fill up the states with the lowest energy first, filling the 
grid so as to minimize the total energy. The surface dividing the filled states from the 
empty states — known as the Fermi surface — is spherical for large numbers of 
electrons as a result of Equation 3-4. For an electron number density n at zero 
temperature the magnitude of the wave vector corresponding to the states at the Fermi 
surface (kF,0) is given by:

so that:

At finite temperatures and at equilibrium, the principles of statistical mechanics (see for 
example Ref. 10) give the mean occupancy of the states (f0 (k)) as:

 (3-5)

where EF is the Fermi energy or the chemical potential. At finite temperatures EF is 
determined by the requirement that the total number of electrons per unit volume is 
equal to n:

 (3-6)

where g(E) = dns/ dE is the energy density of states, given by:

 (3-7)

In deriving Equation 3-7, the E-k relationship (Equation 3-4) was used to evaluate the 
derivative and to convert from k to E. 

These results form the basis of the Sommerfeld model and are useful in this discussion. 
Using this simple model, you can predict the thermal and electrical properties of some 
metals with reasonable accuracy (see Ref. 1 and Ref. 2 for details). However, the 
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model does not explain the existence of insulators or semiconductors because it is 
missing important information about the microscopic periodicity of the material. The 
Effect of Periodicity section describes how this periodicity can be treated.

The Effect of Periodicity

T H E  L A T T I C E  A N D  T H E  R E C I P R O C A L  L A T T I C E

The 3D periodicity of crystalline materials is conventionally described by a set of lattice 
vectors and a basis (a specific pattern of atoms) associated with each lattice point. 
Consider the case of a “primitive lattice”, that is, a crystal made up of a single atom, 
where the atomic locations are coincident with the lattice points. Such a lattice does 
not require a basis (or more formally the basis is a single atom located at (0,0,0)). The 
set of lattice vectors R can be written as:

 (3-8)

where n1, n2, and n3 are integers (taking all values between –∞ and ∞) and a1, a2, and 
a3 are the lattice vectors. For a primitive lattice, the unit cell is the parallelepiped 
constructed from the vectors a1, a2, and a3.

A useful way to represent the lattice is by means of an array of delta functions. A 
physical quantity of interest (for example the electric potential) can then be 
represented by the convolution of the variation in the potential within a single unit cell 
of the lattice with the delta function array. This approach is easiest to understand 
in 1D, when the delta function array is known as a Dirac comb. A 1D lattice can be 
represented as:

where a is the lattice parameter. This periodic function can be represented by a Fourier 
series of the form:

 (3-9)
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Of particular importance to understand semiconductor transport is the concept of the 
reciprocal lattice. This is the lattice produced by taking the Fourier transform of the 
real space lattice. For the Dirac comb this is given by:

where the final step follows from Equation 3-9. The reciprocal lattice is another Dirac 
comb with spacing proportional to the reciprocal of the real space lattice.

In 3D the lattice can be represented as δ (r–R) where the summation over all 
combinations of lattice vectors is implied by the use of the set of vectors R. The Fourier 
transform of the lattice is:

where Ω is the volume of the real space unit cell (Ω = a1 ⋅ (a2 × a3)) and K*is the set 
of reciprocal lattice vectors given by:

where n1, n2, and n3 are integers (taking all values between –∞ and ∞) and b1, b2, and 
b3 are the reciprocal lattice vectors given by:

 (3-10)
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Understanding the reciprocal lattice in terms of Fourier transforms as described above 
is useful. The Heisenberg uncertainty principle can be seen to be related to the 
properties of the Fourier transform (in the time domain: ΔfΔt≈1). Also the effect of a 
lattice basis can be straightforwardly introduced by taking the convolution of the basis 
with the lattice in real space. The convolution theorem then tells us that the result in 
reciprocal space (or k-space) is the product of the reciprocal lattice and the Fourier 
transform of the basis. The main effect of the basis is to modulate the amplitude (and 
phase) of the reciprocal lattice points. When zeros in the Fourier transform of the basis 
coincide with reciprocal lattice points, the basis leads to the elimination of these points 
in the reciprocal lattice. In X-ray imaging experiments, which sample the reciprocal 
lattice by crystal diffraction, this is referred to as extinction.

Importantly, any physical quantity with a periodicity that matches that of the lattice can 
straightforwardly be represented as the convolution of some function with the 
reciprocal lattice in real space, or as a modulating function for the reciprocal lattice in 
k-space, changing the amplitudes of each of the lattice points in k-space. Since each of 
these points represents a single harmonic component of the quantity of interest this 
construction can be thought of as a representation of a three dimensional Fourier 
series. For example, consider a periodic potential V(r) = V(r + R). V(r), which can be 
written in the form:

 (3-11)

where the summation occurs over all the reciprocal lattice vectors K*. The reciprocal 
lattice is therefore a representation of the Fourier components required in 3D to 
represent a function with the periodicity of the lattice.

B L O C H  F U N C T I O N S

The Sommerfeld model did not attempt to include the effective electric potential of 
the crystal or the other electrons. It is clear that the effective potential must be periodic 
with the same periodicity as the crystal lattice. The periodicity of the lattice has 
important consequences for the electrons. First, since the problem has periodic 
symmetry, observable physical quantities must also have periodic symmetry. As a 
consequence ⏐ψ⏐ must be periodic, so that, using the notation developed previously:

equivalently:

V r( ) VK∗e
iK∗ r⋅–

K∗
=

ψ r R+( ) ψ r( )=
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 (3-12)

The translational symmetry of the lattice imposes additional restrictions on the form 
of θ(R). For two lattice vectors, RA and RA + RB, translational symmetry implies:

which leads to the requirement that θ depends linearly on the three integers, n1, n2, 
and n3, which specify R (see Equation 3-8):

θ can therefore be written in the form:

for constants c1, c2, and c3. Writing k = c1b1 + c2b1 + c3b1 leads to the requirement 
θ = k⋅R and Equation 3-12 then becomes:

 (3-13)

If ψ (r) is written in the form:

 (3-14)

substituting into Equation 3-13 shows that uk(r+R) = uk(r). Equation 3-14, along 
with the periodicity requirement on uk(r), is known as Bloch’s theorem. It is extremely 
useful as it allows the wave function corresponding to a particular k vector to be 
expanded in a Fourier series of the same form as that of the potential (Equation 3-11):

Wave functions which satisfy Bloch’s theorem are frequently referred to as Bloch 
functions.

I N D E P E N D E N T  E L E C T R O N S  I N  A  P E R I O D I C  PO T E N T I A L

The time-independent Schrödinger equation can now be written using the periodic 
expansion for both the potential and the Bloch wave function:

ψ r R+( ) ψ r( )eiθ R( )
=

θ RA RB+( ) θ RA( )– θ RB( )=

θ RA RB+( ) θ RA( ) θ RB( )+=

θ n1c1 n2c2 n3c3+ +=

ψ r R+( ) ψ r( )eik R⋅
=

ψk r( ) uk r( )eik r⋅
=

uk CKe
iK r⋅–

K
=
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where G is used for the potential reciprocal lattice vector to distinguish it from K. 
Simplifying this equation gives:

To obtain the equation for the coefficients of the sum, premultiply the sum by

and integrate over all space. This gives:

 (3-15)

Equation 3-15 is valid for any periodic potential, small or large.

T H E  N E A R L Y  F R E E  E L E C T R O N  M O D E L

To obtain the small potential limit of Equation 3-15, consider the case of a single 
sinusoidal potential component with a small amplitude:

Since the periodicity of the potential is one dimensional, it is only necessary to consider 
Fourier components in the direction of K1 in the expansion of uk(r), which can 
therefore be written in the form:
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and Equation 3-15 takes the form:

 (3-16)

In the limit V1 = 0, p = 0, and Equation 3-16 recovers the form of the Sommerfeld 
E-k relationship, Equation 3-4. However, for V1 = 0, additional solutions now also 
exist for nonzero values of p, which take the form of a set of parabolas with origins 
shifted by p times the reciprocal lattice vector K1. As a result of the periodicity of the 
lattice, E has become multivalued for a given k as shown in Figure 3-1. The E-k 
relationship is periodic, with a single repeating unit contained within the dashed lines 
(shown at ±K1/2). Since the parts of the plot outside the dashed lines consist of 
repeated information, Ek plots are conventionally drawn showing only the region 
between the dashed lines. This region is called the Brillouin zone and in 3D it consists 
of all the points in k-space closer to one particular reciprocal lattice point K than to 
any other point.

Figure 3-1: Diagram illustrating how the energy becomes multivalued for the case of a 
periodic potential.

Writing Equation 3-16 explicitly for the case V1 = 0 gives:
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 (3-17)

Figure 3-1 shows that on the planes half between the lattice vectors (defined by the 
equations k·K1 = qK1/2, for integers q, and indicated by the dashed line), the energy 
associated with two different values of p, for example p1 and p2, can be equal. Note 
that p1 and p2 are associated with two (different) periodic components of the wave 
function or with two different Ek curves in the figure. Away from these planes, the 
energy associated with each periodic component of the wave function differs from all 
the other components.

Next consider the energy on the plane k·K1 = qK1/2, at the point corresponding to 
p1 = 0 and p2 = 1 as Equation 3-17 changes into Equation 3-16 by a slow increase of 
V1 from zero. Close to the plane it is expected that initially, as V1 is increased, a 
solution exists in which C0 and C1 are significant but all other coefficients are 
extremely small; that is, a solution in which only the p1 = 0 and p2 = 1 components of 
the wave function play a significant role. Making the assumption that the other 
coefficients are zero reduces the set of Equation 3-16 to just two equations:

where the vector k has been decomposed into components parallel (k||) and 
perpendicular (k⊥) to K1. Taking the product of these two equations leads to a 
quadratic equation that can be solved to obtain the value of E. It is most convenient 
to use the following nondimensional variables when solving the equation:

A little algebra then leads to the equation:
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that has solutions:

 (3-18)

In the case U = 0, k⊥= 0, this equation reproduces the two parabolas centered on 0 
and K1 (Figure 3-1). A nonzero value of k⊥ simply shifts the parabolas to greater 
energies. At the edge of the Brillouin zone (indicated by the dashed line), where the 
two parabolas cross, δ is zero, and as k|| decreases, δ increases, reaching a maximum of 
1 at the origin. When a small but finite value of U is introduced (for example U < 0.1) 
there is little effect on the curve away from the Brillouin zone edge, but as δ becomes 
comparable to, or less than, U its effect becomes significant. At the edge of the 
Brillouin zone the two Ek curves (corresponding to two different Fourier components 
of the wave function) no longer cross but are separated by a small gap such that ε=1±U. 
This corresponds to a gap between the lowest two Ek curves of magnitude 2V1. 

The form of Equation 3-16 makes it clear what the effect of other harmonics in the 
periodic potential would be. For a potential of the form:

Equation 3-16 becomes:

The effect of Vh is to couple the equations involving Cp and Cp±h, and it therefore 
perturbs apart the parabolas centered on pK1 and on (p ± h)K1. Provided Vh is small, 
its effect is only significant near the edge of the Brillouin zone. Thus, for a more 
general periodic potential with higher harmonics, the Ekrelationship takes the form 
shown in Figure 3-2. 
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Figure 3-2: Diagram showing the effect of a periodic potential on the E-k relationship. The 
repeated zone scheme is used.

The Ek diagram has now changed so that certain energies are forbidden. The allowed 
states exist within bands of permitted energies, with band gaps separating them. 
Figure 3-2 can be redrawn in various ways. In the figure the repeated zone scheme is 
shown. This scheme highlights the periodicity of the lattice and makes clear the 
concept of energy bands and band gaps. An alternative is to show only the nth band 
in the nth Brillouin zone (known as the extended band scheme). This approach 
produces results that look similar to the equivalent (parabolic) plot for the Sommerfeld 
model, with gaps appearing in the curve at the edges of the Brillouin zones. Practically, 
the more compact reduced zone scheme is usually employed, which shows only the 
information in the first Brillouin zone (between the dashed lines). When the band 
structure information of real materials is displayed in this form, it is typical to show the 

E

0-K1/2 K1/2-K1-2K1 K1 2K1

k·K1
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bands along several connected lines within the first Brillouin zone and to use the 
reduced zone scheme.

Before considering the effect of a potential varying in three dimensions, it is useful to 
visualize Equation 3-18 in a different way. Figure 3-3 shows two surfaces of constant 
energy for the solution to this equation (the nondimensionalized form of the equation 
is not used for the plot). In the free electron model the constant energy surfaces are 
spheres, centered on the origin. The periodicity of the structure means that there are 
now spheres centered on each of the reciprocal lattice points. The effect of the periodic 
potential is to split apart the spherical surfaces at the points where they would have 
overlapped, to form a set of non-intersecting surfaces.

There are now several states corresponding to a given wavenumber k with 
several associated energies. It is conventional to label the individual states 
with a band number, n, to distinguish between them. Thus the wave 
function Ψnk with energy Enk corresponds to the state in the nth band 
with wave vector k (note that in the above argument, the band index n 
corresponds to the harmonic p, which dominates in the Bloch function 
away from the Brillouin zone edges).
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Figure 3-3: Constant energy contours produced by a one-dimensional periodic potential. 
Two contours are shown with slightly different energy levels.

In the more general case where the potential varies periodically in all three dimensions, 
exactly the same arguments apply, provided that the potential coefficients are small, 
(that is VG << h2⏐G2⏐/8m). Where the spheres centered on the different lattice 
points K and K– G intersect, the effect of the potential is to cause the kind of 
remapping shown in Figure 3-2 and Figure 3-3—where the two surfaces intersect it 
splits apart instead. The nearly free electron energy surfaces can therefore be 
constructed by drawing spheres of equal radius centered on each lattice point K and 
rejoining them in this manner where they intersect, to form a set of nonintersecting 
surfaces. Although this procedure sounds simple, in practice rather complicated energy 
surfaces result from the procedure. Ref. 2 considers the example of a simple cubic 
material in detail and Ref. 1 shows several examples of constant energy surfaces for 
different lattices.

Considering the approximations made in deriving the nearly free electron model, it is 
quite remarkable that the model agrees so well with the measured Ek surfaces of many 
real materials, particularly considering that the true potential is expected to vary rapidly 
in the vicinity of the atomic cores. The reason for the success of the nearly free electron 

k⊥
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theory is related to many-body effects. In materials where it is possible to divide the 
electrons into tightly bound core electrons and weakly bound valence electrons, the 
core electrons and the ions can be replaced by a pseudo-ion with a weakly varying 
pseudopotential, surrounded by the outermost valence electrons. The wave function 
for the valence states must be orthogonal to that of the core states and the 
pseudopotential is constructed to ensure that this is the case. The resulting potential 
varies much more slowly than the true potential as a result of the Pauli repulsion 
effect. This effect repels the valence electrons away from the core states in order to 
ensure that the corresponding wave functions are orthogonal. The nearly free electron 
model can then be applied to real materials if the pseudopotential, rather than the true 
potential, is used.

T H E  D E N S I T Y  O F  S T A T E S  I N  A  P E R I O D I C  PO T E N T I A L

To compute the density of states in k-space the periodic boundary condition is applied, 
in this case on a crystal made up of Nc = N1× N2× N3 unit cells in the a1, a2, and a3 
directions, respectively. Using the periodic boundary condition for the wave function 
gives the equation:

Equation 3-13 adds the additional requirements:

Thus:

and the allowed values of k are:

where n1, n2, and n3 are integers. The reciprocal space volume per allowed k-vector 
is given by:

where ξBZ is the volume of the Brillouin zone in k-space. Consequently the number 
of allowed wave vectors in a single Brillouin zone is equal to the number of unit cells 
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in the crystal. Since each state can accommodate two electrons of opposite spin, filling 
one band over the entire Brillouin zone corresponds to a crystal with two valence 
electrons per unit cell. The density of states in k-space is given by:

 (3-19)

where the volume of the Brillouin zone (ξBZ=8π3/Ωu where Ωu is the unit cell 
volume) has been calculated explicitly using Equation 3-10 and vector algebra (note 
also that Ω = NcΩu is the volume of the crystal itself). This result is identical to that 
obtained by the Sommerfeld model.

The available states in the crystal are filled up in the same way as in the Sommerfeld 
model. The occupancy of the states is still given by Equation 3-5 and the Fermi level 
is defined by Equation 3-6. For a metal, the Fermi surface geometry in a periodic 
potential reflects the equipotential surfaces of the band structure at the Fermi energy 
(for example in the previous section surfaces like those shown in Figure 3-3). In 
semiconductors and insulators the Fermi energy lies within the band gap so there is no 
clear Fermi surface. However, in semiconductors the Fermi function slightly overlaps 
the band above (below) the Fermi level, known as the conduction band (or the 
valence band), and the states near the bottom (top) of the band have a low but 
significant probability of being occupied (unoccupied). Since it is these states that lead 
to the conductivity of semiconductors (see The Semiclassical Model), it is worth 
considering what form the density of states takes at the very edge of a band. 

Consider first the minimum of a conduction band. Choose a new coordinate system 
such that the Taylor series for the E-k relationship expanded about the band minimum 
up to second order takes the form:

 (3-20)

Here the constants m∗
x, m

∗
y, and m∗

z are associated with the k′
x, k

′
y, and k′

z terms in 
the series, respectively. The reason for choosing this form of the (arbitrary) constant 
becomes apparent below. The coordinate system for the vectors k′

 has its origin at the 
minimum of the band in k-space and is aligned so that Equation 3-20 applies in the 
form given. There are no first-order terms in the expansion since it is at a minimum in 
the E(k') relationship (that is, it is at the bottom of a band), which represents the 
equation of an ellipsoidal surface. Close to the band edge the constant energy surfaces 
are therefore ellipsoids, with a semi-axis in the k′

x direction given by
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and similarly for the k′
y and k′

z directions. A given constant energy surface contains a 
volume given by 

The number of states enclosed by the constant energy surfaces is therefore

and the density of states gc (E) is given by:

 (3-21)

This result is identical in form to Equation 3-7, except that the mass has been replaced 
by an effective mass, m*=(m∗

x m∗
y m∗

z)
1/3 (the constants in Equation 3-20 are 

named in a manner consistent with this result).

The same argument can be applied to the top of the valence band (using a new axis 
system, k′′) leading to the similar result:

 (3-22)

A L T E R N A T I V E  R E P R E S E N T A T I O N S  O F  T H E  W AV E  F U N C T I O N :  WA N N I E R  

F U N C T I O N S

At this point it is useful to consider an alternative representation of the wave function, 
known as the Wannier function. Wannier functions, Wn(r-R), are wave packets of 
Bloch functions (Ψnk(r)) that are localized at a particular lattice vector R. These are 
defined in the following way:

 (3-23)

where N is the number of unit cells in the crystal. The Wannier functions are 
orthogonal since:
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A single Bloch state can be represented in the form:

 (3-24)

Wannier functions are useful to represent tightly bound, localized states, since the 
spatial extent is limited. The functions themselves are not unique, since the phase of 
the Bloch states Ψnk(r) is arbitrary. However, it is possible to define a maximally 
localized Wannier function, which gives an intuitive picture of the bonding in the solid. 

Wannier functions are important because these form the basis of alternative approaches 
to computing the band structures of solids. For example, in the tight binding 
approximation (TBA) it is assumed that the Wannier function is an atomic orbital, 
enabling the wave function to be constructed directly from Equation 3-24. Instead of 
using a single atomic wave function, one can employ a linear combination of them, 
resulting in the linear combination of atomic orbitals (LCAO) approach.

S I L I C O N  B A N D  S T R U C T U R E  A N D  D E N S I T Y  O F  S T A T E S

The band structure of silicon is illustrated in Figure 3-4. Although the 
three-dimensional band structure is considerably more complex than the simple 
picture described, many of the principles described are appropriate. Silicon is an 
indirect band-gap semiconductor, which means that the bottom of the conduction 
bands occur at a different point in k-space to the top of the valence bands. The valence 
band maxima occur at the center of the Brillouin zone. The conduction band minima 
occur at approximately 4/5 of the distance from the zone center to its edge along the 
kx, ky, and kz axes.

Considering first the conduction bands, there are six symmetry equivalent minima in 
the locations shown in Figure 3-4. Physically the form of the energy density of states 
is important to determine the transport properties of the semiconductor. All six of the 
conduction band minima are equivalent and consequently the contributions to the 
density of states can be added. The constant energy surfaces near the band minima are 
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close to being ellipsoidal; Equation 3-21 gives a good description of the energy density 
of states. The transport properties of the band can be characterized by a single effective 
mass without any loss of accuracy in the model.

Figure 3-4: Band structure of silicon. Left: Schematic E-k diagram showing energy along 
the directions indicated by the dotted lines in the figure to the right. This part of the figure 
is equivalent to Figure 3-2. Right: Constant energy surfaces (shown in gray) 
corresponding to the contour indicated in the figure on the left. The first Brillouin zone is 
also shown. This part of the figure is equivalent to a 3D version of Figure 3-3.

There are two coincident valence band maxima located at point Γ. An additional 
valence band, with a slightly lower maximum energy (produced by spin-orbit coupling, 
see Ref. 1) is also located at this point. Each of these bands has a different effective 
mass associated with it. It is common to represent the effect of the three valence bands 
with an average density of states so that Equation 3-22 is assumed. Strictly speaking 
this assumption is less accurate for holes than it is for electrons, as a result of the 
different energies associated with the band minima.

This discussion motivates the adoption of the so-called one-band model, in which a 
single valence and conduction band is considered in the transport model. The 
one-band model can be applied to many practical semiconducting materials.

Electrons in a Perturbed Periodic Potential

Semiconductor devices are almost never homogeneous, and consequently it is 
necessary to consider the effect of perturbations to the periodic potential. First 
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consider solutions of the Schrödinger equation for the unperturbed problem, with a 
Hamiltonian, H0:

 

The perturbed problem has a set of solutions in the form:

 (3-25)

where H=H0+H1. 

The approach taken in Ref. 9 (and originally derived by Wannier) is inspired by 
Equation 3-24. The unperturbed wave function can be written in the form:

where W(r-R) is the Wannier function. Solutions of the form:

 (3-26)

are sought. Here Ψm(R) is a function that is employed to weight the Wannier 
functions in an expansion of the perturbed wave function. In the limit H1→0, 
Ψm(R)→exp(ik⋅R)/√N.

Substituting Equation 3-26 into Equation 3-25 gives:

 (3-27)

This equation is premultiplied by W*(r-R′) and integrated over the crystal:
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the above equation.

Hψm r( ) Emψm r( )=

The perturbed wave functions do not necessarily have a constant wave 
vector, so the subscript k is dropped and a different quantum number, m 
replaces it. In many practical applications H1 varies slowly on the length 
scale of the lattice and this assumption is subsequently made.
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 (3-28)

Consider first the right-hand side of Equation 3-28:

where both the orthogonality of the Wannier functions is employed.

The term in H1 on the left-hand side of Equation 3-28 gives:

where the fact that the Wannier function is localized around R or R′ and the 
assumption that H1 is a constant on this length scale is employed.

Finally the H0 term is considered. Using the definition of the Wannier function given 
in Equation 3-23, this term is written as:
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 (3-29)

where the orthogonality of the unperturbed wave functions is used and the dummy 
variable, R′′=R′-R is defined. Next we note that ground state energy, E0(k), is 
periodic in k-space (see for example Figure 3-2), and can be written as a Fourier series 
in the form:

 (3-30)

where R is the set of real space lattice vectors (real space forms a reciprocal space for 
k-space). The coefficients of the series ER are given by:

 (3-31)

where the integral over the Brillouin zone (with volume Ω) is replaced with a 
summation over the individual k-states in the zone for consistency with the notation 
employed in this section. Note that there are N states in the Brillouin zone, as shown 
in The Density of States in a Periodic Potential. Recognizing that the final term in 
Equation 3-29 takes the same form as the definition of EK* given in Equation 3-31, it 
is possible to write Equation 3-29 in the form:
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Finally, expanding Ψm(R′-R′′) in a Taylor series about the point R′′ gives:

where the final step introduces an operator based on the Taylor series expansion of the 
exponential function. Equation 3-29 can be written as:

 (3-32)

Next an operator E0(-i∇) is introduced that results from replacing every instance of k 
in the function E0(k) with -i∇. Comparing Equation 3-32 with equation 
Equation 3-30 shows that:

Assembling the terms derived above into Equation 3-28 (with R′→r) gives the 
following equation for Ψm(r):

 (3-33)

Equation 3-33 is an equation for Ψm(r), similar in form to the Schrödinger equation, 
with the perturbing potential H1 appearing as the potential energy and the operator 
E0(-i∇) replacing the kinetic energy operator. This equation can be used to derive the 
semiclassical model, which in turn determines the transport properties of electrons.
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The Semiclassical Model

Consider the motion of a wave packet, constructed using the functions Ψm(r) which 
modulate the Wannier functions. The wave function evolves according to 
Equation 3-33. Note that the perturbing potential, H1, is a function of position r and 
E0(-i∇) can be straightforwardly written as a function of the quantum mechanical 
momentum operator p=-i ∇. The equivalent classical Hamiltonian is 
H=E0(p)+H1(r) (where E0 is written as a function of p= k). The quantity k, 
which is analogous to the classical momentum in the Hamiltonian, is often referred to 
as the crystal momentum of the wave packet. The classical Hamiltonian results in 
classical particles that move according to the equations:

According to Ehrenfest’s theory (see Ref. 7 for a detailed discussion), the center of 
gravity of the wave packet moves in the same way as the corresponding classical 
Hamiltonian. Consequently the motion of a wave packet with associated charge -q, in 
a perturbing Hamiltonian of the form H1 = −qV moves according to the equations:

 (3-34)

 (3-35)

Here v(k) is the velocity of the wave packet, and F is the Lorentz force acting on it.

These equations are referred to as the semiclassical model (in the absence of magnetic 
fields). When magnetic fields are present Equation 3-35 takes the form:

(Ref. 1 provides references that derive this equation in full. Note also that 
Equation 3-34 is also modified in modern solid state theory to include an additional 
term due to the Berry curvature of the band. This term is usually zero for 
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semiconducting materials of interest). The model is extremely successful to describe a 
range of practical transport phenomena.

The semiclassical model is valid for wave packets that are localized to within greater 
than approximately ten lattice spacings. This restriction is apparent from the previous 
analysis but is also implied by the Heisenberg uncertainty principle Δx≈ /Δp≈1/kf 
where kf is the approximate magnitude of wave vectors at the Fermi surface. It would 
be unreasonable to use more than approximately 10% of the available states in a single 
wave packet. The wave packet is therefore large compared to the lattice size, and so 
sees only the average effect of the lattice.

Additionally, the physical size of the wave packets must be small compared to the 
length scale of electric or magnetic field variation. This is why the model is called 
semiclassical; the external fields are treated classically, but the periodic potential of the 
lattice is not. There is a further restriction on the local validity of the semiclassical 
model, which results from the fact that in the limit of zero periodic potential the 
classical limit should be recovered. In the classical limit the electron momentum and 
the crystal momentum become identical. At a given point in k-space the semiclassical 
equations are valid provided:

where a is of the order of the lattice constant, Ef is the Fermi energy, and Eg(k) is the 
energy difference to the nearest energy in a different band at the specified k-space 
point. In semiconductors the first condition is violated during electric breakdown, 
when electrons can make an interband transition driven by a large electric field. A 
similar phenomenon known as magnetic breakdown can occur in high magnetic fields. 
Although the semiclassical model really describes the transport of wave packets, 

The instantaneous velocity and momentum of a single electron fluctuates 
rapidly as it passes through the periodic potential of the crystal, so the 
crystal momentum is not directly related to the actual electron 
momentum and the wave packet velocity should be interpreted as an 
average drift velocity.
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conventionally the transport of electrons is discussed in the literature. This convention 
is therefore adopted from here onwards. 

The semiclassical model has important consequences for charge transport in materials. 
One of the more surprising consequences is that a filled band is completely inert. Since 
the semiclassical model does not allow intraband transitions, the electrons can only 
move between states within a band. Each state has a particular velocity associated with 
it (given by Equation 3-34) and electrons move between states according to 
Equation 3-35. In the reduced zone scheme, electrons that pass out of the Brillouin 
zone immediately reappear unchanged (except for a relabeling of the k-vector) at the 
opposite face. Summing the drift velocity over all the states in the band produces 
exactly the same result in the presence of applied fields as without them, since the band 
structure remains unchanged and since all the states are still occupied (see Ref. 1 for a 
formal derivation that integrates over all the states in a band). This result explains the 
existence of metals, insulators, and semiconductors. Metals are materials without a full 
band, in which an applied electric field can produce a large current. Insulators have a 
set of full bands and the Fermi energy lies within the band gap. The band gap is 
sufficiently large that the occupancy of the bands below the Fermi level is essentially 
one for all states at temperatures of interest. Similarly the band above the gap is 
essentially unoccupied in an insulator. Semiconductors are materials in which the 
Fermi level lies within the band gap, but in which the variation in the Fermi function 
overlaps the edges of adjacent bands at temperatures of interest, so that not all the 
states in the bands above (or below) the Fermi level are unoccupied (or occupied). This 
is why semiconductors usually have a higher resistance than metals since only a 
relatively small number of states in the band are unoccupied. The physics of 
semiconductor transport is determined by the band structure close to the top or the 
bottom of the bands adjacent to the Fermi level. 

Before considering how to compute the transport properties of bands that are not full, 
it is worth considering the implications of Equation 3-34 and Equation 3-35 for the 
relationship between force and electron velocity. In order to do so, the velocity must 
be related to the wave vector k. Therefore:

 (3-36)

In 3D the band gap must extend across all directions in k-space to 
produce a semiconductor or insulator.
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Note that both ∂v/∂k and -2∂2E(k)/∂k2 are rank 2 tensors (matrices). 
Equation 3-36 defines the effective masses introduced in Equation 3-20.

In general, the effective mass matrix is defined as:

such that F = m* v. In Equation 3-20 the coordinate system for k' was chosen such 
that the m* matrix has zero for the off-diagonal terms. For an isotropic band m* is 
proportional to the identity matrix. In this instance, near the top of a band, it is easy 
to see that its value could be negative. Instead of thinking in terms of negative mass, it 
is more conventional to reverse the sign on the force and to consider a wave packet 
corresponding to a particle with positive charge and mass (this is known as a hole).

Finally consider the form of Equation 3-33 in the case where the band structure takes 
the form given by Equation 3-20. For simplicity consider the case of an isotropic 
effective mass so that:

Equation 3-33 now takes the form:

 (3-37)

which is identical in form to the Schrödinger equation, except that the effective mass 
rather than the electron mass appears in the equation system. It is important to 
remember that for Equation 3-37 to apply the E–k relationship must be defined in an 
appropriate coordinate system. Note, however, that for the case of an anisotropic 
effective mass there are different coefficients for the derivatives in different directions 
in the Laplacian operator. Equation 3-37 also applies near the top of a band, so it is 
relevant for holes.
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The Boltzmann Equation

TR A N S P O R T  P R O P E R T I E S  A N D  H O L E S

To compute the transport properties of a material without full bands it is necessary to 
know the occupancy of the states within each of the partially filled bands. Under the 
influence of an applied force the distribution becomes distorted from that obtained at 
thermal equilibrium (Equation 3-5) and additionally can vary in space (for example in 
the presence of nonuniform electric fields, temperatures, or material properties) and 
time. The distribution function (f (m, r, t)) is related to the number of electrons 
(δn(k, r) in a volume element δ3k of k-space and δ3r of real space at point k, r in the 
following way:

Transport properties can be derived directly from the distribution function, for 
example the current density is given by:

 (3-38)

Here the integral is performed over the first Brillouin zone in k-space. Since f (k, r, t) 
gives information about the electron occupancy of states, at a given instant in time 
Equation 3-38 can be rewritten in the following form:

Noting that:

it is clear that the current density can be written in the form:

 (3-39)

Equation 3-39 is useful when computing the current contribution from a band that is 
nearly full, as only a small fraction of the band needs to be considered in the integral. 
The current is exactly the same as that which would be produced if the unoccupied 
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electron states were occupied by positively charged particles (referred to as holes) and 
the occupied electron states were empty. The hole occupancy factor, f h(k, r, t), is 
simply given by:

and holes respond within the semiclassical equations as if they had a charge opposite 
to that of electrons.

T H E  B O L T Z M A N N  E Q U A T I O N

Equation 3-38 shows that the time- and space-dependence of electric currents in a 
semiconductor is determined by the distribution function f (k, r, t). Within a volume 
element δ3kδ3r there are f (k, r, t)δ3kδ3r/4π3 electrons. In the presence of an 
external force the electrons move through real space at a velocity v (k) (given by 
Equation 3-34) and through k-space at a velocity ∂k/∂t (from Equation 3-35). At a 
time f (k, r) the electrons that occupy the volume element are those which were at k 
− δk, r − δr, at time t − δt. Therefore:

Here the subscript to the gradient term indicates that derivatives are taken with respect 
to the coordinates indicated. Therefore, in the absence of collisions:

Note that the assumption has been made that the size of the volume element (δ3kδ3r) 
remains unchanged in time—Liouville’s theorem asserts that it is (see Ref. 1). In 
practice electrons collide with defects in the lattice (impurities) and with lattice 
distortions caused by mechanical waves in the lattice (phonons). The electrons do not 
collide with the lattice itself as the effect of the lattice is already incorporated into the 
Bloch functions. However, any deviation from perfect periodicity produce collisions. 
The effect of collisions is to add additional time dependence to the equation system, 
so the full Boltzmann equation is given by:

Using Equation 3-35 and substituting ∂r/∂t = v gives the final form of the Boltzmann 
equation for electrons:
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 (3-40)

The hole distribution function can be shown to obey a similar Boltzmann equation:

These equations are difficult to solve and consequently approximations are usually 
made to simplify them significantly.

Doped Semiconductors

In practical applications it is common to modify the properties of the semiconductor 
to add impurity atoms or dopants in a controlled manner. Using silicon as an example 
(with a chemical valency of 4), impurity atoms such as phosphorous or arsenic (with a 
valency of 5), have the effect of adding extra electrons to the conduction band. Such 
impurities are called donors. Similarly impurities such as boron and gallium (with a 
valency of 3) can capture an electron from the valence band, creating holes. These 
impurities are called acceptors.

Consider the case of a donor atom. If the atom loses its additional electron, it has 
enough remaining electrons to fit into the lattice of the crystal. However the atom is 
now positively charged, and consequently a perturbing coulomb potential exists 
around it. Equation 3-37 can be used to compute the states that the additional 
electron can occupy within this potential. The problem becomes that of the hydrogen 
atom, except that the medium typically has a large relative dielectric permittivity (εr≈12 
for silicon) and the electron has an effective mass m* that is typically less than the 
electron mass. The solutions to the corresponding Schrödinger equation are swollen 
orbits (typically 2.5–5.0 nm in radius) similar to that of a hydrogen atom. The reduced 
mass and larger dielectric constant cause a reduction in the effective ionization energy 
of the electron so that it is significantly less than that of a hydrogen atom—donor 
ionization levels are typically 10s of meV. The energy of the donor states is 
consequently just below that of the conduction band as shown in Figure 3-5. Similarly, 
the energy of the acceptor states lies just above the valence band (also in the figure). 
Figure 3-5 shows an n-type semiconductor. This is a material with significantly more 
donors than acceptors so that the majority carriers are electrons.
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Figure 3-5: Density of states and Fermi function for an n-type semiconductor. The Fermi 
function is shown at zero temperature and at a finite temperature.

Since donor and acceptor states cannot hold two electrons (unlike states within the 
band), the carrier statistics are modified slightly. The occupancy of the states in 
equilibrium is determined from statistical mechanics as:

 (3-41)

where gd is the donor degeneracy factor, which is 2 if the conduction band minimum 
is nondegenerate but which varies when the degeneracy of the donor levels is altered 
by the band structure having degenerate conduction bands. Similarly, the occupancy 
of the acceptor states is given by:

 (3-42)

where ga is the acceptor degeneracy factor.
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In equilibrium the value of the Fermi level is determined self-consistently from the 
charge neutrality condition, along with the requirement that the number of holes and 
electrons is determined from the Fermi function:

Here gc(E) is the density of states in the conduction band, gv(E) is the density of states 
in the valence band, and f(E) is the (equilibrium) Fermi function.

Specifying the Dopant Distribution

The distribution of dopants within the semiconductor can be specified using the 
Analytic Doping Model and Geometric Doping Model features. The Analytic Doping 
Model enables distributions to be defined in terms of the coordinate system; the 
Geometric Doping Model enables definitions in terms of the distance from selected 
boundaries in the geometry.

T H E O R Y  F O R  T H E  A N A L Y T I C  D O P I N G  M O D E L

The Analytic Doping Model has two options to specify the doping concentration in 
terms of the coordinate system—User defined or Box. It supports the use of a local 
coordinate system that is rotated relative to the global coordinates.

User Defined Profiles
For user defined profiles any arbitrary dopant concentration can be created with 
user-defined functions or imported data (which can be specified using an interpolation 
function). Any expression written in terms of the local coordinate system can be used 
to define the distribution. Use of the COMSOL Multiphysics built-in functions 
enables the creation of intricate distributions. 

Box Profiles
The Box profile enables a box-shaped region of uniform doping to be defined away 
from which the dopant concentration decays with one of three preset functions. The 

Nd
+ N– a

 –
p n–+ 0=

n gc E( )f E( ) Ed=

p gv E( )fh E( ) Ed=

Doping
T H E O R Y  F O R  T H E  S E M I C O N D U C T O R  I N T E R F A C E  |  135



136 |  C H A P T E
location of the region of constant doping is defined by specifying either the corner or 
center coordinate using the global coordinate system. The size of the region is defined 
by specifying its extent in each of the directions parallel to the local coordinate axis. In 
3D the height, width, and depth are supplied to create a block; in 2D the width and 
depth are supplied to create a rectangle; and in 1D the width is supplied to create a 
line. It is possible to set the constant region to have zero extend in a given direction 
to, for example, create a plane of constant doping in a 3D geometry. The orientation 
of the constant region is aligned with the local coordinate axes. If a rotated local 
coordinate system is used the constant region rotates around its specified corner or 
center coordinate, which is expressed using the global coordinate system. 

The distribution outside of the constant region decays with one of three preset 
functions: Gaussian, Linear, or Error Function. These functions are defined using 
Ramp functions with unity gradient that begin at the edges of the constant region and 
which continue throughout the remainder of the domain. Thus there are two Ramp 
functions for each geometry axis. Figure 3-6 shows the four Ramp functions used to 
create a 2D Box profile. Note how each Ramp function is zero inside the constant 
region, and that the unity gradient outside the region creates and effective coordinate 
axis for each direction that is zeroed at the region boundary. 

In 3D, the Gaussian distribution is given by

 (3-43)
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In models with less than three dimensions the unused Ramp functions are 
omitted from this expression. Also, 2D-axisymmetric profiles are 
obtained in the same manner but using ramp functions rr
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Functions and Ramp in the COMSOL Multiphysics Reference Manual
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The decay length can be specified directly or calculated from a specified junction depth 
via:

where dj,i is the junction depth in the i-direction, and Nb is the background doping 
concentration that can be entered directly or taken from the output of another doping 
feature in the model. By default dj,x=dj,y=dj,z=dj, such that lx=ly=lz. To use different 
decay lengths in different directions select the Specify different length scales for each 

direction check box under the Profile section.

The linear distribution is given by

 (3-44)

where gi is the gradient in i-direction. The gradient can be supplied directly or 
calculated from a specified junction depth via:

By default the gradient is the same in all directions, however it can be set to be 
direction dependent using the Specify different length scales for each direction check 
box. Note that a negative dopant distribution is not physical, so the concentration is 
set to zero in regions where Equation 3-44 gives Na,d<0.

The Error Function distribution is given by

where mx is an argument factor which controls the length scale of the profile. The 
argument factor can be entered directly or calculated from a specified junction depth 
via:

By default the argument factor is the same in all directions, however it can be set to be 
direction dependent using the Specify different length scales for each direction check 
box.
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Figure 3-6: Ramp functions used to specify box doping profiles on a rectangular domain 
in 2D. The height out of the plane shows the magnitude of the ramp function (not to scale). 
Top: Individual ramp functions for the x-direction. Middle: Individual ramp functions 
for the y-direction. Bottom: Composite of all the ramp functions, showing the region of 
constant doping (highlighted in red).
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The Geometric Doping Model feature enables doping distributions to be defined in 
terms of the distance from selected boundaries in the geometry. This is convenient 
when working with geometries with intricate shapes that would be challenging to 
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describe analytically using the coordinate system. The boundaries from which the 
distance is calculated are selected using the Boundary Selection for Doping Profile 
node. Any boundary that bounds, or is within, the domains to which the 
corresponding Geometric Doping Model feature is applied can be selected. The form 
of the distribution can be selected from a range of preset functions or a user defined 
expression can be supplied.

User Defined Profiles
When a user defined profile is selected any arbitrary distribution that can be written in 
terms of the distance from the selected boundaries can be defined. This distance is 
available as the variable semi.gdm#.D, where # corresponds to the number of the 
Geometric Doping Model feature. 

Preset Profiles
The other selections in the Dopant profile away from the boundary list allow either 
Gaussian, Linear, or Error Function profiles to be generated. These profiles are defined 
in terms of the distance, D, from the selected boundaries as described below.

The Gaussian profile is given by

where Na,d are the concentration of the acceptors or donors, N0 is the concentration 
of dopants at the selected boundaries, and l is the decay length of the Gaussian 
function. The decay length can be entered directly or can be calculated from a specified 
junction depth, dj, via:

where Nb is a specified background doping concentration that can either be directly 
defined or taken from the output of another doping model feature.

The Linear profile is given by

 (3-45)

where g is the gradient, which can be entered directly or calculated from a specified 
junction depth via

Na d, N0exp D
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Note that, as a negative concentration is not physical, the dopant concentration is set 
to zero in regions where Equation 3-45 gives Na,d<0.

The Error Function profile is given by

where m is an argument factor which controls the length scale of the profile. The 
argument factor can be defined directly or calculated from a specified junction depth 
via:

U S I N G  A N A L Y T I C  A N D  G E O M E T R I C  D O P I N G  F E A T U R E S  TO G E T H E R

A doping distribution can be created by combining the functionality of the two doping 
model features. Often it is desirable to specify a domain of constant doping using a user 
defined profile in the Analytic Doping Model feature, and then to set the profile away 
from this region using the Geometric Doping Model feature. This approach has the 
advantage that the constant user defined profile can be assigned to a domain of any 
shape, thus removing the requirement for the uniformly doped region to be 
block-shaped that is imposed by a Box profile. The use of the Geometric Doping 
Model to specify the profile away from the constant domain has the advantage that it 
can accommodate a constant region that has curved boundaries. This is because the 
Geometric Doping Model profile only depends on the distance from the selected 
boundaries, rather than on the coordinate system. 

Equilibrium Carrier Concentrations

The carrier concentrations at equilibrium are given by the equations:

g
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The variables W and Wh are defined such that E = Ec + W and Eh = Ev −Wh. The 
density of states for electrons and holes then becomes (from Equation 3-21 and 
Equation 3-22):

So the electron and hole densities are written in the form:

The following equations are obtained with the substitutions ε=W/(kBT):

The jth order Fermi-Dirac integral (Fj(η)) is defined in the following manner:

 (3-46)

where Γ is the gamma function (see Ref. 15 for a brief review on the properties of the 
Fermi-Dirac integral). Note that Γ(3/2)= π(1/2)/2. The electron and hole densities 
can be written in the compact forms:

 (3-47)

where:
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 (3-48)

One of the properties of the Fermi-Dirac integral is that Fj(η)→eη as η→ −∞ (this 
result applies for all j). In semiconductors this limit is known as the nondegenerate 
limit and is often applicable in the active region of semiconductor devices. In order to 
emphasize the nondegenerate limit, Equation 3-47 is rewritten in the form:

 (3-49)

where:

 (3-50)

In the nondegenerate limit, the Fermi-Dirac distribution reverts to the 
Maxwell-Boltzmann distribution and γn and γp are 1. By default COMSOL 
Multiphysics uses Maxwell-Boltzmann statistics for the carriers, with γn and γp set to 1 
in Equation 3-49, irrespective of the Fermi level. When Fermi-Dirac statistics are 
selected Equation 3-50 is used to define γn and γp.

Away from equilibrium the above equations can still be applied but instead of using 
the Fermi level, the quasi-Fermi level is employed in Equation 3-41 and 
Equation 3-42 (Ref. 11). For a detailed description of the origin of the quasi-Fermi 
levels for electrons and holes see The Semiconductor Equations. The final results are:
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 (3-51)

and:

 (3-52)

The Semiconductor Equations

N O N U N I F O R M  B A N D  S T R U C T U R E  A N D  T H E  R E F E R E N C E  E N E R G Y

Most practical simulations deal with a band structure that varies in space—it is 
therefore necessary to define quantities such as the band energies with respect to a 
reference energy. In order to make the definition of boundary conditions simpler, the 
reference energy chosen is the Fermi energy in an equilibrium state when no potentials 
are applied to any of the boundaries in the system and when there are no thermal 
gradients in the system (note that in COMSOL Multiphysics the reference 
temperature used to define the equilibrium Fermi energy can be changed in the 
Semiconductor interface Settings window under Reference Temperature). This is 
illustrated in Figure 3-7 for an isothermal, abrupt p-n junction (that is a boundary 
between a p- and n-doped region of a semiconductor with a constant doping level on 
the two sides of the device). In equilibrium the Fermi energy is well-defined and is 
constant throughout space (since there are no gradients in the Fermi level/chemical 
potential). As a result in the immediate vicinity of the junction, the bands bend to 
accommodate a constant Fermi energy. In this region of band bending the Fermi level 
lies close to the center of the gap and consequently the carriers are depleted—this is 
known as the depletion region. A space charge layer is associated with the depletion 
region since the charges of the ionized donors and acceptors are no longer 
compensated by free carriers. It is the space charge layer that generates an electric field 
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and the corresponding potential gradient that results in the bending of the vacuum 
level, E0, and the conduction band and valence band edges (Ec and Ev, respectively). 
This results in a self-consistent picture of the band structure in the vicinity of the 
junction. As a result of the bending of the vacuum level and bands, a built-in potential, 
Vbi, develops across the junction. When an additional potential difference is applied to 
the p-side of the junction, Vp, the junction is in a condition known as reverse bias. The 
Fermi energy is no longer well-defined in the vicinity of the depletion region, but the 
equilibrium Fermi level, Ef0 is still used as a reference potential. Away from the 
depletion region the semiconductor is close to equilibrium and the concept of the 
Fermi level can still be applied. On the p-side of the junction, the Fermi energy shifts 
up to a value Ef1, which differs from Ef0 by qVp where q is the electron charge.

In the most general case the electron affinity, qχ = E0 − Ec, and the band gap, Eg = Ec –
Ev, can vary with position. However, the values can be considered to be material 
properties. This means that the conduction band edge cannot be parallel to the valence 
band edge or to the vacuum level (this is not shown in Figure 3-7).
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Figure 3-7: Diagram showing the variation in the band structure in a p-n diode. The 
horizontal axis represents position in the device and the vertical axis indicates energy. The 
vacuum level E0, the bottom of the conduction band Ec, and the top of the valence band 
Ev, are shown. Top: The band structure when there is no applied potential. A built-in 
potential, Vbi, develops across the junction as a result of the space charge layers associated 
with the depletion region. The Fermi energy Ef0, is constant throughout the device. Bottom: 
A potential Vp is applied to the p-type side of the junction, resulting in a reverse bias. Away 
from the junction, where the material is close to equilibrium, a second Fermi level, Ef1, 
can be defined in the p-type region–shifted by the applied potential.
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Q U A S I - F E R M I  L E V E L S

Consider the motion of an individual electron moving in the curved conduction band 
(see Figure 3-8). In between collisions the energy of the electron remains 
approximately constant (although the force accelerates the electron, its velocity only 
increases slightly in between collisions). The energy of the electron measured with 
respect to the band edge, W, increases as a result of band bending. The total energy 
associated with an electron is given by:

Similarly the energy of a hole is defined with respect to the band edge in the following 
manner:

Figure 3-8: Motion of an individual electron within a curved band.

It is assumed that scattering processes within the band cause the electrons (or holes) 
to reach a collective equilibrium on timescales small compared to the simulation 
timescales (if highly nonequilibrium/hot electron effects are important within the 
band then it is necessary to account for the deviation of the Fermi function from a 
Fermi-Dirac distribution by solving an additional energy equation—currently this is 
not possible in the Semiconductor interface). Since the relaxation time for electrons 
within the conduction band is much less than the corresponding relaxation time for 
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transitions across the band gap, the electron and hole distributions can have different 
associated Fermi levels (Efn for electrons and Efp for holes). In nonequilibrium 
circumstances (for example in the presence of an electric field or a thermal gradient) 
these quasi-Fermi levels are not coincident. The electron and hole quasi-Fermi levels 
typically lie within the band gap and consequently the electrons are scattered to states 
close to the band edge as they travel through space, as shown in Figure 3-8.

S I M P L I F Y I N G  T H E  B O L T Z M A N N  E Q U A T I O N

As discussed in The Semiclassical Model, the evolution of the distribution function for 
electrons and holes is governed by the Boltzmann equation (see Equation 3-40). Since 
this equation is difficult to solve, it is common to make simplifying approximations in 
its solution. Ultimately these approximations produce the drift-diffusion equations. 
The analysis presented here is based on Ref. 12 and Ref. 13.

The first step taken when simplifying the Boltzmann equation is usually to make the 
relaxation-time approximation, which assumes that the collision terms in the 
Boltzmann equations take the form:

Where f0 (E, Efn, T) is the Fermi function for electrons and f0
h

 (E, Efp, T) is the Fermi 
function for holes. This is essentially the simplest form of the collision term that returns 
the electrons to the Fermi-Dirac distribution desired. In practice this assumption is a 
significant simplification; Ref. 1 and Ref. 2 provide more detailed discussions of 
collision mechanisms in real solids.

From Hamilton’s equations the spatial gradient of the electron total energy is equal to 
the rate of change of crystal momentum, which in turn is related to the applied force 
(Equation 3-35 in The Semiclassical Model), so that:

Using these results the Boltzmann equations become
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For compactness, the explicit dependence of f0 and τ is dropped. Considering first the 
electron density, the assumption that the electron distribution function is close to its 
quasi-equilibrium state allows the distribution function to be written in the form:

where f1 << f0. The spatial gradient terms are dominated by terms involving the 
gradient of f0, so the f1 terms are neglected in comparison to these. Likewise the term 
df/dt is also small since the deviation from the quasi-equilibrium is small and the f0 
term varies on timescales much slower than the collision time if the temperature is a 
function of time. The Boltzmann equation can be expressed in the approximate form:

 (3-53)

Next the gradients in f0=1/(1+exp[(E-Efn)/(kbT)]) are expressed in terms of 
parameters related to the band structure, using the chain rule:

 (3-54)

where the last step follows from the semiclassical definition of velocity (Equation 3-34 
in The Semiclassical Model). From the chain rule the spatial gradient of f0 is given by:
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 (3-55)

Substituting Equation 3-55 and Equation 3-54 into Equation 3-53, using the 
definition E = Ec + W and rearranging gives:

By definition the number of electrons is given by:

The final equality holds because f1 is an odd function when integrated over the region 
of k-space in the vicinity of a band edge and f0 is an even function (assuming, without 
loss of generality, that the origin of k-space at the band minimum). To see why this is 
the case, consider Equation 3-38 in The Semiclassical Model (shown below for 
convenience).

In equilibrium (f=f0) no current flows so the integrand must be an odd function (since 
it is not zero over all k-space). Since the origin is at a band minimum, ∂E(k)/∂k is odd 
so f0 must be even. Deviations from equilibrium produce a current without changing 
the total number of electrons, so f1 must be an odd function. The electron current 
density can be written in the form:

Note that the definition E=Ec+W is used to split the energy terms. 

The rigid band assumption is made next. This asserts that even when the bands bend, 
the functional form of W in k-space (measured with respect to the band edge) is 
unchanged. Thus W = W(k). Given this assumption the quantities inside the integrals 
are dependent only on the local band structure, except for the df0/dE term.
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Next define the quantities:

 (3-56)

 (3-57)

To obtain:

 (3-58)

Qn and μn are tensor quantities (although most semiconducting materials are cubic) so 
that the corresponding tensors are diagonal with identical elements and consequently 
can be represented by means of a scalar (cubic materials are assumed in the 
Semiconductor interface). Careful examination of Equation 3-56 and Equation 3-57 
shows that these cannot straightforwardly be considered material constants because 
both depend on the quasi-Fermi level through the quantities df0/dE and 1/n. In the 
nondegenerate limit, the quasi-Fermi level dependence of these two quantities cancels 
out, since:

1/n∝exp[-Efn/(kBT)] and ∂f0/∂E∝exp[-Efn/(kBT)]

These quantities can therefore only strictly be considered material constants in the 
nondegenerate limit. In the degenerate limit it is, however, possible to relate Qn to the 
mobility for specific models for the relaxation time (see below). In principle a mobility 
model could be used, which is dependent on the electron quasi-Fermi level (or the 
electron density) in the degenerate limit.

Exactly the same arguments are applied for holes, leading to the equation for the hole 
current:

 (3-59)

Here, the symbols introduced with the subscript change n→p have the same 
definitions as the electron quantities except that the relevant integrals are over the hole 
band.

Equation 3-58 and Equation 3-59 describe the evolution of the quasi-Fermi levels 
within a semiconductor. It is possible to formulate the whole equation system so that 
the hole and electron quasi-Fermi levels are the dependent variables. Before deriving 
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the more familiar drift-diffusion equations it is useful to derive the relationship 
between Qn and μn, and Qp and μp.

R E L A T I N G  Qn T O  μn

For isotropic materials within the rigid band approximation, Equation 3-20 can be 
written as:

 (3-60)

Since Ec (r) is independent of k the derivatives with respect to E can be replaced by 
derivatives with respect to W, enabling the (scalar) mobility to be written as:

where the semiclassical result v=(1/ )(∂E(k)/∂k) is used and the xx element of the 
mobility tensor is evaluated to compute the scalar (the yy and zz elements produce the 
same result). From Equation 3-60:

The integral in the mobility expression can be transformed to spherical polar 
coordinates using the definitions:

and a functional form can be assumed for the relaxation time:

 (3-61)

In Equation 3-61 r = −1/2 corresponds to acoustic phonon scattering and r = 3/2 is 
appropriate for ionized impurity scattering (Ref. 14). In general r can be considered a 
function of temperature. In COMSOL Multiphysics, r is assumed to be −1/2.

The mobility integral can now be written as:
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To transform the integral over k to an integral over W note that W = h2 k2 /(2m∗) so 
that dk=(m*/2 2)1/2W -1/2dW. Writing each quantity in the integral as a function 
of W and rearranging gives:

Evaluating the angular integrals and integrating the energy integral by parts gives:

 (3-62)

Where the result:

is used. Equation 3-62 can be rewritten in the form:

 (3-63)

where the definition of the Fermi-Dirac function (Equation 3-46) and of f0 
(Equation 3-5) is used.

Following the same procedure for Qn gives:

 (3-64)

Equation 3-63 and Equation 3-64 show that Qn can be related to μn:

 (3-65)

where the result Γ (j + 1) = jΓ(j) is used.
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Similarly Qp is related to μp in exactly the same manner:

 (3-66)

In COMSOL Qn and Qp are computed from μn and μp using Equation 3-65 and 
Equation 3-66 with r=−1/2. Note that in the nondegenerate limit:

T H E  D R I F T - D I F F U S I O N  E Q U A T I O N S

Having related Qn and Qp to the corresponding mobilities the next task is to derive 
equations relating the current to the carrier concentrations from Equation 3-58 and 
Equation 3-59. Once again the case of electrons is considered in detail and the results 
for holes are similar.

Inverting Equation 3-51 gives the following equation for the electron quasi-Fermi 
level:

 (3-67)

where we have defined the inverse Fermi-Dirac integral (F-1
1/2(α)=η implies that 

α=F1/2(η)). Let α=n/Nc and η=F-1
1/2(α). To obtain the drift-diffusion equations 

Equation 3-67 is substituted into Equation 3-58. Note that Nc=Nc(T) so that η=F-1
1/

2(n/Nc)=η(n,T). To compute the current the gradient of the quasi-Fermi level is 
required:

Since α=n/Nc and Nc∝T3/2 (Equation 3-48):

 (3-68)
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In order to evaluate ∂η/∂α the result dFn(η)/dη=Fn-1(η) is required (see Ref. 15 for 
details). Given this result:

so that:

 (3-69)

Substituting Equation 3-68 and Equation 3-69 into Equation 3-46 and then using 
α = F1/2(η) gives:

 (3-70)

Substituting Equation 3-70 into Equation 3-58 gives:

where the result η = (Efn − Ec)/(kBT) is used and follows from Equation 3-67.

Defining the function:

This result can be written in the form:

 (3-71)

Following the same argument for the hole current gives:

 (3-72)

The thermal diffusion coefficients Dn,th and Dp,th are defined as:

dF1 2⁄ η( )
dη

------------------------- F 1 2⁄– η( ) dα
dη
-------= =

dη
dα
------- 1

F 1 2⁄– η( )
-----------------------=

∇Efn ∇Ec ηkB T∇ 3
2
---

F1 2⁄ η( )
F 1 2⁄– η( )
-----------------------kB T∇–

F1 2⁄ η( )
F 1 2⁄– η( )
-----------------------

kBT
n
----------- n∇+ +=

Jn r t,( ) nμn∇Ec μnkBT
F1 2⁄ η( )
F 1 2⁄– η( )
----------------------- n∇ n

T
---- qQn

3
2
---μnkBT

F1 2⁄ η( )
F 1 2⁄– η( )
-----------------------– 

 ∇T+ +=

G α( )
F1 2⁄ η( )
F 1 2⁄– η( )
----------------------- α

F 1 2⁄– F1 2⁄
1– α( )( )

-----------------------------------------= = η F1 2⁄
1– α( )=

Jn r t,( ) nμn∇Ec μnkBTG n Nc⁄( ) n∇ nq
T
-------Dn th, ∇T+ +=

Jp r t,( ) pμp∇Ev μpkBTG p Nv⁄( ) p∇–
pq
T
-------Dp th, ∇T–=
R  3 :  S E M I C O N D U C T O R  B R A N C H  I N T E R F A C E



In the nondegenerate limit G(α)→1 and the following equations are obtained:

For a relaxation time dominated by phonon scattering (currently assumed by the 
COMSOL software) r = −1/2.

PO I S S O N ’ S  E Q U A T I O N  A N D  T H E  C O N T I N U I T Y  E Q U A T I O N S

Equation 3-71 and Equation 3-72 define the hole and electron currents used by 
COMSOL Multiphysics in the Semiconductor interface. To solve a model the 
Semiconductor interface uses these definitions in combination with Poisson’s equation 
and the current continuity equations.

Poisson’s equation takes the form:

 (3-73)

and the current continuity equations are given by:

 (3-74)

where Un=ΣRn,i-ΣGn,i is the net electron recombination rate from all generation 
(Gn,i) and recombination mechanisms (Rn,i). Similarly, Up is the net hole 
recombination rate from all generation (Gp,i) and recombination mechanisms (Rp,i). 
Note that in most circumstances Un=Up. Both of these equations follow directly from 
Maxwell’s equations (see Ref. 6).

The Semiconductor interface solves Equations 3-73 and 3-74 using the definitions for 
Jn and Jp given in Equation 3-71 and Equation 3-72.
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Mobility Models

In The Semiconductor Equations section, a closed-form expression was computed for 
the electron and hole mobilities by making the relaxation-time approximation and by 
assuming a particular form for the scattering time as a function of energy. Any 
mechanism that disturbs the perfect periodicity of the lattice can produce scattering of 
the carriers. Such mechanisms include:

• Phonons (L): Thermally generated acoustic waves traveling through the crystal 
(scattering by phonons is frequently referred to as lattice scattering, which is 
somewhat confusing as the lattice itself never scatters the carriers unless perturbed 
from perfect periodicity).

• Ionized impurities (I): These begin to have an effect at doping levels above 
approximately 1015 cm-3 at room temperature.

• Carrier-carrier scattering (C). 

• Neutral impurity scattering (N): This is important at low temperatures only, 
typically below 77K.

• High field velocity saturation (E).

• Surface scattering (S): This includes effects such as interface charges, scattering by 
surface phonons, and so on. It is important in field effect devices, such as field effect 
transistors.

In practice the mobility is typically computed using analytic functions with or without 
a rigorous physical motivation and designed to fit the experimental data to a good 
degree of accuracy. Often, mobility models are designed to address one particular 
effect (for example high field velocity saturation) and require other mobility models as 
a basis (for example a model incorporating scattering due to phonons and impurities). 
As an example, high field effects are often incorporated into a model by defining the 
high field mobility as a function of the mobility due to phonon and impurity scattering. 
In other cases the scattering due to different mechanisms is combined using 
Matthiessen’s rule—an approximate method for combining mobilities that, while not 
rigorously correct, is frequently employed to produce empirical fits to experimental 
data in the context of mobility models. Matthiessen’s rule combines mobilities in the 
following manner:

In the Semiconductor interface, the letters in brackets in the list above are 
used to label the effects included in a specific mobility model (the 
convention used in Ref. 6 is adopted).
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An example of the manner in which mobility models are often combined is:

 (3-75)

where μE, the mobility including high field effects, is a function of μs (the surface 
mobility), which in turn is a function of the mobility model for phonon (or lattice) and 
impurity scattering (μLI).

COMSOL Multiphysics uses a general mechanism to combine both user-defined and 
predefined mobility models that accommodate combinations of the form given in 
Equation 3-75. Mobility models are added as subnodes to the Semiconductor Material 
Model node. If the mobility model requires an input mobility, this is selected from the 
available mobilities appropriate for this model (individual selections are required for 
both the electron and hole mobility inputs). Multiple user-defined mobility models can 
be added and these can be used as inputs to predefined or other user-defined mobility 
models. The user-defined mobility models are always available as inputs in predefined 
mobility models (if the model requires an input). Within this system it is possible to 
mix user-defined mobility models with models predefined by COMSOL in a very 
general manner. The model used within the simulation is selected for electrons and 
holes by changing the electron mobility and the hole mobility settings in the Mobility 
Model section of the Semiconductor Material Model node, which by default uses a 
constant mobility obtained from the material properties.

The following sections describe the predefined mobility models currently available in 
the Semiconductor interface.

1
μtot
---------- 1

μ1
------ 1

μ2
------+=

μtot μE μS μLI( )( )=

It is important to understand that each type of mobility model node only 
defines mobility variables for electrons and holes that can be used by other 
models, or by the Semiconductor Material Model node. The mobility 
models for electrons and holes actually used in the simulation are 
determined by the selections or settings in the Semiconductor Material 
Model node which do not change when additional mobility models are 
added. In order to add a mobility model to a simulation it is therefore 
necessary to both add the sequence of mobility model nodes to the model 
tree and then to select the desired final mobility for both electrons and 
holes in the Semiconductor Material Model node.
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T H E O R Y  F O R  T H E  PO W E R  L A W  M O B I L I T Y  M O D E L  ( L )

The Power Law Mobility Model (L) is a simple mobility model and requires no input 
as it includes scattering due to phonons. The electron (μn,pl) and hole (μp,pl) 
mobilities are determined by the equations:

where T is the lattice temperature and μp,pl, μp,pl, αn, αp, and Tref are material 
properties. For silicon the values of the material properties are taken from Ref. 16.

T H E O R Y  F O R  T H E  A R O R A  M O B I L I T Y  M O D E L  ( L I )

The empirical Arora Mobility Model (LI) includes both phonon and impurity 
scattering. The electron (μn,ar) and hole (μp,ar) mobilities are determined by the 
equations:

where T is the lattice temperature, Na
− is the ionized acceptor concentration, and Nd

+ 
is the ionized donor concentration. All the other parameters are material properties. 
For silicon the values of the material properties are taken from Ref. 16.

T H E O R Y  F O R  T H E  F L E T C H E R  M O B I L I T Y  M O D E L  ( C )

The Fletcher Mobility Model (C) adds carrier-carrier scattering to an existing mobility 
model (or to a constant input mobility). It accepts input mobilities of type L or LI, as 
well as user-defined input mobilities.

The model uses Matthiessen’s rule to combine the input mobility with a carrier-carrier 
scattering mobility term that is identical for electrons and holes. The model is based 
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on Ref. 17. The electron (μn,ar) and hole (μp,ar) mobilities are determined by the 
equations:

where T is the lattice temperature, μin,n and μin,p are the electron and hole input 
mobilities, n is the electron concentration, and p is the hole concentration. F1 (SI 
unit: s2A/(m3kg)), F2 (SI unit: 1/m2), and Tref are material properties. For silicon 
the values of the material properties are taken from Ref. 18. 

T H E O R Y  F O R  T H E  L O M B A R D I  S U R F A C E  M O B I L I T Y  M O D E L  ( S )

The Lombardi Surface Mobility Model (S) adds surface scattering resulting from 
surface acoustic phonons and from surface roughness. Mobility contributions 
corresponding to these effects are combined with the input mobility using 
Matthiessen’s rule. The model accepts input mobilities of type L, LI, or C as well as 
user defined input mobilities. The model is based on Ref. 19. The electron (μn,lo) and 
hole (μp,lo) mobilities are determined by the following equations:

where T is the lattice temperature, μin,n and μin,p are the electron and hole input 
mobilities, Na

- is the ionized acceptor concentration, Nd
+ is the ionized donor 

concentration,  is the component of the electric field perpendicular to the 
electron current and  is the component of the electric field perpendicular to the 
hole current. All other parameters in the model are material properties (note that δn 
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and δp have units of V/s). The material properties for silicon are also obtained from 
this reference Ref. 19.

T H E O R Y  F O R  T H E  C A U G H E Y - T H O M A S  M O B I L I T Y  M O D E L  ( E )

The Caughey-Thomas Mobility Model (E) adds high field velocity scattering to an 
existing mobility model (or to a constant input mobility). It accepts input mobilities 
of type L, LI, C, or S as well as user defined input mobilities. The model is based on 
Ref. 20. The electron (μn,lo) and hole (μp,lo) mobilities are determined by the 
following equations:

where T is the lattice temperature, μin,n and μin,p are the electron and hole input 
mobilities and Fn and Fp are the driving forces for electrons and holes (currently 
Fn=E||,n and Fp=E||,p where E||,n is the component of the electric field parallel to 
the electron current and E||,p is the component of the electric field parallel to the 
electron current). All other parameters in the model are material properties (note that 
vn,0 and vp,0 are the saturation velocities for electrons and holes and have units of m/
s). The material properties for silicon are also obtained from Ref. 20.

T H E O R Y  F O R  T H E  U S E R - D E F I N E D  M O B I L I T Y  M O D E L

The User-Defined Mobility Model can be used to create electron and hole mobilities 
with user-defined expressions for the electron and hole mobilities. These mobility 
models can be combined with other user-defined or predefined mobility models in 
arbitrary combinations. These mobility models can take other defined mobilities as 
inputs. By default the output mobility is set to the input mobility for both electrons 
and holes. However, it is possible to change the expression for the output mobility so 
that it is any function of the input mobility (or indeed a function that does not depend 
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on the input mobility). The default value is set in this way to make it straightforward 
to access the variable in which the input mobility is stored.

Traps

Many semiconductor devices contain a distribution of traps within the band gap. These 
traps are associated with donor and acceptor atoms, with other impurity atoms in the 
bulk of the semiconductor, or with ‘dangling bonds’ that occur at defects or exterior 
surfaces and grain boundaries. It is useful to consider the processes that can occur 
when trap states at a given energy, Et, exchange electrons or holes with states in the 
valence or conduction bands at energy E. This situation is depicted in Figure 3-9. 
There are four processes that occur, corresponding to the emission and capture of both 
electrons and holes between states in the bands

In the finite volume method, the dependent variables are constant within 
each mesh element and the gradients cannot be defined using the 
differentiation operator in COMSOL. A detailed understanding of the 
finite volume method is required in order to set up mobility models that 
depend on the gradients of the dependent variables in COMSOL (∇n, 
∇p, and ∇V). These variables include the currents jn and jp, the electric 
field E, and the electric displacement field D, as well as the gradients of 
the quasi-Fermi levels ∇Efn and ∇Efp. In the finite element method these 
limitations do not apply and the gradients of the dependent variables (and 
quantities which depend on them) can be used in expressions.

Defining the Carrier Mobility
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.

Figure 3-9: The four processes that contribute to SRH recombination. Left: An electron in 
the conduction band with energy E is captured by a trap with energy Et (ec). Center left: 
An electron in a trap at energy Et is emitted to an empty state with energy E in the 
conduction band (ee). Center right: An electron in a trap at energy Et moves to an empty 
state in the valence band at energy E. Equivalently a hole in the valence band is trapped 
(hc). Right: An electron from an occupied state in the valence band at energy E is excited 
into a trap with energy Et. Equivalently a hole in the trap is emitted (he).

In practice one may wish to consider a set of discrete trap levels or a continuum of trap 
states (with a density of states gt(Et)). Both of these approaches can be accommodated 
if we define Nt, the density of traps per unit volume at a particular trap energy, Et. For 
a continuum of trap states Nt is given by:

For the trap energy Et, carriers in the conduction band or valence band with energy E 
make the following contributions to the total recombination or generation rate per 
unit volume for each process:

 (3-76)

where Nt is the number of traps per unit volume, ft is the trap electron occupancy 
(between 0 and 1), gc(E) is the conduction band density of states, gv(E) is the valence 
band density of states, and cec(E), cee(E), chc(E), and che(E) are rate constants. The 
net rate of capture for electrons and holes in the energy interval dE can be written as:

Et

E

Et

E

Et

E

Et
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 (3-77)

In thermal equilibrium the principle of detailed balance implies the reversibility of each 
microscopic process that leads to equilibrium. Consequently at equilibrium the 
expressions in the square brackets must be equal to zero. This leads to the following 
relationships between the rate constants:

In thermal equilibrium the occupancy of the electron traps ft is determined by 
Fermi-Dirac statistics, fte=1/(1+exp[(Et-Ef)/(kBT)]/gD) (where gD is the 
degeneracy factor). The above equations can be simplified to yield:

 (3-78)

Equation 3-78 applies even away from equilibrium. Substituting this equation back 
into Equation 3-77, rearranging and integrating, gives the total rate of electron (re) or 
hole (rh) capture to traps at the specified energy, Et:

where the quasi-Fermi levels have been introduced.

Introducing the constants Cn and Cp, which represent the average capture probability 
of an electron over the band:
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and noting that:

the following equations are obtained:

 (3-79)

where:

 (3-80)

Equation 3-79 and Equation 3-80 define the electron and hole recombination rates 
associated with the trap energy level. The total rate of change of the number of trapped 
electrons is given by:

 (3-81)

Equation 3-81 determines the occupancy of the traps at the level Et. For a continuous 
distribution of traps the equivalent expression is:
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Note that if different trap species have different values of Cn or Cp then this should be 
accounted for by summing the quantities Cn gt(Et) or Cp gt(Et) when producing the 
combined density of states-capture probability product. This is indicated by the 
expectation symbols employed in the above equation (for example. ).

The total recombination rate for electrons and holes is given by integrating 
Equation 3-79 over all the distributed traps and summing over the distinct discrete 
traps (denoted by the superscript i), giving the following result:

 (3-82)

Finally the charge resulting from the occupied traps must also be computed. In general 
the charge on a trap site depends on the nature of the trap. Table 3-1 summarizes the 
different trap types currently included in the Semiconductor Module. 

The total density of traps is given by:

For the discrete states the total number of traps at the discrete level Ei is:

The total charge density, Q, that results from the traps is given by:
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 (3-83)

Equation 3-83 can be rewritten in the form:

where E0 is an energy within the band gap referred to as the neutral level. E0 is chosen 
such that:

So if a neutral energy is employed the following equation applies for the charge on the 
traps:

 (3-84)

A neutral level is often a convenient way to characterize a set of traps at a boundary—
since the details of the types of trapping sites are frequently not known, but it is 
possible to assign a neutral level to the boundary using experimental techniques such 
as capacitance measurements.

Recombination and Generation

Generation and recombination processes produce a source or a sink for electrons or 
holes in the current continuity equations (Equation 3-74). These terms usually serve 
to restore the device to equilibrium. 

From Equation 3-49 the np product at equilibrium is given by:
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 (3-85)

where the effective intrinsic concentration is introduced:

Here Eg=Eg0-ΔEg=Ec-Ev is the effective band gap that includes the material band gap 
Eg0 and changes in the band gap (ΔEg), which result from effects such as band gap 
narrowing. Equation 3-85 is known as the mass action law. Note that in an undoped 
semiconductor, where charge conservation at equilibrium implies n=p, the carrier 
concentrations are equal to the intrinsic concentration, ni, since band gap narrowing 
only occurs in heavily doped semiconductors. Equation 3-85 is frequently used in 
recombination models to define the equilibrium carrier concentration.

In considering recombination processes, it is useful to note that photon momentum is 
usually negligible in comparison to the carrier momentum, and that the energy of 
phonons (lattice vibrations) is typically small compared to the band gap. Thus photon 
mediated transitions are typically vertical in an E-k diagram and phonon mediated 
transitions are frequently horizontal. Direct transitions involving both a photon and a 
phonon are usually so unlikely that they do not contribute significantly to 
recombination — in indirect semiconductors recombination is usually mediated by 
traps (impurities with energies close to the midgap). The following mechanisms are 
common in practical materials:

• Direct recombination: Important for direct band gap semiconductors such as 
gallium arsenide. An electron-hole pair recombines with the emission of a photon 
(of energy close to the band gap).

• Trap-assisted, or Shockley-Read-Hall recombination: Important in indirect band 
gap semiconductors, such as silicon and germanium. A defect (usually with an 
energy close to the midgap) is involved in the recombination process. An electron 
or hole is first trapped by the defect and then emitted into the valence/conduction 
band, resulting in a reduction in the number of available carriers. The carrier energy 
is typically converted to heat.

• Auger recombination: In Auger recombination three carriers are involved. A 
collision between two like carriers (for example, electrons) results in the 
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recombination of one of the electrons with a hole. The energy released by the 
transition is transferred to the surviving electron. The resulting highly energetic 
electron subsequently loses energy as it undergoes collisions.

• Impact ionization: Impact ionization occurs when, for example, an energetic 
electron undergoes a collision in which it loses sufficient energy to promote an 
electron in the valence band to the conduction band, resulting in an additional 
electron-hole pair being produced. It is the mechanism responsible for avalanche 
breakdown.

The Semiconductor interface has features to add Auger Recombination, Direct 
Recombination, and Trap-Assisted Recombination to a semiconducting domain. 
Impact Ionization Generation is also available. User-Defined Recombination or 
User-Defined Generation (use a negative recombination rate for generation) can also 
be added. Note that the recombination and generation features are additive, so it is 
possible to model several processes simultaneously.

T H E O R Y  F O R  T H E  D I R E C T  R E C O M B I N A T I O N  F E A T U R E

Direct recombination is usually the dominant recombination mechanism in direct 
band gap semiconductors. The recombination rate can be derived phenomenologically 
from the two process that contribute to the net recombination rate: recombination of 
a conduction band electron with a hole in the valence band (caused by the emission of 
a photon by the electron) and generation of an electron hole pair by a valence band 
electron adsorbing a photon and moving into the conduction band. The 
corresponding capture (c) and emission (e) processes, are shown in Figure 3-10.

Figure 3-10: The two processes involved in direct recombination. Left: A conduction band 
electron is captured by an empty state (a hole) in the valence band. A photon is emitted. 
Right: A valence band electron is emitted into the conduction band. A photon is absorbed.

The recombination process is easiest to treat phenomenologically. Consider electrons 
in the conduction with energy E. A certain fraction of these electrons decay to states 
in the valence band with energy E’. This process contributes an amount drc to the total 
recombination process:
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where f(E) is the Fermi-Dirac function, gc(E) is the density of states in the valence 
band, gv(E) is the density of states in the conduction band and cc(E,E’) is the rate 
constant for decay between states E and E’. If it is assumed that the rate constant does 
not vary significantly in the vicinity of the band edges then cc(E,E’)~Cc and the 
expression can be directly integrated to yield:

The generation process is more difficult to treat phenomenologically since it involves 
photon mediated transitions that must occur vertically in the band structure with a 
fixed energy difference (corresponding to the wavelength of the photons). However 
for a given band structure and frequency, provided that the semiconductor is 
nondegenerate, the photon transitions occur at a rate approximately independent of 
the carrier concentrations for a given illumination intensity. Thus a constant generation 
rate is a reasonable approximation under these circumstances:

Where Ce is a rate constant (dependent on the wavelength and the intensity of the 
incident light). These approximations do not always apply, and in circumstances where 
a more detailed model is appropriate, the Semiconductor interface includes the Optical 
Transitions feature.

In thermal equilibrium these rates must be equal so:

So

The net rate of direct recombination is therefore given by:

where C=Cc is a material constant (SI unit: m3/s). For indirect band gap 
semiconductors such as silicon and germanium, C is effectively zero. In GaAs (a widely 
used direct band gap semiconductor) C is approximately 1×10-10 cm3/s.
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T H E O R Y  F O R  TR A P - A S S I S T E D  R E C O M B I N A T I O N :  S H O C K L E Y - R E A D - H A L L  

R E C O M B I N A T I O N

In an indirect band gap semiconductor at low fields, trap-assisted recombination is 
usually the dominant contributor to Un and Up. This recombination mechanism 
involves the trapping of an electron or hole followed by re-emission into the valence 
or conduction band (see Ref. 21 and Ref. 22). The details of this process are described 
in the Traps section, and COMSOL provides features to model the traps explicitly, 
solving for the occupancy of the traps. For less detailed modeling it is common to use 
the original model of Shockley, Read, and Hall in which steady state conditions are 
assumed for traps located at a single energy level. Equation 3-81 determines the 
occupancy factor for the state, ft. In the steady state the time derivative is zero and the 
following occupancy factor is obtained by solving the equation:

Consequently:

where:

Finally note that Cn and Cp can be written in terms of the thermal velocity of the 
electrons and holes respectively (vn,th/vp,th) as well as their average capture cross 
sections (<σn>/<σp>):
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T H E O R Y  F O R  A U G E R  R E C O M B I N A T I O N

Auger recombination becomes important at high nonequilibrium carrier densities, 
since the process requires three carriers. For example, when two electrons collide the 
collision can result in the recombination of one of the electrons with a hole. The 
energy released by the transition is transferred to the surviving electron, which 
subsequently returns to equilibrium as it undergoes collisions with the lattice. The 
recombination rate is given by:

where Cn and Cp are material constants (SI unit: m6/s). For silicon 
Cp≈2.8×10-31 cm6/s and Cp≈9.9×10-32 cm6/s. In practice these coefficients are 
weakly dependent on temperature and doping level.

T H E O R Y  F O R  I M P A C T  I O N I Z A T I O N

Impact ionization becomes important at high electric fields. When the carriers are 
accelerated by the electric field in between collisions to velocities where their energies 
are greater than the gap energy, they can dissipate enough energy during collisions that 
additional electron hole pairs can be generated. Impact ionization is responsible for the 
phenomenon of avalanche breakdown. The carrier generation rate due to impact 
ionization is given by:

For the values of αn and αp, the Semiconductor interface allows user-defined 
expressions or using the model of Okuto and Crowell (Ref. 23):

Where E||,n and E||,p are the components of the electric field parallel to the electron 
and hole currents respectively and Tref, an, ap, bn, bp, dn, and dp are material 
properties (see Ref. 23 for values of these properties for silicon, germanium, gallium 
arsenide, and gallium phosphate).
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U S E R - D E F I N E D  R E C O M B I N A T I O N

The user-defined recombination feature allows the recombination rate to be specified 
by the user for both electrons and holes.

U S E R - D E F I N E D  G E N E R A T I O N

The User-Defined Generation feature allows the carrier generation rate to be defined 
for both the electrons and the holes.

Incomplete Ionization

Away from equilibrium the ionization of donors and acceptors is still given by 
Equation 3-41 and Equation 3-42, except that the relevant quasi-Fermi level should 
be used in the equation system:

 (3-86)

It is often more convenient to express Equation 3-86 in terms of the carrier 
concentrations rather than the relevant quasi-Fermi levels. From Equation 3-49:

In the finite volume method the dependent variables are constant within 
each mesh element and their gradients cannot be computed using the 
differentiation operator in COMSOL Multiphysics. However, COMSOL 
provides special variables that can be differentiated—see Finite Element 
and Finite Volume Discretization in the Modeling Guidelines chapter.

Recombination and generation terms that are dependent on the gradients 
of the dependent variables frequently introduce significant nonlinearity 
into the equation system (whether the finite element or finite volume 
methods are employed). Consequently it is often necessary to add 
additional dependent variables to the equation system to assist the solver. 
Such generation models are only recommended for advanced users.
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 (3-87)

Substituting Equation 3-86 into Equation 3-87 gives:

 (3-88)

where ΔEd=Ec-Ed and ΔEa=Ea-Ev. Equation 3-88 is used in COMSOL when 
incomplete ionization with the standard ionization model is chosen in the Dopant 
Ionization section of the Semiconductor Material Model node. It is also possible to 
select a user defined ionization model, in which case the ionization ratios are specified 
directly by user-defined expressions. If complete ionization is chosen (the default) then 
Nd

+=Nd and Na
–=Na.

Band Gap Narrowing

In heavily doped materials the swollen orbitals associated with the impurity atoms 
begin to overlap and as a result the discrete energy level associated with the impurities 
broadens to form a band of finite width. Potential fluctuations due to the random 
distribution of the impurities also lead to a broadening of the impurity band. The 
ionization level of the impurities is consequently reduced. Eventually the impurity 
band overlaps the conduction band or valence band, effectively narrowing the band 
gap. In this situation the density of states no longer have the same form as that derived 
in Equation 3-21 or Equation 3-22. Nonetheless it is common to model band gap 
narrowing using these equations, but assuming a band gap that varies as a function of 
doping level. 

Several options are available to specify the band gap narrowing.

U S E R  D E F I N E D

The Semiconductor interface allows for models of band gap narrowing to be defined 
using an arbitrary expression. To add band gap narrowing to a material, select User 
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defined in the Band Gap Narrowing section of the Semiconductor Material Model. Then 
enter user-defined expressions for ΔEg (the amount of band gap narrowing) and for α 
(the fraction of the band gap narrowing taken up by the conduction band). For 
convenience the energy level is entered in units of volts and is converted to an energy 
behind the scenes by multiplying by the electron charge, q. When band gap narrowing 
is active the following equations apply:

where Eg is the band gap with band gap narrowing, Eg0 is the material band gap, Ec 
is the conduction band edge with band gap narrowing, Eci is the conduction band 
edge in the absence of band gap narrowing, Ev is the valence band edge with band gap 
narrowing, and Evi is the valence band edge in the absence of band gap narrowing.

S L O T B O O M  M O D E L

The Slotboom model is frequently used to model band gap narrowing in silicon. It is 
an empirical model that calculates the narrowing as a function of the total doping 
concentration (Ref. 27). This empirical model combines all of the physical effects 
(random potential fluctuations, electron-electron, carrier-impurity, and electron-hole 
interactions) into one energy narrowing, and consequently the calculated narrowing is 
the same in neutral and depleted parts of the device. The Slotboom model computes 
the band gap narrowing according to the equation:

 (3-89)

where NI = Nd + Na and the other parameters are material properties (Eref has the 
same units as the band gap itself and Nref has SI units of 1/m3). For silicon the 
Semiconductor Module material library uses the updated material properties due to 
Klassen et. al. (Ref. 28) rather than the original properties given in Ref. 27. Note that 
the fraction of the band gap narrowing taken up by the conduction band is also treated 
as a material property (0.5 for silicon).

J A I N - R O U L S T O N  M O D E L

The model developed by Jain and Roulston (Ref. 29) is a physics-based model in 
which the only empirical parameter is the fraction of the band gap narrowing taken up 
by the conduction band (once again this is defined as a material property, and a default 
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of 0.5 is usually employed). The model can be rewritten in a simple form with three 
coefficients. Coefficients for the model are available for a wide range of III-V materials, 
as well as for silicon and germanium.

 (3-90)

where An, Ap, Bn, Bp, Cn, and Cp are material properties (with the same units as the 
band gap), and Nref is a reference doping level (with SI units of 1/m3). The fraction 
of the band gap narrowing taken up by the conduction band is also treated as a material 
property (0.5 for silicon). Material properties for a number of materials are available in 
the material library, including the original materials described in Ref. 29 and several 
materials whose properties were obtained from Ref. 30.

Optical Transitions

The Optical Transitions feature is designed to model optical absorption and stimulated 
and spontaneous emission within the semiconductor. Stimulated emission or 
absorption occurs when a transition takes place between two quantum states in the 
presence of an oscillating electric field, typically produced by a propagating 
electromagnetic wave. For a semiconductor the process of stimulated absorption 
occurs when an electron in the valence band adsorbs a photon and transitions into the 
conduction band (resulting in coherent absorption of light). Stimulated emission 
occurs when an electron in the conduction band is stimulated by the field to transition 
down to the valence band (resulting in coherent emission of light). Spontaneous 
emission occurs when transitions from a high energy to a lower energy quantum state 
occur, with the emission of light. It can be regarded as a process by which a system 
returns to equilibrium, and correspondingly can be linked to the stimulated emission 
in equilibrium by thermodynamic arguments. Spontaneous emission does not occur in 
phase with any propagating waves in the system, and indeed can occur in the absence 
of such waves. Currently the optical transitions feature is dedicated to treating both 
stimulated and spontaneous emission in direct band gap semiconductors. 
Consequently the theory in the subsequent sections assumes a direct band gap at 
several points.
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H A M I L T O N I A N  I N  T H E  P R E S E N C E  O F  A N  E L E C T R O M A G N E T I C  WAV E

Stimulated emission is a quantum mechanical process that results from the change in 
the electron Hamiltonian due to the electromagnetic wave. The Hamiltonian 
appropriate for the motion of an electron in an electromagnetic field in the classical 
limit (Ref. 31, §16) is given by:

where A is the magnetic vector potential and m0 is the electron mass (not the effective 
mass).

The corresponding quantum mechanical operator is given by:

For most practical optical applications |qA|«|p| (Ref. 32) so the q2A⋅A term can be 
neglected. When modeling electromagnetic fields in the frequency domain, COMSOL 
employs a gauge that ensures that the time varying electric potential is zero and the 
magnetic potential satisfies the equation ∇⋅A=0 (see Magnetic and Electric Potentials 
in the COMSOL Multiphysics Reference Manual for further details on gauge fixing 
for electromagnetic waves). With this gauge for A the term iħq∇⋅A term is zero. 
Consequently the quantum mechanical Hamiltonian operator takes the form:

Since |qA|«|p| the time-dependent term that includes the vector potential can be 
treated as a small perturbation to the original stationary Hamiltonian H0 such that:

where:

 (3-91)
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 (3-92)

Equation 3-91 is the Hamiltonian for the semiconductor in the absence of the field, 
which has eigenfunctions of the form given in Equation 3-14. 

F E R M I ’ S  G O L D E N  R U L E  A N D  C R Y S T A L  M O M E N T U M  C O N S E R V A T I O N

Since the change to the electron Hamiltonian is small, time-dependent perturbation 
theory can be used to solve the problem (see Ref. 8 for an introduction to 
time-dependent perturbation theory that derives the main results used below). For 
small, oscillatory perturbations to a stationary Hamiltonian, a key result of time 
dependent perturbation theory (known as Fermi’s golden rule) predicts that the 
probability of a transition from an occupied state (1) to an unoccupied state (2, in this 
case at a higher energy than state 1) per unit time, W1→2 is given by:

 (3-93)

where E1 and E2 are the corresponding eigenvalues of the states, ω0 is the angular 
frequency of the oscillation and H12' is the matrix element corresponding to the 
oscillatory perturbation (H') to the original Hamiltonian:

Equation 3-93 gives the transition probability between two discrete states. The delta 
function indicates that the states must be separated by an energy equal to the photon 
energy, that is the transition must conserve energy. An additional requirement on the 
transition is that crystal momentum is conserved:

 (3-94)

where kopt is the photon wave vector. This requirement for crystal momentum 
conservation can be derived using a periodic expansion of the Bloch functions for the 
two wave functions in the matrix element H12' with a plane wave excitation (see, for 
example, Ref. 32 and Ref. 33). However the relation is in practice much more general 
since it results from fundamental symmetries of the system Hamiltonian (see Appendix 
M of Ref. 1). Typical optical wavelengths (400 to 700 nm in free space, dropping by 
a factor of order 10 inside the semiconductor) are significantly larger than the unit cell 
size of a semiconductor (typically less than 1 nm), which in turn determines the order 
of the Bloch function wavelengths. Consequently kopt is usually neglected in 
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Equation 3-91 leading to .

The crystal momentum conservation requirement can therefore be rephrased as a 
requirement that optical transitions take place vertically in the E-k diagram.

Equation 3-93 describes the transition rate from an unoccupied initial state to an 
occupied final state. To obtain the net rate of stimulated emission (including both 
upward and downward transitions) it is necessary to sum over all transitions from 
occupied to unoccupied states. Figure 3-11 shows the transitions of interest in a simple 
two-band model. Due to the spherical symmetry of the constant energy surfaces in 
k-space (in a direct band-gap semiconductor), upward transitions occur between states 
of fixed energy in the valence band (E1v) and in the conduction band (E2c). 

Figure 3-11: Diagram illustrating allowed optical transitions between the conduction 
and valence bands in a two band model of a direct band-gap semiconductor. The electron 
occupancy in the valence (fc(E)) and conduction (fv(E)) bands is also shown.

Assuming that the bands have a parabolic dispersion relation in the vicinity of k=0, E1v 
and E2c can be written as a function of the photon energy, ħω0. The equations:
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can be rearranged into the form of a single quadratic equation for k0. The equation 
has a single physically significant root (for positive k):

 (3-95)

For states with a given magnitude of k we can define an average matrix element  
which represents the averaged matrix element over all directions for a given excitation. 
For unpolarized light the random orientation of the polarization can also be accounted 
for in  (note that usually in the literature unpolarized light is assumed, and matrix 
elements quoted should be adjusted if polarized light is under consideration). Note 
also that the matrix element is in general a function of the magnitude of k, but for small 
values of k the assumption is generally made that it is independent of k. 

Fermi’s golden rule now takes the form:

 (3-96)

S T I M U L A T E D  A B S O R P T I O N

Equation 3-96 is the equation for the transition rate between a single pair of states. In 
a semiconductor, there are many states that satisfy Equation 3-95, and 
correspondingly it is necessary to integrate over pairs of states for which the transition 
can occur. Clearly an upward transition must take place from a full state into an empty 
state, so the occupancy of the states must also be accounted for. One of the 
assumptions underlying the drift diffusion equations is that the scattering within the 
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band occurs on a much smaller timescale than equilibrating processes that occur 
between the bands. Consequently stimulated electrons can be considered to 
equilibrate rapidly within the conduction band so that their distribution is described 
by the Fermi-Dirac function with the appropriate electron quasi-Fermi level. 
Correspondingly, the rate of stimulated absorption (the total number of upward 
transitions per unit volume per unit time, SI unit: m-3s-1) is given by:

 (3-97)

where g(k) is the density of states in k-space (1/4π3 from Equation 3-19) and the 
electron occupancy factors for the conduction and valence band, fc and fv, are given by:

 (3-98)

E2c and E1v can be written in terms of k, leading to the equation:

Transforming the integral to spherical polar coordinates and changing the integration 
variable gives:
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Note that Equation 3-95 was used in the third and fourth steps. It is common to 
rewrite this expression in the form:

 (3-99)

where the reduced density of states:

is defined by analogy with Equation 3-21 and where the functional dependence of fc 
and fv has been dropped.

P H Y S I C A L / T H E R M O D Y N A M I C  C O N S I D E R A T I O N S ,  S T I M U L A T E D  A N D  

S P O N T A N E O U S  E M I S S I O N

The rate of stimulated absorption is directly related to the rate of stimulated and 
spontaneous emission as a result of physical and thermodynamic arguments originally 
due to Albert Einstein (Ref. 34). Historically Einstein argued for the existence of 
stimulated emission by means of an argument similar to the one presented here. In the 
argument that follows the existence of stimulated emission is assumed from the outset.

Consider the physics of a semiconductor interacting with a radiation field whose 
energy is distributed uniformly in frequency in the vicinity of the transition energy 
(that is the spectral width of the radiation field is large compared to the transition line 
width). In this case, a suitable phenomenological model for the rate of stimulated 
emission and absorption (at a particular value of the photon energy E = ħω, and in a 
range of photon energies, dE) is:

 (3-100)

where B12 and B21 represent constants related to the semiconductor material and 
n(ħω) is the mean number of photons per unit volume per unit photon energy (SI unit: 
J−1m−3). 

The rate of spontaneous emission should not be directly dependent on the radiation 
field, so the following phenomenological model is adopted for this quantity:
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 (3-101)

where A21 is another constant. When the semiconductor is in equilibrium with the 
radiation field the two quasi-Fermi levels are equal and the emission and absorption 
rates must balance. Consequently, for the equilibrium case:

After a little algebra (using Equation 3-98 with Efn=Efp=Ef) the result is:

 (3-102)

It is instructive to consider the high temperature limit of this equation. In that limit 
the exponential term tends to unity and it is expected that stimulated emission 
dominates over spontaneous emission, since n(ħω) becomes large whilst A21 is a 
constant. Consequently this limit implies that:

 (3-103)

Next, substituting Equation 3-103 into Equation 3-102 and rearranging gives:

 (3-104)

The form of Equation 3-104 is similar to that of the Plank black-body radiation 
spectrum, which is observed to hold experimentally for many materials (for example 
see Ref. 10 §63 or Ref. 32 section 9.2.1):

Note that this expression is modified slightly from the standard form usually seen in 
text books since the formula above gives the number of photons per unit photon energy 
rather than the photon energy per unit frequency.
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Consequently a relationship between B12 and A21 is implied:

 (3-105)

where the relation E = ħω is used. Equation 3-103 and Equation 3-105 are derived 
assuming an exciting field with a distributed spectrum in thermal equilibrium. 
However the phenomenological models described by Equation 3-100 and 
Equation 3-101 are expected to apply away from equilibrium in the same form, so the 
relationships between A21, B12, and B21 are general. Equation 3-105, which describes 
spontaneous emission relates to a process that is entirely independent of the exciting 
radiation. Correspondingly, A21=1/τspon is written, which allows the 
phenomenological equations to be written in the following form:

 (3-106)

These relationships apply for a distributed spectrum of incident radiation. In order to 
relate the present analysis to that in the preceding section, consider how to relate the 
case of a monochromatic field to that of a distributed spectrum, with a spectral width 
that is large compared to the transition width. One way this can be done is to consider 
the process of building up the distributed absorption rate  from the 
absorption rates due to a series of monochromatic fields, with appropriately scaled 
energy densities (Ref. 35). For some coefficient C, a single, monochromatic line 
spectrum at frequency ω0 leads to the following frequency domain contribution to the 
rate of stimulated generation:

where nE (SI unit: m-3) is the photon density at the photon energy E = ħω0. To build 
up the corresponding distributed spectrum requires summing over a series of these line 
spectra, each with a different value for the driving photon energy E’ and with, 
nE'=n(E’)d(E’). Correspondingly the sum can be transformed to an integral in the 
following way:
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 (3-107)

Comparing Equation 3-107 with Equation 3-106 shows that:

The same argument can be applied to the rate of stimulated emission. Integrating the 
monochromatic rate over all frequencies gives the total generation/recombination rate 
due to the line source in both of these cases:

 (3-108)

With a monochromatic line source the stimulated emission must occur at the 
frequency of the source. In contrast, the spontaneous emission can occur at any 
frequency allowed by the band structure. The rate of spontaneous recombination is 
therefore computed by summing contributions from all possible transitions within the 
band, for the electron distribution. The radiation emitted is not in phase with any 
sources producing stimulated emission, and has a broader spectrum since transitions 
can occur between states separated by a range of energies.

The total recombination due to spontaneous emission is given by:

 (3-109)

Note that fc and fv are both functions of E through Equation 3-98 and Equation 3-95.

Equation 3-108 and Equation 3-109 determine the rates of stimulated and 
spontaneous emission in terms of the spontaneous lifetime. The spontaneous lifetime 
can be related to the matrix element for the transition, discussed in the previous 
section. The energy density of the electromagnetic field for a traveling wave in a 
dielectric medium is ε0εr′E0

2/2 where E0 is the electric field norm and εr′ is the real 
part of the medium permittivity. Correspondingly the number density of the photons 
is given by:
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The following equation therefore applies for the rate of stimulated emission:

Comparing this equation with Equation 3-99 shows that the following relationship 
exists between the matrix element and the spontaneous emission lifetime:

 (3-110)

As a result of Equation 3-110 the rates of spontaneous and stimulated emission can 
also be written in the form:

Note that it is also common to define a net generation rate due to stimulated emission, 
given by:

 (3-111)

T H E  M A T R I X  E L E M E N T

The preceding section derived the rates of stimulated and spontaneous emission in 
terms of the perturbation to the Hamiltonian and the spontaneous emission lifetime.

Equation 3-92 showed the perturbation to the electric field could be written in the 
form:
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The matrix element in this form depends on the magnitude of the magnetic vector 
potential. It is often more convenient to express the matrix element in terms of the 
amplitude of the electric field oscillation (E0) and a unit vector in the direction of the 
electric field (e). With the frequency domain gauge for the oscillatory field in 
COMSOL Multiphysics, the electric field is related to the magnetic field by the 
equation:

Writing the local electric field can be written in the form:

gives:

Consequently Equation 3-123 can be written in the form:

and:

 (3-112)

The momentum matrix element between to states 1 and 2 (<2|e⋅p|1> using the 
bracket notation) is frequently referred to in the literature as M12—a convention 
adopted by COMSOL Multiphysics.

An alternative form for the matrix element is sometimes used. As shown in section 
9.1.3 of Ref. 32, an the Hamiltonian can also be expressed as:

where μ is the dipole matrix element (μ=qr where r is the position vector) and 
correspondingly:

 (3-113)
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The matrix element <2|e⋅μ|1> is written in the form μ12 in the user interface.

The two forms of the matrix element given in Equation 3-112 and Equation 3-113 
can be used to specify the matrix element in COMSOL. Note that the band averaged 
matrix element for the particular electric field orientation should be used (  or 

). As discussed in Ref. 36 and Ref. 38, the band averaged matrix elements can be 
derived using a k⋅p perturbation method. For a simple 4 band model (Ref. 36), 
assuming unpolarized incident light, the matrix element takes the form (Ref. 37):

where Eg is the gap energy and Δ is the spin orbital splitting energy of the valence band. 
m* is the effective mass of electrons in the conduction band, but typically an 
experimentally determined value should be used rather than the theoretical value (see 
discussion in Ref. 37 for the case of GaAs. Ref. 38 provides values for other materials).

O P T I C A L  P R O P E R T I E S

Poynting’s theorem for electromagnetic fields can be written in the form (Ref. 33):

 (3-114)

Here E is the electric field, H is the magnetic field strength, P is the material 
polarization, M is its magnetization, and V is an enclosed volume within the material, 
with surface S.

Each of the terms in Equation 3-114 has a physical interpretation that can be 
associated with the flow of energy through the volume. The E×H term on the left hand 
side of this equation describes the flow of energy out of the enclosed volume (E×H is 
known as Poynting’s vector). The E⋅j term represents the energy expended on moving 
charges within the volume. The next term represents the rate of change of the stored 
electromagnetic energy in the vacuum and the final two terms represent the power per 
unit volume expended on the electric and magnetic dipoles present in the material. 

For optical frequencies, the E⋅j term is of order ρE2 for a material resistivity ρ (for 
heavily doped silicon ρ is of order 10-5 Ω/m). Most practical semiconductors are 
non-magnetic, so the final term is usually not significant. In the frequency domain, the 
term involving the polarization is of order ωε0E2 (ω is of order 1015 rad/s for optical 
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light, ε0 is 8.85×10-12 F/m so ωε0 is of order 104 Ω/m). Consequently, when 
considering the interaction of semiconductors with propagating electromagnetic 
waves it is only necessary to consider the material polarization. In the frequency 
domain, power per unit volume lost to the material is given by the term:

The polarization P is given by:

where χ is the (complex) material susceptibility, with real part χ′ and imaginary part 
χ″. In the frequency domain E(r,t) and P(r,t) take the form:

Consequently the time averaged dissipated power is given by:

For an isotropic material χ becomes a scalar value:

 (3-115)

Equation 3-115 shows how the imaginary part of the susceptibility is related to the 
power absorption by the material. Since each photon carries an energy ħω the total 
power adsorbed is directly related to the net rate of stimulated emission (given by 
Equation 3-111).

Correspondingly:

 (3-116)
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where the superscript 0 has been added to fv, fc and gred to indicate that these 
quantities are evaluated at the energy ħω0 which corresponds to the excitation 
frequency.

Equation 3-116 shows how the imaginary part of the susceptibility is related to the 
rate of stimulated emission and correspondingly to the transition matrix element. 
Associated with the change in the imaginary part of the susceptibility is a small change 
in the real part. If the complete frequency spectrum of the susceptibility is known, it is 
possible to relate the imaginary part of the susceptibility to the real part using the 
Kramers-Kronig relations. The Kramers-Kronig relations result from the constraint 
that in the time domain, the equations for the susceptibility at time t can only depend 
on the electric field at times less than t (Ref. 39), that is the equations are derived from 
considering the system to be causal. Alternatively the equations can be derived by 
considering the analytic nature of the complex function χ for physical systems (see 
Ref. 32 or Ref. 33 for derivations of this form). The Kramers-Kronig relation for the 
susceptibility can be written in the form:

 (3-117)

Where the P indicates that the principle value of the integral is required. 
Equation 3-117 gives the real part of the susceptibility in terms of the imaginary part, 
provided that the entire frequency spectrum of the imaginary part is known. In 
practice it is not possible to determine the entire frequency spectrum of the imaginary 
part of the susceptibility, so instead a change in the imaginary part of the susceptibility 
is considered due to the rearrangement of the carriers in the band. Taking as a 
reference configuration for the semiconductor the case of an undoped semiconductor 
at equilibrium (at temperatures such that the occupancy of the conduction band is 
negligible) we define:

 (3-118)

Equation 3-118 corresponds to a reference configuration in which the semiconductor 
has an empty conduction band and a full valence band. The real part of the 
susceptibility for the reference material can then be written as:
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For a doped semiconductor at arbitrary temperature there is a change in the real and 
imaginary parts of the susceptibility:

 (3-119)

where the subscript ref indicates a change from the reference configuration and where:

 (3-120)

Substituting Equation 3-119 into Equation 3-117 gives:

The χ0 terms can be eliminated using Equation 3-119 giving:

 (3-121)

Equation 3-121 gives the change in the real part of the susceptibility from the 
reference material susceptibility, for a given carrier concentration. This makes the 
integral easier to perform in practice, since the changes in the susceptibility due to the 
carriers is small at energies far from the band gap.

Equation 3-121 can be used to compute the change in the real part of the 
susceptibility, given a knowledge of the susceptibility of the reference material. In 
COMSOL Multiphysics, the real part of the susceptibility of the reference material is 
treated as a user-specified material property (it is determined from the relative 
permittivity or refractive index). The change in the refractive index due to the 
excitation of carriers into the valence band (either as a result of doping or due to carrier 
injection) is then accounted for by means of Equation 3-121. Note that χref′′(ω) is not 
known over all frequencies and the real part of the susceptibility is likely to have 
significant contributions from other processes that occur at frequencies away from 
those corresponding to the band gap. However, since it is possible to define Δrefχ′′(ω) 
from Equation 3-120 we can compute the change in the real part of the susceptibility 
from Equation 3-121. 

At the excitation frequency, ω0, the imaginary part of the susceptibility due to optical 
transitions can be computed directly from Equation 3-118. Since the imaginary part 
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of the reference material susceptibility is not conveniently available as a material 
property, COMSOL Multiphysics calculates this part of the susceptibility directly. It is 
possible to include additional contributions to the imaginary part of the susceptibility 
from mechanisms other than the optical transitions, as discussed in the next section.

M A T E R I A L  P R O P E R T Y  I N P U T S  A N D  O U T P U T S  F O R  T H E  O P T I C A L  

TR A N S I T I O N S  F E A T U R E

The theory presented in the preceding section is focused on the determination of the 
complex susceptibility of the material. Practically speaking, values of the complex 
refractive index (n-ik) or the complex relative permittivity (εr′-iεr″) are more often 
available for a given material.

The permittivity is straightforwardly related to the susceptibility by the equations:

The optical transitions feature computes changes in the material properties that result 
from the transitions occurring in the semiconductor. The real part of the material 
permittivity changes from an initial value εr,i′ to a modified value εr,i′ given by:

where in this case:

The results from the preceding section have been used in deriving the above equations. 
Note that for the real part of the permittivity, the initial permittivity value is the real 
part of the permittivity for the reference material at the excitation frequency 
(χ′ref(ω0)), and the change in the permittivity is the same as Δrefχ′(ω0). However, this 
is not the case for the imaginary part of the susceptibility, because the reference 
material contribution to the imaginary part of the permittivity is not generally available 
as a a material property. The change in the imaginary part of the permittivity is given 
by:

Typically the initial value of the imaginary part of the permittivity (εr,i′′) is zero. 
COMSOL Multiphysics allows for nonzero values of εr,i′′ for cases in which there are 
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other loss mechanisms in the material besides the optical transitions, so it is possible to 
enter nonzero values for this parameter in the feature. These mechanisms contribute 
in an additive manner to the material losses (or gain). The change in the imaginary part 
of the permittivity is given by:

where χ′′(ω0) is given by Equation 3-116.

In optical applications it is often more common to specify the real and imaginary parts 
of the refractive index (n-ik) than to specify the complex relative permittivity. Simple 
relationships exist relating these quantities, allowing the material properties to be 
expressed in either form. In general, the complex permittivity is equal to the square of 
the complex refractive index (see Ref. 32, Ref. 33, or Ref. 35), so that:

The relationships between these quantities can be obtained by expanding the left hand 
side and equating the real and imaginary parts of the equations. For the initial values 
of the permittivity and refractive index the following relationships hold:

Correspondingly, the remaining quantities are related by the equations:

In practical semiconducting materials, ki, Δk, and Δn are small in comparison to ni, so 
the terms in the square brackets are small. This is assumed when generating the 
corresponding postprocessing variables.

Finally a further quantity, related to the imaginary part of the complex susceptibility, 
is important because it can be measured experimentally. The absorption coefficient (α) 
is given by:

The absorption coefficient is available as a postprocessing variable. In laser applications 
the gain (γ=−α) is also frequently encountered.
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Boundary Conditions

The Semiconductor interface includes boundary conditions appropriate for the 
Semiconductor Material Model feature. Additionally, if insulating regions are included 
within the model using the Charge Conservation feature, separate boundary conditions 
are available for these regions.

The theory for the following boundary conditions is discussed in the subsequent 
sections:

• Metal Contacts

• Thin Insulating Gates

• Continuity/Heterojunction

• Boundary Conditions for Charge Conservation

Metal Contacts

The Metal Contact boundary condition is used for modeling different types of 
metal-semiconductor junctions. The Ideal Ohmic and Ideal Schottky types of contact 
can be modeled with this feature.

I D E A L  O H M I C

The ohmic contact option assumes local thermodynamic equilibrium at the contact. 
Note that in practice it is often used in nonequilibrium situations where the boundary 
condition imposed is no longer physical (for example in a forward biased p-n junction), 
which is reasonable provided that the junction is located some distance from the region 
of interest. Since equilibrium is assumed, both the hole and electron quasi-Fermi levels 
are equal at the boundary. Charge neutrality at the boundary is also assumed so there 
is no band bending and the band diagram takes the form shown in Figure 3-12.
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Figure 3-12: Energy band diagram for an ohmic contact with n-type (top) and p-type 
(bottom) semiconductors under different biasing and temperature conditions (left to 
right). On the left the semiconductor is in the reference configuration at the equilibrium 
temperature T0 and at zero bias V0=0. In the center, the temperature of the semiconductor 
is raised, changing the gap Eg and the electron affinity χ. Correspondingly, the energy of 
the conduction band edge Ec and of the valence band edge Ev, is shifted as is the Fermi 
level Ef. In this configuration the vacuum energy E0 also changes as a result of differences 
in the space charge distribution in the device. On the right, in addition to the temperature 
change, a bias V0 is applied to the metal, which shifts the entire band structure (as well as 
the vacuum level) up in energy by qV0 from the configuration in the center.

Since equilibrium is assumed, Equation 3-49 is used for the carrier concentrations but 
it is useful to write it in the alternative forms:

 (3-122)

where Equation 3-74 is used to derive the expressions for n and p in terms of the 
effective intrinsic carrier concentration. The charge neutrality condition states:

 (3-123)
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Solve Equation 3-122 and Equation 3-123 in a form convenient for numerical analysis 
by using the result neqpeq=γnγpni,eff

2. Using this result with Equation 3-123 gives:

This quadratic equation can be solved for peq giving:

peq must be positive therefore:

 (3-124)

From Equation 3-122 the difference between the intrinsic level and the Fermi level can 
be determined in the following manner:

This result applies at arbitrary temperatures. Using Equation 3-85 and the above 
result, the conduction band energy level can be related to the intrinsic level and 
correspondingly to the equilibrium Fermi level in the following manner:

where the result Ev=Ec−Eg is used. The vacuum potential, V, is therefore:

 (3-125)

Equation 3-125 gives the vacuum potential relative to the Fermi level at an arbitrary 
temperature. However, it does not fix the vacuum potential on an absolute scale (the 
value of Ef is not known on this scale). As discussed in The Semiconductor Equations, 
COMSOL Multiphysics references the vacuum potential to the Fermi level in the 
equilibrium reference configuration (shown on the left of Figure 3-12). Since the 
vacuum level adjusts to accommodate the space charge layers that are created in the 
device, it does not remain constant when the temperature is changed away from 
equilibrium. For an intrinsic semiconductor, however, the vacuum level remains 
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constant when the temperature is changed. This is shown in Figure 3-13. Ef on the 
absolute scale must be set in a such a way that the limiting case of an intrinsic 
semiconductor is correct.

Figure 3-13: Diagram showing the band structure of an intrinsic semiconductor at the 
equilibrium reference temperature and at the local temperature (with no applied 
voltages). In this case the vacuum energy level does not change with a change in the local 
temperature.

For the particular case of the intrinsic semiconductor:

Using the above equation and Equation 3-125, and the fact that the intrinsic 
semiconductor has no band gap narrowing,

where χ0 is the electron affinity in the absence of band gap narrowing and Eg
0 is the 

energy gap in the absence of band gap narrowing. By definition Ei(T0)=Ef(T0)=0 
therefore:
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Equation 3-126 sets the value of the Fermi level relative to the zero in potential at 
temperature T for an intrinsic semiconductor. Ef(T) is the offset in the temperature 
scale relative to the equilibrium temperature for the particular case of an intrinsic 
semiconductor. Next consider a semiconductor with a nonuniform doping distribution 
but with a region of intrinsic semiconductor. The entire semiconductor is heated 
uniformly to raise its temperature from T0 to T1 (with no applied biases). The Fermi 
level in the intrinsic semiconductor changes according to Equation 3-126. Since the 
whole sample is still at equilibrium, the Fermi level everywhere else in the sample must 
also change by the same amount. Equation 3-126 gives the value of the Fermi level at 
equilibrium for any level of doping (in the absence of applied biases). The 
temperature-dependent (and doping-independent) offset is defined in the Fermi level:

 (3-127)

Equation 3-125 can be written as:

So with an applied bias V0, the boundary condition on V should be:

 (3-128)

The ohmic contact boundary condition imposes Equation 3-124 on the carrier 
concentrations and Equation 3-128 on the potential at the boundary.
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semiconductor is assumed to be nondegenerate, since metal-degenerate 
semiconductor contacts are usually best represented by the Ideal Ohmic option.

The contact acts as a source or sink for carriers and consequently it can be treated as a 
surface recombination mechanism:

Here, n is the outward normal of the semiconducting domain, vn and vp are the 
recombination velocities for holes and electrons, respectively, and n0 and p0 are the 
quasi-equilibrium carrier densities — that is, the carrier densities that would be 
obtained if it were possible to reach equilibrium at the contact without altering the 
local band structure. n0 and p0 are correspondingly defined as though the Fermi level 
of the semiconductor at the boundary is equal to that of the metal. From Figure 3-14 
n0 and p0 are given by:

 (3-129)

where:

 (3-130)

Here, Φm is the metal work function, Efm is the metal Fermi level, and ΦB is the 
emission barrier height for electrons (from the metal). The observed barrier heights of 
Schottky junctions frequently do not conform to Equation 3-130, largely as a result of 
the complexities discussed previously. From a practical perspective, the value of ΦB can 
be determined experimentally and, consequently, can be considered as an input into 
the model (COMSOL Multiphysics makes it possible to directly enter these values or 
to compute the ideal barrier height from the material properties).
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Figure 3-14: Energy band diagram for a Schottky contact with n-type (top) and p-type 
(bottom) semiconductors under different biasing and temperature conditions (left to 
right). On the left, the semiconductor is in the reference configuration at the equilibrium 
temperature T0 and at zero bias V0=0. In the center, the temperature of the semiconductor 
is raised, changing the gap Eg and the electron affinity χ. Correspondingly, the energy of 
the conduction band edge Ec and of the valence band edge Ev is shifted, as is the Fermi 
level Ef, in equilibrium regions of the device (indicated to the right of the band diagram). 
In this configuration the vacuum energy E0 also changes as a result of differences in the 
space charge distribution in the device. On the right, in addition to the temperature 
change, a forward bias V0 is applied to the metal.

The recombination velocities vn and vp are determined by assuming that the dominant 
source of current across the junction is thermionic emission. Ref. 3 provides a full 
derivation of this case, which shows that, if thermionic emission is dominant:

 (3-131)
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Here, An* and Ap* are the effective Richardson’s constants for electrons and holes, 
respectively (these are essentially material properties related to the thermionic emission 
— Ref. 3 has details). The Schottky contact boundary condition allows the 
recombination velocities to be user defined or to be determined from Equation 3-131. 
Equation 3-129, Equation 3-130, and Equation 3-131 specify the boundary 
condition on the currents imposed at a Schottky contact. The boundary condition on 
the voltage can be determined from Figure 3-14:

 (3-132)

Equation 3-132 is used by COMSOL Multiphysics to constrain the potential at the 
boundary.

Thin Insulating Gates

The band diagram for a thin insulating gate is shown in Figure 3-15. As for the ohmic 
contact, a change in the temperature of the device away from the equilibrium reference 
results in a shift of the metal and semiconductor Fermi levels (ΔEf) on the absolute 
energy scale, given by Equation 3-127. An applied potential further shifts the metal 
Fermi level with respect to the semiconductor Fermi level (which can be defined in 
regions away from the contact where little current flows).
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Figure 3-15: Energy band diagram for a thin insulating gate with n-type (top) and p-type 
(bottom) semiconductors under different biasing and temperature conditions (left to 
right). On the left, the semiconductor is in the reference configuration at the equilibrium 
temperature T0 and at zero bias V0=0. In the center, the temperature of the semiconductor 
is raised, changing the gap Eg and the electron affinity χ. Correspondingly, the energy of 
the conduction band edge Ec and of the valence band edge Ev is shifted, as is the Fermi 
level Ef, in equilibrium regions of the device (indicated to the right of the band diagram). 
In this configuration the vacuum energy E0 also changes as a result of differences in the 
space charge distribution in the device. On the right, in addition to the temperature 
change, a bias V0 is applied to the metal, leading to an inversion layer under the gate.

When the Thin Insulator Gate boundary condition is used, the thin insulating layer is 
not included in the COMSOL Multiphysics model but its effect is included in the 
formulation of the boundary condition. The insulator is assumed to be so thin that the 
electric field (which must be perpendicular to the metal surface) is to a good 
approximation also perpendicular to the insulator-semiconductor boundary. When this 
is the case, the normal electric displacement field (D) at the insulator-semiconductor 
interface can be written as:
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where Vg is the potential on the gate, V is the potential at the insulator-semiconductor 
interface, dins is the thickness of the insulator, εins is the relative dielectric permittivity 
of the insulator, ε0 is the permittivity of free space, and n is the outward normal of the 
semiconductor domain. From Figure 3-15, the gate voltage with applied potential V0 
is given by:

where Φm is the metal work function. ΔEf is given by Equation 3-127. Therefore:

 (3-133)

The electron and hole currents flowing into the insulator must be zero therefore:

 (3-134)

The thin insulating gate applies the Neumann boundary conditions given by 
Equation 3-133 and Equation 3-134.

TR A P S  O N  T H E  S E M I C O N D U C T O R / I N S U L A T O R  B O U N D A R Y

When traps are present on the gate the traps accumulate charge as described in the 
Traps section. As a result of the charge on the boundary the electric displacement field 
is discontinuous across the interface and consequently:

where Q is the surface charge density due to the traps, given by Equation 3-83 or 
Equation 3-84. Consequently the form of Equation 3-133 is modified so that:

Similarly, in a transient study, the traps can provide a sink for electrons or holes and 
Equation 3-134 is changed such that:
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where are Re and Rh are given by Equation 3-82.

Continuity/Heterojunction

Space charge regions develop at the interface between two different semiconductors, 
as a result of the change in the band structure that occurs at the junction. Such 
interfaces are referred to as heterostructures. COMSOL Multiphysics handles all 
interior boundaries in a model using the Continuity/Heterojunction feature, which 
automatically detects whether a change in the band structure occurs at the interface. 
For interior boundaries within a single material, the electron and hole densities are 
continuous and the boundary has no effect on the solution. When a heterostructure is 
present, one of the following Continuity model options should be selected from the 
Heterojunction settings:

• Continuous quasi-Fermi levels

• Thermionic emission

The boundary conditions for these two options are described in more detail below.

C O N T I N U O U S  Q U A S I - F E R M I  L E V E L S

This boundary condition enforces continuity of the quasi-Fermi levels at the junction:

where Efn1 and Efp1 are the electron and hole quasi-Fermi levels in material 1 and Efn2 
and Efp2 are the electron and hole quasi-Fermi levels in material 2.

This is an approximate boundary condition, and applies when the junction has 
negligible resistivity.

T H E R M I O N I C  E M I S S I O N

The thermionic emission boundary condition applies when tunneling through the 
barrier is negligible. The boundary condition is based on Ref. 25, in the limit of no 
tunneling. The normal currents across the junction are given by:

n Jn⋅ Re=

n Jp⋅ Rh=

Efn1 Efn2= Efp1 Efp2=

Fermi-Dirac statistics are currently not supported in the finite volume 
method when the thermionic emission boundary condition is used.
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where n1·Jn1 is the outward normal electron current from material 1, n2·Jn2 is the 
normal electron current leaving material 2, n1·Jp1 is the outward normal hole current 
from material 1, n2·Jp2 is the normal hole current leaving material 2. vn1, vn2, vp1, 
and vp2 are the electron and hole recombination velocities for each material at the 
boundary. n1, n2, p1, and p2 are the electron and hole concentrations on each side of 
the boundary. Other quantities are defined in Figure 3-16. The recombination 
velocities are given by:

where the effective Richardson’s coefficients An1*, An2*, Ap1*, and Ap2* are given by:

Currently the effective masses in the above equation are automatically assigned the 
value of the density of states effective mass from the domain. The effective mass can be 
altered in the equation view if required.
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Figure 3-16: Heterostructure band diagram showing the vacuum energy level, E0, and 
the conduction (Ec1, Ec2) and valence band (Ev1, Ev2) energies for the two materials. 
The electron (Efn1, Efn2) and hole (Efp1, Efp2) quasi-Fermi levels are also shown, as are 
the material band gaps (Eg1, Eg2) and affinities (χ1, χ2).

Boundary Conditions for Charge Conservation

When a charge conservation domain is added to a model all the boundary conditions 
available for electrostatics can be applied to exterior boundaries of the domain 
(boundaries adjacent to the semiconductor and interior boundaries automatically 
obtain the correct boundary conditions). These boundary conditions include a work 
function offset for the electric potential where appropriate. However, ΔEf is not added 
automatically to the model. For this reason, it is recommended that for isothermal 
models the equilibrium reference temperature (set this in the Semiconductor interface 
Settings window under Reference Temperature) is set to the same temperature as the 
model temperature. For nonisothermal models, ΔEf can be included in the work 
function in the following manner:

Φm=Φm0-intop1(semi.V_eq_adj)

where is Φm0 the metal work function and an integration coupling operator (intop1) 
has been added on a point within the semiconducting domain adjacent to the insulator 
(if more than one Semiconductor interface is added to the domain, the prefix semi in 
the variable within the integration operator might need to be incremented).
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Tunneling

Equation 3-37 in the section Electrons in a Perturbed Periodic Potential describes the 
transport of both electrons and holes in a semiconductor with a potential that varies in 
space. In many circumstances the potential varies slowly in space and wave packets 
move according to the classical Hamiltonian, so correspondingly their dynamics is 
determined by the semiclassical model, from which both the drift diffusion equations 
follow. However, since Equation 3-37 is essentially a Schrödinger equation for 
electrons and holes, it allows for quantum mechanical phenomena, such as tunneling 
which are outside of the scope of the semiclassical model.

Tunneling occurs when an electron or hole wave packet is incident on a narrow 
potential barrier with a barrier height greater than the energy associated with the group 
velocity of the wave packet. A classical particle would be reflected at the boundary, but 
in the solutions of the Schrödinger equation the envelope function Ψm(r) associated 
with the wave packet decays exponentially inside the barrier. For thin barriers Ψm(r) 
is significant on the opposite side of the barrier and correspondingly there is a 
transmission probability associated with transport through the potential barrier. Since 
the tunneling probability must be computed for wave packets with a range of energies 
or k-vectors, it is usually only possible to solve the tunneling problem in 1D. 
Consequently, the approaches adopted are necessarily phenomenological in nature. 
The nature of the approximations required to arrive at the theory of tunneling is 
discussed in detail in section 4 of Ref. 40. Since much of the underlying theory is 
approximate in nature, it is sensible to favor numerically lighter solutions over more 
detailed approaches.

Tunneling commonly occurs in semiconductor devices at a variety of locations, 
including:

• Tunneling through the barrier formed at a Schottky diode when the semiconductor 
is heavily doped underneath the metal contact (this is one way to produce an ohmic 
contact).

• Tunneling through the potential barrier formed by the depletion layer associated 
with a heterojunction.

• Direct tunneling through thin layers of oxide in very thin gates.

• Tunneling into the conduction band of an oxide material when a high bias is applied 
to a thicker gate oxide (Fowler-Nordheim tunneling).

Note that for tunneling through direct band gap oxide barriers (such as silicon oxide) 
in indirect band gap semiconductors (such as silicon), an additional complication is 
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encountered due to the band structure mismatch that occurs as a result of the change 
in the material at the interface. This mismatch is not usually observed in practice — for 
reasons that are currently not fully understood (see the discussion in chapter 5 of 
Ref. 43). In this case the phenomenological perspective adopted in Ref. 40 is usually 
employed, and tunneling through the barrier is treated without accounting for the 
band structure mismatch, since this approach best describes the experimental results.

In COMSOL Multiphysics, features enabling the modeling of Fowler-Nordheim 
tunneling are available.

F O W L E R - N O R D H E I M  TU N N E L I N G

When large fields are applied across an oxide layer, tunneling can occur directly into 
the conduction band of the oxide, as shown in Figure 3-17 below.

Figure 3-17: Band diagrams showing Fowler-Nordheim electron tunneling into the 
conduction band of an oxide. Eg is the band gap of the semiconductor, χ. is the electron 
affinity and Φm is the work function of the metal. The energy of the conduction band edge 
in the semiconductor is Ec, that of the valence band edge is Ev, the vacuum level is E0 and 
the Fermi level is Ef. In both (a) and (b) the temperature of the device is the same as the 
equilibrium reference temperature (temperature changes would cause an additional shift 
in the Fermi-level which are not shown in the figure - see for example, Figure 3-15). In 
(a) a large potential V0 is applied to the semiconductor. The band structure of the 
insulator is such that electrons can tunnel through the triangular barrier formed by the 
conduction band edge in the insulator, into the insulator conduction band. In (b) the 
potential V0 is applied to the metal, and consequently electrons from the metal can tunnel 
into the insulator conduction band. Once the electrons tunnel into the conduction band of 
the insulator they are transported via drift diffusion into the metal (case (a)) or 
semiconductor (case (b)). Note that the tunnel barrier presented to the electrons is 
triangular in shape in both cases.
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Fowler and Nordheim originally treated tunneling through triangular barriers 
(Ref. 41) in the context of the Sommerfeld model. Their analysis was applied to 
tunneling in oxides within a semiconductor device context by Lenzlinger and Snow 
(Ref. 42). It is worth noting that Fowler and Nordheim did not make a WKB 
approximation in their original analysis, but instead approximated the final form of the 
analytic solution (a WKB approximation was used in Ref. 42 but for this reason is not 
strictly necessary). The original result due to Fowler and Nordheim showed that the 
tunnel current through a triangular barrier for electrons ( ) and/or holes ( ) 
takes the form:

 (3-135)

where Eins is the electric field in the insulator and , , , and  are 
constants related to the material properties of the insulator and semiconductor. For the 
commonly encountered case of the silicon/silicon oxide system, only electron 
tunneling needs to be considered because the barrier for hole tunneling is significantly 
higher than that for electrons.

Ref. 42 provides a detailed derivation of Equation 3-135, for the case of a 
semiconductor-oxide system at finite temperature. The effect of a finite temperature 
was shown to be equivalent to a change in the values of the constants  and . 
Similarly image force lowering effects at the barrier also caused an effective change in 
these constants. Since using the derivative material properties does not lead to a fully 
consistent description of the tunneling current as a function of both electric field and 
temperature, it is customary to simply treat  and  as inputs to a model of the 
tunneling process at a particular temperature. These values can be extracted from a plot 
of log( /Eins

2) versus 1/Eins.
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Th e  S em i c ondu c t o r  Op t o e l e c t r o n i c s ,  
B e am En v e l o p e s  I n t e r f a c e

The Semiconductor Optoelectronics, Beam Envelopes ( ) interface is used to model the 
interaction of electromagnetic waves with semiconductors. This multiphysics interface 
adds Electromagnetic Waves, Beam Envelopes and Semiconductor interfaces. By 
default an Optical Transitions node is added to the Semiconductor interface. The 
multiphysics couplings add the stimulated and/or spontaneous generation rates to the 
semiconductor and account for the electromagnetic gain or loss due to absorption or 
emission of light by the material.

Combinations of frequency-domain modeling for the Electromagnetic Waves, Beam 
Envelopes interface and stationary modeling for the Semiconductor interface, called 
frequency-stationary and, similarly, frequency-transient modeling, are supported in 2D 
and 3D.

When a predefined Semiconductor Optoelectronics, Beam Envelopes interface is added 
from the Semiconductor branch ( ) of the Model Wizard or Add Physics windows, 
Semiconductor and Electromagnetic Waves, Beam Envelopes interfaces are added to the 
Model Builder.

In addition, a Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Semiconductor-Electromagnetic Waves Coupling.

On the Constituent Physics Interfaces
The Semiconductor interface solves Poisson’s equation for the electric potential and 
the drift-diffusion equations for electrons and holes in a semiconductor material.

The Electromagnetic Waves, Beam Envelopes interface computes electric and 
magnetic field distributions for systems and devices where the field amplitude varies 
slowly on a wavelength scale. The physics interface can be used efficiently for 
unidirectional and bidirectional propagation of electromagnetic beams. In this physics 
interface the electric field is factored into a product of a slowly varying envelope 
function (slowly on the scale of a wavelength) and a rapidly varying phase function. 

This physics interface requires a Wave Optics Module license. For theory 
and physics interface feature descriptions relating to the Beam Envelopes 
interface, see the Wave Optics Module User’s Guide.
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The phase function is a priori prescribed, so the physics interface solves the 
time-harmonic wave equation for the slowly varying envelope function.

C O U P L I N G  F E A T U R E S

When physics interfaces are added from the Model Wizard or using the Add Physics 
window then the appropriate coupling feature is automatically added to the physics 
interface. However, the physics interfaces can be added one at a time, followed by the 
coupling features. 

For example, if single Semiconductor and Electromagnetic Waves, Beam Envelopes 
interfaces are added, then COMSOL adds an empty Multiphysics node. You can then 
choose the coupling feature: Semiconductor-Electromagnetic Waves Coupling..

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Electromagnetic Heat Source, Boundary Electromagnetic Heat Source, and 
Temperature Coupling feature nodes are described for The Joule Heating Interface in 
the COMSOL Multiphysics Reference Manual.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (Mac or Linux users), or right-click to access the context menu (all 
users).

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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The available physics features for The Semiconductor Interface are listed in the section 
Domain, Edge, Boundary, Pair, and Point Nodes for the Semiconductor Interface.

Semiconductor-Electromagnetic Waves Coupling

The Semiconductor-Electromagnetic Waves Coupling ( ) coupling node passes the 
optical field intensity from an electromagnetic waves interface to the Optical Transitions 
feature in the Semiconductor interface. The change in the complex refractive index or 
permittivity that results from the absorption in the semiconductor is then passed back 
to the electromagnetic waves interface.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is semc1.

D O M A I N  S E L E C T I O N

The default setting is All domains which couples all domains in the Semiconductor 
interface that have an active Optical Transitions feature with the corresponding domains 
in the electromagnetic waves interface.

S E M I C O N D U C T O R - E L E C T R O M A G N E T I C  WA V E S  C O U P L I N G

This section defines the physics involved in the coupling. By default, the software 
selects an appropriate physics interface for you from the Semiconductor and 
Electromagnetic waves lists. These selections determine the two interfaces that are 
coupled by the feature.

The available physics features for The Electromagnetic Waves, Beam 
Envelopes Interface are listed in the section Domain, Boundary, Edge, 
and Point Nodes for the Electromagnetic Waves, Beam Envelopes 
Interface. As this physics interface requires the Wave Optics Module these 
links do not work in the PDF but they do work in the on line help.
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Th e  S em i c ondu c t o r  Op t o e l e c t r o n i c s ,  
F r e qu en c y  Doma i n  I n t e r f a c e

The Semiconductor Optoelectronics, Frequency Domain ( ) interface is used to model 
the interaction of electromagnetic waves with semiconductors. This multiphysics 
interface adds Electromagnetic Waves, Frequency Domain and Semiconductor 
interfaces. By default an Optical Transitions node is added to the Semiconductor 
interface.The multiphysics couplings add the stimulated and/or spontaneous 
generation rates to the semiconductor and account for the electromagnetic gain or 
loss, due to absorption or emission of light by the material.

Combinations of frequency-domain modeling for the Electromagnetic Waves, 
Frequency Domain interface and stationary modeling for the Semiconductor interface, 
called frequency-stationary and, similarly, frequency-transient modeling, are supported 
in 2D and 3D.

When a predefined Semiconductor Optoelectronics, Frequency Domain interface is added 
from the Semiconductor branch ( ) of the Model Wizard or Add Physics windows, 
Semiconductor and Electromagnetic Waves, Frequency Domain interfaces are added to the 
Model Builder.

In addition, a Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Semiconductor-Electromagnetic Waves Coupling.

On the Constituent Physics Interfaces
The Semiconductor interface solves Poisson’s equation for the electric potential and 
the drift-diffusion equations for electrons and holes in a semiconductor material.

The Electromagnetic Waves, Frequency Domain interface computes electric and 
magnetic field distributions for systems and devices where the field amplitude varies 
slowly on a wavelength scale. The physics interface can be used efficiently for 
unidirectional and bidirectional propagation of electromagnetic beams. In this physics 
interface the electric field is factored into a product of a slowly varying envelope 

This physics interface requires a Wave Optics Module license. For theory 
and physics interface feature descriptions relating to the Electromagnetic 
Waves, Frequency Domain interface, see the Wave Optics Module User’s 
Guide.
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function (slowly on the scale of a wavelength) and a rapidly varying phase function. 
The phase function is a priori prescribed, so the physics interface solves the 
time-harmonic wave equation for the slowly varying envelope function.

C O U P L I N G  F E A T U R E S

When physics interfaces are added from the Model Wizard or using the Add Physics 
window then the appropriate coupling feature is automatically added to the physics 
interface. However, the physics interfaces can be added one at a time, followed by the 
coupling features. 

For example, if single Semiconductor and Electromagnetic Waves, Frequency Domain 
interfaces are added, then COMSOL adds an empty Multiphysics node. You can then 
choose the coupling feature: Semiconductor-Electromagnetic Waves Coupling..

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Semiconductor-Electromagnetic Waves Coupling node is described in The 
Semiconductor Optoelectronics, Beam Envelopes Interface section.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (Mac or Linux users), or right-click to access the context menu (all 
users).

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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The available physics features for The Semiconductor Interface are listed in the section 
Domain, Edge, Boundary, Pair, and Point Nodes for the Semiconductor Interface.

The available physics features for The Electromagnetic Waves, Frequency 
Domain Interface are listed in the section Domain, Boundary, Edge, 
Point, and Pair Nodes for the Electromagnetic Waves, Frequency 
Domain Interface. As this physics interface requires the Wave Optics 
Module these links do not work in the PDF but they do work in the on 
line help.
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T h e  A C / D C  B r a n c h
This chapter describes the theory for the physics interfaces found under the 
AC/DC branch ( ).

In this chapter:

• The Electrostatics Interface

• The Electrical Circuit Interface

• Theory for the Electrostatics Interface

• Theory for the Electrical Circuit Interface

See The Electromagnetics Interfaces in the COMSOL Multiphysics Reference 
Manual for other AC/DC interface and feature node settings.
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Th e  E l e c t r o s t a t i c s  I n t e r f a c e

The Electrostatics (es) interface ( ), found under the AC/DC branch ( ) when 
adding a physics interface, is used to compute the electric field, electric displacement 
field, and potential distributions in dielectrics under conditions where the electric 
charge distribution is explicitly prescribed. The formulation is stationary except for use 
together with other physics interfaces. Eigenfrequency, frequency-domain, 
small-signal analysis, and time-domain modeling are supported in all space dimensions.

The physics interface solves Gauss’ Law for the electric field using the scalar electric 
potential as the dependent variable.

Charge Conservation is the main node, which adds the equation for the electric 
potential and has a Settings window for defining the constitutive relation for the 
electric displacement field and its associated properties such as the relative permittivity.

When this physics interface is added, these default nodes are also added to the Model 

Builder — Charge Conservation, Zero Charge (the default boundary condition), and 
Initial Values. Then, from the Physics toolbar, add other nodes that implement, for 
example, boundary conditions and space charges. You can also right-click Electrostatics 

to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is es.

C R O S S - S E C T I O N  A R E A  ( 1 D  C O M P O N E N T S )

For 1D components, enter a default value for the Cross-section area A (SI unit: m2). 
The default value of 1 is typically not representative for a thin domain. Instead it 
describes a unit thickness that makes the 1D equation identical to the equation used 
for 3D components. See also Change Cross Section.
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T H I C K N E S S  ( 2 D  C O M P O N E N T S )

For 2D components, enter a default value for the Out-of-plane thickness d (SI unit: m). 
The default value of 1 is typically not representative for a thin dielectric medium, for 
example. Instead it describes a unit thickness that makes the 2D equation identical to 
the equation used for 3D components. See also Change Thickness (Out-of-Plane).

P H Y S I C S - C O N T R O L L E D  M E S H

Select the Enable check box to allow the physics interface to control the meshing 
process. Information from the physics, such as the presence of an infinite elements 
domain or periodic condition, will be used to set up automatically an appropriate mesh 
sequence.

D E P E N D E N T  V A R I A B L E S

The dependent variable is the Electric potential V. You can change its name, which 
changes both the field name and the variable name. If the new name coincides with the 
name of another electric potential field in the model, the physics interfaces shares 
degrees of freedom. The new name must not coincide with the name of a field of 
another type or with a component name belonging to some other field.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization.  

Domain, Boundary, Edge, Point, and Pair Nodes for the 
Electrostatics Interface

The Electrostatics Interface has these domain, boundary, edge, point, and pair nodes 
available.

In the COMSOL Multiphysics Reference Manual, see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

Electric Sensor: Application Library path 
COMSOL_Multiphysics/Electromagnetics/electric_sensor
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A B O U T  T H E  B O U N D A R Y  C O N D I T I O N S

The relevant physics interface condition at interfaces between different media is

In the absence of surface charges, this condition is fulfilled by the natural boundary 
condition

A V A I L A B L E  N O D E S

These nodes, listed in alphabetical order, are available from the Physics ribbon toolbar 
(Windows users), Physics context menu (Mac or Linux users), or right-click to access 
the context menu (all users). Also see Table 4-1 for a list of interior and exterior 
boundary conditions, including edge, point, and pair availability.

n2 D1 D2–( )⋅ ρs=

n ε0 V∇ P–( )1 ε0 V∇ P–( )2–[ ]⋅ n– D1 D2–( )⋅ 0= =

In general, to add a node, go to the Physics toolbar no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Table 4-1 lists the interior and exterior boundaries available with this physics interface. 
It also includes edge, point, and pair availability.

• Change Cross Section

• Change Thickness (Out-of-Plane)

• Charge Conservation

• Charge Conservation, Piezoelectric1

• Dielectric Shielding

• Distributed Capacitance

• Electric Displacement Field

• Electric Potential

• Electrostatic Point Dipole

• External Surface Charge 
Accumulation

• Floating Potential

• Ground

• Initial Values

• Line Charge

• Line Charge (on Axis) 

• Line Charge (Out-of-Plane)

• Periodic Condition

• Point Charge

• Point Charge (on Axis)

• Space Charge Density

• Surface Charge Density

• Terminal

• Thin Low Permittivity Gap

• Zero Charge (the default boundary 
condition)

1 This feature is available with the Piezoelectric Devices interface, which requires 
the Acoustics Module, MEMS Module, or the Structural Mechanics Module.

TABLE 4-1:  INTERIOR AND EXTERIOR BOUNDARY CONDITIONS (INCLUDING EDGE, POINT, AND PAIR 
AVAILABILITY) FOR THE ELECTROSTATICS INTERFACE

NODE INTERIOR EXTERIOR ALSO AVAILABLE FOR

Change Cross Section x x pairs

Change Thickness (Out-of-Plane) x x pairs

Dielectric Shielding x x pairs

Distributed Capacitance x x pairs

Electric Displacement Field x x pairs

Electric Potential x x edges, points, and pairs

External Surface Charge 
Accumulation

x pairs

Floating Potential x x pairs

Ground x x edges, points, and pairs

Periodic Condition x not applicable
T H E  E L E C T R O S T A T I C S  I N T E R F A C E  |  223



224 |  C H A P T E
Charge Conservation

The Charge Conservation node adds the equations for charge conservation according to 
Gauss’ law for the electric displacement field. It provides an interface for defining the 
constitutive relation and its associated properties such as the relative permittivity.

M A T E R I A L  TY P E

The Material type setting decides how materials behave and how material properties are 
interpreted when the mesh is deformed. Select Solid for materials whose properties 
change as functions of material strain, material orientation, and other variables 
evaluated in a material reference configuration (material frame). Select Non-solid for 
materials whose properties are defined only as functions of the current local state at 
each point in the spatial frame, and for which no unique material reference 
configuration can be defined. Select From material to pick up the corresponding setting 
from the domain material on each domain.

Surface Charge Density x x pairs

Terminal x x domains

Thin Low Permittivity Gap x not applicable

Zero Charge (the default) x x pairs

TABLE 4-1:  INTERIOR AND EXTERIOR BOUNDARY CONDITIONS (INCLUDING EDGE, POINT, AND PAIR 
AVAILABILITY) FOR THE ELECTROSTATICS INTERFACE

NODE INTERIOR EXTERIOR ALSO AVAILABLE FOR

For axisymmetric components, COMSOL Multiphysics takes the axial 
symmetry boundaries (at r = 0) into account and automatically adds an 
Axial Symmetry node to the model that is valid on the axial symmetry 
boundaries only. There are also Line Charge (on Axis) and Point Charge (on 

Axis) available.

In the COMSOL Multiphysics Reference Manual, see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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E L E C T R I C  F I E L D

Select a Constitutive relation to describe the macroscopic properties of the medium 
(relating the electric displacement D with the electric field E) and the applicable 
material properties, such as the relative permittivity. Select:

• Relative permittivity (the default) to use the constitutive relation D = ε0εrE. Then 
the default is to take the Relative permittivity εr (dimensionless) values From material. 
For User defined, select Isotropic, Diagonal, Symmetric, or Anisotropic and enter values 
or expressions in the field or matrix. The default is 1. 

• Polarization to use the constitutive relation D = ε0E + P. Then enter the components 
based on space dimension for the Polarization vector P (SI unit: C/m2). The 
defaults are 0 C/m2.

• Remanent electric displacement to use constitutive relation D = ε0εrE + Dr, where Dr 
is the remanent displacement (the displacement when no electric field is present). 
Then the default is to take the Relative permittivity εr (dimensionless) values From 

material. For User defined, select Isotropic, Diagonal, Symmetric, or Anisotropic and 
enter values or expressions in the field or matrix. Then enter the components based 
on space dimension for the Remanent electric displacement Dr (SI unit: C/m2). The 
defaults are 0 C/m2.

Initial Values

The Initial Values node adds an initial value for the electric potential V that can serve 
as an initial condition for a transient simulation or as an initial guess for a nonlinear 
solver.

I N I T I A L  V A L U E S

Enter a value or expression for the initial value of the Electric potential V (SI unit: V). 
The default value is 0 V.

Space Charge Density

The Space Charge Density node adds a space charge density ρ, which appears on the 
right-hand side of the equation that the physics interface defines.

S P A C E  C H A R G E  D E N S I T Y

Enter a value or expression for the Space charge density ρv (SI unit: C/m3). The default 
is 0 C/m3.
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Zero Charge

The Zero Charge node adds the condition that there is zero charge on the boundary so 
that n ⋅ D = 0. This boundary condition is also applicable at symmetry boundaries 
where the potential is known to be symmetric with respect to the boundary. This is the 
default boundary condition at exterior boundaries. At interior boundaries, it means 
that no displacement field can penetrate the boundary and that the electric potential is 
discontinuous across the boundary.

Ground

The Ground node implements ground (zero potential) as the boundary condition 
V = 0.

Ground means that there is a zero potential on the boundary. This boundary condition 
is also applicable at symmetry boundaries where the potential is known to be 
antisymmetric with respect to the boundary.

For some physics interfaces, also select additional Ground nodes from the Edges (3D 
components) or Points (2D and 3D components) submenus. For 2D axisymmetric 
components, it can be applied on the Symmetry axis.

B O U N D A R Y ,  E D G E ,  O R  PO I N T  S E L E C T I O N

G R O U N D

Enter a value for the Contact work function Φc(SI unit: V). The default is 4 V.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Electric Potential

The Electric Potential node provides an electric potential V0 as the boundary condition 
V = V0.

Because the electric potential is being solved for in the physics interface, the value of 
the potential is typically defined at some part of the geometry. For some physics 

Beware that constraining the potential on edges or points in 3D or on 
points in 2D usually yields a current outflow that is mesh dependent.
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interfaces, also select additional Electric Potential nodes from the Edges (3D 
components) or Points (2D and 3D components) submenus. For 2D axisymmetric 
components, it can be applied on the symmetry axis.

B O U N D A R Y,  E D G E ,  O R  PO I N T  S E L E C T I O N

E L E C T R I C  PO T E N T I A L

Enter the value or expression for the Electric potential V0 (SI unit: V). The default is 
0 V.

Enter a value for the Contact work function Φc(SI unit: V). The default is 4 V.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Surface Charge Density

The Surface Charge Density node provides the following surface-charge boundary 
condition for exterior boundaries (left) and interior boundaries (right):

Specify the surface charge density ρs at an outer boundary or at an interior boundary 
between two nonconducting media.

Add a contribution as a Harmonic Perturbation by right-clicking the parent node or 
click Harmonic Perturbation on the Physics toolbar. For more information, see 
Harmonic Perturbation — Exclusive and Contributing Nodes in the COMSOL 
Multiphysics Reference Manual.

S U R F A C E  C H A R G E  D E N S I T Y

Enter the value or expression for the Surface charge density ρs (SI unit: C/m2). 

External Surface Charge Accumulation

The External Surface Charge Accumulation node implements the boundary condition

Beware that constraining the potential on edges or points in 3D or on 
points in 2D usually yields a current outflow that is mesh dependent.

n– D⋅ ρs,= n D1 D2–( )⋅ ρs=
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where ρs is the solution of the following distributed ODE on the boundary:

where n·Ji is the normal component of the total ion current density on the wall and 
n·Je is the normal component of the total electron current density on the wall, which 
are feature inputs.

M A T E R I A L  TY P E

The Material type setting decides how materials behave and how material properties are 
interpreted when the mesh is deformed. Select Solid for materials whose properties 
change as functions of material strain, material orientation, and other variables 
evaluated in a material reference configuration (material frame). Select Non-solid for 
materials whose properties are defined only as functions of the current local state at 
each point in the spatial frame, and for which no unique material reference 
configuration can be defined. Select From material to pick up the corresponding setting 
from the domain material on each domain.

E X T E R N A L  S U R F A C E  C H A R G E  A C C U M U L A T I O N

Enter values or expressions for the Normal ion current density n·Ji (SI unit: A/m2) 
and the Normal electron current density n·Je (SI unit: A/m2).

Electric Displacement Field

The Electric Displacement Field node adds the following electric-displacement 
boundary condition:

It specifies the normal component of the electric displacement field at a boundary.

E L E C T R I C  D I S P L A C E M E N T  F I E L D

Enter the coordinates of the Boundary electric displacement field D0 (SI unit: C/m2).

n D⋅– ρs=

td

dρs n Ji n Je⋅+⋅=

n D⋅ n D0⋅=
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Periodic Condition

The Periodic Condition node defines periodicity or antiperiodicity between two 
boundaries. If required, activate periodic conditions on more than two boundaries, in 
which case the Periodic Condition tries to identify two separate surfaces that can each 
consist of several connected boundaries. For more complex geometries, it might be 
necessary to use the Destination Selection subnode. With this subnode the boundaries 
which constitute the source and destination surfaces can be manually specified. The 
Destination Selection subnode is available from the context menu (right-click the parent 
node) as well as from the Physics toolbar, Attributes menu.

B O U N D A R Y  S E L E C T I O N

When using nonconforming meshes on the source and destination of a periodic 
boundary pair, for numerical stability, a finer mesh should be applied on the 
destination side. Use conforming meshes if possible.

PE R I O D I C  C O N D I T I O N

Select a Type of periodicity — Continuity (the default) or Antiperiodicity.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options.

For information about the Orientation of Source section, see Orientation of Source 
and Destination in the COMSOL Multiphysics Reference Manual.

Thin Low Permittivity Gap

Use the Thin Low Permittivity Gap node

When this feature is used in conjunction with a Sector Symmetry feature 
on connected boundaries, wherever the sector symmetry boundaries 
connect with the periodic boundaries, the same periodic condition feature 
cannot be used on both sides. At least two periodic condition features are 
required for the model to compute correctly.

n D1⋅
ε0εr
ds
---------- V1 V2–( )=

n D2⋅
ε0εr
ds
---------- V2 V1–( )=
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to model a thin gap of a material with a small permittivity compared to the adjacent 
domains. The layer has the thickness ds and the relative permittivity εr. The indices 1 
and 2 refer to the two sides of the boundary.

T H I N  L O W  P E R M I T T I V I T Y  G A P

The default is to take the Relative permittivity εr (dimensionless) values From material. 
For User defined, enter a different value or expression. Enter a Surface thickness ds (SI 
unit: m). The default is 5 mm.

Dielectric Shielding

The Dielectric Shielding node adds dielectric shielding as a boundary condition. It 
describes a thin layer with thickness ds and a bulk relative permittivity; εr that shields 
the electric field:

Use this boundary condition when approximating a thin domain with a boundary to 
reduce the number of mesh elements.

M A T E R I A L  TY P E

The Material type setting decides how materials behave and how material properties are 
interpreted when the mesh is deformed. Select Solid for materials whose properties 
change as functions of material strain, material orientation and other variables 
evaluated in a material reference configuration (material frame). Select Non-solid for 
materials whose properties are defined only as functions of the current local state at 
each point in the spatial frame, and for which no unique material reference 
configuration can be defined. Select From material to pick up the corresponding setting 
from the domain material on each domain.

E L E C T R I C  S H I E L D I N G

The default is to take the Relative permittivity εr (dimensionless) values From material. 
It takes it from the adjacent domains if not explicitly defined. For User defined select 
Isotropic, Diagonal, Symmetric, or Anisotropic and enter values or expressions in the field 
or matrix. Enter a Surface thickness ds (SI unit: m) of the shielding. The default is 1 m.

Terminal

The Terminal node provides a boundary or domain condition for connection to 
external circuits, to transmission lines, or with a specified voltage or charge. By 

n D⋅ ∇t ε0εrsds Vt∇⋅–=
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specifying zero charge, a floating potential condition is obtained. When the Terminal 
node is applied on the domain level, the electric potential is set to constant on the 
entire domain selection.

The Terminal node also enables the computation of the lumped parameters of the 
system, such as capacitance

TE R M I N A L

Specify the terminal properties. Enter a unique Terminal name that will be used to 
identify the global variables (such as the terminal voltage or current) that are defined 
by the terminal. The Terminal name can contain alphanumeric characters, but it should 
be numeric when performing terminal sweeps.

Enter a value for the Contact work function Φc(SI unit: V). The default is 4 V.

Select a Terminal type — Charge (the default), Voltage, Circuit, or Terminated. Select:

• Charge to prescribe the total charge deposited on the terminal boundaries. Enter the 
total charge Q0. The default is 0 C, which corresponds to a uncharged floating 
electrode.

• Voltage to specify a fixed electric potential at the terminal. Enter an electric potential 
V0. The default is 1 V.

• Circuit to specify a terminal connected to an Electrical Circuit physics interface that 
models an external circuit. The Terminal node provides a current-voltage 
characteristic to the circuit.

• Terminated to connect the terminal to an impedance that might represent a load or 
a transmission line. When Terminated is selected, the scattering parameters 

The Electrical Circuit interface requires a current from the Terminal, so 
the Circuit terminal type can only be used in Time Dependent or 
Frequency Domain studies, in which the current can be computed as the 
time derivative of the charge.

The Circuit type cannot be used together with a terminal sweep. 
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(S-parameters) are computed. The Terminated setting can only be used in 
frequency-domain studies.

- Enter a Terminal power P0 to specify the input power at this terminal from the 
transmission line. This excitation can be toggled using a port sweep.

- Select an option from the Characteristic impedance from list to define the value of 
the impedance — Physics interface or User defined. For Physics interface the 
Reference impedance Zref defined on the Settings window for the physics under 
Sweep Settings is used. For User defined enter a specific impedance Zref for this 
terminal. The default is 50 Ω.

Initial values
The initial values subsection is used to provide initial values for the internal state 
variables in the Terminal. These settings can be useful to provide an initial guess to the 
nonlinear solver or the initial value in a time-dependent study.

The Initial value for voltage is available for all Terminal types except Voltage. Enter an 
Initial value for voltage Vinit.

The Initial value for charge is available for the Circuit excitation. It specifies the initial 
charge on the terminal when the circuit is connected. Enter an Initial value for charge 
Qinit.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Floating Potential

The Floating Potential node is used when modeling a metallic electrode at floating 
potential. It applies a constant voltage V0 on the boundary (for domain features, this 
is the boundary enclosing the selected domain), such that the total normal electric 
displacement field D equals a specific charge Q0:

Studies and Solvers in the COMSOL Multiphysics Reference Manual

V V0=

D n⋅( ) Sd
∂Ω
 Q0,=
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where Ω represents the boundary and n refers to the surface normal. The constant 
boundary voltage implies the tangential electric field equals zero; the electric field will 
be perpendicular to the boundary:

In case of Q0 = 0 (the default case), the boundary will behave as an unconnected, 
neutrally charged, good conductor under electrostatic conditions (a floating 
equipotential). Although locally the displacement field may vary, the total electric 
displacement field entering or leaving the boundary equals zero.

If the floating potential touches a point, boundary or domain feature that is not 
floating (a Terminal or Ground feature), the floating potential will acquire that feature's 
potential. If the floating potential is set to a certain charge, or connected to a circuit, 
it behaves like a terminal.

F L O A T I N G  PO T E N T I A L

The Floating potential identifier text area shows the unique identifier for the floating 
potential feature. It is used to identify the global variables created by the node, such as 
the voltage. The Floating potential group check box on the Settings window for Floating 

Potential controls how potentials are assigned to boundary segments in the feature’s 
boundary selection. If this check box is not selected, a single potential is applied to all 
boundaries in the selection. If the check box is selected, each group of contiguous 
boundaries in the selection is given a unique potential. This simplifies the setup of 
models with many floating electrodes. The values of the potential at each group of 
boundaries are then made available in postprocessing, collected in a vector variable.

The following options are not available if the Floating potential group check box is 
selected. Select a specification for the Electric charge — choose User defined to specify 
a total Charge Q0 deposited on the surface. Select Circuit to connect the floating 
potential to an Electrical Circuit. Enter a value for the Contact work function Φc (SI 
unit: V). The default is 4 V.

∇tV– Et 0= =

n E× 0.=

The Electrical Circuit interface requires a current from the Floating 
Potential, so the Circuit terminal type can only be used in Time 
Dependent or Frequency Domain studies, in which the current can be 
computed as the time derivative of the charge.
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Initial Values
The initial values subsection is used to provide initial values for the internal state 
variables in the Floating potential. These settings can be useful to provide an initial 
guess to the nonlinear solver or the initial value in a time-dependent study.

Enter an Initial value for voltage Vinit.

The Initial value for charge is available for the Circuit excitation. It specifies the initial 
charge on the floating potential when the circuit is connected. Enter an Initial value for 

charge Qinit.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 

Distributed Capacitance

The Distributed Capacitance node adds a distributed capacitance boundary condition 
according to the following equations for exterior boundaries (left) and interior 
boundaries (right):

Use this boundary condition to model a thin sheet or film of a dielectric material. The 
sheet has the relative permittivity εr and the surface thickness ds, and it is connected 
to the reference potential Vref.

D I S T R I B U T E D  C A P A C I T A N C E

Enter the values or expressions for Relative permittivity εr (dimensionless), Surface 

thickness ds (SI unit: m), and Reference potential Vref . The default value for the surface 
thickness is 10−3 m (1 mm) and 0 V for the reference potential.

Enter a value for the Contact work function Φc(SI unit: V). The default is 4 V.

Settings and Properties Windows for Feature Nodes in the COMSOL 
Multiphysics Reference Manual

n– D⋅ ε0εr
Vref V–

ds
--------------------= n D1 D2–( )⋅ ε0εr

Vref V–

ds
--------------------=
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Line Charge

For 3D components, use the Line Charge node to specify line charges along the edges 
of a geometry. Add a contribution as a Harmonic Perturbation by right-clicking the 
parent node or clicking Harmonic Perturbation on the Physics toolbar. For more 
information see Harmonic Perturbation — Exclusive and Contributing Nodes in the 
COMSOL Multiphysics Reference Manual.

E D G E  S E L E C T I O N

L I N E  C H A R G E

Enter a value or expression to apply a Line charge QL (SI unit: C/m). This source 
represents electric charge per unit length and the default is 0 C/m.

Line Charge (on Axis)

For 2D axisymmetric components, use the Line Charge (on Axis) node to specify line 
charges along the symmetry axis.

Add a contribution as a Harmonic Perturbation by right-clicking the parent node or 
click Harmonic Perturbation on the Physics toolbar. For more information see 
Harmonic Perturbation — Exclusive and Contributing Nodes in the COMSOL 
Multiphysics Reference Manual.

L I N E  C H A R G E  ( O N  A X I S )

Enter a value or expression to apply a Line charge QL (SI unit: C/m). This source 
represents electric charge per unit length and the default is 0 C/m.

Beware that constraining the potential on edges usually yields a current 
outflow that is mesh dependent.

Line Charge (on Axis) and Line Charge (Out-of-Plane)

Line Charge and Line Charge (Out-of-Plane)
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Line Charge (Out-of-Plane)

For 2D and 2D axisymmetric components, points are selected and this is the same as 
a line out-of-plane.

Add a contribution as a Harmonic Perturbation by right-clicking the parent node or 
clicking Harmonic Perturbation on the Physics toolbar. For more information see 
Harmonic Perturbation — Exclusive and Contributing Nodes in the COMSOL 
Multiphysics Reference Manual.

Use the Line Charge (Out-of-Plane) node to specify line charges along the points of a 
geometry for 2D and 2D axisymmetric components.

PO I N T  S E L E C T I O N

L I N E  C H A R G E  ( O U T - O F - P L A N E )

Enter a value or expression to apply a Line charge QL (SI unit: C/m). This source 
represents electric charge per unit length and the default is 0 C/m.

Point Charge

The Point Charge node adds a point source to 3D components. The point charge 
represents an electric displacement field flowing out of the point.

Add a contribution as a Harmonic Perturbation by right-clicking the parent node or 
clicking Harmonic Perturbation on the Physics toolbar. For more information see 
Harmonic Perturbation — Exclusive and Contributing Nodes in the COMSOL 
Multiphysics Reference Manual.

Beware that constraining the potential on points usually yields a current 
outflow that is mesh dependent.

Line Charge and Line Charge (on Axis)
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PO I N T  S E L E C T I O N

PO I N T  C H A R G E

Enter a value or expression to apply a Point charge QP (SI unit: C) to points. This 
source represents an electric displacement field flowing out of the point. The default is 
0 C.

Point Charge (on Axis)

The Point Charge (on Axis) node adds a point source to 2D axisymmetric components. 
The point charge represents an electric displacement field flowing out of the point.

Add a contribution as a Harmonic Perturbation by right-clicking the parent node or 
clicking Harmonic Perturbation on the Physics toolbar. For more information see 
Harmonic Perturbation — Exclusive and Contributing Nodes in the COMSOL 
Multiphysics Reference Manual.

PO I N T  S E L E C T I O N

PO I N T  C H A R G E  ( O N  A X I S )

Enter a value or expression to apply a Point charge QP (SI unit: C) to points on an axis. 
This source represents an electric displacement field flowing out of the point. The 
default is 0 C.

Beware that constraining the potential on points usually yields a current 
outflow that is mesh dependent.

Point Charge (on Axis) and Line Charge (Out-of-Plane)

Beware that constraining the potential on points usually yields a current 
outflow that is mesh dependent.

Point Charge and Line Charge (Out-of-Plane)
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Change Cross Section

This node is available with 1D components. This setting overrides the global 
Cross-Section Area setting made in any physics interface that uses this feature. For 2D 
components, see Change Thickness (Out-of-Plane).

Use the Change Cross-Section node to set the cross-section area for specific geometric 
entities.

C H A N G E  C R O S S  S E C T I O N

Enter a value or expression for the Cross-section area A. The default value of 1 unit 
length is typically not representative for a thin domain. Instead it describes a unit 
thickness that makes the 1D equation identical to the equation used for 3D 
components.

Change Thickness (Out-of-Plane)

This node is available for 2D components. This setting overrides the global Thickness 
setting made in any physics interface that uses this node. For 1D components, see 
Change Cross Section.

Use the Change Thickness (Out-of-Plane) node to set the out-of-plane thickness for 
specific geometric entities.

C H A N G E  T H I C K N E S S  ( O U T - O F - P L A N E )

Enter a value or expression for the Out-of-plane thickness d (SI unit: m). The default 
value is, in most cases, 1 unit length, which is typically not representative for a thin 
domain. Instead it describes a unit thickness that makes the 2D equation identical to 
the equation used for 3D components.

Charge Conservation, Piezoelectric

The Charge Conservation, Piezoelectric is normally used together with a Piezoelectric 

Effect multiphysics coupling node and a corresponding Piezoelectric Material node in 
the Solid Mechanics interface. The node is added by default to the Electrostatics 

This feature is available with the Piezoelectric Devices interface, which 
requires the Acoustics Module, MEMS Module, or the Structural 
Mechanics Module. See the individual documentation for information.
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interface when adding a Piezoelectric Devices interface. It is also available from the 
context menu (right-click the Electrostatics interface parent node) or from the Physics 
toolbar.

E L E C T R I C  D I S P L A C E M E N T

If the node is used together with an active Piezoelectric Effect multiphysics coupling 
node, then these settings are locked. Note that if they are unlocked, then the material 
behaves like a dielectric and not a piezoelectric. In this case, the default is to take the 
Relative permittivity εrS (dimensionless) values From material. For User defined, select 
Isotropic, Diagonal, Symmetric, or Anisotropic and enter values or expressions in the field 
or matrix.

Electrostatic Point Dipole

Add an Electrostatic Point Dipole node to 3D and 2D components. Add a contribution 
as a Harmonic Perturbation by right-clicking the parent node or click Harmonic 

Perturbation on the Physics toolbar. For more information see Harmonic Perturbation 
— Exclusive and Contributing Nodes in the COMSOL Multiphysics Reference 
Manual.

The Electrostatic Point Dipole represents the limiting case of zero separation distance 
between two equally strong point sources of opposing signs while maintaining the 
product between separation distance and source strength at a fixed value (p). The 
dipole moment is a vector entity with positive direction from the negative charge to 
the positive one.

When the Charge Conservation, Piezoelectric node is added to the 
electrostatics interface in the absence of an active Piezoelectric Effect 
multiphysics coupling node, the material behaves similarly to a Charge 
Conservation node, with electric properties corresponding to the relative 
permittivity entered (see below). The piezoelectric effect is not included 
in the corresponding equation system.
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E L E C T R O S T A T I C  P O I N T  D I P O L E

Select a Dipole specification — Magnitude and direction (the default) or Electric dipole 

moment.

• For Magnitude and direction enter coordinates for the Electric dipole moment 

direction np (dimensionless) and the Electric dipole moment, magnitude p.

• For Electric dipole moment enter coordinates for the Electric dipole moment p.
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Th e  E l e c t r i c a l  C i r c u i t  I n t e r f a c e

The Electrical Circuit (cir) interface ( ), found under the AC/DC branch ( ) when 
adding a physics interface, is used to model currents and voltages in circuits including 
voltage and current sources, resistors, capacitors, inductors, and semiconductor 
devices. Models created with the Electrical Circuit interface can include connections 
to distributed field models. The physics interface supports stationary, 
frequency-domain and time-domain modeling and solves Kirchhoff's conservation 
laws for the voltages, currents and charges associated with the circuit elements.

When this physics interface is added, it adds a default Ground Node feature and 
associates that with node zero in the electrical circuit. 

D E V I C E  N A M E S

Each circuit component has an associated Device name, which is constructed from a 
prefix identifying the type of the device and a string. The string can be specified in the 
feature’s Settings window. The Device name is used to identify variables defined by the 
component, and for the SPICE Import and Exportfunctionality.

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is cir.

Circuit nodes are nodes in the electrical circuit (electrical nodes) and 
should not be confused with nodes in the Model Builder tree of the 
COMSOL Multiphysics software. Circuit node names are not restricted 
to numerical values but can contain alphanumeric characters.
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R E S I S T A N C E  I N  P A R A L L E L  T O  P N  J U N C T I O N S

For numerical stability, a large resistance is added automatically in parallel to the pn 
junctions in diodes and BJT devices. Enter a default value for the Resistance in parallel 

to pn junctions Rj (SI unit: Ω). The default value is 1·1012 Ω.

C R E A T E  U N I Q U E  N O D E S  F O R  N E W  D E V I C E S

When this setting is selected (the default), newly added devices will be assigned unused 
node names. The devices will be disconnected from the rest of the circuit and the 
nodes should be updated to reflect the actual circuit connections. When the this setting 
is deselected, new devices will be connected to the lowest-numbered nodes starting 
from 0.

E L E C T R I C A L  C I R C U I T  TO O L B A R

The following nodes are available from the Electrical Circuit ribbon toolbar (Windows 
users), Electrical Circuit context menu (Mac or Linux users), or right-click to access the 
context menu (all users).:

For step-by-step instructions and general documentation 
descriptions, this is the Electrical Circuit toolbar. 
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Ground Node

The Ground Node ( ) feature adds a ground node with the default node number zero 
to the electrical circuit. This is the default node in the Electrical Circuit interface. More 
ground nodes can be added but those must have unique node numbers and are by 
default given higher node numbers.

G R O U N D  C O N N E C T I O N

Set the Node name for the ground node in the circuit. The convention is to use 0 (zero) 
for the ground node. If adding more ground nodes. each must have a unique node 
name (number).

Resistor

The Resistor ( ) feature connects a resistor between two nodes in the electrical 
circuit.

D E V I C E  N A M E

Enter a Device name for the resistor. The prefix is R.

• Ground Node

• Resistor

• Capacitor

• Inductor

• Voltage Source

• Current Source

• Diode

• Voltage-Controlled Voltage Source1 

• Voltage-Controlled Current Source1 

• Current-Controlled Voltage Source1 

• Current-Controlled Current Source1 

• Subcircuit Definition

• Subcircuit Instance

• Mutual Inductance

• Transformer

• NPN BJT and PNP BJT2

• n-Channel MOSFET and 
p-Channel MOSFET2

• External I vs. U3

• External U vs. I3

• External I-Terminal3

• SPICE Circuit Import

• SPICE Circuit Export

1 Selected from the Dependent Sources submenu when you right-click main node.
2 Selected from the Transistors submenu when you right-click main node.
3 Selected from the External Couplings submenu when you right-click main node.
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N O D E  C O N N E C T I O N S

Set the two Node names for the connecting nodes for the resistor.

D E V I C E  P A R A M E T E R S

Enter the Resistance of the resistor.

Capacitor

The Capacitor ( ) feature connects a capacitor between two nodes in the electrical 
circuit.

D E V I C E  N A M E

Enter a Device name for the capacitor. The prefix is C.

N O D E  C O N N E C T I O N S

Set the two Node names for the connecting nodes for the capacitor.

D E V I C E  P A R A M E T E R S

Enter the Capacitance of the capacitor.

Inductor

The Inductor ( ) feature connects an inductor between two nodes in the electrical 
circuit.

D E V I C E  N A M E

Enter a Device name for the inductor. The prefix is L.

N O D E  C O N N E C T I O N S

Set the two Node names for the connecting nodes for the inductor.

D E V I C E  P A R A M E T E R S

Enter the Inductance of the inductor.

Voltage Source

The Voltage Source ( ) feature connects a voltage source between two nodes in the 
electrical circuit.
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D E V I C E  N A M E

Enter a Device name for the voltage source. The prefix is V.

N O D E  C O N N E C T I O N S

Set the two Node names for the connecting nodes for the voltage source. The first node 
represents the positive reference terminal.

D E V I C E  P A R A M E T E R S

Enter the Source type that should be adapted to the selected study type. It can be 
DC-source, AC-source, or a time-dependent Sine source or Pulse source. Depending on 
the choice of source, also specify the following parameters:

• For a DC-source, the Voltage Vsrc (default value: 1 V). DC-sources are active in 
Stationary and Time-Dependent studies.

• For an AC-source: the Voltage Vsrc (default value: 1 V) and the Phase Θ (default 
value: 0 rad). AC-sources are active in Frequency Domain studies only.

• For a sine source: the Voltage Vsrc (default value: 1 V), the Offset Voff (default value: 
0 V), the Frequency (default value: 1 kHz), and the Phase Θ (default value: 0 rad). 
The sine sources are active in Time-Dependent studies and also in Stationary 
studies, providing that a value for t has been provided as a model parameter or 
global variable.

• For a pulse source: the Voltage Vsrc (default value: 1 V), the Offset Voff (default value: 
0 V), the Delay td (default value: 0s), the Rise time tr and Fall time tf (default values: 
0 s), the Pulse width pw (default value: 1 μs), and the Period Tper (default value: 2 μs). 
The pulse sources are active in Time-Dependent studies and also in Stationary 
studies, providing that a value for t has been provided as a model parameter or 
global variable.

All values are peak values rather than RMS. 

Current Source

The Current Source ( ) feature connects a current source between two nodes in the 
electrical circuit.

For the AC source, the frequency is a global input set by the solver. AC 
sources should be used in Frequency-domain studies only. Do not use the 
Sine source unless the model is time-dependent.
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D E V I C E  N A M E

Enter a Device name for the current source. The prefix is I.

N O D E  C O N N E C T I O N S

Set the two Node names for the connecting nodes for the current source. The first node 
represents the positive reference terminal from where the current flows through the 
source to the second node.

D E V I C E  P A R A M E T E R S

Enter the Source type that should be adapted to the selected study type. It can be 
DC-source, AC-source, or a time-dependent Sine source or Pulse source. Depending on 
the choice of source, also specify the following parameters:

• For a DC-source, the Current isrc (default value: 1 A). DC-sources are active in 
Stationary and Time-Dependent studies.

• For an AC-source: the Current isrc (default value: 1 A) and the Phase Θ (default 
value: 0 rad). AC-sources are active in Frequency Domain studies only.

• For a sine source: the Current isrc (default value: 1 A), the Offset ioff (default value: 
0 A), the Frequency (default value: 1 kHz), and the Phase Θ (default value: 0 rad). 
The sine sources are active in Time-Dependent studies and also in Stationary 
studies, providing that a value for t has been provided as a model parameter or 
global variable.

• For a pulse source: the Current isrc (default value: 1 A), the Offset ioff (default value: 
0 A), the Delay td (default value: 0 s), the Rise time tr and Fall time tf (default values: 
0 s), the Pulse width pw (default value: 1 μs), and the Period Tper (default value: 2 μs). 
The pulse sources are active in Time-Dependent studies and also in Stationary 
studies, providing that a value for t has been provided as a model parameter or 
global variable.

All values are peak values rather than RMS. 

For the AC source, the frequency is a global input set by the solver. AC 
sources should be used in Frequency-domain studies only. Do not use the 
Sine source unless the model is time-dependent.
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Voltage-Controlled Voltage Source

The Voltage-Controlled Voltage Source ( ) feature connects a voltage-controlled 
voltage source between two nodes in the electrical circuit. A second pair of nodes 
define the input control voltage. 

D E V I C E  N A M E

Enter a Device name for the voltage-controlled voltage source. The prefix is E.

N O D E  C O N N E C T I O N S

Specify four Node names: the first pair for the connection nodes for the voltage source 
and the second pair defining the input control voltage. The first node in a pair 
represents the positive reference terminal.

D E V I C E  P A R A M E T E R S

Enter the voltage Gain. The resulting voltage is this number multiplied by the control 
voltage.

Voltage-Controlled Current Source

The Voltage-Controlled Current Source ( ) feature connects a voltage-controlled 
current source between two nodes in the electrical circuit. A second pair of nodes 
define the input control voltage.

D E V I C E  N A M E

Enter a Device name for the voltage-controlled current source. The prefix is G.

N O D E  C O N N E C T I O N S

Specify four Node names: the first pair for the connection nodes for the current source 
and the second pair defining the input control voltage. The first node in a pair 
represents the positive voltage reference terminal or the one from where the current 
flows through the source to the second node.

D E V I C E  P A R A M E T E R S

Enter the source Gain (SI units: S). The resulting current is this number multiplied by 
the control voltage. It represents the transconductance of the source.
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Current-Controlled Voltage Source

The Current-Controlled Voltage Source ( ) feature connects a current-controlled 
voltage source between two nodes in the electrical circuit. The input control current 
is the one flowing through a two-pin device. 

D E V I C E  N A M E

Enter a Device name for the current-controlled voltage source. The prefix is H.

N O D E  C O N N E C T I O N S

Set two Node names for the connection nodes for the voltage source. The first node in 
a pair represents the positive reference terminal.

D E V I C E  P A R A M E T E R S

Enter the voltage Gain and select the Device whose current is taken as the control 
current. The resulting voltage is this number multiplied by the control current through 
the named Device (any two-pin device). Thus it formally has the unit of resistance.

Current-Controlled Current Source

The Current-Controlled Current Source ( ) feature connects a current-controlled 
current source between two nodes in the electrical circuit. The input control current 
is the one flowing through a named device that must be a two-pin device. 

D E V I C E  N A M E

Enter a Device name for the current-controlled current source. The prefix is F.

N O D E  C O N N E C T I O N S

Specify two Node names for the connection nodes for the current source. The first node 
in a pair represents the positive reference terminal from where the current flows 
through the source to the second node.

D E V I C E  P A R A M E T E R S

Enter the current Gain and select the Device whose current is taken as the control 
current. The resulting current is this number multiplied by the control current 
through the Device.
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Subcircuit Definition

The Subcircuit Definition ( ) feature is used to define subcircuits, which can be 
inserted as devices into the main circuit using Subcircuit Instance nodes. Create the 
subcircuit by adding subnodes to the Subcircuit Definition node, either by using the 
Physics toolbar, or by right-clicking the Subcircuit Definition. 

S U B C I R C U I T  P I N S

Define the Pin names at which the subcircuit connects to the main circuit or to other 
subcircuits when referenced by a Subcircuit Instance node. The Pin names refer to 
circuit nodes in the subcircuit. The order in which the Pin names are defined is the 
order in which they are referenced by a Subcircuit Instance node. The devices 
constistuting the subcircuit should be connected only to the subcircuit’s pins and to 
themselves.

Subcircuit Instance

The Subcircuit Instance ( ) feature represents an instance of a subcircuits defined by 
a Subcircuit Definition feature.

D E V I C E  N A M E

Enter a Device name for the subcircuit instance. The prefix is X.

N O D E  C O N N E C T I O N S

Select the Name of subcircuit link from the list of defined subcircuits in the circuit model 
and the circuit Node names at which the subcircuit instance connects to the main circuit 
or to another subcircuit if used therein.

NPN BJT and PNP BJT

The NPN BJT ( ) and the PNP BJT ( ) device models are large-signal models for 
bipolar junction transistors (BJT). It is an advanced device model and no thorough 
description and motivation of the many input parameters are attempted here. Many 
device manufacturers provide model input parameters for this BJT model. For any 
particular make of BJT, the device manufacturer should be the primary source of 
information.

D E V I C E  N A M E

Enter a Device name for the BJT. The prefix is Q.
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N O D E  C O N N E C T I O N S

Specify three Node names for the connection nodes for the BJT device. These represent 
the collector, base, and emitter nodes for the NPN transistor, and the emitter, base, and 
collector nodes for the PNP transistor.

M O D E L  P A R A M E T E R S

Specify the Model Parameters. Reasonable defaults are provided but for any particular 
BJT, the device manufacturer should be the primary source of information. 

n-Channel MOSFET and p-Channel MOSFET

The n-Channel MOSFET ( ) and the p-Channel MOSFET ( ) device models are 
large-signal models for, respectively, an n-Channel MOS field-effect transistor 
(MOSFET) and p-Channel MOSFET. These are advanced device models and no 
thorough description and motivation of the many input parameters are attempted 
here. Many device manufacturers provide model parameters for the MOSFET models. 
For any particular make of MOSFET, the device manufacturer should be the primary 
source of information. 

D E V I C E  N A M E

Enter a Device name for the MOSFET. The prefix is M.

N O D E  C O N N E C T I O N S

Specify four Node names for the connection nodes for the n-Channel MOSFET or 
p-Channel MOSFET device. These represent the drain, gate, source, and bulk nodes, 
respectively.

The interested reader is referred to Ref. 1 for more details on 
semiconductor modeling within circuits.

For an explanation of the Model Parameters see Bipolar Transistors.
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M O D E L  P A R A M E T E R S

Specify the Model Parameters. Reasonable defaults are provided but for any particular 
MOSFET, the device manufacturer should be the primary source of information. 

Mutual Inductance

The Mutual Inductance allows specifying a coupling between two existing Inductor 
features in the circuit. The mutual inductance of the coupling is

where k is the coupling factor and L1 and L2 are the inductances of the inductors.

D E V I C E  P A R A M E T E R S

Enter values or expressions for the:

• Coupling factor k (dimensionless). The value must be between 0 and 1, and the 
default is 0.98.

• First inductance L1 (SI unit: H) and Second inductance L2 (SI unit: H). These must 
be set to two different Inductor features in the circuit.

Transformer

The Transformer feature represents either a combination of two Inductor and a Mutual 
Inductance features, or an ideal transformer.

N O D E  C O N N E C T I O N S

Enter or edit the table in the Node names column for the primary and secondary node 
connections.

D E V I C E  P A R A M E T E R S

Chose a Transformer model—Specify inductors (the default) or Ideal transformer.

For Specify inductors enter values or expressions for the:

• Coupling factor k (dimensionless). The default is 0.98.

The interested reader is referred to Ref. 1 for more details on 
semiconductor modeling within circuits.

For an explanation of the Model Parameters see MOSFET Transistors.

M k L1L2=
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• First inductance L1 (SI unit: H). The default is 1 mH.

• Second inductance L2 (SI unit: H). The default is 1 mH.

For Ideal transformer enter values or expressions for the Winding ratio N1/N2 
(dimensionless). The default is 10.

Diode

The Diode device model ( ) is a large-signal model for a diode. It is an advanced 
device model and no thorough description and motivation of the many input 
parameters are attempted here. The interested reader is referred to Ref. 1 for more 
details on semiconductor modeling within circuits. Many device manufacturers 
provide model parameters for this diode model. For any particular make of diode, the 
device manufacturer should be the primary source of information.

D E V I C E  N A M E

Enter a Device name for the diode. The prefix is D.

N O D E  C O N N E C T I O N S

Specify two Node names for the positive and negative nodes for the Diode device.

M O D E L  P A R A M E T E R S

Specify the Model Parameters. Reasonable defaults are provided but for any particular 
diode, the device manufacturer should be the primary source of information. 

External I vs. U

The External I vs. U ( ) feature connects an arbitrary voltage measurement (for 
example, a circuit terminal or circuit port boundary or a coil domain from another 
physics interface) as a voltage source between two nodes in the electrical circuit. The 
resulting circuit current from the first node to the second node is typically coupled 
back as a prescribed current source in the context of the voltage measurement. 

D E V I C E  N A M E

Enter a Device name for the External I vs. U node.

For an explanation of the Model Parameters see Diode.
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N O D E  C O N N E C T I O N S

Specify the two Node names for the connecting nodes for the voltage source. The first 
node represents the positive reference terminal.

E X T E R N A L  D E V I C E

Enter the source of the Voltage. If circuit or current excited terminals or circuit ports 
are defined on boundaries or domains or a multiturn coil domains is defined in other 
physics interfaces, these display as options in the Voltage list. Also select the User defined 

option and enter your own voltage variable, for example, using a suitable coupling 
operator. For inductive or electromagnetic wave propagation models, the voltage 
measurement must be performed as an integral of the electric field because the electric 
potential only does not capture induced EMF. Also the integration must be performed 
over a distance that is short compared to the local wavelength. 

External U vs. I

The External U vs. I ( ) feature connects an arbitrary current measurement (for 
example, a coil domain from another physics interface) as a current source between 
two nodes in the electrical circuit. The resulting circuit voltage between the first node 
and the second node is typically coupled back as a prescribed voltage source in the 
context of the current measurement. 

D E V I C E  N A M E

Enter a Device name for the External U vs. I node.

Except when coupling to a circuit terminal, circuit port, or coil, the 
current flow variable must be manually coupled back in the electrical 
circuit to the context of the voltage measurement. This applies also when 
coupling to a current excited terminal. The name of this current variable 
follows the convention cirn.IvsUm_i, where cirn is the tag of the 
Electrical Circuit interface node and IvsUm is the tag of the External I vs. 

U node. The tags are typically displayed within curly brackets {} in the 
Model Builder.

Component Couplings and Coupling Operators in the COMSOL 
Multiphysics Reference Manual
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N O D E  C O N N E C T I O N S

Specify the two Node names for the connecting nodes for the current source. The 
current flows from the first node to the second node.

E X T E R N A L  D E V I C E

Enter the source of the Current. Voltage excited terminals or lumped ports defined on 
boundaries in other physics interfaces are natural candidates but do not appear as 
options in the Voltage list because those do not have an accurate built-in current 
measurement variable. A User defined option must be selected and a current variable 
entered, for example, using a suitable coupling operator. 

External I-Terminal

The External I-Terminal ( ) feature connects an arbitrary voltage-to-ground 
measurement (for example, a circuit terminal from another physics interface) as a 
voltage-to-ground assignment to a node in the electrical circuit. The resulting circuit 
current from the node is typically coupled back as a prescribed current source in the 
context of the voltage measurement. This node does not apply when coupling to 
inductive or electromagnetic wave propagation models because then voltage must be 
defined as a line integral between two points rather than a single point measurement 
of electric potential. For such couplings, use the External I vs. U node instead.

D E V I C E  N A M E

Enter a Device name for the External I-terminal.

The voltage variable must be manually coupled back in the electrical 
circuit to the context of the current measurement. This applies also when 
coupling to a voltage excited terminal or lumped port. The name of this 
voltage variable follows the convention cirn.UvsIm_v, where cirn is the 
tag of the Electrical Circuit interface node and UvsIm is the tag of the 
External U vs. I node. The tags are typically displayed within curly 
brackets {} in the Model Builder.

Component Couplings and Coupling Operators in the COMSOL 
Multiphysics Reference Manual
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N O D E  C O N N E C T I O N S

Set the Node name for the connecting node for the voltage assignment.

E X T E R N A L  TE R M I N A L

Enter the source of the Voltage. If circuit- or current-excited terminals are defined on 
boundaries in other physics interfaces, these display as options in the Voltage list. Also 
select the User defined option and enter a voltage variable, for example, using a suitable 
coupling operator. 

SPICE Circuit Import

Right-click the Electrical Circuit ( ) feature node to import an existing SPICE netlist 
(select Import Spice Netlist). A window opens—enter a file location or browse your 
directories to find one. The default file extension for a SPICE netlist is .cir. The 
SPICE circuit import translates the imported netlist into Electrical Circuit interface 
nodes so these define the subset of SPICE features that can be imported.

SPICE Circuit Export

Right-click the Electrical Circuit ( ) feature node to export the current circuit to the 
SPICE netlist file format (select Export Spice Netlist ). A window opens—enter a 
file location or browse your directories to find one. The default file extension for a 

Except when coupling to a circuit terminal, the current flow variable must 
be manually coupled back in the electrical circuit to the context of the 
voltage measurement. This applies also when coupling to a current 
excited terminal. The name of this current variable follows the convention 
cirn.termIm_i, where cirn is the tag of the Electrical Circuit interface 
node and termIm is the tag of the External I-Terminal node. The tags are 
typically displayed within curly brackets {} in the Model Builder.

Component Couplings and Coupling Operators in the COMSOL 
Multiphysics Reference Manual

See Spice Import about the supported SPICE commands.
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SPICE netlist is .cir. The compatible circuit nodes are exported as SPICE devices 

See SPICE Export for more details on the supported SPICE commands.
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Th eo r y  f o r  t h e  E l e c t r o s t a t i c s  
I n t e r f a c e

The Electrostatics Interface is available for 3D, 2D in-plane, and 2D axisymmetric 
components. Applications with electrostatic equations include high-voltage apparatus, 
electronic devices, and capacitors. The term “statics” is not to be interpreted literally—
it is the observation time, or time scale at which the applied excitation changes, that is 
short compared to the charge relaxation time; also, the electromagnetic wavelength 
and skin depth are very large compared to the size of the domain of interest.

If you do not know whether to use the Electric Currents or the Electrostatics interface, 
which both solve for the scalar electric potential V, consider using an explicit charge 
transport model. See Charge Relaxation Theory.

Charge Relaxation Theory

COMSOL Multiphysics includes physics interfaces for the modeling of static electric 
fields and currents. Deciding what specific physics interface and study type to select for 
a particular modeling situation requires a basic understanding of the charge dynamics 
in conductors.

The different physics interfaces involving only the scalar electric potential can be 
interpreted in terms of the charge relaxation process. The fundamental equations 
involved are Ohm’s law

the equation of continuity

and Gauss’ law

By combining these, one can deduce the following differential equation for the space 
charge density in a homogeneous medium

J σE=

ρ∂
t∂
------ ∇+ J⋅ 0=

∇ εE( )⋅ ρ=
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This equation has the solution

where

is called the charge relaxation time. For a good conductor like copper, τ is of the order 
of 10−19 s, whereas for a good insulator like silica glass, it is of the order of 103 s. For 
a pure insulator, it becomes infinite.

When modeling real-world devices, there is not only the intrinsic time scale of the 
charge relaxation time but also an external time scale t at which a device is energized 
or the observation time. It is the relation between the external time scale and the 
charge relaxation time that determines what physics interface and study type to use. 
The results are summarized in Table 4-2 below,

F I R S T  C A S E :  τ > >  T

If the external time scale is short compared to the charge relaxation time, the charges 
do not have time to redistribute to any significant degree. Thus the charge distribution 
can be considered as a given model input. The best approach is to solve the 
Electrostatics formulation using the electric potential V. 

By combining the definition of the potential with Gauss’ law, you can derive the 
classical Poisson’s equation. Under static conditions, the electric potential V is defined 
by the equivalence E = −∇V. Using this together with the constitutive relation D = ε0E 
+ P between D and E, you can rewrite Gauss’ law as a variant of Poisson’s equation

TABLE 4-2:  SUITABLE PHYSICS INTERFACE AND STUDY TYPE FOR DIFFERENT TIME-SCALE REGIMES.

CASE PHYSICS INTERFACE STUDY TYPE

τ>>t Electrostatics Stationary

τ<<t Electric Currents Stationary

τ~t Electric Currents Time Dependent orFrequency Domain 

ρ∂
t∂
------ σ

ε
---+ ρ 0=

ρ t( ) ρ0e t τ⁄–
=

τ ε
σ
---=

∇– ε0 V∇ P–( )⋅ ρ=
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This equation is used in the Electrostatics interface. It is worth noting that Gauss’ law 
does not require the charge distribution to be static. Thus, provided dynamics are slow 
enough that induced electric fields can be neglected and hence a scalar electric 
potential is justified, the formulation can be used also in the Time Dependent study 
type. That typically involves either prescribing the charge dynamics or coupling a 
separate formulation for this.

S E C O N D  C A S E :  τ < < T

If the external time scale is long compared to the charge relaxation time, the stationary 
solution to the equation of continuity has been reached. In a stationary coordinate 
system, a slightly more general form of Ohm’s law than above states that

where Je is an externally generated current density. The static form of the equation of 
continuity then reads

To handle current sources, the equation can be generalized to

This equation is used in the static study type for the Electric Currents interface.

G E N E R A L  C A S E :  C H A R G E  D Y N A M I C S

If the charge relaxation time is comparable to the external time scale, the Time 
Dependent or Frequency Domain study types for the Electric Currents interface must 
be used. 

Combining the time-harmonic equation of continuity

with the equation (∇⋅ D = ρ) yields the following equation for the frequency domain 
study type:

Such separate charge transport formulations can be found in the Plasma 
Module, the Semiconductor Module, and the Chemical Reaction 
Engineering Module.

J σE Je+=

∇ J⋅ ∇– σ V∇ Je–( )⋅ 0= =

∇– σ V∇ Je–( )⋅ Qj=

∇ J⋅ ∇ σE Je+( )⋅ jωρ–= =
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For the Time Dependent study type, use the transient equation of continuity

and the resulting equation becomes

These dynamic formulations are valid as long as induced electric fields can be ignored 
and hence the electric field is essentially curl free. This condition is fulfilled provided 
that skin effect and wave propagation effects can be ignored. The skin depth must be 
much larger than the geometrical dimensions of the modeled device and so must the 
wavelength. Note also that these formulations can be used to model dielectric regions 
of capacitive/resistive devices even though the interior of electrodes sometimes does 
not meet the large skin depth condition. In that case, the electrodes must only be 
represented as boundary conditions (fixed or floating potential). The interior, metallic 
domains are not included in the analysis. Obviously, this is only a valid approach for 
devices where metallic electrodes do not entirely bypass (short circuit) the 
capacitive/resistive layers. If metallic electrodes short circuit the capacitive/resistive 
layers, the time evolution of the current is determined by inductive and resistive effects 
with very little influence from the capacitive layers. Then the Magnetic Fields interface 
is the appropriate modeling tool.

Electrostatics Equations

Under static conditions, the electric potential, V, is defined by the relationship:

Combining this equation with the constitutive relationship D = ε0E + P between the 
electric displacement D and the electric field E, it is possible to represent Gauss’ law 
as the following equation:

In this equation, the physical constant, ε0 (SI unit: F/m) is the permittivity of vacuum, 
P (SI unit: C/m2) is the electric polarization vector, and ρ (SI unit: C/m3) is a space 
charge density. This equation describes the electrostatic field in dielectric materials.

∇– σ jωε0+( )∇V Je jωP+( )–( )⋅ 0=

∇ J⋅ ∇ σE Je+( )⋅
t∂

∂ρ
–= =

∇
t∂

∂ ε0∇V P+( ) ∇ σ∇V Je–( )⋅–⋅– 0=

E V∇–=

∇– ε0 V∇ P–( )⋅ ρ=
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For in-plane 2D modeling, the Electrostatics interface assumes a symmetry where the 
electric potential varies only in the x and y directions and is constant in the z direction. 
This implies that the electric field, E, is tangential to the xy-plane. With this symmetry, 
the same equation is solved as in the 3D case. The physics interface solves the following 
equation where d is the thickness in the z direction:

The axisymmetric version of the physics interface considers the situation where the 
fields and geometry are axially symmetric. In this case, the electric potential is constant 
in the direction, which implies that the electric field is tangential to the rz-plane.

The Electrostatics Interface in Time Dependent or Frequency Domain 
Studies

The Electrostatics Interface can also be solved in a dynamic study (Time Dependent 
or Frequency Domain). The equation system solved, however, is always the one 
presented in the previous section for the stationary case, in which no transient 
electromagnetic effects are taken into account. The difference is that the sources of the 
problem (charge densities, electric potential) are assumed to be time-varying (in a 
Time Dependent study) or time-harmonic (in a Frequency Domain study). The 
support for dynamic studies simplifies the coupling of the Electrostatics interface with 
other physics interfaces. Using the physics interface in a dynamic study is a valid 
approximation only if the time-scale (or the frequency) of the study is so slow that 
transient electromagnetic effects can be neglected; for example, in acoustic or 
structural problems.

Most of the features in the Electrostatics interface have the same behavior in all study 
types, with the important exception of the Terminal node. 

The Electrostatics interface also supports the small-signal analysis study sequence, 
which can be used when a time-harmonic perturbation is superposed on a static bias 
charge or voltage.

∇– d ε0 V∇ P–( )⋅ ρ=

ϕ
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Th eo r y  f o r  t h e  E l e c t r i c a l  C i r c u i t  
I n t e r f a c e

The Electrical Circuit Interface theory is discussed in this section:

• Electric Circuit Modeling and the Semiconductor Device Models

• Bipolar Transistors

• MOSFET Transistors

• Diode

• Reference for the Electrical Circuit Interface

Electric Circuit Modeling and the Semiconductor Device Models

Electrical circuit modeling capabilities are useful when simulating all sorts of electrical 
and electromechanical devices ranging from heaters and motors to advanced plasma 
reactors in the semiconductor industry. There are two fundamental ways that an 
electrical circuit model relates to a physical field model. 

• The field model is used to get a better, more accurate description of a single device 
in the electrical circuit model.

• The electrical circuit is used to drive or terminate the device in the field model in 
such a way that it makes more sense to simulate both as a tightly coupled system.

The Electrical Circuit interface makes it possible to add nodes representing circuit 
elements directly to the Model Builder tree in a COMSOL Multiphysics model. The 
circuit variables can then be connected to a physical device model to perform 
co-simulations of circuits and multiphysics. The model acts as a device connected to 
the circuit so that its behavior is analyzed in larger systems.

The fundamental equations solved by the Electrical Circuit interface are Kirchhoff’s 
circuit laws, which in turn can be deduced from Maxwell’s equations. The supported 
study types are Stationary, Frequency Domain, and Time Dependent.

Connecting to Electrical Circuits
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There are three more advanced large-signal semiconductor device features available in 
the Electrical Circuit interface. The equivalent circuits and the equations defining their 
non-ideal circuit elements are described in this section. For a more detailed account on 
semiconductor device modeling, see Ref. 1.

Bipolar Transistors

Figure 4-1 illustrates the equivalent circuit for the npn bipolar junction transistor. 

Figure 4-1: A circuit for the bipolar transistor.

The pnp transistor model is similar in all regards to the npn transistor, with the 
difference that the polarities of the currents and voltages involved are reversed. The 
following equations are used to compute the relations between currents and voltages 
in the circuit.
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There are also two capacitances that use the same formula as the junction capacitance 
of the diode model. In the parameter names below, replace x with C for the 
base-collector capacitance and E for the base-emitter capacitance.

The model parameters are listed in the table below.  

TABLE 4-1:  BIPOLAR TRANSISTOR MODEL PARAMETERS

PARAMETER DEFAULT DESCRIPTION

BF 100 Ideal forward current gain

BR 1 Ideal reverse current gain

CJC 0 F/m2 Base-collector zero-bias depletion capacitance

CJE 0 F/m2 Base-emitter zero-bias depletion capacitance

FC 0.5 Breakdown current

IKF Inf (A/m2) Corner for forward high-current roll-off

IKR Inf (A/m2) Corner for reverse high-current roll-off
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IS 1e-15 A/m2 Saturation current

ISC 0 A/m2 Base-collector leakage saturation current

ISE 0 A/m2 Base-emitter leakage saturation current

MJC 1/3 Base-collector grading coefficient

MJE 1/3 Base-emitter grading coefficient

NC 2 Base-collector ideality factor

NE 1.4 Base-emitter ideality factor

NF 1 Forward ideality factor

NR 1 Reverse ideality factor

RB 0 Ωm2 Base resistance

RBM 0 Ωm2 Minimum base resistance

RC 0 Ωm2 Collector resistance

RE 0 Ωm2 Emitter resistance

TNOM 298.15 K Device temperature

VAF Inf (V) Forward Early voltage

VAR Inf (V) Reverse Early voltage

VJC 0.71 V Base-collector built-in potential

VJE 0.71 V Base-emitter built-in potential

TABLE 4-1:  BIPOLAR TRANSISTOR MODEL PARAMETERS

PARAMETER DEFAULT DESCRIPTION
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MOSFET Transistors

Figure 4-2 illustrates an equivalent circuit for the n-channel MOSFET transistor. The 
p-channel MOSFET transistor is treated similarly, but the polarities of the involved 
voltages are reversed.

Figure 4-2: A circuit for the MOSFET transistor.

The following equations are used to compute the relations between currents and 
voltages in the circuit.
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There are also several capacitances between the terminals

The model parameters are as follows:

TABLE 4-2:  MOSFET TRANSISTOR MODEL PARAMETERS

PARAMETER DEFAULT DESCRIPTION

CBD 0 F/m Bulk-drain zero-bias capacitance

CGDO 0 F/m Gate-drain overlap capacitance

CGSO 0 F/m Gate-source overlap capacitance

FC 0.5 Capacitance factor

IS 1e-13 A Bulk junction saturation current

KP 2e-5 A/V2 Transconductance parameter

L 50e-6 m Gate length

MJ 0.5 Bulk junction grading coefficient

N 1 Bulk junction ideality factor
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PB 0.75 V Bulk junction potential

RB 0 Ω Bulk resistance

RD 0 Ω Drain resistance

RDS Inf (Ω) Drain-source resistance

RG 0 Ω Gate resistance

RS 0 Ω Source resistance

TNOM 298.15 K Device temperature

VTO 0 V Zero-bias threshold voltage

W 50e-6 m Gate width

Γ (GAMMA) 0 V0.5 Bulk threshold parameter

Φ (PHI) 0.5 V Surface potential

Λ (LAMBDA) 0 1/V Channel-length modulation

TABLE 4-2:  MOSFET TRANSISTOR MODEL PARAMETERS

PARAMETER DEFAULT DESCRIPTION
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Diode

Figure 4-3 illustrates equivalent circuit for the diode.

Figure 4-3: A circuit for the diode.

The following equations are used to compute the relations between currents and 
voltages in the circuit.
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where the following model parameters are required

TABLE 4-3:  DIODE TRANSISTOR MODEL PARAMETERS

PARAMETER DEFAULT DESCRIPTION

BV Inf (V) Reverse breakdown voltage

CJ0 0 F Zero-bias junction capacitance

FC 0.5 Forward-bias capacitance coefficient

IBV 1e-09 A Current at breakdown voltage

IKF Inf (A) Corner for high-current roll-off

IS 1e-13 A Saturation current

M 0.5 Grading coefficient

N 1 Ideality factor

NBV 1 Breakdown ideality factor

NR 2 Recombination ideality factor

RS 0 Ω Series resistance

TNOM 298.15 K Device temperature

VJ 1.0 V Junction potential
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Reference for the Electrical Circuit Interface

1. P. Antognetti and G. Massobrio, Semiconductor Device Modeling with Spice, 2nd 
ed., McGraw-Hill, 1993.
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 5
S c h r ö d i n g e r  E q u a t i o n  I n t e r f a c e
This chapter describes the Schrödinger Equation interface ( ).

In this chapter:

• The Schrödinger Equation Interface

• Theory for the Schrödinger Equation Interface
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Th e  S c h r öd i n g e r  Equa t i o n  I n t e r f a c e

The Schrödinger Equation interface ( ), found under the Semiconductor branch ( ) 
when adding a physics interface, solves the Schrödinger equation for the wave function 
of a single particle in an external potential. By default the Schrödinger equation is 
added to all the domain selections of the interface.

When this physics interface is added, these default nodes are added to the Model 
Builder: Effective Mass, Electron Potential Energy, Zero Flux, and Initial Values. Then, 
from the Physics toolbar, add other nodes that implement, for example, boundary 
conditions or additional contributions to the potential energy. You can also right-click 
Schrödinger Equation to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is schr.

M O D E L  P R O P E R T I E S

Use Model properties to set the particle type and study-specific variables in the model.

Particle type
Select an option from the Particle type drop down menu: Electrons (the default) or 
Holes. 

• For electron-like particles, the direction of lower energy is in the negative direction 
of the electron potential energy. Pictorially, this type of particles tend to fall down 
to the bottom of an electron potential energy well.

• For hole-like particles, the direction of lower energy is in the positive direction of 
the electron potential energy. Pictorially, this type of particles tend to float up to the 
top of an electron potential energy peak.
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Eigenvalue scale
• Enter a constant value for the Eigenvalue scale λscale (J) for eigenvalue studies. The 

eigenenergy is defined as the product of the eigenvalue scale and the eigenvalue 
(dimensionless). The default is 1 eV, so that the eigenvalue will be the numerical 
value of the eigenenergy in unit of eV. 

Energy
Enter a constant value or a global parameter for the Energy E (J) for stationary studies. 
This specifies the total energy of the stationary Schrödinger equation.

D I S C R E T I Z A T I O N

To display the section click the Show button ( ) and select Discretization. Use this 
section to change the discretization of the Schrödinger equation.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the particle Wave function psi. The name 
can be changed but the names of fields and dependent variables must be unique within 
a model.

Domain and Boundary Nodes for the Schrödinger Equation Interface

The Schrödinger Equation Interface has these domain and boundary nodes available 
from the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or by right-clicking the main physics interface node to access the context menu 
(all users).

• Domain and Boundary Nodes for the Schrödinger Equation Interface

• Theory for the Schrödinger Equation Interface

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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These nodes and subnodes are described in this section and listed in alphabetical order:

Effective Mass

Use the Effective Mass node to set the effective mass of the particle. The default is 
0.067*me_const for electron-like particles and 0.45*me_const for hole-like 
particles. 

It is common for electrons or holes to have different effective masses in different 
regions of a heterostructure. This can be easily specified by using multiple Effective 

Mass nodes. Later nodes overrides earlier nodes in the Model Builder tree. 

Electron Potential Energy

The Electron Potential Energy feature adds contribution to the total potential energy 
experienced by the particle. The contribution from all Electron Potential Energy nodes 
are summed up to give the total potential energy. This makes it easy to construct 
complicated potential profiles by employing a number of nodes.

E L E C T R O N  P O T E N T I A L  E N E R G Y

Select a profile option for the Electron Potential Energy Ve (for electrons) or Vh (for 
holes): Simple harmonic potential (the default), Quantum well, or User defined.

In the COMSOL Multiphysics Reference Manual see Table 2-3 for links 
to common sections and Table 2-4 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

• The Schrödinger Equation Interface

• Theory for the Schrödinger Equation Interface

• Effective Mass

• Electron Potential Energy

• Initial Values

• Open Boundary

• Periodic Condition

• Zero Flux

• Zero Probability
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Simple harmonic potential
For this profile, enter the

• Angular frequency ω0 (rad/s). The default is 1[eV]/hbar_const.

• Center of potential r0 (m). The default is the origin of the geometry.

• Constant offset V0 (J). The default is 0[eV].

The contribution to the total electron potential energy is

where the plus sign is for electrons and minus sign for holes.

Quantum well
For this profile, enter the

• Width of quantum well d0 (m). The default is 10[nm].

• Depth of quantum well Vw (J). The default is 100[meV].

• Center of potential r0 (m). The default is the origin of the geometry.

• Constant offset V0 (J). The default is 0[eV].

The contribution to the total electron potential energy is

where the plus sign is for electrons and minus sign for holes.

If the effective mass of the particle varies from the well region to the barrier region, as 
is very often the case, then it will be easier to not use this option. Instead, define 
different domains for the well and barrier regions and use the User defined option to 
specify the potential and effective mass in each domain.

User defined
For this option, enter the contribution to the electron potential energy in the input 
field. The default is 0.5*schr.meff*((1[eV]/hbar_const)^2)*(x^2) for electrons 
and -0.5*schr.meff*((1[eV]/hbar_const)^2)*(x^2) for holes.

Initial Values

The Initial Values node provides initial values for the wave function. The default is 0.

V0
1
2
---meffω0

2 r r0–
2±

V0 Vw r r0–
1
2
---d0> 

 ±
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Zero Flux

The Zero Flux node is the default boundary condition for external boundaries where 
the normal component of the probability current density is set to zero by the nature 
of the equation system. 

Zero Probability

Use the Zero Probability node to constrain the value of the wave function to zero at a 
boundary. 

Periodic Condition

The Periodic Condition allows modeling just one unit cell of a periodic structure, such 
as superlattices.

P E R I O D I C I T Y  S E T T I N G S

Select an option from the Type of periodicity drop down menu: Continuity (the default) 
or Floquet-Bloch periodicity.

• For Floquet-Bloch periodicity, enter the k-vector for Floquet periodicity kF (rad/m). 
The default is the null vector, reducing the condition to be equivalent to Continuity. 
For time dependent studies, the Floquet-Bloch periodicity option does not apply. If 
erroneously selected, it will be reduced to the continuity condition.

D E S T I N A T I O N  S E L E C T I O N  ( S U B - N O D E )

If desired, use this sub-node to manually select the destination boundary for the 
periodic condition.

Open Boundary

The Open Boundary condition allows outgoing waves leave the modeling domain 
without being reflected back from the external boundary. It allows an optional 
incoming wave to be specified by the user. An advanced physics option allows the 
reversal of the open boundary condition: an unspecified incoming wave comes into the 
modeling domain through the boundary and no outgoing wave leaves the domain 
through the boundary.
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WA VE  T Y P E

This setting specifies the outgoing wave type. Depending on the spatial dimension of 
the geometry, one or more of the following outgoing wave types may be supported: 
Plane wave, Cylindrical wave and Spherical wave. If only one wave type is supported by 
the geometry, the drop down menu is grayed out and displays the supported wave 
type. If more than one is supported, the drop down menu is active and allows the user 
to make a selection.

The “no reflection” condition works well only if the outgoing wave propagating 
direction is normal to the boundary, otherwise some reflection will occur. Therefore 
for the Plane wave type, the wave vector is assumed to be in the direction of the 
outgoing normal of the boundary.

For the Cylindrical wave type, enter the Axial direction of cylindrical wave and one Point 

on center axis of cylindrical wave.

For the Spherical wave type, enter the Center of spherical wave.

I N C O M I N G  W A V E

This setting specifies an optional incoming wave if the check box is checked. The 
following settings may appear only if the check box is checked.

Incoming wave type
If more than one wave type is supported by the spatial dimension of the geometry, then 
the Incoming wave type drop down menu appears and allow the user to make a 
selection.

For any incoming wave type, enter the Incoming wave amplitude ψ0. The default is 1.

For incoming Plane wave, enter the Incoming wave direction.

For incoming Cylindrical wave, enter the Axial direction of incoming cylindrical wave and 
one Point on center axis of incoming cylindrical wave.

For incoming Spherical wave, enter the Center of incoming spherical wave.

O P E N  B O U N D A R Y  TY P E

This setting is available if the Advanced Physics Options is enabled by clicking the Show 
button ( ) and selecting Advanced Physics Options. Select either Outgoing or Incoming.

Outgoing
This is the default. The open boundary allows outgoing waves leave the modeling 
domain without being reflected back from the boundary.
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Incoming
This reverses the usual open boundary condition: an unspecified incoming wave comes 
into the modeling domain through the boundary and no outgoing wave leaves the 
domain through the boundary. This particular option is mainly for analyzing resonant 
tunneling conditions, see the Double Barrier 1D tutorial in the Application Libraries.
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Th eo r y  f o r  t h e  S c h r öd i n g e r  Equa t i o n  
I n t e r f a c e

For an introduction to the Schrödinger equation and its application in quantum 
confined semiconductor systems, the user is encouraged to consult textbooks such as 
Ref. 1 and Ref. 2. This section is not meant to be a replacement for general textbooks 
on the subject. Only those parts of the theory pertaining to the usage of the physics 
interface will be covered.

In this section:

Sign Convention and Energy Units

The single-particle Schrödinger Equation implemented in the physics interface reads

 (5-1)

Note that the energy operator on the right-hand side of the equation takes an opposite 
sign convention as the one adopted in most textbooks of quantum mechanics. This is 
because COMSOL takes the engineering convention of exp(+iωt) for time-harmonic 
solutions, as opposed to the physics convention of exp(-iωt). The engineering 
convention is adopted for the Schrödinger Equation interface so that the sign 
convention is consistent within the COMSOL product family. Under this unusual sign 
convention, the momentum operator also acquires an opposite sign, since a plane wave 
is now exp(-ikx+iωt), not exp(+ikx-iωt) as in most textbooks.

The stationary Schrödinger Equation reads

• Sign Convention and Energy Units

• Units of Wave Functions

• Sign Convention of the Electron 
Potential Energy

• References for the Schrödinger 
Equation Interface

_
h 2 ψ r t,( )∇

2meff r( )
----------------------- 
 ∇•– V r t,( )ψ r t,( )+ i

_
h

t∂
∂ ψ r t,( )–=
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 (5-2)

For stationary studies, where the total energy E is a known quantity, enter a constant 
value or a global parameter for the Energy E (J) in the physics interface settings window 
(see section Energy).

For eigenvalue studies, where the eigenenergy E is unknown and to be solved for, 
enter a constant value for the Eigenvalue scale λscale (J) in the physics interface settings 
window (see section Eigenvalue scale). The eigenenergy E is given by the product of 
the eigenvalue scale λscale and the eigenvalue λ (dimensionless). The default value for 
λscale is 1 eV, so that the eigenvalue λ takes on the numerical value of the eigenenergy 
E in units of eV.

Units of Wave Functions

Since COMSOL does not allow fractional units, the wave functions in all spatial 
dimensions are set to unitless. The built-in variable for the probability density 
(schr.Pr by default) has the unit of 1/m in 1D, 1/m2 in 2D or 1D axisymmetry, and 
1/m3 in 3D or 2D axisymmetry.

Sign Convention of the Electron Potential Energy

The sign convention for the Electron Potential Energy domain condition follows the 
one adopted by the Semiconductor Interface:

• For electron-like particles, the direction of lower energy is in the negative direction 
of the electron potential energy. Pictorially, this type of particles tend to fall down 
to the bottom of an electron potential energy well.

• For hole-like particles, the direction of lower energy is in the positive direction of 
the electron potential energy. Pictorially, this type of particles tend to float up to the 
top of an electron potential energy peak.

References for the Schrödinger Equation Interface

1. L. I. Schiff, Quantum Mechanics, 3rd edition (1968), Mcgraw-Hill.

2. P. Harrison, Quantum Wells, Wires and Dots, 3rd edition (2009), Wiley.

_
h 2 ψ r( )∇

2meff r( )
----------------------- 
 ∇•– V r( )ψ r( )+ Eψ r( )=
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G l o s s a r y
This Glossary of Terms contains modeling terms relevant to Semiconductor 
modeling. For mathematical terms as well as geometry and CAD terms specific to 
the COMSOL Multiphysics® software and documentation, see the glossary in the 
COMSOL Multiphysics Reference Manual. For references to more information 
about a term, see the index.
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G l o s s a r y  o f  T e rm s
acceptor Dopant atoms that, when added to the semiconductor, have the effect of 
removing free electrons from the system at sufficiently high temperatures.

Auger recombination Auger recombination becomes important at high 
nonequilibrium carrier densities since the process requires three carriers. For example, 
when two electrons collide the collision can result in the recombination of one of the 
electrons with a hole. The energy released by the transition is transferred to the 
surviving electron, which subsequently returns to equilibrium as it undergoes 
collisions with the lattice. 

avalanche breakdown See impact ionization.

band A collection of states that can be occupied by electrons, spanning a discrete range 
of energies.

band bending A shift in the energy levels associated with the band structure as a 
function of position in space. Band bending is usually caused by electric fields 
originating from space charge layers in the semiconductor.

band gap A range of energies in which no states are available for electrons to occupy.

band gap narrowing A reduction in the band gap of a heavily doped semiconductor 
resulting from the merging of the impurity band with the conduction or valence band.

base (transistor) See bipolar transistor.

basis The specific pattern of atoms that is repeated periodically at each point in a 
lattice.

bipolar transistor/bipolar junction transistor/BJT A transistor that uses two back to 
back p-n junctions to achieve power amplification. These transistors can be of the type 
PNP or NPN. There are three terminals in a bipolar transistor: the emitter, the base, 
and the collector, each of which is connected to one of the differently doped regions 
of the semiconductor (the base is connected to the region between the collector and 
emitter). During operation, a small current flowing between the base and the emitter 
usually controls a much larger current between the collector and emitter terminals, 
either to amplify a signal or to implement a switch.
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Bloch’s theorem A theorem that describes restrictions on the form of the electron 
wave function in a periodic potential.

Bloch wave function/Bloch state A wave function that satisfies Bloch’s theorem.

Boltzmann equation A partial differential equation that, for semiconductors, describes 
the evolution of the hole and electron distribution functions.

body (transistor) See field effect transistor.

collector (transistor) See bipolar transistor.

conduction band A band with a range of energies that lie just above the band gap in 
which the Fermi level lies.

degenerate semiconductor A semiconductor where Fermi-Dirac statistics are required 
to describe the carrier distribution functions.

depletion region A region of the semiconductor, usually at a p-n junction or metal 
semiconductor contact, in which the carrier concentration is greatly suppressed at 
equilibrium. There is usually a space charge and corresponding electric field associated 
with the depletion region.

density of states The number of states per unit energy (or, in some cases, per unit 
volume of k-space) that can be occupied by electrons.

diode A two terminal device with much lower resistance when current flows in one 
direction (the forward direction) than when it flows in the other direction (the reverse 
direction).

direct recombination This recombination process is possible in direct band gap 
semiconductors and occurs when electron-hole pairs recombine with the emission of 
photons (with an energy close to the band gap).

donors Dopant atoms which, when added to the semiconductor, have the effect of 
adding additional free electrons to the system at sufficiently high temperatures.

dopants Impurities that are deliberately added to a semiconductor in order to modify 
the conductivity of the material.

drain (transistor) See field effect transistor.
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drift-diffusion equations Equations describing the migration and diffusion of electrons 
and holes in a semiconductor under the influence of applied fields, temperature 
gradients, or concentration gradients.

electron distribution function A function that determines the fraction of available 
states that are full as a function of energy.

electron quasi-Fermi level See quasi-Fermi level.

electrons An elementary particle with a negative elementary electric charge.

emitter (transistor) See bipolar transistor.

Fermi-Dirac distribution The general form of the electron (or hole) distribution 
function in equilibrium.

Fermi-Dirac statistics Electron or hole statistics that are described by the Fermi-Dirac 
distribution.

Fermi level The energy associated with states which, at a specified temperature, have 
a 50% probability of being occupied. The Fermi level is the chemical potential for 
electrons.

Fermi surface The surface in k-space that corresponds to the Fermi level.

field effect transistor A transistor that uses an electric field to alter the geometry of a 
conducting channel adjacent to the surface of a semiconductor. Usually the field is 
applied to the surface of a semiconductor in an oppositely doped region (sometimes 
connected to the body terminal) between two doped-like regions of semiconductor 
(connected to the source and the drain terminals). The field results from a voltage 
applied to a terminal referred to as the gate. In a MOSFET, the field produces band 
bending near the surface of the semiconductor, resulting in an inversion layer, which 
produces a conducting channel between the source and the drain. The extent of the 
channel is controlled by the applied field allowing the channel resistance to be 
modulated. For a JFET or MESFET, the field is applied to a p-n junction or a Schottky 
contact, altering the size of the depletion layer and consequently modifying the 
channel thickness.

Gaussian doping A distribution of dopants where the concentration decays from a 
peak value following a Gaussian distribution.
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Generation A process by which electron hole pairs are created.

gate (transistor) See field effect transistor.

heterojunction An interface between two different semiconductors.

hole distribution function A function which determines fraction of available states 
which are empty as a function of energy.

hole quasi-Fermi level See quasi-Fermi level.

holes Particles evoked to simplify the computation of current from bands that are 
almost completely full of electrons.

impact ionization A carrier generation mechanism that occurs when the carriers are 
accelerated by the electric field in between collisions to velocities where the energies 
are greater than the gap energy, these can dissipate enough energy during collisions 
that additional electron hole pairs can be generated. This process is referred to as 
impact ionization and is responsible for the phenomenon of avalanche breakdown.

incomplete ionization For semiconductors with a wide band gap or for conventional 
semiconductors at low temperatures, the thermal energy is not sufficient to completely 
ionize the dopant atoms and only a fraction of the dopants are ionized. This situation 
is referred to as incomplete ionization.

insulator A solid that has no observable conductivity at temperatures below its melting 
point. The band structure of insulators is such that there are only completely full or 
completely empty bands, and a band gap of sufficient size exists between the full and 
empty bands that there is negligible thermal excitation.

inversion layer A layer of semiconductor in which band bending leads to a change of 
the material from n-type to p-type or vice versa.

JFET (Junction Field Effect Transistor) A field effect transistor in which the electric 
field is applied to the semiconductor by a biased p-n junction.

k-space The space in which the wave vectors of the electron wave function (usually 
denoted k), are defined.
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lattice A set of points in space that are all identical due to the periodicity of the 
structure represented.

Maxwell-Boltzmann distribution The limit of the Fermi-Dirac distribution when the 
Fermi energy is several times the thermal energy within the band gap.

Maxwell-Boltzmann statistics Electron or hole statistics that are described by the 
Maxwell-Boltzmann distribution.

metal A solid with good electrical conductivity. A metal has one or more partially filled 
bands.

MESFET (Metal Semiconductor Field Effect Transistor) A field effect transistor in 
which the electric field is applied to the semiconductor by a Schottky contact.

mobility A quantity (strictly a tensor) relating the velocity of electrons or holes to the 
applied electric field.

MOSFET (Metal Oxide Semiconductor Field Effect Transistor) A field effect transistor 
in which the electric field is applied to the semiconductor by a metal contact (or in 
some cases a heavily doped polysilicon) separated from the semiconductor by an 
insulator (often silicon oxide).

nearly free electron model A quantum mechanical model for the behavior of electrons 
moving in a weakly periodic potential.

nondegenerate semiconductor A semiconductor in which it is sufficient to use 
Maxwell-Boltzmann statistics to describe the carrier distribution functions.

n-type A region of semiconductor where the number of donors exceeds the number 
of acceptors.

ohmic contact A contact between a metal and a semiconductor that has a linear IV 
characteristic.

p-type A region of semiconductor where the number of acceptors exceeds the number 
of donors.

p-n junction A junction between p- and n- type regions of a semiconductor.
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Pauli exclusion principle The Pauli exclusion principle states that two Fermions (such 
as electrons) cannot occupy the same quantum mechanical state. A consequence of the 
principle is that each state in a crystal can be occupied only by two electrons, one spin 
up and another spin down.

quasi-Fermi level Net current flows and/or thermal gradients in a semiconductor 
represent nonequilibrium conditions and consequently the concept of the Fermi level 
(derived from equilibrium thermodynamics) does not apply to these processes. 
However, in many devices it is possible to assume a collective (and different) 
quasi-equilibrium for electrons and holes, since the relaxation time for scattering 
within the band is much less than that for recombination processes. The electron and 
hole quasi-Fermi levels are the Fermi levels associated with these two quasi-equilibrium 
populations.

recombination A process by which electrons and holes recombine, resulting in a 
return of the system to equilibrium. 

rectifier A device with much lower resistance when current flows in one direction (the 
forward direction) than when it flows in the other direction (the reverse direction).

reciprocal lattice The lattice obtained by taking the Fourier transform of the lattice in 
real space. The reciprocal lattice is a set of vectors in k-space.

Schottky contact A metal semiconductor contact where the barrier height and width 
is sufficient to result in rectifying behavior.

Schrödinger equation A partial differential equation that describes the evolution of the 
wave function.

semiclassical model A model that describes the dynamics of electrons moving in 
periodic solids in between collisions.

semiconductor A solid that is an insulator at zero temperature but that has observable 
conductivity at temperatures below its melting point. The conductivity results from a 
significant number of electrons that are thermally excited across the band gap; 
consequently the gap energy must be of the same order as the thermal energy (most 
important semiconductors have a gap energy of less than 2 eV).

Shockley-Read-Hall recombination This recombination mechanism is important in 
indirect band gap semiconductors, such as silicon and germanium (for these materials 
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direct recombination is not possible). A defect (usually with an energy close to the 
mid-gap) is involved in the process. An electron or hole is first trapped by the defect 
and then emitted into the valence/conduction band, resulting in a reduction in the 
number of available carriers. The carrier energy is typically converted to heat.

source (transistor) See field effect transistor.

spin An intrinsic form of angular momentum carried by elementary particles. The 
electron spin can take two values, +1/2 and -1/2, frequently referred to as up and 
down, respectively.

transistor A device used to amplify or switch electrical signals.

valence band A band with a range of energies that lie just below the band gap in which 
the Fermi-level lies.

wave function A function that describes the quantum state of a particle. The modulus 
squared of the wave function, which is usually complex, represents the probability 
density of finding a given particle in a given region of space at a particular time.
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