
Optimization Module
User’s Guide

C o n t a c t I n f o r m a t i o n

Visit the Contact COMSOL page at www.comsol.com/contact to submit general
inquiries, contact Technical Support, or search for an address and phone number. You can
also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for
address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access
page at www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/community

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/video

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM021701

O p t i m i z a t i o n M o d u l e U s e r ’ s G u i d e
© 1998–2017 COMSOL

Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474;
7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents
pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms
of the license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop,
LiveLink, and COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other
trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products
are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such
trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 5.3

www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/trademarks/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

C o n t e n t s

C h a p t e r 1 : I n t r o d u c t i o n

Optimization Module Overview 8

What Can the Optimization Module Do?. 8

Where Do I Access the Documentation and Application Libraries? . . . 9

C h a p t e r 2 : O p t i m i z a t i o n a n d S e n s i t i v i t y T h e o r y

Optimization Theory 14

Basic Optimization Concepts 14

Optimization Problem Formulation 14

PDE-Constrained Optimization 15

Theory for the Sensitivity Interface 20

About Sensitivity Analysis 20

Sensitivity Problem Formulation 20

Theory for Stationary Sensitivity Analysis 21

Theory for Time-Dependent Sensitivity 24

Specification of the Objective Function 26

Choosing a Sensitivity Method 27

Postprocessing Sensitivities 28

Issues to Consider Regarding the Control Variables. 29

Issues to Consider Regarding the Objective Function 30

Issues to Consider Regarding Constraints 31

C h a p t e r 3 : T h e O p t i m i z a t i o n I n t e r f a c e

Adding an Optimization Interface 34

The Optimization Interface 35

Least-Squares Objective . 37
C O N T E N T S | 3

4 | C O N T E N T S
Value Column . 38

Time Column . 39

Parameter Column . 39

Coordinate Column. . 39

Ignored Column . 39

Integral Objective (Point Sum Objective) 39

Probe Objective . 40

Integral Inequality Constraint (Point Sum Inequality Constraint) 40

Pointwise Inequality Constraint 41

Control Variable Field . 42

Control Variable Bounds . 43

Global Objective . 43

Global Least-Squares Objective 43

Global Inequality Constraint 45

Global Control Variables . 45

C h a p t e r 4 : T h e S e n s i t i v i t y I n t e r f a c e

The Sensitivity Interface 48

Integral Objective . 49

Probe Objective . 50

Control Variable Field . 50

Global Objective . 51

Global Control Variables . 51

C h a p t e r 5 : T h e O p t i m i z a t i o n S o l v e r s

The Optimization Study 54

The Parameter Estimation Study 62

About the Optimization Solvers 65

About Derivative-Free Solvers 65

About Gradient-Based Solvers 66

The Coordinate Search Solver 67

The Monte Carlo Solver . 68

The Nelder-Mead Solver . 68

The BOBYQA Solver . 68

The COBYLA Solver . 69

The SNOPT Solver . 69

The MMA Solver . 70

The Levenberg-Marquardt Solver 72

About Optimality Tolerances 73

About Constraint Handling 76

References for the Optimization Solvers 79

The Optimization Solver 81

Advanced Solver Properties 89

SNOPT Solver Properties 89

MMA Solver Properties . 93

C h a p t e r 6 : G l o s s a r y

Glossary of Terms 96
C O N T E N T S | 5

6 | C O N T E N T S

 1
I n t r o d u c t i o n
Welcome to the Optimization Module User’s Guide. The capabilities of the
Optimization Module can be used in conjunction with any combination of other
COMSOL products. This guide is a supplement to the COMSOL Multiphysics
Reference Manual. In this section is a short Optimization Module Overview.
 7

8 | C H A P T E R
Op t im i z a t i o n Modu l e Ov e r v i ew

What Can the Optimization Module Do?

The Optimization Module can be used throughout the COMSOL product family —
it provides a general interface for calculating optimal solutions to engineering
problems. Any model inputs, be it geometric dimensions, part shapes, material
properties, or material distribution, can be treated as control variables, and any model
output can be an objective function.

Simulation is a powerful tool in science and engineering for predicting the behavior of
physical systems, particularly those governed by partial differential equations. In many
cases a single or a few simulations are not enough to provide sufficient understanding
of a system. Two important classes of problems whose resolution relies on a more
systematic exploratory process are:

• Design problems where the problem is to find the values of control variables or
design variables that yield the best performance of a model, quantified by means of
an objective function. Problems of this kind arise, for example, in structural
optimization, antenna design, and process optimization.

• Inverse problems, and in particular parameter estimation in multiphysics models,
where the problem is to reliably determine the values of a set of parameters that
provide simulated data which best matches measured data. Such problems arise in,
for example, geophysical imaging, nondestructive testing, and biomedical imaging.
Curve fitting also belongs to this category.

Problems of the above types can often be formulated more generally as optimization
problems. The Optimization interface and Optimization study step in COMSOL
Multiphysics are useful for solving design problems as well as inverse problems and
parameter estimation.

O P T I M I Z A T I O N A L G O R I T H M S

There are three optimization algorithms for gradient-based optimization available in
the module. The first algorithm is based on the SNOPT code developed by Philip E.
Gill of the University of California San Diego, and Walter Murray and Michael A.
Saunders of Stanford University. When using SNOPT, the objective function can have
any form and any constraints can be applied. The algorithm uses a gradient-based
optimization technique to find optimal designs and when the underlying PDE is
1 : I N T R O D U C T I O N

stationary, frequency- or time-dependent, analytic sensitivities of the objective
function with respect to the control variables can be used.

The second algorithm is the MMA solver, which is based on the globally convergent
method of moving asymptotes by Krister Svanberg of KTH Royal Institute of
Technology. The MMA solver can handle objective functions and constraints of the
same very general form as SNOPT. It is well suited to handle problems with a large
number of control variables, such as topology optimization.

The third algorithm is a Levenberg-Marquardt solver. When this solver is used, the
objective function must be of least-squares type. Also, constraints are not supported.
Since the Levenberg-Marquardt method is designed to solve problems of least-squares
type, it typically converges faster than SNOPT and MMA for such problems.

In addition, the Optimization Module provides a number of gradient-free
(derivative-free) optimization algorithms. Currently Nelder-Mead, BOBYQA,
COBYLA, and a coordinate search are supported. These methods can optimize a
model with respect to design parameters (model parameters) such as parameters which
control the geometry sequence that defines the model’s geometry. There is also a
Monte Carlo method, useful for exploring the design space.

All optimization solvers are accessible from the same Optimization study step, which
contains the ordinary solver sequence over which the optimization method iterates.
The gradient-free methods can contain any other study sequence, while the
gradient-based methods are limited to optimizing over a single study step of a type
supporting computation of analytic sensitivities: currently Stationary, Time Dependent
and Frequency Domain studies.

Where Do I Access the Documentation and Application Libraries?

The Physics Interfaces and Building a COMSOL Multiphysics Model in
the COMSOL Multiphysics Reference Manual

Optimization model examples which do not require any other COMSOL
add-on modules are located in the Optimization Module folder in the
Application Libraries window. There are also other optimization models
found in other folders for different modules. You can find all related
examples entering optimization in the Search field.
O P T I M I Z A T I O N M O D U L E O V E R V I E W | 9

10 | C H A P T E R
A number of internet resources have more information about COMSOL, including
licensing and technical information. The electronic documentation, topic-based (or
context-based) help, and the application libraries are all accessed through the
COMSOL Desktop.

T H E D O C U M E N T A T I O N A N D O N L I N E H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces
and functionality included with the COMSOL Multiphysics license. This book also has
instructions about how to use COMSOL Multiphysics and how to access the
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to many of the features on the GUI. To
learn more about a node in the Model Builder, or a window on the Desktop, click to
highlight a node or window, then press F1 to open the Help window, which then
displays information about that feature (or click a node in the Model Builder followed
by the Help button (). This is called topic-based (or context) help.

If you are reading the documentation as a PDF file on your computer,
the blue links do not work to open an application or content
referenced in a different guide. However, if you are using the Help
system in COMSOL Multiphysics, these links work to open other
modules (as long as you have a license), application examples, and
documentation sets.

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder click a node or
window and then press F1.

• On any toolbar (for example, Home, Definitions, or Geometry), hover the
mouse over a button (for example, Add Physics or Build All) and then
press F1.

• From the File menu, click Help ().

• In the upper-right corner of the COMSOL Desktop, click the Help ()
button.
 1 : I N T R O D U C T I O N

Opening the Documentation Window

T H E A P P L I C A T I O N L I B R A R I E S W I N D O W

Each application includes documentation with the theoretical background and
step-by-step instructions to create a model application. The applications are available
in COMSOL as MPH-files that you can open for further investigation. You can use the
step-by-step instructions and the actual applications as a template for your own
modeling and applications. In most models, SI units are used to describe the relevant
properties, parameters, and dimensions in most examples, but other unit systems are
available.

Once the Application Libraries window is opened, you can search by name or browse
under a module folder name. Click to view a summary of the application and its
properties, including options to open it or a PDF document.

To open the Help window:

• In the Model Builder or Physics Builder click a node or window and then
press F1.

• On the main toolbar, click the Help () button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu select Help>Documentation ().

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation () button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics
Reference Manual.
O P T I M I Z A T I O N M O D U L E O V E R V I E W | 11

12 | C H A P T E R
Opening the Application Libraries Window
To open the Application Libraries window ():

C O N T A C T I N G C O M S O L B Y E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please
contact your local COMSOL representative or send your questions to
support@comsol.com. An automatic notification and a case number are sent to you by
email.

C O M S O L O N L I N E R E S O U R C E S

• From the Home toolbar, Windows menu, click () Applications

Libraries.

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help
menu, select () Update COMSOL Application Library.

Select Application Libraries from the main File> or Windows> menus.

To include the latest versions of model examples, from the Help menu
select () Update COMSOL Application Library.

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
 1 : I N T R O D U C T I O N

http://www.comsol.com
http://www.comsol.com/contact/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates
https://www.comsol.com/blogs/
http://www.comsol.com/community
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

 2
O p t i m i z a t i o n a n d S e n s i t i v i t y T h e o r y
This chapter discusses the theory for optimization and sensitivity. In this chapter:

• Optimization Theory

• Theory for the Sensitivity Interface
 13

14 | C H A P T E R
Op t im i z a t i o n Th eo r y

This section contains theory useful for understanding and applying The Optimization
Interface and The Optimization Study. Topics explained in this section are:

• Basic Optimization Concepts

• Optimization Problem Formulation

• PDE-Constrained Optimization

Basic Optimization Concepts

In general there are three fundamental parts of an optimization problem — the control
variables, the objective function and, optionally, constraints.

The optimization problem is to find the value of the control variables that minimizes
(or maximizes) the objective function, subject to a number of constraints. The
constraints collectively define a set, the feasible set, of permissible values for the control
variables.

The Optimization Study together with The Optimization Interface provide a
framework for specifying and solving general optimization problems. The objective
function and constraints can depend indirectly on the control variables via the solution
of a multiphysics model. See PDE-Constrained Optimization.

Optimization Problem Formulation

The Optimization Module is built around a general single-objective minimization
problem formulation. The Optimization Study node transforms maximization as well
as multi-objective minimax and maximin problems internally to the canonical
minimization form.

T H E G E N E R A L O P T I M I Z A T I O N P R O B L E M

The most general formulation of an optimization problem can be written as

 (2-1)
min

ξ Q ξ()

ξ C∈

 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

Here, the control variables are denoted by ξ, the scalar-valued objective function by Q,
and the feasible set is denoted by C. Assuming sufficient continuity, the feasible set can
be expressed as a set of — possibly very nonlinear — inequality constraints

where G is a vector-valued function (G is scalar-valued in case of a single constraint).

C L A S S I C A L O P T I M I Z A T I O N

In classical optimization, Q and G are given explicitly as closed-form expressions of
the control variables ξ. However, design problems and parameter estimation problems
often result in objective functions Q and constraints G that are not explicitly
expressible as closed-form expressions of the control variables ξ.

PDE-Constrained Optimization

In multiphysics modeling, it is often desirable to let control variables parameterize the
problem and seek to optimize a function of the PDE solution. The objective function
is therefore a function of both the control variables and the PDE solution, which is in
turn a function of the control variables. The multiphysics problem is a PDE, which
after discretization is represented as a system of equations L(u(ξ), ξ) = 0, where u is the
PDE solution and ξ the control variables.

The complete PDE-constrained optimization problem to be solved by one of the
optimization algorithms in the Optimization Module adds the PDE problem as an
equality constraint to the general optimization problem:

 (2-2)

It is advantageous to separate those constraints in G that are defined as explicit
expressions of ξ only (design constraints) from those that mix u and ξ (performance
constraints). The former group can further be divided into simple bounds, which set

C ξ : lb G ξ() ub≤≤{ }=

For vectorial quantities, the inequality defining C is to be interpreted
component-wise and lb and ub are the corresponding vectors containing
the upper and lower bounds.

min
ξ Q u ξ() ξ,()

L u ξ() ξ,() 0=

lb G u ξ() ξ,() ub≤≤

O P T I M I Z A T I O N T H E O R Y | 15

16 | C H A P T E R
a lower and upper limit directly on the control variables, and constraints on general
expressions of the control variables. Hence, the general constraint formulation
lb ≤ G(u(ξ), ξ) ≤ ub above is replaced by three classes of constraints:

and the optimization problem in Equation 2-2 can be written as

 (2-3)

This is the general form of the optimization problem considered in the Optimization
Module. Control variables ξ can be either global model parameters converted into
control variables in the Optimization study step, or control variable fields set up in an
Optimization interface. You specify the objective function and the constraints in the
form of expressions in ξ and u. The relation between u and ξ, which is a system of
equations written here compactly as L(u, ξ) = 0, is given by the multiphysics model.

S P E C I F I C A T I O N O F T H E O B J E C T I V E F U N C T I O N

The objective function is, in general, a sum of a number of terms:

where n is the space dimension of the multiphysics model and the different
contributions in the sum above are defined as follows:

• Qglobal is the global contribution to the objective function Q. It is given as one or
more general global expressions, either in an Optimization study step or in a Global
Objective node under an Optimization interface.

• Qprobe is a probe contribution to the objective function Q. It is a probe objective so
its definition is restricted to a point on a given geometrical entity. You specify the

lbP P ξ u,() ubP≤≤

lbΨ Ψ ξ() ubΨ≤≤

lbb ξ ubb≤≤

min
ξ

Q u ξ() ξ,()

L u ξ() ξ,() 0=

lbP P u ξ() ξ,() ubP≤≤

lbΨ Ψ ξ() ubΨ≤≤

lbb ξ ubb≤≤

Q u ξ,() Qglobal u ξ,() Qprobe u ξ,() Qint k, u ξ,()

k 0=

n

+ +=
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

probe point used for the point evaluation explicitly in a Probe Objective node under
an Optimization interface.

• Qint,k is an integral contribution to the objective function Q. It is an integral
objective so its definition is restricted to a set of geometric entities of the same
dimension. Use an Integral Objective node under an Optimization interface to
specify an integrand and a select a set of domains, boundaries, edges or points over
which to integrate. For a point selection, the integration reduces to a summation.

Several global, probe, and integral contributions can be defined in separate nodes
under an Optimization interface. In such cases, the total global, probe, and integral
contribution is given as the sum of the contributions. If you specify one or more
objectives directly in the Optimization study step, these are also added to the sum.

S P E C I F I C A T I O N O F C O N S T R A I N T S

The full nonlinear set of constraints lb ≤ G(u(ξ), ξ) ≤ ub in the general
PDE-constrained optimization problem, Equation 2-2, are separated into three
groups:

The first row above contains the general implicit constraints, or performance
constraints in the case of a design problem. These are given in terms of expressions
involving both the solution variables u and control variables ξ. The second row
constitutes the explicit constraints — or design constraints — which are those

lbP P ξ u,() ubP≤≤

lbΨ Ψ ξ() ubΨ≤≤

lbb ξ ubb≤≤
O P T I M I Z A T I O N T H E O R Y | 17

18 | C H A P T E R
constraints given by explicit expressions only in the control variables ξ. The last row
contains the control variable bounds

The Optimization interface differentiates between the following constraints (in the
description that follows, n denotes the dimension of the multiphysics model): control
variable bounds, pointwise inequality constraints, integral inequality constraints, and
global inequality constraints, each of which are described below

• Bounds or control variable bounds are inequality constraints setting lower and
upper bounds directly on each control variable degree of freedom. Hence, bound
constraints correspond to constraints of the form lb ≤ ξ ≤ ub. They are handled
efficiently by all solvers that support them and in many cases improve solver stability
and efficiency.

• Pointwise inequality constraints are inequality constraints involving an explicit
expression in terms of the control variables. The constraint sets lower and upper
bounds on the expression for node points in a set of geometric entities of the same
dimension.

• Global inequality constraints set upper and lower bounds on a general global
expression, possibly involving both the control variables and the PDE solution.
Apart from the specification of bounds, a global inequality constraint is identical to
a Global Objective.

• Integral inequality constraints set upper and lower bounds on an integral of an
expression, possibly involving the PDE solution and control variables, over a set of

The reason for this subdivision is computational. Each evaluation of an
implicit constraint requires an up-to-date solution of the multiphysics
solution u. The gradient-based optimization methods also require a
complete sensitivity evaluation, which is computationally demanding, see
Choosing a Sensitivity Method in the COMSOL Multiphysics Reference
Manual.

Explicit constraints, in contrast, can be computed without updating the
multiphysics solution. They can, however, be nonlinear, making it
difficult for the optimization methods to follow an active constraint.
Control variable bounds are the least expensive to handle, since when
active, the optimization solver can essentially just exclude the
corresponding control variable.
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

geometric entities of the same dimension. For integral inequality constraints on
points, the integration reduces to a summation.

Global inequality constraints and integral inequality constraints are
structurally similar to the objective function and equally expensive to
evaluate.
O P T I M I Z A T I O N T H E O R Y | 19

20 | C H A P T E R
Th eo r y f o r t h e S e n s i t i v i t y I n t e r f a c e

About Sensitivity Analysis

The Sensitivity interface is special in the sense that it does not contain any physics of
its own. Instead, it is a tool for evaluating the sensitivity of a model with respect to
almost any variable. The Sensitivity interface is used together with a Sensitivity study
step, which in turn controls the Sensitivity solver extension. Simple cases can be
handled directly in the Sensitivity study step, while more advanced cases must be set
up in a Sensitivity interface prior to solving.

Simulation is a powerful tool for predicting the behavior of physical systems,
particularly those that are governed by partial differential equations. However, a single
simulation is often not enough to provide sufficient understanding of a system. Hence,
a more exploratory process might be needed, such as sensitivity analysis, where one
is interested in the sensitivity of a specific quantity with respect to variations in certain
parameters included in the model. Such an analysis can, for example, be used for
estimating modeling errors caused by uncertainties in material properties or for
predicting the effect of a geometrical change.

Many times it is possible to reformulate problems of the above type as the problem of
calculating derivatives, so differentiation plays a central role in solving such problems.
The Sensitivity study step and corresponding physics interface can calculate derivatives
of a scalar objective function with respect to a specified set of control variables. The
objective function is in general a function of the solution to a multiphysics problem,
which is in turn parameterized by the control variables.

Sensitivity Problem Formulation

Because the Sensitivity interface does not contain any physics, it is not intended for use
on its own. When the physics interface is added to a multiphysics model, no new
equations are introduced, and the set of solution variables remains the same. Instead,
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

an objective function and a set of control variables can be specified. The Sensitivity
interface can perform these distinct tasks:

• Select control variables and set their values

• Define scalar objective functions

The companion Sensitivity study step is responsible for:

• Choosing which objective functions and control variables to solve for

• Selecting a sensitivity evaluation method

• Selecting which study step to compute sensitivities for

• Setting up the Sensitivity solver extension

Theory for Stationary Sensitivity Analysis

Evaluating the sensitivity of a scalar-valued objective function Q(ξ) with respect to the
control variables, ξ, at a specific point, ξ0, can be rephrased as the problem of
calculating the derivative ∂Q/∂ξ at ξ = ξ0. In the context of a multiphysics model, Q is
usually not an explicit expression in the control variables ξ alone. Rather, Q(u(ξ), ξ) is
also a function of the solution variables u, which are in turn implicitly functions of ξ.

The multiphysics problem is a PDE, which after discretization is represented as a
system of equations L(u(ξ), ξ) = 0. If the PDE has a unique solution u = L-1(ξ), the
sensitivity problem can be informally rewritten using the chain rule as that of finding

The first term, which is an explicit partial derivative of the objective function with
respect to the control variables, is easy to compute using symbolic differentiation. The
second term is more difficult. Assuming that the PDE solution has N degrees of

The control variables are independent variables whose values are not
affected by the solution process, but they are also degrees of freedom
(DOFs) stored in the solution vector. When defining a control variable,
its initial value must be supplied. The initial value is used to initialize the
control variable DOFs, which remain fixed during the solution step.

ξd
d Q u ξ() ξ,()

ξ∂
∂Q

u∂
∂Q

L∂
∂u

ξ∂
∂L⋅ ⋅+=
T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 21

22 | C H A P T E R
freedom and that there are n control variables ξi, ∂Q/∂u is an N-by-1 matrix, ∂u/∂L is
an N-by-N matrix (because L−1 is unique), and ∂L/∂ξ is an N-by-n matrix.

The first and last factors, ∂Q/∂u and ∂L/∂ξ, can be computed directly using symbolic
differentiation. The key to evaluating the complete expression lies in noting that the
middle factor can be computed as ∂u/∂L = (∂L/∂u)−1 and that ∂L/∂u is the PDE
Jacobian at the solution point:

 (2-4)

Actually evaluating the inverse of the N-by-N Jacobian matrix is too expensive. In
order to avoid that step, an auxiliary linear problem can be introduced. This can be
done in two different ways, each requiring at least one additional linear solution step
(see Forward Sensitivity Methods and Adjoint Sensitivity Method below).

If an incomplete Jacobian has been detected during the sensitivity analysis, an attempt
to assemble the complete Jacobian is done. If the assemble succeeds, the complete
Jacobian is used in sensitivity computations in the following way:

Assume that the Jacobian in Equation 2-4 above is incomplete and denote it by
.

Let the complete Jacobian be . Hence, the system to solve is

 (2-5)

Using

the previous system becomes

The system of equations, L, is here assumed to include any constraints
present in the multiphysics model. The number of degrees of freedom, N,
therefore in theory includes also Lagrange multipliers for the constraints.
In practice, constraints are usually eliminated, which imposes some
restrictions on the sensitivity analysis; see The Sensitivity Analysis
Algorithm in the COMSOL Multiphysics Reference Manual.

ξd
d Q u ξ() ξ,()

ξ∂
∂Q

u∂
∂Q

u∂
∂L

1–

ξ∂
∂L⋅ ⋅+=

u∂
∂L

u∂
∂L

incomplete

u∂
∂L

u∂
∂L

ξi∂
∂u⋅

ξi∂
∂L

=

u∂
∂L

u∂
∂L

incomplete u∂
∂L

u∂
∂L

incomplete
–

 +=
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

Then, the solution to the system in Equation 2-5 is approximated iteratively by

where n is the iteration number.

The iterations are terminated either when the estimated error is less than the relative
tolerance used by the current solver (convergence), or when the number of iterations
has reached the maximum number of iterations specified in the Fully Coupled or
Segregated attribute node (nonconvergence).

If the previous algorithm does not converge (that is, the estimated error is larger than
the given tolerance), the sensitivity computations are repeated using the incomplete
Jacobian and the warning Jacobian is incomplete. No convergence when attempting
to use the complete Jacobian is written.

If the assemble of the complete Jacobian fails, the incomplete Jacobian is used and the
warning Unable to assemble the complete Jacobian. Using incomplete Jacobian for
sensitivity analysis is written.

In the Optimization interface, a warning is written only if the optimization problem
does not converge.

F O R W A R D S E N S I T I V I T Y M E T H O D S

To use the forward sensitivity methods, introduce the N-by-n matrix of solution
sensitivities

These can be evaluated by solving n linear systems of equations

using the same Jacobian ∂L/∂u, evaluated at u(ξ0). Inserting the result into
Equation 2-4, the desired sensitivities can be easily computed as

u∂
∂L

incomplete ξi∂
∂u⋅

ξi∂
∂L

u∂
∂L

incomplete u∂
∂L

–

ξi∂
∂u⋅+=

u∂
∂L

incomplete ξi∂
∂u

n
⋅

ξi∂
∂L

u∂
∂L

incomplete u∂
∂L

–

ξi∂
∂u

n 1–
⋅+=

ξ∂
∂u

u∂
∂L

1–

ξ∂
∂L⋅=

u∂
∂L

ξi∂
∂u⋅

ξi∂
∂L

=

T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 23

24 | C H A P T E R
A D J O I N T S E N S I T I V I T Y M E T H O D

To use the adjoint sensitivity method, introduce instead the N-by-1 adjoint solution
u∗, which is defined as

Multiplying this relation from the right with the PDE Jacobian ∂L/∂u and transposing
leads to a single linear system of equations

using the transpose of the original PDE Jacobian.

Theory for Time-Dependent Sensitivity

F O R W A R D S E N S I T I V I T Y

When you enable sensitivity analysis, the time-dependent solvers can compute—in
addition to the basic forward solution—the sensitivity of a functional

 (2-6)

with respect to the control variables ξ evaluated at the final time t=T. The forward
solution uξ is a solution to the parameterized discrete forward problem

 (2-7)

where Λξ are the constraint Lagrange multipliers, or (generalized) reaction forces,
corresponding to the constraints M. It is assumed that Q does not explicitly depend on
Λξ.

To compute the sensitivity of Q with respect to ξ, first apply the chain rule:

 (2-8)

In this expression, the sensitivity of the solution with respect to the control variables,
∂u/∂ξ, is still an unknown quantity. Therefore, differentiate the forward problem,

ξd
d Q u ξ() ξ,()

ξ∂
∂Q

u∂
∂Q

ξ∂
∂u⋅+=

u∗
u∂

∂Q
u∂

∂L

1–
⋅=

u∂
∂LT

u∗⋅
u∂

∂Q
=

Q Q uξ ξ T, ,()=

L uξ ξ,() NFΛξ= M uξ ξ,() 0=

ξd
dQ

ξ∂
∂Q

u∂
∂Q

ξ∂
∂u

+=
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

Equation 2-7, formally with respect to ξ:

Here, D = −∂L/∂ K = −∂L/∂u, and N = −∂M/∂u as usual. Assuming that the
constraint force Jacobian NF is independent of ξ (that is, ∂NF/∂ξ = 0), you can write
the above relations in matrix form

 (2-9)

solve for the sensitivities ∂up/∂ξ and ∂Λp/∂ξ, with initial conditions ∂u0ξ/∂ξ and ∂Λ0ξ/
∂ξ, respectively, and plug them back for evaluation at t=T into Equation 2-8.

If the number of individual control variables, ξj, is small, Equation 2-9 can be solved
for each right-hand side [∂L/∂ξj ∂Μ/∂ξj]

T with corresponding initial conditions and the
solution inserted into Equation 2-8. This is the forward method, which in addition to
the sensitivity dQ/dξ returns the sensitivity of the solution, ∂uξ/∂ξ. As an alternative
the right-hand side of Equation 2-9can be calculated by finite differences using the
forward numeric method.

If there are many control variables and the sensitivity of the solution itself, ∂uξ/∂ξ, is
not required, the adjoint method is more efficient.

A D J O I N T S E N S I T I V I T Y

The adjoint sensitivity method is based on using solution variables u* and U* known
as the adjoint solution, to rewrite Equation 2-8:

Note that it has been assumed that

D
ξ∂

∂u·ξ K
ξ∂

∂uξ NF ξ∂
∂Λξ+ +

ξ∂
∂L

ξ∂
∂NFΛξ+= N

ξ∂
∂uξ

ξ∂
∂M

=

u·

D 0
0 0

ξ∂
∂u·ξ

ξ∂
∂Λ

·
ξ

J ξ∂
∂uξ

ξ∂
∂Λξ

+ ξ∂
∂L

ξ∂
∂M

= J K NF

N 0
=

ξd
dQ

ξ∂
∂Q U∗

ξ∂
∂L

–

t T=

u– ∗D
ξ∂

∂u

t 0=

u∗
ξ∂

∂L td

0

T

–=

td
d u∗D() u– ∗K 0=

Td
d U∗D

ξ∂
∂u 0=
T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 25

26 | C H A P T E R
The homogeneous adjoint equations are solved backward in time and requires “final”
conditions for initialization. The final conditions for U* and u* are computed as:

On this form, only one forward and one backward (adjoint) problem must be solved
regardless of the number of control variables, followed by an evaluation of the gradient
for each variable. Obviously, this is much faster than the forward method if the number
of variables is large with the drawback that the forward solution must be available at
all times during the backward solution of the adjoint. To reduce the memory
requirements for this, a checkpointing strategy is employed. This means that at a
number of checkpoints the forward solution is stored in memory such that a hot start
of the time-dependent solver can be performed to produce the forward solution in
higher resolution between checkpoints when needed. This reduces the memory
requirement at the cost of one additional forward solution.

Specification of the Objective Function

The objective function can in general be a sum of a number of terms:

where n is the space dimension of the multiphysics model and the different
contributions in the sum above are defined as follows:

• Qglobal is the global contribution to the objective function Q. It is given as one or
more general global expressions.

• Qprobe is a probe contribution to the objective function Q. It is a probe objective, so
its definition is restricted to a point on a given geometrical entity. The probe point
used for the point evaluation is a point given by the user and has to be contained in
the domain.

• Qint,k is an integral contribution to the objective function Q. It is an integral
objective, so its definition is restricted to a specific set of geometrical entities of the
same dimension. For integral contributions on points, the integration reduces to a
summation.

U∗D t T=
0=

u∗D t T= u∂
∂Q

– U– ∗K
t T=

=

Q u ξ,() Qglobal u ξ,() Qprobe u ξ,() Qint k, u ξ,()

k 0=

n

+ +=
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

Several global, probe, and integral contributions can be defined. In such cases, the
total global, probe, and integral contribution is given as the sum of the aforementioned
global, probe, and integral contributions that are actively selected in the solver settings
for the optimization.

Choosing a Sensitivity Method

To evaluate sensitivities as part of a multiphysics problem solution, an auxiliary linear
problem must be solved, in addition to the original equation, using one of these
methods:

• Select one of the Forward Sensitivity methods to evaluate the derivatives of all
solution variables and an optional objective function.

• Select the Adjoint Sensitivity method to look only at derivatives of a scalar objective
function.

F O R W A R D S E N S I T I V I T Y

Use the forward (or forward numeric) sensitivity method to solve for the derivatives
of all dependent variables, plus an optional scalar objective function, with respect to a
small number of control variables. The forward method requires one extra linear
system solution for each control variable.

The linear system that must be solved is the same as the last linearizion needed for
solving the forward model. Thus, when using a direct solver (for example, PARDISO)
the extra work amounts only to one back-substitution per control variable DOF. The
forward numeric method uses numerical perturbation rather than analytical methods
to calculate forward sensitivities, and can be used when the analytical method fails for
some reason or as a tool to verify that the analytical method is correct. In addition, the
forward numeric method requires two additional residual evaluations. The iterative
linear and segregated solvers can reuse preconditioners and other data but must
otherwise perform a complete solution each time. Further, the forward numeric
method only differentiates the PDE problem numerically (giving a numeric method
for the forward sensitivity). The objective sensitivity is still differentiated analytically
(both with respect to the controls and with respect to the PDE variables). The
functional sensitivity is therefore computed with a hybrid method.

A D J O I N T S E N S I T I V I T Y

The adjoint method solves for the derivatives of a single scalar objective function with
respect to any number of control variables, requiring only one single additional linear
T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 27

28 | C H A P T E R
system solution. In addition to the objective function gradient, the discrete adjoint
solution is computed. This quantity represents the sensitivity of the objective function
with respect to an additional generalized force applied as a nodal force to the
corresponding solution component.

The auxiliary linear system is in this case the transpose of the last linearizion needed for
solving the forward model. The MUMPS and PARDISO linear solvers can solve the
transposed problem at the cost of a back-substitution, while the SPOOLES linear
solver needs to do a new factorization if the problem is not symmetric or Hermitian.
The iterative solvers can reuse most preconditioning information as can the segregated
solver, which, however, loops over the segregated steps in reversed order.

Postprocessing Sensitivities

When a multiphysics problem is solved using sensitivity analysis, the generated solution
contains stored sensitivity data. You can access this data in postprocessing using the
fsens and sens operators:

• fsens(<control_variable>) evaluates the sensitivity (derivative) of the objective
function with respect to the specified control variable. This result is available for all
sensitivity methods. The result of fsens can be evaluated on the geometric entities
where the control variable is defined. For a global control variable, fsens is available
everywhere. In the same way, fsensimag(<control_variable>) evaluates the
sensitivity (derivative) of the objective function with respect to the imaginary part
of the specified control variable.

• sens(<dependent_variable>,<control_variable>) or
sens(<dependent_variable>,<control_DOF>) evaluates the sensitivity
(derivative) of the specified dependent variable with respect to the specified control
variable degree of freedom. This is only possible when forward sensitivity has been
used, which computes and stores derivatives of the entire solution vector with
respect to each control variable degree of freedom.

Global control variables can be identified by name. Otherwise, control variable
degrees of freedom are identified by their index (starting from 1) among all control

Sensitivity analysis can be used together with all stationary and parametric
standard solvers and with the BDF solver for transient studies. The
available solvers are described in the section Studies and Solvers in the
COMSOL Multiphysics Reference Manual.
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

variables in the solution vector. The result of sens has the same geometric scope as
the dependent variable argument; it can be plotted or evaluated wherever the
dependent variable itself is available.

Issues to Consider Regarding the Control Variables

T H E E F F E C T O F D I S C R E T I Z A T I O N

The sensitivity analysis is always performed on the discretized system of equations. As
already mentioned, the control variables can be a scalar, vector, or an element in some
infinite-dimensional function space. In the latter case, it is represented on the finite
element mesh, just like the solution variables, or global scalar quantities. When using
a control variable field represented on the finite element mesh, the sensitivities are
therefore associated with individual control variable degrees of freedom rather than
with the field value at each point. This makes it difficult to interpret the result. For
example, if a domain control variable is set up using a first-order Lagrange shape
function representation to control the material density in a model, the solution
contains the sensitivity of the objective function with respect to the discrete density
value at each node point in the mesh. Because each node influences the density in a
small surrounding region, the size of which varies from node to node, the individual
sensitivities are not directly comparable to each other.

Displaying such domain control variables results in a plot that is not smooth due to the
varying element size. It must therefore not be used to draw any conclusions about the
physics and the effect of changing the physical field represented by the control variable.
Some insight can, however, be gained by looking at the sensitivities divided by the
mesh volume scale factor dvol. This makes the sensitivities in the plot comparable
between different parts of the surface but still not mathematically well defined. In
particular, using discontinuous constant shape functions together with the division by
dvol results in a plot that is proportional to the true pointwise sensitivity.

If the plan is to use the sensitivities in an automatic optimization
procedure, as is done through the Optimization interface available with
the Optimization Module, the discrete nature of the sensitivities causes
no additional complication. The optimization solver searches for
optimum values of the discrete control variables using the discrete
gradient provided by the sensitivity analysis.
T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 29

30 | C H A P T E R
G E O M E T R I C A L S E N S I T I V I T Y

You can use the control variables directly to parameterize any aspect of the physics that
is controlled by an expression. This applies to material properties, boundary
conditions, loads, and sources. However, the shape, size, and position of parts of the
geometry cannot be changed as easily at solution time and require special attention.

Control variables cannot be used directly in the geometry description. Instead, the
model must be set up using a Deformed Geometry or Moving Mesh interface to
control the shape of the geometry. Then use control variables to control the mesh
movement, effectively parameterizing the geometry.

Issues to Consider Regarding the Objective Function

T H E P R I N C I P L E O F V I R T U A L WO R K

Potential energy has a special status among scalar objective functions because its
derivatives with respect to scalar control variables can in many cases be interpreted as
(true or generalized) forces.

C O M P L E X - V A L U E D O B J E C T I V E F U N C T I O N S

Sensitivity analysis can be directly applied only when the objective function is a real
differentiable or complex analytic function of the control variables. This is usually not
a severe constraint, even for frequency-domain models where the PDE solution
variables are complex valued. One reason is that physical quantities of interest to the
analyst are always real valued, and if complex-valued control variables are required, it
is possible to treat the real and imaginary parts separately.

Some PDE problem or the objective functions are, however, nonanalytic. This is the
case, for example, when the equations or the objective function contain real(),
imag(), or abs(). One solution in such cases is to enable Split complex variables in real

and imaginary parts in the Compile Equations node corresponding to the study step for
which sensitivity is computed. This converts the discretized PDE system from a
complex-valued system to a real-valued system of double size, with separate degrees of
freedom for the real and imaginary part. For this split system, also the nonanalytic
functions are differentiable almost everywhere such that sensitivities can be computed.

See Deformed Geometry and Moving Mesh in the COMSOL
Multiphysics Reference Manual for details about these interfaces and
ALE in general.
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

One special from of nonanalytic objective function can be treated more efficiently than
splitting the variables: many common quantities of interest are harmonic time averages,
which can be written in the form Q = real(a·conj(b)), where a and b are
complex-valued linear functions of the solution variables and therefore implicit
functions of the control variables. The problem with this expression is that, while Q is
indeed a real-valued differentiable function of the control variables, it is not an
analytical function of a and b. This complicates matters slightly because the sensitivity
solver relies on symbolic partial differentiation and the chain rule.

While the partial derivatives of Q with respect to a and b are, strictly speaking,
undefined, it can be proven that if they are chosen such that

 (2-10)

for any small complex increments δa and δb, the final sensitivities are evaluated
correctly. The special function realdot(a,b) is identical to real(a*conj(b)) when
evaluated but implements partial derivatives according to Equation 2-10. For that
reason, use it in the definition of any time-average quantity set as objective function in
a sensitivity analysis.

Issues to Consider Regarding Constraints

The theory behind sensitivity analysis as presented above (under Theory for Stationary
Sensitivity Analysis) assumes that constraints on the multiphysics problem are handled
in the same way as with any other equations. This is indeed the case for weak
constraints, which are implemented as a part of the main system of equations.
Standard pointwise constraints are instead eliminated from the discretized equations at
an early stage in the solution process. This elimination is not visible to the sensitivity
solver, which therefore may miss some symbolic derivative terms necessary for
computing a correct sensitivity.

In particular, if the mixed second derivative of a standard constraint with respect to
both PDE solution and control variables is nonzero, sensitivity will not be correctly
computed. For example, for a solution variable u and a control variable p, a constraint:

• u = p will give correct sensitivity.

• u2 = p2 will give correct sensitivity.

• u2 = up will give incorrect sensitivity.

Q a aδ+ b bδ+,() Q a b,()
a∂

∂Q aδ
b∂

∂Q bδ+
 real+≈
T H E O R Y F O R T H E S E N S I T I V I T Y I N T E R F A C E | 31

32 | C H A P T E R
If your multiphysics model contains constraints of the problematic type, you can still
compute a correct sensitivity, provided that you enable weak constraints in the
Constraint Settings section of the corresponding boundary condition node.

For technical details about the solver implementation, see The Sensitivity
Analysis Algorithm in the COMSOL Multiphysics Reference Manual.

For more about the standard versus the weak constraints, see Boundary
Conditions in the COMSOL Multiphysics Reference Manual.
 2 : O P T I M I Z A T I O N A N D S E N S I T I V I T Y T H E O R Y

 3
T h e O p t i m i z a t i o n I n t e r f a c e
The Optimization interface, found under the Mathematics>Optimization and

Sensitivity branch () when adding an interface, is designed to facilitate setting
up and solving advanced optimization problems. Problems which do not require
least-squares contributions to the objective function, control variable fields, or
pointwise constraints are preferably set up directly using only the Optimization
study step node.

The optimization interface contains tools which let you set objective function,
constraints, and bounds and introduce new control variable fields as well as global
control variables.

In this section:

• Adding an Optimization Interface

• The Optimization Interface
 33

34 | C H A P T E R
Add i n g an Op t im i z a t i o n I n t e r f a c e

Add an Optimization interface when creating a new model or at any time during
modeling. For a new model, physics interfaces are selected in the Model Wizard (after
specifying the space dimension) or from the Add Physics window. In any active session,
you can also right-click a Component node in the Model Builder to open the Add Physics
window.

To add an Optimization interface to a Component using the Add Physics window:

1 Under Mathematics>Optimization and Sensitivity, select Optimization ().

2 Click Add to Component. Optimization is added under the chosen Component in the
Model Builder.

To add an Optimization interface to a Component using the Model Wizard,
see Creating a New Model in the COMSOL Multiphysics Reference
Manual.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

Th e Op t im i z a t i o n I n t e r f a c e

The Optimization (opt) interface () contains tools for setting up advanced
optimization problems. The main purpose of the interface is its ability to set up
objective functions, constraint contributions and control variables which are defined
locally only on certain geometric entities, as well as least-squares contribution with a
time or parameter dependence.

Define objective functions and constraints in terms of control and solution variables
(the latter are given as the solution to the differential equations defined by the
multiphysics model) and restrict these to specific geometric entities, or make them
globally available. The Optimization interface itself does not have any selection, and is
not associated with any particular space dimension. Instead you find the same set of
feature nodes for domains, boundaries, edges and points.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics
interface. Refer to such physics interface variables in expressions using the pattern
<name>.<variable_name>. In order to distinguish between variables belonging to
different physics interfaces, the name string must be unique. Only letters, numbers, and
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is opt.

• Optimization Theory

• Common Physics Interface and Feature Settings and Nodes in the
COMSOL Multiphysics Reference Manual
T H E O P T I M I Z A T I O N I N T E R F A C E | 35

36 | C H A P T E R
O P T I M I Z A T I O N TO O L B A R

The following nodes are available from the Optimization ribbon toolbar (Windows
users), Optimization context menu (Mac or Linux users), or right-click to access the
context menu (all users).

The following feature nodes are available for some dimensions. Some nodes are
selected directly on the toolbar and others from submenus:

• Least-Squares Objective

• Integral Objective (Point Sum Objective)

• Probe Objective

• Integral Inequality Constraint (Point Sum Inequality Constraint)

• Pointwise Inequality Constraint

• Control Variable Field (which includes the settings for the associated bound
constraints)

• Global Objective

• Global Least-Squares Objective

• Global Inequality Constraint

• Global Control Variables

The following subnodes are available by right-clicking the Least Squares Objective
node:

• Value Column

• Time Column

• Parameter Column

• Coordinate Column

• Ignored Column

For step-by-step instructions and general documentation
descriptions, this is the Optimization toolbar. Subnodes are available
by clicking the parent node and selecting it from the Attributes menu.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

Least-Squares Objective

Uses a Least-Squares Objective feature to create an objective function representing the
sum of squared differences between measurements stored in an experimental data file
and a corresponding expression evaluated in the COMSOL Multiphysics model. The
model expression is evaluated using interpolation on the feature’s selection, at
measurement locations specified in the data file.

To create a least-squares objective, first import an Experimental Data file containing
comma-separated or semicolon-separated columns of measurement data from a single
experiment. Each Least-Squares Objective feature corresponds to an experiment where
the measurements have been obtained using given values for a set of Experimental

Parameters (for example, the temperature during the experiment). The squared sum of
the difference between the measurement values and the corresponding expressions
evaluated in the model — when solved for the given parameter values — is added as a
contribution to the total least-squares objective function.

Right-click the node to add column subnodes — Value Column, Time Column,
Parameter Column, Coordinate Column, and Ignored Column — assigning meaning
to the individual columns as values, times, parameter values, coordinate data, or values

The number of coordinate columns in the data file must be the same as
the dimension of the geometry, even when the selection of the
Least-Squares Objective feature is on a lower dimension. In that case,
model expressions are evaluated at the nearest points on the given
selection.

• Use a domain-level Least Squares Objective node unless the model
expressions corresponding to the measured data exists only on
boundaries, edges or points.

• There is no need to add points to the geometry at the measurement
locations specified in the file.

• If your experimental data does not contain one or more columns with
measurement locations, use a Global Least-Squares Objective feature
instead.
T H E O P T I M I Z A T I O N I N T E R F A C E | 37

38 | C H A P T E R
to ignore, respectively. One column subnode must be added for each column in the
data file and in the same order as the columns appear in the file.

E X P E R I M E N T A L D A T A

Enter a Filename or click the Browse button to specify a measurement data file
containing comma-separated or semicolon-separated columns of measurements. The
files are typically CSV files (*.csv), data files (*.dat), or plain text files (*.txt).

E X P E R I M E N T A L P A R A M E T E R S

Click the Add button () below the table to add an experimental parameter.
Experimental parameters are useful for including additional parameters that represent
model conditions for the experimental data and that are valid for the current
experimental data file. In the Name column, choose a parameter name from the global
parameters defined in the model. Enter a global-scope expression or value in the
Expression column to assign a value to the parameter in this experiment. Use the Load

from File () and Save to File () buttons to load and save experimental parameter
names and expressions from and to a file. Use the Delete button () to remove the
selected parameter from the table.

Value Column

To add a Value Column subnode, right-click the Least-Squares Objective node. Use a
Value Column to identify a column in the experimental data file as containing
measurement values. Enter a corresponding Expression, which must be available for
evaluation on the geometric entities selected in the node. Enter a corresponding
Column contribution weight, which must be strictly positive and be available for
evaluation in the global scope in the current model. Optionally a Variable name can be
specified to enable access to the data from the file for postprocessing. The difference

Move column nodes up and down using the context menu or a keyboard
combination of the Ctrl key and an arrow key.

If you have LiveLink™ for Excel®, you can also click the Load from Excel

File () and Save to Excel File () buttons.

See the LiveLink™ for Excel® User’s Guide for more information. Or go
to http://www.comsol.com/livelink-for-excel/ to learn more about the
product.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

http://www.comsol.com//livelink-for-excel/

between the Expression and the value from the file is squared and multiplied with the
Column contribution weight and a factor 0.5 to give the contribution to the total
objective for each measured value.

Time Column

To add a Time Column subnode, right-click the Least-Squares Objective node. Use a Time

Column to identify a column in the experimental data file as containing the times at
which measurements in the value columns were made. When computing the total
least-squares objective value, the value column expressions are evaluated at these times
in a forward transient solution.

Parameter Column

To add a Parameter Column subnode, right-click the Least-Squares Objective node. Use
a Parameter Column to identify a column in the experimental data file as containing the
parameter values for which measurements in the value columns were made. When
computing the total least-squares objective value, the value column expressions are
evaluated for these parameter values. The Parameter name has to correspond to one of
the global parameters defined in the model.

Coordinate Column

To add a Coordinate Column subnode, right-click the Least-Squares Objective node. Use
a Coordinate Column to identify a column in the experimental data file as containing the
global coordinates at which measurements in the value columns were made. Select
applicable Coordinate and Frame from the drop-down menus. The number of
coordinates must correspond to the number of dimensions in the model.

Ignored Column

To add an Ignored Column subnode, right-click the Least-Squares Objective node. Use
an Ignored Column to identify a column in the experimental data file that should not be
used.

Integral Objective (Point Sum Objective)

An Integral Objective (or Point Sum Objective on points) is defined as the integral of a
closed-form expression of control and solution variables (the latter are given as the
T H E O P T I M I Z A T I O N I N T E R F A C E | 39

40 | C H A P T E R
solution to the differential equations defined by the multiphysics model) that are either
global or available in the domain in question. Hence, its definition is restricted to a
specific set of geometric entities of the same dimension. For integral objectives on
points, the integration reduces to a summation.

O B J E C T I V E

Enter an Objective expression that is integrated over the geometric entity level in the
integral objective.

Q U A D R A T U R E S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the
integral objective: the integration order (default: 4) in the Integration order field and
the frame to integrate on (default: the spatial frame), which is selected from the
Integrate on frame list.

Probe Objective

A Probe Objective is defined as a point evaluation of a closed-form expression of control
and solution variables (the latter are given as the solution to the differential equations
defined by the multiphysics model) that are either global or available in the domain in
question. The point used for the point evaluation has to be contained in the domain.

O B J E C T I V E

Enter an Objective expression that is evaluated at the point in the domain.

P R O B E C O O R D I N A T E S

Specify the Probe coordinates for the point in the domain where the expression for the
objective is evaluated. After specifying the probe coordinates, select an option from the
Evaluate in frame: Spatial (the default), Material, or Mesh.

Integral Inequality Constraint (Point Sum Inequality Constraint)

Integral Inequality Constraints (Point Sum Inequality Constraints on points) are given as
restrictions to the values of the integral of a closed-form expression taken over a
specific set of geometric entities of the same dimension.

The expression is a closed-form expression of control and solution variables (the
solution variables are given as the solution to the differential equations defined by the
multiphysics model) that are either global or available in the domain in question. For
integral inequality constraints on points, the integration reduces to a summation.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

C O N S T R A I N T

Enter a Constraint expression that is integrated over the domain in the integral
inequality constraint.

Q U A D R A T U R E S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the
integral objective: the integration order (default: 4) in the Integration order field and
the frame to integrate on (default: the spatial frame), which is selected from the
Integrate on frame list.

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the
required bounds. To specify equality constraints, simply make sure the upper and lower
bounds have the same value.

Pointwise Inequality Constraint

A Pointwise Inequality Constraint is given as a restriction to the values of a closed-form
expression at all points in a set of geometric entities of the same dimension. Due to
computational issues, the expression has to be a closed-form expression of only control
variables. Furthermore, only those control variables that are either global or available
in the domain in question are usable.

C O N S T R A I N T

Enter a Constraint expression for the pointwise inequality constraint.

D I S C R E T I Z A T I O N

This section contains settings for the element used to discretize the control variable.
Select a Shape function type — Lagrange (the default) or Discontinuous Lagrange. Also
select an Element order — Linear, Quadratic (the default), Cubic, Quartic, Quintic, Sextic,
or Septic.

The Constraint method setting controls where the constraints are evaluated:

• Choose Elemental (the default) to make the software assemble the constraint on each
node in each element; that is, there are usually several constraints at the same global
coordinates because elements in the computational mesh overlap at nodes.

• Choose Nodal to make the software assemble a single constraint for each global node
point. The nodal constraint method provides an averaging of the constraints from
adjacent elements.
T H E O P T I M I Z A T I O N I N T E R F A C E | 41

42 | C H A P T E R
The default is Nodal in order to minimize the number of constraints that must be
handled by the optimization solvers.

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the
required bounds. To specify equality constraints, make sure that the upper and lower
bounds have the same value.

Control Variable Field

Add a Control Variable Field node to define a control variable which varies as function
of position within selected geometric entities (domains, boundaries, edges, or points).
The control variable field is discretized using shape functions in the same way as other
dependent variables in a multiphysics model. The discrete control variable degrees of
freedom, on which the optimization solvers operate represent values at element nodes.
Right-click the node to add a Control Variable Bounds subnode.

C O N T R O L V A R I A B L E

Enter a Control variable name and Initial value.

C O N T R O L V A R I A B L E S C A L I N G

Enter a Scale indicating a typical magnitude of the control variable. The relative solver
tolerances refer to variables rescaled with respect to this scale, and it may also influences
the search pattern of some optimization solvers.

D I S C R E T I Z A T I O N

This section contains settings for the shape functions used to discretize control
variables. Select a Shape function type: Lagrange (the default) or Discontinuous Lagrange.
Also select an Element order: Linear, Quadratic (the default), Cubic, Quartic, Quintic,
Sextic, or Septic.

The default choice of Value type when using splitting of complex variables is Real. This
means that if the solver is set up to split complex variables in real and imaginary parts,
no imaginary part is allocated for the control variable field, which is therefore
guaranteed to be real. Choose Complex to allocate both real and imaginary parts.

The Constraint method setting has no effect for Discontinuous Lagrange
shape functions whose nodes all lie strictly inside the mesh elements.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

Control Variable Bounds

The Control Variable Bounds node specifies simple bounds for its parent Control Variable

Field node. You can only add one single Control Variable Bounds node for each Control

Variable Field.

B O U N D S

By default, both lower and upper bounds are active and set to 0, which constraints the
control variable field to be identically zero everywhere. Enter new Lower bound and
Upper bound values to specify an allowed range for the control variable, or deactivate
one of the bounds to specify a one-sided bound.

Global Objective

Specify the Global Objective contribution to the function. To add this feature, either
right-click the Optimization interface node and select it from the context menu, or on
the Physics toolbar, click Global Objective (). In some cases, select it from the Global
submenu.

O B J E C T I V E

Enter an Objective expression that defines the contribution to the objective function. It
can be an expression of those components of the control and solution variables (the
solution variables are given as the solution to the differential equations defined by the
multiphysics model) that are globally available.

Global Least-Squares Objective

The Global Least-Squares Objective is similar to the Least-Squares Objective (see
Least-Squares Objective) but compares measured data to a globally available model
expression. Therefore it does not require any selection, and does not allow any
Coordinate Column subnodes.

Bound expressions must be parameter expressions, meaning that they
must only contain numbers, model parameters and physical constants.
Such expressions can be evaluated to a number independently of the
geometry and the multiphysics model solution.
T H E O P T I M I Z A T I O N I N T E R F A C E | 43

44 | C H A P T E R
In addition, the Experimental Data section contains a Data source choice:

• Select File (the default) to take the experimental data directly from a file. Click
Browse to locate and select the file. Add column nodes below the Least-Squares

Objective to specify the contents of each column in the file. See Least-Squares
Objective, Value Column, Time Column, Parameter Column, and Ignored Column
for details.

• Select Result table to use experimental data from a Table node under Results. The
data may have been generated by another feature under Results, or imported into
the table feature. In either case, the experimental data will be stored in the
COMSOL model file.

• Select Local table to enter experimental data directly into a local table in this Settings
window. Click the Add button () below the table to add another column. Rows
are added automatically as you fill in the first column. To remove a column of data,
select some cell in that column and click the Delete Column button (). Similarly,
click the Delete button () to delete the current row. You can also save the
definitions of the experimental data to a text file by clicking the Save to file button
(). To load a text file with experimental data, use the Load from file button ().
The file dialog box allows a number of different file types, both for import and
export.

When using experimental data in a Local table or from a Results table, you must choose
from the Parameter type list whether each data row in the table corresponds to a Time
or a Parameter value, and in which Time column or Parameter column the corresponding
value is stored. Also specify the Time unit, or the Parameter name and Parameter unit,
as appropriate. Finally, fill in the Model expression corresponding to the experimental
values in each Data column, as well as the column Unit and Weight.

To add this feature, either right-click the Optimization interface node and select it from
the context menu, or on the Physics toolbar, click Global Least-Squares Objective ().
In some cases, select it from the Global submenu.

See Material Property Fitting for an example of fitting material
properties to measured data using a global least-squares objective:
Application Library path Optimization_Module/Parameter_Estimation/

material_property_fitting.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

Global Inequality Constraint

Specify a Global Inequality Constraint that may involve both control variables and
solution variables, as long as the expression is available for evaluation on the global
level. To add this feature, either right-click the Optimization interface node and select
it from the context menu, or on the Physics toolbar, click Global Inequality Constraint
(). In some cases, select it from the Global submenu.

C O N S T R A I N T

Enter a globally defined Constraint expression whose value is to be constrained.

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the
required bounds. To specify equality constraints, simply make sure the upper and lower
bounds have the same value.

Global Control Variables

Specify those components of the Global Control Variables that are globally available. To
add this feature, either right-click the Optimization interface node and select it from the
context menu, or on the Physics toolbar, click Global Control Variables (). In some
cases, select it from the Global submenu.

C O N T R O L V A R I A B L E S

In the table, enter Variable names, Initial values, and Lower and Upper Bounds of global
control variables. To specify equality constraints, simply make sure the upper and lower
bounds have the same value.

Move control variable rows up and down using the Move up () and Move

down () buttons. To remove a control variable, select some part of that variable’s
row in the table and click the Delete button (). You can also save the definitions of
the global control variables to a text file by clicking the Save to file button () and
using the Save to File dialog box that appears. To load a text file with global control
T H E O P T I M I Z A T I O N I N T E R F A C E | 45

46 | C H A P T E R
variables, use the Load from file button () and using the Load from File dialog box
that appears. Data must be separated by spaces or tabs.

D I S C R E T I Z A T I O N

To show the Discretization section, select Discretization on the model builder Show
menu. The default choice of Value type when using splitting of complex variables is Real.
This means that if the solver is set up to split complex variables in real and imaginary
parts, no imaginary part is allocated for the control variable field, which is therefore
guaranteed to be real. Choose Complex to allocate both real and imaginary parts.

C O N T R O L V A R I A B L E S C A L I N G

Enter a Scale indicating a typical magnitude of the control variables. The relative solver
tolerances refer to variables rescaled with respect to this scale, and it may also influences
the search pattern of some optimization solvers.

If you have LiveLink™ for Excel®, you can also click the Load from Excel

File () and Save to Excel File () buttons.

See the LiveLink™ for Excel® User’s Guide for more information. Or go
to http://www.comsol.com/livelink-for-excel/ to learn more about the
product.
 3 : T H E O P T I M I Z A T I O N I N T E R F A C E

http://www.comsol.com/livelink-for-excel/

 4
T h e S e n s i t i v i t y I n t e r f a c e
The Sensitivity interface, found under the Mathematics>Optimization and

Sensitivity branch () when adding an interface, is designed to facilitate setting
up and solving sensitivity problems.

To find the sensitivity of a model, add the sensitivity interface along with the physics
interfaces in the model. The optimization interface lets you set objective function
and to introduce the sensitivity parameters.

In this section:

• The Sensitivity Interface
 47

48 | C H A P T E R
Th e S e n s i t i v i t y I n t e r f a c e

The Sensitivity (sens) interface (), found under the Mathematics>Optimization and

Sensitivity () branch when adding a physics interface, provides tools for adding
advanced sensitivity evaluation to a stationary or time-dependent model. Basic
problems defined only in terms of global scalar objective functions and model
parameters can be set up directly in a Sensitivity study step and therefore do not require
the use of a Sensitivity interface.

The objective functions are defined in terms of control and solution variables (the
latter are given as the solution to the differential equations defined by the multiphysics
model), which can be fields dependent on position in space or scalar quantities defined
globally. This flexibility is reflected in the physics interface by grouping these settings
according to the dimension of the domain to which they apply. In such a group of
settings, the following settings can be specified, to which each corresponds a separate
feature and its Settings window:

• Integral Objective

• Probe Objective

• Control Variable Field

S E N S I T I V I T Y TO O L B A R

The following nodes are available from the Sensitivity ribbon toolbar (Windows users),
Sensitivity context menu (Mac or Linux users), or by right-clicking to access the
context menu (all users).

For a more extensive introduction to the mathematics implemented by
this physics interface, see the Theory for the Sensitivity Interface.

Note that adding a Sensitivity study step to a study makes it possible to
perform a sensitivity analysis directly at the study level. See Sensitivity in
the COMSOL Multiphysics Reference Manual.

For step-by-step instructions and general documentation
descriptions, this is the Sensitivity toolbar.
 4 : T H E S E N S I T I V I T Y I N T E R F A C E

The main Settings window for the Sensitivity node contains the following section:

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics
interface. Refer to such physics interface variables in expressions using the pattern
<name>.<variable_name>. In order to distinguish between variables belonging to
different physics interfaces, the name string must be unique. Only letters, numbers, and
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is sens.

Integral Objective

An Integral Objective is defined as the integral of a closed form expression of control
and solution variables (the latter are given as the solution to the differential equations
defined by the multiphysics model) that are either global or available in the domain in

TABLE 4-1: THE SENSITIVITY TOOLBAR

BUTTON OR MENU NAME

Physics

Add Physics

Global

Global Objective

Global Control Variables

• Common Physics Interface and Feature Settings and Nodes in the
COMSOL Multiphysics Reference Manual

• Global Objective

• Global Control Variables

Sensitivity Analysis of a Communication Mast Detail: Application Library
path COMSOL_Multiphysics/Structural_Mechanics/

mast_diagonal_mounting_sensitivity
T H E S E N S I T I V I T Y I N T E R F A C E | 49

50 | C H A P T E R
question. Hence, its definition is restricted to a set of geometric entities of the same
dimension. For integral objectives on points, the integration reduces to a summation.

O B J E C T I V E

Enter an Objective expression that is integrated over the geometric entity level in the
integral objective.

Q U A D R A T U R E S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the
integral objective: the integration order (default: 4) in the Integration order field and
the frame to integrate on (default: the spatial frame), which is selected from the
Integrate on frame list.

Probe Objective

A Probe Objective is defined as a point evaluation of a closed form expression of control
and solution variables (the latter are given as the solution to the differential equations
defined by the multiphysics model) that are either global or available in the domain in
question. The point used for the point evaluation has to be contained in the domain.

O B J E C T I V E

Enter an Objective expression that is evaluated at the point in the domain.

P R O B E C O O R D I N A T E S

Specify the Probe coordinates for the point in the domain where the expression for the
objective is evaluated. After specifying the probe coordinates, select an option from the
Evaluate in frame — Spatial (the default), Material, or Mesh.

Control Variable Field

Specify the Control Variable Field specific to the geometric entity level (domain, edge,
boundary, or point) in question.

C O N T R O L V A R I A B L E

Enter a Control variable name and Initial value.

D I S C R E T I Z A T I O N

This section contains settings for the element used to discretize the control variable.
Select a Shape function type: Lagrange (the default) or Discontinuous Lagrange. Also
 4 : T H E S E N S I T I V I T Y I N T E R F A C E

select an Element order: Linear, Quadratic (the default), Cubic, Quartic, or Quintic. The
value type (complex or real) for all the variables defined by this Global Equations node
is selected in the Value type when using splitting of complex variables selection. The
default value type is Complex.

Global Objective

Specify the Global Objective contribution to the function by entering an objective
expression. To add this feature, either right-click the Sensitivity interface node and
select it from the context menu, or on the Physics toolbar, click Global Objective ().

O B J E C T I V E

Enter an Objective expression that defines the contribution to the objective function. It
can be an expression of those components of the control and solution variable (the
solution variable is given as the solution to the differential equations defined by the
multiphysics model) that are globally available.

Global Control Variables

Use the Global Control Variables node to specify any globally available control variables.
To add this feature, either right-click the Sensitivity interface node and select it from
the context menu, or on the Physics toolbar, click Global Control Variables ().

C O N T R O L V A R I A B L E S

In the table, enter Variable names and Initial values of the control variables that are
globally available. To add a control variable to the table, click the Add button (). To
remove a control variable and its values from the table, click the Delete button ().

Common Physics Interface and Feature Settings and Nodes in the
COMSOL Multiphysics Reference Manual
T H E S E N S I T I V I T Y I N T E R F A C E | 51

52 | C H A P T E R
 4 : T H E S E N S I T I V I T Y I N T E R F A C E

 5
T h e O p t i m i z a t i o n S o l v e r s
The Optimization study step is the hub of all optimization tasks. There you can
specify which objective functions, control variables, and constraints that are
included in the optimization problem, as well as select an optimization solver and
set its most important parameters. The Parameter Estimation study step provides a
simplified interface for standard parameter estimation tasks.

This chapter describes the Optimization study step and Parameter Estimation study
step settings, as well as the theory and detailed settings applying to the individual
solvers.
 53

54 | C H A P T E R
Th e Op t im i z a t i o n S t u d y

The Optimization study () node collects all settings necessary for solving
optimization problems. It serves the dual purpose of defining the optimization
problem to be solved and choosing an optimization solver, as well as controlling
important solver properties and solver output.

The complete optimization problem can be set up directly in the Optimization study
node when the objective function to be minimized or maximized is a global scalar
expression and the only control variables to be varied are already defined as model
parameters. If the model requires control variables or objective functions which
depend on position in the geometry, general least-squares objective contributions or
pointwise constraints, these must be set up separately using an Optimization interface.
Such contributions are displayed in the Optimization study node settings where they
can be individually disabled or enabled.

When you add an Optimization study node to a study, it is always inserted as the first
node, at the top of the study sequence. Remaining nodes in the sequence define the
multiphysics problem on which the optimization process will act. If this sequence
contains Study Reference nodes and you are using a derivative-free solver, you can
choose for each objective function contribution and constraint whether to compute its
value for the main sequence or for the sequence pointed to by one of the study
references. .

It is only possible to use one Sensitivity, Optimization, Parameter
Estimation, or Parametric Sweep study step in each study. These study
nodes tend to control the same solver settings and are therefore
incompatible with each other. To perform parametric or nested
optimization, you can call a study containing an Optimization node from
inside another study, via a Study Reference node.

This section describes the Optimization study node available with the
Optimization Module. See also Studies and Solvers in the COMSOL
Multiphysics Reference Manual for more information about solvers in
general. In this guide, see About the Optimization Solvers for details on
the capability and settings of the individual optimization solvers.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

The Settings window has the following sections:

O P T I M I Z A T I O N S O L V E R

Select an optimization solver and specify its most important parameters.

Method
Choose an optimization solver method. The list of available solvers contains both
gradient-based and derivative-free methods.

• Derivative-free (gradient-free) optimization options: Coordinate search, Monte Carlo,
Nelder-Mead (the default), COBYLA, and BOBYQA.

• Gradient-based optimization options: SNOPT, MMA and Levenberg-Marquardt.

The different solvers are more or less suitable for different types of optimization
problems. There are also differences in which problem features they can handle.
Objective contributions, control variables and constraints which are not compatible
with the selected solver are marked by a warning sign () in the first column of the
corresponding table.

Optimality Tolerance
Specify the relative Optimality tolerance. The value is applied relative to each control
variable after scaling with its corresponding specified scale. The default value of this
setting varies depending on the selected optimization Method.

Expressions for user-defined objective and constraint functions are
evaluated in the global namespace, while the expressions for
physics-defined objective and constraint expressions are evaluated in the
component namespace. If there are a global parameter or function and a
component variable or function with the same name (for example, par or
func: root.par and compi.par, root.func, and compi.func) and a
user-defined objective function or constraint with expression f(par) or
func, it is evaluated as f(root.par) and root.func, while a
physics-defined objective or constraint with expression f(par) or func is
evaluated as f(compi.par) or compi.func. Note that the evaluation of
the expressions of the user-defined objective and constraint functions in
the Optimization study differs from the evaluation in Results (where the
expressions are evaluated in the component namespace).
T H E O P T I M I Z A T I O N S T U D Y | 55

56 | C H A P T E R
Study Step
The gradient-based solvers can optimize only over the output from a single study step,
and not for all study step types. Choose any of the available study steps from the Study

step list. Click the Go to Source button) to move to the Settings window for the
selected study node.

Maximum Number of Model Evaluations
Specify the Maximum number of model evaluations. The default is 1000. This number
limits the number of times the objective function is evaluated, which is related to the
number of times the multiphysics system is simulated for different values of the
optimization control parameter.

Maximum Number of Model Evaluations in Each Parametric Sweep
Set the Maximum number of model evaluations in each Parametric Sweep to limit the
number of objective evaluations (and prerequisite forward solutions) requested in a
single batch. The default is 1. The setting only applies to certain derivative-free solvers
that use a Parametric Sweep node under Job Configurations to evaluate a batch of control
variable configurations in each optimization iteration. The configurations in each
batch may be evaluated in sequence or in parallel, depending on the Distribute

parametric sweep setting.

The number of simultaneous objective evaluations affects the optimization algorithm
in the same way whether each batch is processed in sequence or in parallel. That is, you
will get the same result independently of the number of processors being used. Note
that to get any performance effect from increasing the number of simultaneous
evaluations, you must also enable distribution of parameters in the Parametric Sweep

solver node created when the default solver sequence is generated.

Distribute Parametric Sweep
If you are using a solver that supports batch evaluation of objective values and have set
Maximum number of model evaluations in each Parametric Sweep larger than 1, you can
choose to distribute computations over the nodes in a cluster. To enable this
functionality, first click the Show button () and select Advanced Study Options, then
select the Distribute parametric sweep check box.

The number of objective evaluations is not equal to the number of
iterations taken by the optimizer because each iteration can invoke more
than a single objective function evaluation.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Least-Squares Time/Parameter Method
If least-squares objectives are defined, you can specify the Least-squares time/parameter

method. The default is Manual. In that case, all least-squares defined time or parameter
values are merged with the time or parameter values defined in general parameter value
lists. The other option is From least-squares objective. In that case, only least-squares
defined time or parameter values are used and all other time or parameter values are
disregarded.

O B J E C T I V E F U N C T I O N

You specify the objective function for the optimization problem in the table’s
Expression column. Enter any globally available expression that evaluates to a real
number. Optionally, you can add a description in the Description column. Click the Add

Expression () and Replace Expression () buttons to search through a list of
predefined expressions.

The Evaluate for column specifies the study step for which each objective contribution
will be evaluated. Available options are the last study step in the sequence plus all Study
Reference nodes. When a gradient-based solver is used, the column is not active: all
contributions are then evaluated for the same study step.

If there is an Optimization or Sensitivity interface in the model, containing objective
function nodes, these show up in a separate table under Objective Function. Use the
Active column to deactivate individual contributions as needed. Contributions not
supported by the currently selected solver are marked by a warning sign () in the first
column, which disappears if you manually deactivate the objective.

Type
Select whether to perform a Minimization or a Maximization of the objective function.
The default is to minimize the objective function.

For an optimization objective that is expressed in terms of the solution u
of a PDE, Integration (described in COMSOL Multiphysics Reference
Manual) is one example of how you can define a scalar objective as
required by the optimization solver. The evaluation of the objective
function is similar to Global Variable Probe (described in COMSOL
Multiphysics Reference Manual), so any variable that can be represented
by a global variable probe is suitable as an objective.
T H E O P T I M I Z A T I O N S T U D Y | 57

58 | C H A P T E R
Multiple objectives
If you have defined more than one objective function, choose how to evaluate the
overall objective: Choose from Sum of objectives (the default), Minimum of objectives,
or Maximum of objectives. Note that not all options are available together with all
solvers.

Solution
Here you select which solution or solutions to use for evaluating the objective function
when several solutions are present, like for Time Dependent or Eigenvalue studies. The
possible choices are Auto (the default), Use first, Use last, Sum of objectives, Minimum of

objectives, and Maximum of objectives. Note that the last three options first evaluate
multiple objectives according to the Multiple objectives setting for each solution
individually, and then compute the sum, minimum or maximum of the individual
results.

All options are available only with the derivative-free solvers. When using SNOPT or
Levenberg-Marquardt, Auto is the only choice. MMA supports all options except when
optimizing over a Time Dependent study step.

With Auto selected, the solver chooses the evaluation method based on the innermost
study. For the studies of Eigenvalue, Eigenfrequency, or Linear Buckling type (all
described in COMSOL Multiphysics Reference Manual), the first solution
corresponding to the smallest eigenvalue is chosen. For studies in the Frequency
Domain, the contributions from all solutions are summed (equivalent to the Sum of

objectives option). For all other study types, the optimization solver selects the last
solution, like the solution at the final time for a Time Dependent problem.

C O N T R O L V A R I A B L E S A N D P A R A M E T E R S

The first table under Control Variables and Parameters is used to select model
parameters for use as control variables. Click the Add () button to add one of the
parameters defined in the Settings window for Parameters under Global Definitions to
the set of control variables.

From a list in the Parameter name column, select the parameter to redefine as a control
variable. Specify an Initial value for the control variables you add. The initial value is
used as initial guess in the optimization solver and the objective function is explored
around this point.

The Scale column is important. Each control variable is rescaled with its specified scale.
This means, in practice, that the solvers only get to see the control variables divided by
their corresponding scale, and it is on these rescaled variables that all tolerances are
 5 : T H E O P T I M I Z A T I O N S O L V E R S

applied — both user-defined and internal tolerances intended to ensure the stability of
the optimization methods. The default value is 1, which makes the solver work with
the original, unscaled, variables.

Use the Lower bound and Upper bound columns to add lower and upper bounds to the
control variables. The Optimization solver only evaluates the objective function within
these bounds. If you do not want to set bounds on a variable, leave the cell in the table
empty.

Move control parameter rows up and down using the Move up () and Move

down () buttons. To remove a control parameter, select some part of that variable’s
row in the table and click the Delete button (). You can also save the definitions of
the control parameters to a text file by clicking the Save to file button () and using
the Save to File dialog box that appears. To load a text file with control parameters, use
the Load from file button () and using the Load from File dialog box that appears.
Data must be separated by spaces or tabs.

If there is an Optimization or Sensitivity interface in the model, containing control
variable nodes, these show up in a separate table under Control Variables and

Parameters. Use the Solve for column to deactivate individual control variables as
needed. Variables not supported by the currently selected solver are marked by a
warning sign () in the first column, which disappears if you manually choose not to
include it in the solution.

C O N S T R A I N T S

The first table under Constraints lets you specify additional constraints to be imposed
on the optimum solution. The Expression column accepts any globally available
expression which evaluates to a real number. Constraints can be functions of the
control variables both directly and indirectly via PDE solution variables. The Lower

bound and Upper bound columns can only contain parameter expressions; they must

The Optimization solver determines whether bounds are allowed or not.
The Monte Carlo solver can only be run when both a lower and an upper
bound are given; the MMA solver also needs bounds but can estimate
them automatically — but at a cost.

If you have the LiveLink™ for Excel®, you can also save and load control
parameters to and from Microsoft Excel Workbook (*.xlsx) files.
T H E O P T I M I Z A T I O N S T U D Y | 59

60 | C H A P T E R
not depend on control variables, PDE solution variables, or any other user-defined
variables, but can include model parameters, physical constants and units. One bound
column can be left blank to indicate that no upper or lower bound is required.

The Evaluate for column specifies the study step for which each constraint will be
evaluated. Available options are the last study step in the sequence plus all Study
Reference nodes. When a gradient-based solver is used, the column is not active: all
contributions are then evaluated for the same study step.

If there is an Optimization interface in the model, containing inequality constraint
nodes, these also show up in a separate table under Constraints. Use the Active column
to deactivate individual constraints as needed. Constraints not supported by the
currently selected solver are marked by a warning sign () in the first column, which
disappears if you manually choose to deactivate the constraint.

For some optimization solvers, you can select a Constraint handling method. The
possible options are Penalty and Augmented Lagrangian. The former is the default when
available and requires no further settings. Choosing the Augmented Lagrangian method
activates additional options to control its behavior and accuracy. See Constraint
Handling for Derivative-Free Methods for further details.

O U T P U T W H I L E S O L V I N G

Plot
Select Plot and choose a Plot group to update after each major iteration of the
optimization algorithm.

Probes
Select which Probes to evaluate and plot in each iteration.

Keep objective values in table
Select the Keep objective values in table check box to retain the table containing control
variable and objective function values after the solver completes. Choose an existing
Output table, or select New to create a new table. After computing the study, the Output

table setting will be changed to the table actually being used.

The derivative-free solvers add a new line to this table for each evaluation of the
objective function. When using the Nelder-Mead, BOBYQA, or Coordinate search solver,
the control variable and objective values displayed on the last line are the converged
result of the optimization. The gradient-based solvers SNOPT, MMA, and
Levenberg-Marquardt do not output any objective values.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Select Show individual objective values to include one table column for each
contribution to the objective. Otherwise, only the total objective is displayed.

Select the Table graph check box to plot the objective function values displayed in the
objective table. Choose an existing Plot window, including the standard Graphics
window, or select New window. After computing the study, the Plot window setting will
be changed to the window actually being used.

Keep constraint values in table
Select the Keep constraint values in table check box to retain the table containing global
constraint values after the solver completes. Choose an existing Constraint table, or
select New to create a new table. After computing the study, the Constraint table setting
will be changed to the table actually being used.

The derivative-free solvers add a new line to this table for each evaluation of the
objective function. When using the Nelder-Mead, BOBYQA, or Coordinate search solver,
the control variable and constraint values displayed on the last line correspond to the
converged result of the optimization. The gradient-based solvers SNOPT, MMA, and
Levenberg-Marquardt do not output any constraint values.

Optimization log
Choose Minimal, Normal (the default) or Detailed to control the amount of information
output from the optimization solver and the inner solvers it calls.
T H E O P T I M I Z A T I O N S T U D Y | 61

62 | C H A P T E R
Th e Pa r ame t e r E s t ima t i o n S t u d y

The Parameter Estimation () study node provides a simplified interface for
performing least-squares parameter estimation. It can be used when the reference data
is a function of time or a single parameter, and the multiphysics model result expected
to match the data is a single global expression evaluated for a selected study step in the
same study.

When the reference data consists of measured values, you typically first import it as an
interpolation function which you can easily plot and visually compare to the result of
your multiphysics model. The Parameter Estimation study node can refer directly to
the interpolation function and is independent of whether the interpolation function
was specified directly in the user interface or imported from a file, and is also
independent of the file format used.

Alternately, the reference data can be given as a user-defined expression which is
evaluated at the time steps or parameter values specified in the corresponding study
step. This is useful, for example, when estimating coefficients of a polynomial expected
to match the model output, and in general when estimating parameters in a
mathematical model intended to replicate the output of the full multiphysics model.

The parameter estimation problem is implemented as an optimization problem
minimizing a sum of squared differences between model and reference data. The sum
is computed over time or parameter steps as specified either in the argument column
of an interpolation function used as reference data, or in the study step selected for
evaluation of the model data.

M O D E L D A T A

Choose one of the allowed study steps from the Study step list. Click the Go to Source
button) to move to the Settings window for the selected study node. Enter a global
Model expression which is evaluated at each time or parameter step, where it is
compared to the corresponding reference data. You can also click the Add

Expression () and Replace Expression () buttons to search through a list of
predefined expressions.

R E F E R E N C E D A T A

Select a Reference data source: Interpolation function or User defined. If you choose an
interpolation function as data source, its argument column will decide at which time
or parameter values the difference between model and reference data is evaluated.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

When the data source is set to User defined, enter a Reference expression or click the
Replace Expression () buttons to search through a list of predefined expressions. You
can also press Ctrl+Space to add a predefined expression to the text field. The
difference between the Model expression and the Reference expression is then evaluated
at output time steps or parameter values as specified in the selected Study step.

P A R A M E T E R S

Click the Add () button to add one of the parameters defined in the Settings
window for Parameters under Global Definitions to the set of parameters to be
estimated. Use the Move Up (), Move Down (), and Delete () buttons under
the table to organize the data.

From a list in the Parameter name column, select one of the available global parameters.
Specify an Initial value which is used as initial guess when estimating the parameter.

The Scale column is important. Each control variable is rescaled with its specified scale.
This means, in practice, that the solvers only get to see the parameters divided by their
corresponding scale, and it is on these rescaled variables that all tolerances are applied
— both user-defined and internal tolerances intended to ensure the stability of the
optimization methods. The default value is 1, which makes the solver work with the
original, unscaled, parameters.

Use the Lower bound and Upper bound columns to set lower and upper bounds on the
parameters. The Optimization solver only evaluates the objective function within these
bounds. When doing parameter estimation, bounds are typically not needed and the
cells can therefore be left empty.

An alternative to specifying parameter names and values directly in the table is to
specify them in a text file. Use the Load from File button () to browse to such a text
file. The program appends the read names and values to the current table. The format
of the text file must be such that the parameter names appear in the first column and
the values for each parameter appear row-wise with a space separating the name and
values, and a space separating the values. Click the Save to File button () to save the

If you choose to add bounds to help the solver, make sure to check the
solution afterward. If any of the estimated parameters has reached its
bound value, then the bound should be relaxed or the parameter should
be eliminated from the problem. In both cases, it is necessary to solve the
modified problem one more time.
T H E P A R A M E T E R E S T I M A T I O N S T U D Y | 63

64 | C H A P T E R
contents of the table to a text file (or to a Microsoft Excel Workbook spreadsheet if the
license includes LiveLink™ for Excel®).

P A R A M E T E R E S T I M A T I O N M E T H O D

Select an optimization Method — BOBYQA (the default), Levenberg-Marquardt, or SNOPT

— to solve the parameter estimation problem. Choose BOBYQA when the parameters
to be estimated control the geometry, mesh or any other aspect of the model which is
not represented as a term in the model equations. Otherwise try Levenberg-Marquardt,
which is generally faster than SNOPT but does not support bounds on the parameters.

Specify the relative Optimality tolerance. The value is applied on rescaled variables,
using the scale specified for each parameter. The default value of this setting varies
depending on the selected optimization Method. The Maximum number of objective

evaluations limits the number of times the objective function is evaluated, which is
related to the number of times the multiphysics system is simulated for different
attempted values of the parameters.

Set the Least-squares time/parameter method to choose how the parameter estimation
defined times or parameters should be used. If you choose Manual (the default), all
parameter estimation defined time or parameter values are merged with the time or
parameter values defined in general parameter value lists. If From least-squares objective
is chosen, only time or parameter values defined by the parameter estimation are used
and all other time or parameter values are disregarded.

O U T P U T W H I L E S O L V I N G

The settings in the Output While Solving section are identical to the corresponding
settings in the Optimization study step. See Output While Solving under The
Optimization Study.

The Least-squares time/parameter method list only appears in a model
where there is a least-squares objective.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Abou t t h e Op t im i z a t i o n S o l v e r s

The Optimization Module provides a selection of optimization solver algorithms
which can be divides into two main groups: on one hand gradient-based solvers and
on the other hand derivative-free solvers. The two groups are suitable for different
types of problems and have different performance characteristics.

In this section:

• About Derivative-Free Solvers

• About Gradient-Based Solvers

• The Coordinate Search Solver

• The Monte Carlo Solver

• The Nelder-Mead Solver

• The BOBYQA Solver

• The COBYLA Solver

• The SNOPT Solver

• The MMA Solver

• The Levenberg-Marquardt Solver

• About Optimality Tolerances

• About Constraint Handling

• References for the Optimization Solvers

About Derivative-Free Solvers

The defining characteristic of the derivative free solvers is that they do not need to
compute derivatives of the objective function with respect to the control variables.
They do not even require the objective function to be differentiable in principle. This
makes them suitable for problems where the objective function is non-smooth or
contains noise.

One typical example of a noisy objective function is when the control variables define
geometry dimensions. The geometry changes induced by modifying the control
variables then lead to different finite element meshes, superimposing different
discretization errors on the objective function when evaluated for different control
variable values.
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 65

66 | C H A P T E R
Since the derivative-free solvers do not trust the pointwise behavior of the objective
function to be a good indicator of where to search for the next, improved, update to
the control variables, they must rely on sampling the objective function at different
positions in the control variable space. This is more expensive than following a single
path toward the optimum but also more robust. Some of the performance penalty is
offset by the fact that evaluations that do not depend on one another can be done in
parallel — for example, in a cluster environment.

Finally, derivative-free solvers can be further subdivided into local, “hill-climbing,”
methods and global, evolutionary or statistical, methods. The former type starts from
an initial guess and strives to improve the objective function in a stepwise manner.
Imagine a group of people trying to climb a hill together in dense fog; as long as they
stay together and move upward, they find a top but not necessarily the highest one.
Global methods, in contrast, try to produce a map of the entire design space, refining
it iteratively in areas that appear to be good candidates for containing the global
optimum.

The Optimization Module provides five different derivative-free algorithms:

• The Coordinate search solver aims at improving the objective function along the
coordinate directions of the control variable space. See The Coordinate Search
Solver.

• The Monte Carlo solver samples points randomly with uniform distribution inside a
box specified by the user. See The Monte Carlo Solver.

• The Nelder-Mead solver walks toward improved objective function values by
iteratively replacing the worst corner of a simplex in the control variable space. See
The Nelder-Mead Solver.

• The BOBYQA solver walks toward improved objective function values by using an
iteratively constructed quadratic approximation of the objective. See The BOBYQA
Solver.

• The COBYLA solver solves a sequence of linear approximations constructed from
objective and constraint values sampled at the corners of a simplex in control
variable space. See The COBYLA Solver.

These methods are each described in more details below.

About Gradient-Based Solvers

The defining characteristic of a gradient-based solver is that follows a path in the
control variable space where each new iterate is based on local derivative information
 5 : T H E O P T I M I Z A T I O N S O L V E R S

evaluated at previously visited points. The methods implemented in the Optimization
Module require the complete vector of first-order derivatives of the objective function
with respect to the discrete vector of control variable degrees of freedom, which is
referred to as the discrete gradient of the objective function in the control variable
space.

The gradient can be computed in different ways. In general, the Adjoint method is the
most efficient (and also the default), followed by the Forward method. The pure
Numeric method is the most expensive as it is based on repeated solution of the
multiphysics problem, while the Forward numeric method requires only repeated
assembly of the problem residual.

The Optimization module provides three different gradient-based algorithms:

• The SNOPT solver is a general purpose solver suitable for dealing with large-scale
problems with many or difficult constraints. See The SNOPT Solver.

• The MMA solver can handle problems of any form and is especially suitable for
problems with a large number of control variables, such as topology optimization.
See The MMA Solver.

• The Levenberg-Marquardt solver is specifically designed for solving least-squares
problems. See The Levenberg-Marquardt Solver.

These methods are each described in more details below.

The Coordinate Search Solver

The Coordinate search solver aims at improving the objective function along the
coordinate directions of the control parameter space. The step lengths are decreased
or increased according to the values of the objective function. The Coordinate search
solver does not directly evaluate gradients of the objective function. Gradients are not
available for all types of parameters or might not be mathematically well-defined in
certain circumstances. One example is an objective function that contains noise.

However, when the solver has collected enough information around the current search
point, an estimate of the gradient is constructed and a line search along this direction
is attempted before a new evaluation along the coordinate directions. This accelerates
the search procedure, in particular for points close to (local) minima. The algorithm is
based on the description in Ch. 7 in Ref. 1.
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 67

68 | C H A P T E R
The Monte Carlo Solver

The Monte Carlo solver samples points randomly with uniform distribution inside a
box specified by the user. This solver is slow for finding accurate values of a minimizer
of the objective function; however, it is useful for gathering statistical data of design
variations by analyzing the range of values the objective function takes. As compared
to the other optimization algorithms implemented in COMSOL Multiphysics, it does
not get stuck in local minima. It always explores the whole search space specified by
the parameter bounds.

The generation of random numbers in the Monte Carlo solver is controlled by the value
of the Random seed. If the check box is cleared, the random number generator is
initialized by a number based on the current system time. In this case, two runs
produce in general different sets of parameters during operation. If a seed is given, the
parameter selection is random during the operation of the solver but produces the
same sequence of numbers from one run of the optimization solver to the next.

The Nelder-Mead Solver

The Nelder-Mead solver relies on a simplex of N+1 points, where N is the number of
control variables. The solver does not use derivatives of the objective function. In a
Nelder-Mead iteration, the solver uses reflections, expansions, and contractions to
improve the M worst point in the simplex, where M is the specified Maximum number

of model evaluations in each Parametric Sweep. The objective is evaluated at the M
reflected, expanded, or contracted points sequentially or in parallel depending on the
settings in for Distribute parametric sweep.

The implementation in COMSOL Multiphysics includes a restart procedure for the
case when the simplex shape degenerates (that is, the simplex collapses along a
direction). Moreover, the solver respects lower and upper bounds in the control
variable space by suitably restricting the length of reflections. The implementation
follows the discussion of the Nelder-Mead method in Ch. 8 in Ref. 1, employing the
parallelization strategy described in Ref. 2.

The BOBYQA Solver

The name BOBYQA is an acronym for Bound Optimization by Quadratic
Approximation. The basic idea of the method is to iteratively approximate the
objective function by a quadratic model which is valid in a region around the current
iterate, the so-called trust region. The quadratic model is updated by minimizing the
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Frobenius norm of the difference in the Hessians of the two consecutive quadratic
approximations. The implementation in COMSOL is based on Ref. 3. There are,
however, some modifications:

• The number of interpolation conditions is fixed to 2n+1 where n is the number of
control variables, since the updating of the quadratic approximation requires only
O(n2) operations in that case.

• Since the COMSOL implementation works in scaled control variables, the initial
trust region radius is fixed at 0.2 in relative terms.

• Subroutine RESCUE is not included due to the unavailability of test problems that
would invoke that procedure. Instead, an error message is given.

The COBYLA Solver

The name COBYLA is an acronym for Constrained Optimization by Linear
Approximation. It is an iterative method for derivative-free constrained optimization.
The method maintains and updates linear approximations to both the objective
function and to each constraint. The approximations are based on objective and
constraint values computed at the vertices of a well-formed simplex. Each iteration
solves a linear programming problem inside a trust region whose radius decreases as
the method progresses toward a constrained optimum. Further details can be found in
Ref. 4.

The SNOPT Solver

The SNOPT solver uses a gradient-based optimization technique to find optimal
solutions to a very general class of optimization problems. It requires gradients of both
the objective function and all constraints, which can either be computed externally
(analytically or semi-numerically) or internally, using numeric differentiation.

The underlying algorithm is an implementation of sequential quadratic programming
(SQP). This means that SNOPT solves a sequence of approximations to the original
problem, where the objective function is assumed to be a quadratic polynomial and
constraints are treated as linear. Steps in this sequence are referred to as major or outer
iterations. Each approximate quadratic programming (QP) problem is also solved
iteratively, requiring a number of minor or inner iterations. The QP solver returns a
step direction to the outer SQP algorithm, which decides on a step length and updates
the QP approximation before proceeding to the next major iteration.
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 69

70 | C H A P T E R
The overall structure of SNOPT as well as the default QP solver (Cholesky) assume
that optimal solutions are more likely to be found at corners of the feasible set, bound
by constraints, than in the interior of the feasible set. Therefore, the method performs
best on problems with many active constraints relative to the number of control
variable degrees of freedom, such that close to the optimum, most degrees of freedom
are bound by constraints and only a few are free. Such free degrees of freedom are
referred to as superbasic variables. When the number of such superbasic variables
becomes large, the full Cholesky factorization-based QP-solver is unsuitable. Instead
one of the iterative, conjugate gradients or quasi-Newton, methods should be
selected instead. For details, see Ref. 5 and Ref. 6.

C O M M A N D - L I N E O P T I O N S

SNOPT can optionally output diagnostic information to a file. The file contents and
format are described in Ref. 5. To turn this functionality on, set the following
command-line options when starting COMSOL Multiphysics:

-cs.snoptprintdir <dir> -cs.snoptprintfile <filename>

where <dir> is the desired output directory and <filename> is the file name. You can
also specify the same options in the applicable INI file as

-Dcs.snoptprintdir=<dir>
-Dcs.snoptprintfile=<filename>

See The COMSOL Commands in the COMSOL Multiphysics Reference Manual for
further information about setting options when starting COMSOL Multiphysics.

The MMA Solver

The MMA implementation in the Optimization Module is the globally convergent
version of the method of moving asymptotes, referred to as GCMMA in Ref. 7.

This is a three-level algorithm:

• Outer iteration k uses the current control variable estimate, xk, to evaluate objective
function, constraints and their gradients, which are used together with current
asymptote estimates, lk and uk, to construct an approximating subproblem. This

MMA Method of Moving Asymptotes, GCMMA, Globally Convergent
MMA, and Globally Convergent Method of Moving Asymptotes
authored by Krister Svanberg. Copyright © 2013 Krister Svanberg.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

subproblem, which is guaranteed to be convex and feasible, is passed to the inner
iterations.

• Each inner iteration m solves an approximating subproblem for its unique optimum
xkm and then evaluates the true objective function and constraints at this point. If
the approximating subproblem is found to be conservative compared to the true
function values, the inner iteration is terminated and the point is accepted as the
next outer estimate xk+1. Otherwise, the approximating subproblem is modified to
make it more conservative and then passed to the next inner iteration.

• The subproblem in each inner iteration is solved using a dual active set strategy. The
approximating subproblems are nonlinear and inequality-constrained, but have a
special structure which makes solving the primal problem for fixed dual variables
very fast. From the solution to the primal problem, a gradient and full Hessian can
be computed for the dual problem, which is solved using a modified Newton active
set algorithm.

Note that function (objective and constraints) gradients are computed strictly once in
each outer iteration, while function values must be computed once for each extra inner
iteration required. The innermost level sees only an analytical approximating form of
the subproblem where current function and gradient estimates appear in various
coefficients.

The special structure of the generated approximating subproblems influences the
global behavior of the algorithm. In contrast to the SNOPT and
Levenberg-Marquardt solvers, which rely on approximating second-order information
about the objective function, MMA is essentially a linear method. Its subproblems are
linear approximations to the original problem but with barrier-like rational function
contributions controlled by the moving asymptotes. No information about the
problem is retained between outer iterations except the current position of the
asymptotes.

In practice, this means that MMA does not show the quadratic convergence close to
the optimum associated with Newton-like methods. In fact, there are very simple
problems dominated by a quadratic term in the objective function for which MMA
converges very slowly or not at all. In particular, in order for MMA to work efficiently,
least-squares problems must be formulated using Least Squares Objective features in
an Optimization interface. These features trigger a reformulation of the problem to a
form which is more suitable for MMA.

Because of the linear approximation of the objective function, the first inner iteration
in each outer MMA iteration effectively steps into a corner of the feasible set, where it
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 71

72 | C H A P T E R
is completely bound by constraints and simple bounds. If this point is found to be
nonconservative, as is the case if the objective function is convex with an optimum in
the interior of the feasible set, the inner iteration generates a series of iterates gradually
moving away from the constraints until a conservative point is found. This behavior
favors points close to the constraints, in contrast to the line search used in SNOPT and
the trust region in Levenberg-Marquardt which favor points close to the previous
iterate. If the objective function has multiple local minima, the different methods can
therefore be expected to find different local solutions.

For further details, see Ref. 7, which you can find under <COMSOL_root>/doc/pdf/
Optimization_Module/gcmma.pdf, where <COMSOL_root> is the root folder of your
COMSOL installation.

The Levenberg-Marquardt Solver

The Levenberg-Marquardt solver works exclusively with objective functions of
least-squares type. Constraints are not supported. Because this method is designed
specifically for solving problems of least-squares type, it typically converges faster than
SNOPT for such problems. The objective function is

 (5-1)

where M is the number of series (measurement series), Jm is the number of
measurements, and Kjm is the number of points. The variable x is the space
coordinates, η are the parameters for which the cost function should be minimized and
um(x, p, η) solves a given PDE or ODE. The variable p is time if the PDE or ODE is
time-dependent but it can also represent any parameter when the forward problem is
stationary. The functions wjm are weight functions, and fjm represent the difference
between some model function gjm and some measured data gjmk; that is, fjm can be
written as

 (5-2)

The Levenberg-Marquardt algorithm as implemented in the Optimization Module
relies on two fundamental ideas: evaluation of an approximate Hessian and
regularization of the Hessian approximation. The special structure of least-squares
objective functions allows cheap evaluation of an approximate Hessian (matrix of
second derivatives), which can in principle be used directly in a Newton iteration.

V η() 1
2
--- wjmfjm

2 xjmk(um x pjm η, ,() η Cm,),,

k 1=

Kjm

j 1=

Jm

m 1=

M

=

fjm xjmk(um x pjm η, ,() η Cm,),, gjm xjmk(um x pjm η, ,() η Cm,) ĝjmk–,,=
 5 : T H E O P T I M I Z A T I O N S O L V E R S

However, least-squares problems are also often ill-conditioned, making the full
Newton process unstable. Therefore, the Hessian is modified using a regularization
parameter to guarantee its positive definiteness. This parameter is updated between
iterations, based on the success or failure of the previous step. For further details, see
Ref. 8

About Optimality Tolerances

The optimality tolerance is an important setting for all optimization solvers. It is
intended to represent the relative accuracy in the final scaled control variable values,
but because of the wide differences between different solver implementations, uniform
behavior cannot be guaranteed.

In particular, the optimality tolerance can play tricks on you if your objective function
or your optimization variables are badly scaled. Therefore, take care to specify correct
scales for your control variables and make sure that objective functions and constraints
are of order 1 — or at least not too far from — for reasonable values of the control
variables.

Tweaking the Optimality tolerance parameter might be necessary if you are confronted
with problems related to convergence. As an example, if the optimization solver
reports a converged solution after just a few iterations, try to restart it with a tighter
tolerance to make sure it has actually found the solution. If, on the contrary, it seems
to iterate forever — despite the value of the objective function having converged
(check the output on the Log page in the Progress window) — chances are that the
tolerance value is too strict.

O P T I M A L I T Y TO L E R A N C E F O R D E R I V A T I V E - F R E E M E T H O D S

For the derivative-free optimization methods, the optimization tolerance, with a
default value of 0.01, is used to determine whether a stationary point has been reached.
The Coordinate search, BOBYQA, COBYLA, and Nelder-Mead methods stop iterating as
soon as no improvement over the current best estimate can be found with steps in the
scaled control variables of relative size larger than or equal to the optimality tolerance.
For the Monte Carlo solver, the iteration stops when a new sampling point improves the
objective function but is within the optimality tolerance to the previous best point.

Compared to gradient-based optimization methods, which improve based upon the
gradient of the objective function with respect to control variables, derivative-free
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 73

74 | C H A P T E R
methods explore the region around the current point by function evaluations only and
use that information for determining convergence.

O P T I M A L I T Y TO L E R A N C E F O R S N O P T

For SNOPT, the optimality tolerance parameter (corresponding to the major
optimality tolerance in Ref. 5 and further explained together with parameter Opttol),
with a default of 1.0·10−3, is used by the linear and quadratic solvers to determine, on
the basis of the reduced-gradient size, whether optimality has been reached. More
precisely, it regulates the accuracy to which the final iterate in SNOPT is required to
fulfill the first-order conditions for optimality.

When SNOPT cannot achieve the requested tolerance level, the solver eventually
returns a solution together with a warning message as follows:

• The warning message “requested accuracy could not be achieved” refers to the case
when a feasible solution has been found, but the requested accuracy cannot be
achieved. Hence, an abnormal termination has occurred, but the solver is within
good reach of satisfying the Optimality tolerance. If this happens, check that the
Optimality tolerance is not too small.

• The warning message “the current point cannot be improved upon” can occur in
cases when the objective or constraint evaluation requires an iterative process which
is terminated as soon as a given tolerance is achieved, or when the function
evaluation contains some other source of noise. In such case the evaluation might
be accurate to rather few significant digits, and gradients are probably unreliable.

Theoretically the Optimality tolerance should not be set smaller than the square-root
of the function precision. The latter is the expected stability of the numerical model
rather than its accuracy as a model of physical reality. When using a direct linear
solver on a linear model, the function precision is generally of the same order as the

The returned point is not necessarily located close to a stationary point to
within the optimality tolerance. When problems are badly scaled or
functions are nonsmooth (for example, because of noise in the objective
evaluation), the algorithms might miss an opportunity for improvement
that requires an absolute step length larger than the optimality tolerance
times the specified scale. Also, the Monte Carlo solver does not explore
all directions systematically but rather determines convergence based on
one randomly sampled point only. In case of convergence problems, try
to reduce the optimality tolerance, or choose a different initial condition.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

inverse of the condition number. For a nonlinear or iterative solver, you can expect
the precision to be of the same order as the solver tolerances, which is then also the
numerical precision in the evaluation of the objective and constraints.

Furthermore, even when you set the Optimality tolerance based on the function
precision, the same exit condition might occur. At present, the only remedy is to
increase the accuracy of the function calculation, using all available means.

O P T I M A L I T Y TO L E R A N C E F O R M M A

The MMA solver terminates when the relative change in all scaled control variables is
less than the specified optimality tolerance parameter, with a default of 1e-3. The
relative change is defined as the change in the variable since the last outer iteration
divided by the range of the variable. The range of the variable is the upper bound
minus the lower bound. For unbounded variables, the MMA solver internally estimates
bounds based on the previous iteration points.

O P T I M A L I T Y TO L E R A N C E F O R L E V E N B E R G - M A R Q U A R D T

Let tol be the specified optimality tolerance. Define told = γd·tol, where γd is the defect
reduction tolerance factor, and tolx = γx·tol, where γx is the control variable tolerance
factor. Moreover, let the defect vector be defined by

where ωl and fl are defined in Equation 5-1 and Equation 5-2, and L is the total
number of the measurement evaluations. Then, when the Levenberg-Marquardt solver
is used, the following conditions are used to determine when optimality has been
reached:

• Terminate when the defect has been reduced enough; that is,

The final SNOPT iterate is not guaranteed to be a constrained local
minimizer despite a successful run. For example, the constraint
qualification might not hold at the final iterate. Similarly, the final iterate
might satisfy the first-order but not the second-order conditions for
optimality. Verifying second-order conditions requires second derivatives.
See section 2.11 in Ref. 6 and p. 76 of the SNOPT User’s Guide (Ref. 5)
for further details.

dl()l 1=
L ωlfl=
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 75

76 | C H A P T E R
where d0 is the initial defect vector, and dj is the current defect vector.

• Terminate when the relative increment of the scaled control variable x is below the
control variable tolerance; that is,

• Terminate when the cosine between the defect and the Jacobian columns is below
the optimality tolerance; that is

where dj is the current defect vector and J is the Jacobian.

The default values of the optimality tolerance, defect reduction tolerance factor, and
control variable tolerance factor are 1.0·10−3, 1, and 1, respectively. The termination
condition defined as the first condition above is not used by default and should be
enabled in order to be included.

About Constraint Handling

An important difference between the available optimization solvers is the types of
constraints they can handle, and how they do it. Constraints specified in the
Optimization interface and Optimization study step can be divided into three categories:

• Simple bounds are upper and lower bounds prescribed directly on the individual
control variables, for example in the Optimization study step.

• Pointwise constraints specify limits on an expression to be enforced at every node
point in some region in space. In order to avoid excessively expensive gradient
computations, such constraints are required to only depend on control variables
directly and not indirectly via PDE solution variables. The constraint expression can,
however, be a nonlinear expression in the control variables.

• General constraints specify limits on global scalar expressions, typically evaluated as
integrals over some domain. This generates a single constraint, as compared to one
for each mesh node for a pointwise constraint. Therefore, the solvers can afford to
compute a complete gradient also when the constraint is a, possible nonlinear,
function of the PDE solution.

dj 2
d0 2

-------------- told≤

xj xj 1–– 2 tolx≤

max
JT dj⋅()i

J : i,() 2 dj 2

tol≤
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Note that all constraints are treated as inequalities. An equality constraint can be
implemented by specifying the same upper an lower bound for an expression.
However, not all constraint handling methods are able to deal with the reduction in
control variable space dimension which this implies. Therefore, when possible, it is
better to perform a manual change of variables, eliminating a control variable
dimension.

C O N S T R A I N T H A N D L I N G F O R D E R I V A T I V E - F R E E M E T H O D S

The derivative-free methods Coordinate search, Monte Carlo, Nelder-Mead, and COBYLA
can internally handle simple bounds and general constraints on global scalar
expressions. In practice this means that in addition to simple bounds and constraints
defined in the Optimization study step, Integral Inequality Constraint nodes and Global

Inequality Constraint nodes in Optimization interfaces are accounted for.

The constraint handling algorithm used in Coordinate search, Monte Carlo, and
Nelder-Mead is in principle based on filtering out candidate points in the control
variable space which fall outside the feasible region, and to some extent adjust search
directions accordingly. The procedure is not guaranteed to find a constrained local
minimum fulfilling the KKT conditions.

COBYLA, in contrast, approximates objective function and constraints in a uniform way.
Therefore, provided all functions are sufficiently smooth, it will in general find an
approximate constrained local minimum. The returned solution may, however, lie
slightly outside the feasible set. This can happen, in particular, if the constraints are
nonlinear.

The Augmented Lagrangian Method
BOBYQA handles simple bounds internally, but general constraints only via an external
iterative procedure based on repeated minimization of an augmented Lagrangian. This
augmented Lagrangian method can also be used as an alternative to the internal
penalty methods in the Coordinate search and Nelder-Mead solvers, but is not selected
by default.

The basic principle behind the augmented Lagrangian method is to include the
Lagrange multipliers of general constraints as control variables in an augmented
problem. In the first iteration, the Lagrange multipliers are set to zero and a modified
objective function including a quadratic penalty for constraint violation is minimized.
This gives a solution which is in general outside the feasible set, that is, it violates the
constraints. In each subsequent iteration, the Lagrange multipliers — as well as a
number of penalty parameters — are updated based on the current constraint
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 77

78 | C H A P T E R
violation, and a new subproblem is solved. The sequence of subproblems, which
converges toward the feasible set from the outside, is terminated once a specified
tolerance for constrain violation is reached.

The augmented Lagrangian method as such is very general and quite robust, but to be
efficient, it requires balancing the effort spent on each subproblem against the
improvement in each outer iteration. It also requires selection of an initial penalty
factor. A higher penalty factor generally leads to faster convergence of the augmented
Lagrangian algorithm, but subproblems become more ill-conditioned and there is a
threshold beyond which the method may become unstable; conversely, a lower penalty
factor makes the algorithm more robust but required more iterations.

In the Settings window for the Optimization study step, you can choose to use an
Automatic or Manual definition of the initial Penalty parameter ρ. The automatic setting
is default and computes an initial value based on the objective and constraint function
values at the initial point. You can also limit the Maximum number of augmented

iterations and select a strategy for updating δ (tolerance for the subsolver). The options
Dynamic I and Dynamic II both tighten the subsolver tolerance from iteration to
iteration, the latter providing some additional control. There is also a Manual option.
Finally, specify the Constraint tolerance, that is, the maximum allowable constraint
violation in the final solution.

Since the augmented Lagrangian method computes Lagrange multipliers for each
constraint explicitly, these are also available for postprocessing. Their values represent
the sensitivity (derivative) of the objective function with respect to changes in a
constraint bound. In the Insert Expression and Add Expression menus, available for most
postprocessing features, you will find the Lagrange multipliers under
Model>Solver>Lagrange multipliers.

C O N S T R A I N T H A N D L I N G F O R G R A D I E N T - B A S E D M E T H O D S

The SNOPT algorithm handles constraints of all types efficiently. Constraint handling in
this SQP method is based on linearizing the constraint in the outer, major, iteration,
and using an active-set QP solver in the inner loop to decide which constraints are
active and bounding the solution at the current iterate. This process requires accurate
evaluation of the gradient of the constraints, also known as the constraint Jacobian.

The MMA algorithm accepts constraints of the same general type as SNOPT, requiring
an accurate constraint Jacobian, but handles them differently. In each outer, major,
iteration, linear and linearized constraints are combined with a linearized objective
function into a convex smooth approximation whose unique optimum is always
feasible unless the feasible set is empty. The globally convergent version of MMA
 5 : T H E O P T I M I Z A T I O N S O L V E R S

implemented in the Optimization module is conservative in a way which ensures that
each major iterate is feasible not only with respect to the linearized constraints, but
with respect to the fully nonlinear constraints.

The Levenberg-Marquardt solver does not support any type of constraints or bounds.

References for the Optimization Solvers

1. A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to Derivative-Free
Optimization, MPS-SIAM Series on Optimization, SIAM, 2009.

2. D. Lee, and M. Wiswall, “A Parallel Implementation of the Simplex Function
Minimization Routine,” Computational Economics, vol. 30, pp. 171–187, 2007.

3. Mike J.D. Powell: The BOBYQA algorithm for bound constraint optimization
without derivatives, Report DAMTP 2009/NA06, University of Cambridge, UK,
2009.

4. Mike J.D. Powell: “A direct search optimization method that models the objective
and constraint functions by linear interpolation,” Proc. Sixth Workshop on
Optimization and Numerical Analysis, vol. 275, pp. 51–67, Kluwer Academic
Publishers, Dordrecht, NL, 1994.

5. P.E. Gill, W. Murray, and M.A. Saunders, User’s Guide for SNOPT Version 7:
Software for Large-Scale Nonlinear Programming, Systems Optimization
Laboratory (SOL), Stanford University, 2006.

6. P.E. Gill, W. Murray, and M.A. Saunders, “SNOPT: An SQP Algorithm for
Large-Scale Constrained Optimization,” SIAM Review, vol. 47, no. 1, pp. 99–131,
2005.

7. Krister Svanberg, MMA and GCMMA – Fortran versions March 2013, KTH,
Royal Institute of Technology, Stockholm, 2013.

8. K. Madsen, H.B. Nielsen, and O. Tingleff, Methods for Non-Linear Least Squares
Problems, 2nd ed., 2004.

In the MMA implementation, simple bounds are much less expensive
memory-wise than global or pointwise constraints. In particular for
control variable fields, simple control variable bounds (added by
right-clicking on the Control Variable Field feature) are more efficient than
enforcing the same bounds using a Pointwise Inequality Constraint feature.
A B O U T T H E O P T I M I Z A T I O N S O L V E R S | 79

80 | C H A P T E R
9. R. Andreani, E.G. Birgin, J.M. Martinez, and M.L. Schuverdt, “On Augmented
Lagrangian Methods with general lower-level constraints.,” SIAM Journal on
Optimization, 18, pp. 1286–1309, 2007.

Note that Ref. 7 is available in folder as <COMSOL_root>/doc/pdf/
Optimization_Module/gcmma.pdf where <COMSOL_root> is the root
folder of your COMSOL installation.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Th e Op t im i z a t i o n S o l v e r

The Optimization Solver node () contains settings for selecting a gradient-based
optimization method and specifying related solver properties.

G E N E R A L

The Optimality tolerance, Maximum number of model evaluations and Method settings are
fundamental and can be controlled from an Optimization study step.

Defined by Study Step
Choose to let an Optimization study step control the fundamental optimization method
settings (the default). For User Defined specify the settings directly in this node.

Optimality Tolerance
Specify the Optimality tolerance, which has default value 1e-3. See About
Gradient-Based Solvers. Note that this can be too strict, in particular if the forward
multiphysics model is not solved accurately enough. See About Optimality Tolerances.

Maximum Number of Model Evaluations
Specify the Maximum number of model evaluations, which defaults to 1000. This
number limits the number of times the objective function is evaluated, which in most
cases is related to the number of times the multiphysics model is simulated for different
values of the optimization control variable. Note, however, that it is not equal to the
number of iterations taken by the optimizer because each iteration can invoke more
than a single objective function evaluation. Furthermore, by setting this parameter to
a smaller value and calling the optimization solver repeatedly, you can study the

This section describes Solver features available with the Optimization
Module. See also Studies and Solvers in the COMSOL Multiphysics
Reference Manual for more information about solvers in general.

For a more extensive introduction to the mathematics implemented by
this interface, see the Optimization Theory.

For a more extensive treatment of the gradient-based solvers available in
this node, see About Gradient-Based Solvers.
T H E O P T I M I Z A T I O N S O L V E R | 81

82 | C H A P T E R
convergence rate and stop when further iterations with the optimization solver no
longer have any significant impact on the value of the objective function.

O P T I M I Z A T I O N S O L V E R

This section contains settings related to the numerical methods that the solvers use.

Method
The three available choices are SNOPT (the default), MMA and Levenberg-Marquardt. The
Levenberg-Marquardt method can only be used for problems of least squares type
without constraints or bounds on the control variables, while SNOPT and MMA can
solve any type of optimization problem. See About Gradient-Based Solvers.

Solution
This setting controls the behavior when the solver node under the Optimization solver
node returns a solution containing more than one solution vector (for example, a
frequency response). The SNOPT and Levenberg-Marquardt solvers only support the
Auto setting, meaning in practice the sum over frequencies and parameters or the last
time step. For MMA, the options are as for the derivative-free solvers: Auto, Use first,
Use last, Sum of objectives, Minimum of objectives, and Maximum of objectives. The last
two settings make the MMA algorithms handle maximin and minimax problems
efficiently.

Objective Contributions
When SNOPT or MMA is used, the expression used as objective function can be
controlled through this setting. The default is All, in which case the sum of all objective
contributions not deactivated in an Optimization study step are used as objective
function.

By selecting Manual, you can enter an expression that is used as the objective function
in the Objective expression field. The expression all_obj_contrib represents the sum
of all objective contributions not deactivated in a controlling Optimization study step.
Hence, this expressions leads to the same optimization problem as selecting All. Note,
however, that MMA treats least-squares objective contributions in a more efficient way
when All is selected.

When optimizing over a Time Dependent study step using a gradient-based
solver, the objective and its gradient are always evaluated only for the last
time step. MMA still presents multiple options, but these are effectively
ignored since there is only one objective value that can be used.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

When you use Levenberg-Marquardt, the objective function is always the sum of all
active least-squares objective contributions present in the model.

Gradient Method
SNOPT, MMA and Levenberg-Marquardt are gradient-based methods. The gradient
can be computed according to the choices Automatic, analytic (default), Forward,
Adjoint, Forward Numeric and Numeric. The latter is not supported by MMA. When
Automatic, analytic is chosen, either the adjoint method or the forward method is used
to compute the gradient analytically. The adjoint method is used when the number of
optimization degrees of freedom is larger than the number of objective functions plus
the number of global and integral constraints plus two, otherwise the forward method
is used.

It is also possible to explicitly choose to use either the adjoint or forward method using
the corresponding alternatives from the menu. With the option Forward Numeric a
semi-analytic approach is available where the gradient of the PDE residual with respect
to control variables is computed by numerical perturbation and then substituted into
the forward analytic method. When Numeric is chosen, finite differences are used to
compute the gradient numerically.

Gradient Method Parameters for Time-Dependent Problems
For time-dependent problems, all analytic gradient methods have options to adjust the
default integration tolerances for the sensitivity solver.

For the Forward and Forward Numeric gradient methods a Forward sensitivity rtol factor
can be specified. This factor multiplied by the forward problem relative tolerance to
calculate the relative tolerance for the sensitivity solver. You can also specify a Forward

sensitivity scaled atol, which is a global absolute tolerance that is scaled with the initial
conditions. The absolute tolerance for the sensitivity solution is updated if scaled
absolute tolerances are updated for the forward problem.

When using the Adjoint gradient method, an Adjoint rtol factor and Adjoint scaled atol

factors can be given, which control the accuracy of the adjoint solution, similarly to the
corresponding Forward sensitivity factors. In addition an Adjoint quadrature rtol factor
and an Adjoint quadrature atol can be given. These settings control the relative and
absolute accuracy of time integrals (or quadratures) used to calculate objective
function gradients. Note that the absolute tolerance is unscaled.

When the number of control variables is large, calculating the gradient
numerically or with forward sensitivity can be time consuming.
T H E O P T I M I Z A T I O N S O L V E R | 83

84 | C H A P T E R
The Adjoint gradient method uses checkpointing to reduce the amount of data which
needs to be stored from the forward to the backward (adjoint) solution stage.
Optionally, set the number of Adjoint checkpointing steps to control the number of
checkpoints stored.

Numeric Gradient Method Parameters
When the Numeric gradient method is selected, you can further specify a Difference

interval (default 1.5E-8). This is the relative magnitude of the numerical perturbations
to use for first-order gradient approximation in SNOPT and for all numeric
differentiation in the Levenberg-Marquardt solver. The former automatically chooses
between first- and second-order gradient approximation, using the specified relative
Central difference interval (default 6.0E-6) for central differencing.

For the Levenberg-Marquardt method you can choose the Gradient approximation order
explicitly. Selecting First gives a less accurate gradient, while selecting Second gives a
better approximation of the gradient. However, Second requires twice as many
evaluations of the objective function for each gradient compared to First. In many
applications, the increased accuracy obtained by choosing Second is not worth this
extra cost.

Store Functional Sensitivity
The sensitivity of the objective function is by default stored in the solution object such
that it can be postprocessed after the solver has completed. To save memory by
discarding this information, change Store functional sensitivity to Off. Instead choosing
On for results while solving, sensitivity information is also computed continuously
during solution and made available for probing and plotting while solving. This is the
most expensive option.

SNOPT-Specific Settings
When using SNOPT, you have the possibility to specify which solver to use for solving
linear systems containing a reduced Hessian approximation, which is in principle a full
matrix. Solving a system involving this matrix is necessary in order to take a single step
in the active-set algorithm used for solving the QP subproblems that are formed during
each major SQP iteration. Select one of the following strategies from the QP Solver list:

• Cholesky — This option computes the full Cholesky factor of the reduced Hessian
at the start of each major iteration. As the QP iterations (minor iterates) proceed,
the dimension of the Cholesky factor changes with the number of superbasic
variables and the factor is updated accordingly. If the number of superbasic variables
increases beyond a preset limit (1000), the reduced Hessian cannot be stored and
the solver switches to conjugate gradient.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

• Conjugate gradient — This method uses the conjugate-gradient method to solve all
systems involving the reduced Hessian, which is only accessed implicitly in the form
of a black-box linear operator on the superbasic variables. Since no data is stored
between inner iterations, the method is most appropriate when the number of
superbasics is large but each QP subproblem requires relatively few minor iterations.
Selecting Conjugate gradient also triggers a limited-memory procedure which stores
only a fixed number of BFGS update vectors together with a diagonal Hessian
approximation between major iterations.

• Quasi-Newton — This method uses a quasi-Newton strategy to update an
approximation of the Cholesky factor of the reduced Hessian as the iterations
proceed. It has the same memory requirement as the Cholesky option, but does not
recompute the complete Cholesky factor at the beginning of each major iteration.
It can be an appropriate choice when the number of superbasics is large but the
nonlinear problem is well-scaled and well-behaved such that relatively few major
iterations are needed for the approximate Hessian to stabilize.

In the Use step condition field you can enter an expression that tells the optimization
solver to reduce the step length in the current line search used by SNOPT to generate
the next iterate.

The Quasi-Newton option for solving reduced Hessian systems must not
be confused with the fact that the major SNOPT iterations always use a
quasi-Newton BFGS strategy to approximate the full Hessian — also
when using Cholesky factorization or conjugate gradients to solve the
reduced systems.

The constraint Jacobian matrix is always assumed to be sparse such that
sparse LU factors of the basic part of this matrix can be stored and
updated when the set of superbasic variables changes. These factors are
used implicitly to define the null space of the active constraints and appear
in the implicit representation of the reduced gradient and Hessian.

• See The SNOPT Solver.

• See page 80 of the SNOPT User’s Guide (Ref. 5 under About the
Optimization Solvers).
T H E O P T I M I Z A T I O N S O L V E R | 85

86 | C H A P T E R
The solver uses the condition to restrain the iterates from entering into areas in the
control-variable space where the PDE problem is not well defined. A typical example
is when a mesh element becomes inverted during geometry optimization using a
Moving Mesh interface. A step limit condition that identifies this situation might be of
the form minqual1_ale-0.05, where 0.05 is a threshold value for the mesh quality.
This step limit condition has a direct analog in the stop condition for the
time-dependent and parametric solvers.

When the step limit condition is violated, the solver reduces the line-search step until
an acceptable point is found. However, because no Jacobian is computed for the step
limit condition, there is no mechanism to prevent the solver from immediately
attempting another step in the same infeasible direction. As a result, the solver might
get stuck at the same point without converging until it reaches the maximum number
of model evaluations or you stop the iteration manually.

You can specify a linesearch tolerance as a value between 0 and 1 in the Linesearch

tolerance field (default value: 0.9). This controls the accuracy with which a step length
will be located along the direction of search in each iteration. At the start of each
linesearch, a target directional derivative for the merit function is identified. This
parameter determines the accuracy to which this target value is approximated:

• The default value of 0.9 requests just moderate accuracy in the linesearch.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be
appropriate; try 0.1, 0.01, or 0.001. The number of major iterations might
decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. If all gradients are known, try a tolerance of 0.99. (The number of
major iterations might increase, but the total number of function evaluations may
decrease enough to compensate.)

• If not all gradients are known, a moderately accurate search remains appropriate.

Each search will require only 1–5 function values (typically), but many function calls
are then needed to estimate missing gradients for the next iteration.

Only use the step limit condition as a last resort to keep the optimization
solver in a feasible region. Instead, if possible, use pointwise constraints
on the optimization variables to enforce the condition.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

From the Linesearch strategy list, choose Derivative (the default) or Nonderivative. At
each major iteration a linesearch is used to improve the merit function. A derivative
linesearch uses safeguarded cubic interpolation and requires both function and
gradient values to compute estimates of the step. If some analytic derivatives are not
provided, or a nonderivative linesearch is specified, SNOPT uses a linesearch based on
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is
recommended that you use the default derivative linesearch if the functions and
derivatives can be computed at approximately the same cost. If the gradients are very
expensive relative to the functions, a nonderivative linesearch may give a significant
decrease in computation time.

MMA-Specific Settings
By default, the MMA solver continues to iterate until the relative change in any control
variable is less than the optimality tolerance. If the Maximum outer iterations option is
enabled, the solver stops either on the tolerance criterion or when the number of
iterations is more than the maximum specified.

The Optimization Module’s globally convergent version of the MMA solver has an
inner loop which ensures that each new outer iteration point is feasible and improves
on the objective function value. By default, the Maximum number of inner iterations per

outer iteration is 10. When the maximum number of inner iterations is reached, the
solver continues with the next outer iteration.

The Internal tolerance factor is multiplied by the optimality tolerance to provide an
internal tolerance number that is used in the MMA algorithm to determine if the
approximations done in the inner loop are feasible and improve on the objective
function value. The default is 0.1. Decrease the factor to get stricter tolerances and a
more conservative solver behavior.

The MMA algorithm penalizes violations of the constraints by a number that is
calculated as the specified Constraint penalty factor times 1e-4 divided by the
optimality tolerance. Increasing this factor for a given optimality tolerance forces the
solver to better respect constraints, while relatively decreasing the influence of the
objective function.

Levenberg-Marquardt-Specific Settings
The Levenberg-Marquardt method controls the step length and direction through a
positive scalar regularization parameter. A value close to zero means that the
optimization solver takes a step close to a full Gauss-Newton step. A large value means
T H E O P T I M I Z A T I O N S O L V E R | 87

88 | C H A P T E R
that it takes a small step close to the steepest-descent direction. See The
Levenberg-Marquardt Solver.

The Levenberg-Marquardt method controls this penalty factor internally and tries to
have as small penalty as possible in order to approach second-order Newton
convergence. Therefore, a small value of the Initial damping factor means that the solver
tries to be aggressive initially, while a large value means that the solver is more cautious.

R E S U L T S W H I L E S O L V I N G

Select the Plot check box to plot the results while solving the model. Select a Plot group
from the list and any applicable Probes.

C O N S T A N T S

In this section you can define constants that can be used as temporary constants in the
solver. You can use the constants in the model or to define values for internal solver
parameters. Click the Add () button to add a constant and then define its name in
the Constant name column and its value (a numerical value or parameter expression) in
the Constant value column. By default, any defined parameters are first added as the
constant names, but you can change the names to define other constants. Click Delete
() to remove the selected constant from the list.

L O G

The Log displays the information about the progress of the solver.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

Ad v an c ed S o l v e r P r op e r t i e s

This section provides detailed explanations of some of the properties that control the
behavior of the SNOPT optimization solver in the Optimization Module.

When solving multiphysics optimization problems in the COMSOL Desktop using the
Optimization interface, some of the properties listed in this section can be controlled
while others always take their default values. Modifying the value of those properties
requires that the value is changed using LiveLink™ for MATLAB® or by running a
compiled COMSOL API history file.

In this section:

• SNOPT Solver Properties

• MMA Solver Properties

SNOPT Solver Properties

F E A S T O L

Feasibility tolerance
Type: numeric
Default: 1.0·10−6

The solver tries to ensure that all bound and linear constraints are eventually satisfied
to within the feasibility tolerance t. (Feasibility with respect to nonlinear constraints is
instead judged by the major feasibility tolerance, majfeastol.)

If the bounds and linear constraints cannot be satisfied to within t, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite
small, it might be appropriate to raise t by a factor of 10 or 100. Otherwise you should
suspect some error in the data.

In the following sections, ε represents the machine precision (available as
eps in MATLAB) and is approximately equal to 2.2·10−16.

For a list of all available optimization solver properties see Optimization
in the COMSOL Multiphysics Programming Reference Manual.
A D V A N C E D S O L V E R P R O P E R T I E S | 89

90 | C H A P T E R
Nonlinear functions are evaluated only at points that satisfy the bound and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem. For example, if

it is essential to place lower bounds on both variables. If t = 10−6, the bounds

x1 ≥ 10−5 and x2 ≥ 10−4

might be appropriate. (The log singularity is more serious. In general, keep x as far
away from singularities as possible.)

In practice, the solver uses t as a feasibility tolerance for satisfying the bound and linear
constraints in each QP subproblem. If the sum of indefeasibility cannot be reduced to
zero, the QP subproblem is declared infeasible. The solver is then in the Elastic mode
thereafter (with only the linearized nonlinear constraints defined to be elastic).

F U N C P R E C

Function precision
Type: numeric
Default: ε0.8 ≈ 3.8·10−11

The relative function precision is intended to be a measure of the relative accuracy with
which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be
correct, the appropriate value for the function precision would be 10−6. (Ideally the
functions should have a magnitude of order 1. If all functions are substantially less than
1 in magnitude, the function precision should be the absolute precision. For example,
if f(x) = 1.23456789·10−4 at some point and if the first 6 significant digits are known
to be correct, the appropriate precision would be 10−10.)

The default value is appropriate for simple analytic functions.

In some cases the function values are the result of extensive computations, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate function precision might lead to savings by
allowing the line search procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

f x() x1 xlog 2+=
 5 : T H E O P T I M I Z A T I O N S O L V E R S

H E S S U P D

Hessian updates
Type: integer
Default: 10

When the number of nonlinear variables is large (more than 75) or when the QP
problem solver is set to conjugate-gradient, a limited-memory procedure stores a fixed
number of BFGS update vectors and a diagonal Hessian approximation. In this case, if
hessupd BFGS updates have already been carried out, all but the diagonal elements of
the accumulated updates are discarded and the updating process starts again. Broadly
speaking, the more updates stored, the better the quality of the approximate Hessian.
However, the more vectors stored, the greater the cost of each QP iteration. The
default value is likely to give a robust algorithm without significant expense, but faster
convergence can sometimes be obtained with significantly fewer updates (for example,
hessupd = 5).

M A J F E A S T O L

Major feasibility tolerance
Type: numeric
Default: 1.0·10−6

This parameter specifies how accurately the nonlinear constraints should be satisfied.
The default value of 1.0·10−6 is appropriate when the linear and nonlinear constraints
contain data to roughly that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy

where violi is the violation of the ith nonlinear constraint. If some of the problem
functions are known to be of low accuracy, a larger major feasibility tolerance might be
appropriate.

O P T T O L

Optimality tolerance
Type: numeric
Default: 1.0·10−3

This is the major optimality tolerance and specifies the final accuracy of the dual
variables. On successful termination, the solver computes a solution (x, s, π) such that

rowerr max
i

violi x 1+()⁄ majfeastol≤=
A D V A N C E D S O L V E R P R O P E R T I E S | 91

92 | C H A P T E R
where Compj is an estimate of the complementarity slackness for variable j. The values
Compj are computed from the final QP solution using the reduced gradients
dj = gj − πTaj, as above. Hence you have

Q P S O L V E R

QP problem solver
Type: string 'cholesky', 'cg', or 'qn'
Default: 'cholesky'

Specifies the active-set algorithm used to solve the QP problem, or in the nonlinear
case, the QP subproblem.

'cholesky' holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the
QP iterations proceed, the dimension of R changes with the number of superbasic
variables.

'qn' solves the QP subproblem using a quasi-Newton method. In this case, R is the
factor of a quasi-Newton approximate reduced Hessian.

'cg' uses the conjugate-gradient method to solve all systems involving the reduced
Hessian. No storage needs to be allocated for a Cholesky factor.

The Cholesky QP solver is the most robust but might require a significant amount of
computation and memory if the number of superbasics is large.

The quasi-Newton QP solver does not require the computation of the exact R at the
start of each QP and might be appropriate when the number of superbasics is large but
each QP subproblem requires relatively few minor iterations.

The conjugate-gradient QP solver is appropriate for problems with large numbers of
degrees of freedom (many superbasic variables). The Hessian memory option
'hessmem' is defaulted to 'limited' when this solver is used.

maxComp max
j

Compj π⁄ opttol≤=

Compj

dj min xj lj– 1{ , } if dj 0≥

dj– min uj xj– 1{ , } if dj 0<

=

See the SNOPT User’s Guide for further details.
 5 : T H E O P T I M I Z A T I O N S O L V E R S

MMA Solver Properties

In addition to the settings available in the COMSOL Desktop, MMA when called
through the API allows explicit tuning of the approximating subproblems solved in
each inner iteration. In particular, update rules for the moving asymptotes can be
modified. It is also possible to switch off the automatic transformation performed on
least-squares, minimax and maximin problems, as well as disable the globally
convergent extension of the MMA method.

For a list of all available options see Optimization in the COMSOL Multiphysics
Programming Reference Manual.
A D V A N C E D S O L V E R P R O P E R T I E S | 93

94 | C H A P T E R
 5 : T H E O P T I M I Z A T I O N S O L V E R S

 6
G l o s s a r y
This Glossary of Terms contains modeling terms in an optimization and sensitivity
context. For general mathematical and finite element terms, and geometry and
CAD terms specific to the COMSOL Multiphysics software and documentation see
the glossary in the COMSOL Multiphysics Reference Manual. For references to
more information about a term, see the index.
 95

96 | C H A P T E R
G l o s s a r y o f T e rm s
adjoint method The adjoint method for sensitivity analysis is based on exploiting the
adjoint identity given an objective functional to derive and solve a set of adjoint
equations. The adjoint solution is then used to compute the functional sensitivity with
respect to sensitivity parameters.

BFGS (Broyden–Fletcher–Goldfarb–Shanno) A specific family of optimization
algorithms where updates are made to approximate the inverse of the Hessian matrix.

bounds An inequality constraint setting lower and upper bounds directly on each
control variable degree of freedom.

contributions to objective function The objective function is a scalar function of the
control variables. In the optimization interface, the objective is formed by the
summation of contributions from global contributions, probe contributions, and
integral contributions to the objective functions.

control variable The control variables parameterize the optimization or sensitivity
problem. The objective function and constraint are expressed in the terms of the
control variables. In the mathematical and engineering literature, the control variables
are sometimes also referred to as optimization variables, design variables, or decision
variable.

design constraint A constraint which can be evaluated before any multiphysics
simulation has been performed. A design constrain can be expressed explicitly in the
control variables, without involving the multiphysics problem solution.

design problem An optimization problem where the objective function quantifies the
performance in a multiphysics model. For such problems, the control variable is
sometimes referred to as the design variables. Problems of this kind arise in, for
example, structural optimization, antenna design, and process optimization.

feasible set The control variables can be constrained to a feasible set. The feasible set
is typically expressed by a set of constraints acting on the control variables. The feasible
set can also be implicitly limited by the existence of a solution to a multiphysics
problem.
 6 : G L O S S A R Y

forward method The forward method for sensitivity analysis is based on solving the
equations obtained by applying the chain rule of differentiation, with respect to
sensitivity parameters, to the original DAEs.

global inequality constraint A constraint that sets upper and lower bounds on a general
global expression, possibly involving both the control variables and the PDE solution.

integral inequality constraint A constraint that sets upper and lower bounds on an
integral of an expression, possibly involving the PDE solution and control variables,
over a set of geometric entities of the same dimension

objective function A single-valued function of the PDE solution and control variables
representing the performance of a multiphysics model or how well a parameterized
model matches measured data. Alternative terminology used for the objective function
is cost function, goal function, or quantity of interest.

optimization problem The optimization problem is to find values of the control
variables, belonging to a given feasible set, such that the objective function attains its
minimum (or maximum) value.

parameter estimation problem An inverse problem where the objective function
defines how well a parameterized model matches measured data. Replacing the
parameters with control variables leads to an optimization problem, which can arise in,
for example, geophysical imaging, nondestructive testing, and biomedical imaging.

PDE-constrained optimization problem An optimization problem where the feasible
set is limited by the condition that a given multiphysics model, represented as a PDE,
has a unique solution.

PDE solution The solution to a multiphysics problem in response to specific values of
the control variables.

performance constraint A constraint involving the multiphysics simulation result.
Performance constraints in general have the same structure as the objective function,
and are as expensive to evaluate.

pointwise inequality constraint An inequality constraint in a PDE-constrained
optimization problem involving an explicit expression in terms of the control variables.
The constraint sets lower and upper bounds on the expression for node points in a set
of geometric entities of the same dimension.
G L O S S A R Y O F TE R M S | 97

98 | C H A P T E R
sensitivity problem The sensitivity problem determines the gradient of an objective
function with respect to the control variables.

solution variables Designates variables that are not control variables, for example, field
variables and global variables.

superbasic variable A variable is superbasic if it is not currently at one of its bounds.
 6 : G L O S S A R Y

I n d e x

A adjoint sensitivity 24, 27

Application Libraries window 11

application library examples

sensitivity 49

B BFGS 85

BOBYQA solver 66, 68

bounds 18

control variable 18

C Cholesky 70

Cholesky solver 84

classical optimization 15

COBYLA solver 66, 69

conjugate gradients 70

conjugate-gradient solver 85, 92

constraint Jacobian 78

constraints 14

bounds 18

design 17

explicit 17

expression 41

implicit 17

integral inequality 18, 40

performance 17

point sum inequality 40

pointwise inequality 18, 41

contribution

global 16, 26, 96

integral 17, 26, 96

probe 16, 96

control variable 15, 35, 96

control variable bounds 18

control variable bounds (node) 43

control variable field (node) 42, 50

control variables 14, 45

convergence 73

coordinate column (node) 39

coordinate search solver 66–67

cost function 97

D decision variables 96

derivative-free optimization 55

design constraints 17

design problems 8

design variables 96

direct linear solver 74

displaying

sensitivity analysis 29

documentation 10

E emailing COMSOL 12

equality constraints 42

evaluations, model 81

explicit constraints 17

expression, objective 40, 43

F feasibility tolerance 89

feasible set 14–15

forward methods 25

forward sensitivity 23–24, 27

function

cost 97

goal 97

function precision 74, 90

functions

objective 9, 14–15

G GCMMA solver 70

general constraints 76

geometrical sensitivity 30

global

contribution 16, 26, 96

control variable (node) 45

inequality constraint (node) 45

objective (node) 43
I N D E X | 99

100 | I N D E X
global control variables (node) 51

global inequality constraint 18

global least-squares objective (node) 43

global method 66

global objective (node) 51

global optimization 35

goal function 97

gradient-based optimization 82–83

gradient-free optimization 55

H Hessian

reduced 84, 92

updates 91

I ignored column (node) 39

implicit constraints 17

incomplete Jacobian, in sensitivity 22

inequality constraints

global 45

integral 40

point sum 40

pointwise 41

inner iteration 69

integral

contribution 17, 26

inequality constraints 18

integral contribution 96

integral inequality constraints (node) 40

integral objective (node) 39, 49

internet resources 10

inverse problem 97

inverse problems 8

iterative solver 75

K knowledge base, COMSOL 12

L least-squares objective (node) 37

Levenberg-Marquardt method 83

Levenberg-Marquardt solver 67, 72

linesearch strategy 87

linesearch tolerance 86

LiveLink for MATLAB 89

load from excel file (button) 38, 46

local method 66

lower bound 41

M major

feasibility tolerance 89, 91

optimality tolerance 74, 91

major iteration 69

mathematics branch 34

minimization or maximization 57

minor iteration 69

MMA solver 67, 70

model inputs

optimizing 8

Monte Carlo solver 66, 68

moving mesh interface 86

MPH-files 11

N Nelder-Mead solver 66, 68

nonlinear solver 75

O objective

expression 40, 43

functions 9, 14–15

global 43

integral 39

point sum 39

objective function 35

complex-valued 30

definition 20

specification of 26

optimality tolerance 55, 64, 73, 81, 91

optimization

gradient-based 82–83

problem formulations 14

problems 8

optimization interface 35

theory 14

optimization problem 97

optimization solver 81

optimization study node 54

optimization variable 96

P parameter column (node) 39

parameter estimation 8

parameter estimation (node) 62

PDE-constrained optimization problem

15

performance constraints 17

point sum inequality constraints (node)

40

point sum objective (node) 39

Pointwise constraints 76

pointwise inequality constraint (node) 41

pointwise inequality constraints 18

precision, function 90

principle of virtual work 30

probe contribution 16, 26, 96

probe objective 16, 26

probe objective (node) 40, 50

Q QP problem solver 92

QP solver 69

quadratic programming 69

quadrature 40

quantity of interest 97

quasi-Newton 70

quasi-Newton solver 85, 92

S save to excel file (button) 38, 46

sensitivity analysis 20

sensitivity interface 48

sequential quadratic programming 69

simple bounds 15, 76

SNOPT 8, 69

linesearch strategy 87

linesearch tolerance 86

output diagnostic information from 70

SNOPT solver 67

solution variable 17, 35

solver

Cholesky 84

conjugate-gradient 85, 92

quasi-Newton 85, 92

SQP 69

step condition 85

study reference node 54

superbasic variable 84, 92

superbasic variables 70

T technical support, COMSOL 12

theory

optimization 14

time column (node) 39

tolerance

feasibility 89, 91

optimality 55, 64, 81, 91

value 73

trust region 68–69

U upper bound 41

V value column (node) 38

variables

control 14–15

decision 96

global 45

sensitivity solvers 24

solution 17

superbasic 84, 92

W warning messages 74

websites, COMSOL 12
I N D E X | 101

102 | I N D E X

	Contents
	Chapter 1: Introduction
	Optimization Module Overview 8

	Chapter 2: Optimization and Sensitivity Theory
	Optimization Theory 14
	Theory for the Sensitivity Interface 20

	Chapter 3: The Optimization Interface
	Adding an Optimization Interface 34
	The Optimization Interface 35

	Chapter 4: The Sensitivity Interface
	The Sensitivity Interface 48

	Chapter 5: The Optimization Solvers
	The Optimization Study 54
	The Parameter Estimation Study 62
	About the Optimization Solvers 65
	The Optimization Solver 81
	Advanced Solver Properties 89

	Chapter 6: Glossary
	Glossary of Terms 96

	Introduction
	Optimization Module Overview
	What Can the Optimization Module Do?
	Optimization Algorithms

	Where Do I Access the Documentation and Application Libraries?
	The Documentation and Online Help
	The Application Libraries Window
	Contacting COMSOL by Email
	COMSOL Online Resources

	Optimization and Sensitivity Theory
	Optimization Theory
	Basic Optimization Concepts
	Optimization Problem Formulation
	The General Optimization Problem
	Classical Optimization

	PDE-Constrained Optimization
	Specification of the Objective Function
	Specification of Constraints

	Theory for the Sensitivity Interface
	About Sensitivity Analysis
	Sensitivity Problem Formulation
	Theory for Stationary Sensitivity Analysis
	Forward Sensitivity Methods
	Adjoint Sensitivity Method

	Theory for Time-Dependent Sensitivity
	Forward Sensitivity
	Adjoint Sensitivity

	Specification of the Objective Function
	Choosing a Sensitivity Method
	Forward Sensitivity
	Adjoint Sensitivity

	Postprocessing Sensitivities
	Issues to Consider Regarding the Control Variables
	The Effect of Discretization
	Geometrical Sensitivity

	Issues to Consider Regarding the Objective Function
	The Principle of Virtual Work
	Complex-Valued Objective Functions

	Issues to Consider Regarding Constraints

	The Optimization Interface
	Adding an Optimization Interface
	The Optimization Interface
	Settings
	Optimization Toolbar
	Least-Squares Objective
	Experimental Data
	Experimental Parameters

	Value Column
	Time Column
	Parameter Column
	Coordinate Column
	Ignored Column
	Integral Objective (Point Sum Objective)
	Objective
	Quadrature Settings

	Probe Objective
	Objective
	Probe Coordinates

	Integral Inequality Constraint (Point Sum Inequality Constraint)
	Constraint
	Quadrature Settings
	Bounds

	Pointwise Inequality Constraint
	Constraint
	Discretization
	Bounds

	Control Variable Field
	Control Variable
	Control Variable Scaling
	Discretization

	Control Variable Bounds
	Bounds

	Global Objective
	Objective

	Global Least-Squares Objective
	Global Inequality Constraint
	Constraint
	Bounds

	Global Control Variables
	Control Variables
	Discretization
	Control Variable Scaling

	The Sensitivity Interface
	The Sensitivity Interface
	Sensitivity Toolbar
	Settings
	Integral Objective
	Objective
	Quadrature Settings

	Probe Objective
	Objective
	Probe Coordinates

	Control Variable Field
	Control Variable
	Discretization

	Global Objective
	Objective

	Global Control Variables
	Control Variables

	The Optimization Solvers
	The Optimization Study
	optimization solver
	Objective function
	Control Variables and Parameters
	Constraints
	Output While Solving

	The Parameter Estimation Study
	Model Data
	Reference Data
	Parameters
	Parameter Estimation Method
	Output while Solving

	About the Optimization Solvers
	About Derivative-Free Solvers
	About Gradient-Based Solvers
	The Coordinate Search Solver
	The Monte Carlo Solver
	The Nelder-Mead Solver
	The BOBYQA Solver
	The COBYLA Solver
	The SNOPT Solver
	Command-Line Options

	The MMA Solver
	The Levenberg-Marquardt Solver
	About Optimality Tolerances
	Optimality Tolerance for Derivative-Free Methods
	Optimality Tolerance for SNOPT
	Optimality Tolerance for MMA
	Optimality Tolerance for Levenberg-Marquardt

	About Constraint Handling
	Constraint Handling for Derivative-Free Methods
	Constraint Handling for Gradient-Based Methods

	References for the Optimization Solvers

	The Optimization Solver
	General
	Optimization Solver
	Results While Solving
	Constants
	Log

	Advanced Solver Properties
	SNOPT Solver Properties
	Feastol
	Funcprec
	Hessupd
	Majfeastol
	Opttol
	Qpsolver

	MMA Solver Properties

	Glossary
	Glossary of Terms

	Index

