Linear in the COMSOL Multiphysics Programming Reference Manual
|
•
|
Number of iterations. The default is 2.
|
•
|
Select a Multigrid cycle: V-cycle (the default), W-cycle, or F-cycle. For Multigrid cycle, the settings are the same as for the geometric multigrid (GMG) and algebraic multigrid (AMG) solvers.
|
•
|
Enter the Number of multigrid levels to generate (the default is 1 for Geometric multigrid and 5 for Algebraic multigrid).
|
If None is selected, no coarse mesh is used in addition to the fine mesh. This can lead to severe reduction in convergence rate but saves memory.
|
•
|
Enter a Maximum number of DOFs at coarsest level. The default is 5000. Coarse levels are added until the number of DOFs at the coarsest level is less than the max DOFs at coarsest level or until it has reached the number of multigrid levels.
|
•
|
Enter a value or use the slider to set the Quality of multigrid hierarchy. Higher quality means faster convergence at the expense of a more time consuming setup phase. For instance, if the linear solver does not converge or if it uses too many iterations, try a higher value to increase the accuracy in each iteration, meaning fewer iterations. If the algebraic multigrid algorithm runs into memory problems, try a lower value to use less memory. The range goes from 1 to 10, where 10 gives the best quality. The default is 3.
|
•
|
Enter a Maximum number of DOFs at coarsest level. The default is 5000. Coarse levels are added until the number of DOFs at the coarsest level is less than the max DOFs at coarsest level or until it has reached the number of multigrid levels.
|
•
|
The aggregation algorithm is based on a connection criterion, which you specify as a coefficient in the Strength of connections field. A node j is connected to another node i, if where ε is the strength of connection coefficient, and Aij is the submatrix of the stiffness matrix defined by the degrees of freedoms on node i and j, respectively. Loosely speaking, the strength of connection value determines how strongly the aggregation should follow the direction of anisotropy in the problem. The default value is 0.01.
|
•
|
From the Null-space vectors list, choose Constant (the default) or Rigid body modes. For linear elasticity problems, always select Rigid body modes because it enhances the convergence properties significantly.
|
•
|
Select the Construct prolongators componentwise check box for CFD applications and other not strongly coupled physics. It is selected by default in predefined solver suggestions for CFD.
|
•
|
The Aggregates from symmetric part check box is selected by default to exclude nonsymmetric parts.
|
•
|
By default, the Prolongator smoothing check box is selected for smoothing of the prolongators according to the following settings.
|
•
|
Choose how to control the smoothing using the Smoothing list. The Auto option postpones the smoothing for sdim-1 levels, where sdim is the space dimension of the problem. If you choose Manual, enter the level to start smoothing at in the Start smoothing at multigrid level field.
|
•
|
The final transfer operator, P, between the fine and coarse problems are smoothed by one application of Jacobi smoothing:
|
•
|
By default, the Use filtering check box is selected. Filtering means that entries in the stiffness matrix have been dropped if they correspond to degrees of freedoms on a node that has no strong connections. Loosely speaking, filtering highlights anisotropy in the problem and results in a sparser coarse level problem..
|